A NEW PERIPHERAL INTERFACE ?????

RON ROBERTS

Ph. 408-432-3875 FAX 408-432-3773

email ron_roberts@maxtor.com

216

PERIPHERAL DEVICE INTERFACE

ANOTHER INTERFACE !!!

DESIGN GOALS

- LOW LEVEL ACCESS TO THE MEDIA... IF REQUIRED
- VARIABLE DATA TRANSFER RATES FOR PERFORMANCE VS COST TRADE-OFFS
- ALLOW VENDORS TO TAKE ADVANTAGE OF VOLUME PRODUCTION
- PROVIDE EASY IMPLEMENTATION OF ARRAYS OF DISKS
- PROVIDE SIMPLIFIED COMMAND STRUCTURES AND FLOW
- PROVIDE FOR MAXIMUM THROUGH-PUT
- PROVIDE FOR ERROR FREE TRANSFERS

RKR 03/93

ARCHITECTURAL MODEL

SYSTEM ATTACHMENT LEVEL (SCSI, ATA, IPI3, VME, ETC,ETC)				
PERIPHERAL CONTROLLER				
BASIC DEVICE LEVEL ATTACHMENT				
PERIPHERAL DEVICE				

RKR 03/93

ARCHITECTURAL MODEL

ATTRIBUTES OF LEVELS

PERIPHERAL CONTROLLER	PERIPHERAL DEVICE	
SYSTEM INTERFACE CONTROLS	ALL SERVO CONTROLS	
CACHE MEMORIES(IF REQUIRED)	ENCODER DECODER	
CONTROLS MULTIPLE DEVICES(NO LIMITS)	READ/WRITE CIRCUITS	
BUFFER AREAS	ECC ON THE FLY	
SYSTEM SPECIFIC KNOWLEDGE	STORAGE MEDIA	
	SPINDLE SYNC CKTS	
	POWER CONTROLS	

2/0

INFORMATION MOVEMENT PROTOCOL

WHERE DOES IT FIT IN THE HIERARCHY OF THE SUBSYSTEM ??

TYPICAL PERIPHERAL SUB-SYSTEM

INTERFACE LINES

CONTROL SIGNALS

CONTROL SIGNALS ARE BI-DIRECTIONAL

TRANSPORTS COMMAND DATA TO THE PERIPHERAL DEVICE
TRANSPORTS RESPONSE/SENSE DATA TO THE PERIPHERAL CONTROLLER

222

CONTROL SIGNAL FLOW

22

PERIPHERAL DEVICE INTERFACE COMMAND BLOCK FORMAT

COMMAND BLOCK WORD 0	0	LOCATION ADDRESS			15
COMMAND BLOCK WORD 1	0	CONTROL INFORMATION 7	7	8 LOCATION ADDRESS	15
COMMAND BLOCK WORD 2	0	CONTROL INFORMATION 7	7	8 CONTROL INFORMATION	15
COMMAND DI OCK WODD A					
COMMAND BLOCK WORD 3	0	CONTROL IN	NF	ORMATION	15

RKR 03/93

MESSAGE SIGNALS

MESSAGE SIGNALS COMMUNICATE EXACT MESSAGES BETWEEN THE PERIPHERAL CONTROLLER AND THE PERIPHERAL DEVICE

226

PERIPHERAL DEVICE INTERFACE

MESSAGE SIGNAL DEFINETIONS

ATTENTION

Asserted by peripheral device to request service.

STATUS

When asserted by controller request status from the device, when negated

it indicates transfer of control information.

COMMAND RECEIVED

Asserted by device to indicate receipt of last word of control information.

Remains asserted until completion of that command indicating device is

in a busy state.

DEVICE INTERRUPT

Asserted by the device to execution of a command or completion of any

request.

DEVICE RESET

Asserted by the controller to initialize the device.

CONTROL VALID

Asserted by the controller to indicate information is valid on the control lines.

RKR 03/93

DATA SIGNALS

DATA SIGNALS ARE BI-DIRECTIONAL

DATA SIGNALS MAY CONSIST OF 2, 4, OR 8 PHYSICAL LINES

IF 4 OR 8 PHYSICAL LINES ARE USED A PARITY BIT MUST ALSO BE USED

NUMBER OF DATA SIGNALS DETERMINED BY SYSTEM PERFORMANCE REQUIREMENTS

DATA SIGNALS

BI-DIRECTIONAL SIGNALS

PARITY IS OPTIONAL FOR 2 BIT TRANSFER MANDATORY ON 4 & 8 BIT TRANSFERS

RKR 03/93

SYNC SIGNALS

SYNC SIGNALS ARE BI-DIRECTIONAL

SYNC SIGNALS ARE USED IN CONJUNCTION WITH TRANSFER OF DATA, COMMAND, AND STATUS BETWEEN THE PERIPHERAL CONTROLLER AND THE PERIPHERAL DEVICE

SYNCRONIZATION

VALID SYNC SEQUENCE

WHILE SYNC 0 IS ASSERTED, AND WHEN SYNC 1 IS ASSERTED, THE DURATION OF SYNC 1 BECOMES VALID SYNC TIME.

SYNC SIGNALS ARE SYNCRONIZED WITH THE CLOCK OF THE SENDING END OF THE INTERFACE.

RKR 03/93

COMMAND BLOCK FLOW

MAXTOR CORPORATION
SYSTEM ENGINEERING

RKR 03/93

PERIPHERAL DEVICE INTERFACE TIMING CONSIDERATIONS

PREDICTABLE AND CONSISTENT LATENCY

PERIPHERAL DEVICE INTERFACE TIMING SPECIFICATIONS

MAXIMUM CLOCK FREQUENCY

50 MHz

MAXIMUM TRANSFER RATES: (NON-BUFFERED)

2 BIT 4 BIT 12.5 MBytes/SEC 25.0 MBytes/SEC

8 BIT

50.0 MBytes/SEC

MAXIMUM COMMAND TRANSFER TIME

320 nsec

MAXIMUM COMMAND VALIDATION TIME

150 usec

MAXIMUM STATUS TRANSFER TIME

320 nsec

NOTE:

TIMING BASED ON A MAXIMUM MEDIA TRANSFER RATE OF 100MHz

MAXTOR CORPORATION
SYSTEM ENGINEERING

RKR 03/93

COMMAND RETRIEVAL

WORD 0	T		
WORD 1	R		
WORD 2	N		
WORD 3	S F	INTERFACE	
WORD X0	E		PERIPHERAL DEVICE
WORD X1	R		
WORD X2	M E		
WORD X3	C		
WORD Y0	H		
WORD Y1	N		
WORD Y2	l s		
WORD Y3	M		

PERIPHERAL CONTROLLER MEMORY

CONFIGURATION POSSIBILITIES

RADIAL CONNECTION

236

PERIPHERAL DEVICE INTERFACE ADVANTAGES OF INTERCONNECTION SCHEME

- PROVIDES LOW LEVEL ACCESS TO MEDIA (if required)
- SIMPLIFIES PERIPHERAL DEVICE FIRMWARE
- LESS COSTLY PERIPHERAL DEVICES
- EASE OF IMPLEMENTATION FOR ARRAYS OF DISKS (RAID's ??)
- PERIPHERAL GUIDED VS SYSTEM AFTER THOUGHT
- PERFORMANCE ORIENTED WITH LESS \$ THAN SCSI (PER SYSTEM)

RKR 03/93