

RKR 01/93

PERIPHERAL DEVICE INTERFACE

DISK LEVEL INTERFACES?

HISTORY LESSON No 100001

IN THE BEGINNING

- ONE CONTROLLER THAT HANDLED MANY DISK'S OR SPINDLES PER SYSTEM
- COSTS OF ECC CIRCUITS, BUFFERS, ENDEC'S, WERE AMORTIZED OVER MANY SPINDLES.
- ARRAYS OF DISKS WERE COMMON (FARMS)
- DISKS HAD VERY LITTLE MICROCODE

PERIPHERAL DEVICE INTERFACE

DISK LEVEL INTERFACES?

HISTORY LESSON No 100001-2

WHEN WE INHERITED INTELLIGENCE

- SYSTEMS BECAME SMALLER AND ONLY NEEDED ONE OR TWO DISKS
- INTEGRATION TECHNIQUES BECAME VERY COST EFFECTIVE
- IF ONLY ONE DRIVE PUT EVERYTHING IN IT...
 TAKES COST FROM SYSTEM
- PERFORMANCE WAS QUESTIONABLE BUT OVER-RIDDEN BY COST ADVANTAGES
- THE NEED FOR BETTER COMMUNICATIONS BETWEEN SYSTEM AND PERIPHERAL BROUGHT US INTELLIGENT INTERFACES
- DISKS HAVE LARGE MICROCODE PROGRAMS...
 DEVELOPMENT COSTS ARE HIGH

PERIPHERAL DEVICE INTERFACE

DISK LEVEL INTERFACES?

HISTORY LESSON No 100001-3

NOW WHERE ARE WE

- LARGE CAPACITY SPINDLES.... MANY GBYTES UNDER ONE ARM... MANY SPINDLES TO OBTAIN AVAILABILITY, THROUGH-PUT
- AVAILABILITY OF DATA MORE CRITICAL THAN EVER
- COST IS STILL CRITICAL BUT PERFORMANCE IS REQUIRED
- ACCESSIBILITY TO DATA FOR INCREASED SYSTEM PERFORMANCE
- FAST WIDE SINGLE OPTICAL SYSTEM INTERFACES TO ACCESS PERIPHERALS
- MORE FUNCTIONS.. MORE MICROCODE.. MORE MORE

MORE

PERIPHERAL DEVICE INTERFACE

ANOTHER INTERFACE !!!

DESIGN GOALS

- LOW LEVEL ACCESS TO THE MEDIA... IF REQUIRED
- VARIABLE DATA TRANSFER RATES FOR PERFORMANCE VS COST TRADE-OFFS
- ALLOW VENDORS TO TAKE ADVANTAGE OF VOLUME PRODUCTION
- PROVIDE EASY IMPLEMENTATION OF ARRAYS OF DISKS
- PROVIDE SIMPLIFIED COMMAND STRUCTURES AND FLOW
- PROVIDE FOR MAXIMUM THROUGH-PUT
- PROVIDE FOR ERROR FREE TRANSFERS

70

PERIPHERAL DEVICE INTERFACE

ARCHITECTURAL MODEL

SYSTEM ATTACHMENT LEVEL (SCSI, ATA, IPI3, VME, ETC,ETC..)

PERIPHERAL CONTROLLER

BASIC DEVICE LEVEL ATTACHMENT

PERIPHERAL DEVICE

71

PERIPHERAL DEVICE INTERFACE

ARCHITECTURAL MODEL

ATTRIBUTES OF LEVELS

PERIPHERAL CONTROLLER	PERIPHERAL DEVICE
SYSTEM INTERFACE CONTROLS	ALL SERVO CONTROLS
CACHE MEMORIES(IF REQUIRED)	ENCODER DECODER
CONTROLS MULTIPLE DEVICES(NO LIMITS)	READ/WRITE CIRCUITS
BUFFER AREAS	ECC OF THE FLY
SYSTEM SPECIFIC KNOWLEDGE	STORAGE MEDIA
	SPINDLE SYNC CKTS
	ALL POWER CONTROLS

PERIPHERAL DEVICE INTERFACE

ADVANTAGES OF INTERCONNECTION SCHEME

- PROVIDES LOW LEVEL ACCESS TO MEDIA (if required)
- SIMPLIFIES PERIPHERAL DEVICE FIRMWARE
- LESS COSTLY PERIPHERAL DEVICES
- EASE OF IMPLEMENTATION FOR ARRAYS OF DISKS (RAID's ??)
- PERIPHERAL GUIDED VS SYSTEM AFTER THOUGHT
- **PERFORMANCE ORIENTED WITH LESS \$ THAN SCSI (PER SYSTEM)**

PERIPHERAL DEVICE INTERFACE

INFORMATION MOVEMENT PROTOCOL

PERIPHERAL CONTROLLER

PERIPHERAL DEVICE

4 COMMAND WORDS TRANSMITTED

4 COMMAND WORDS RCVD'D

& DECODED

4 STATUS WORDS RCV'D

WAIT FOR INTERRUPT (DO SOMETHING ELSE)

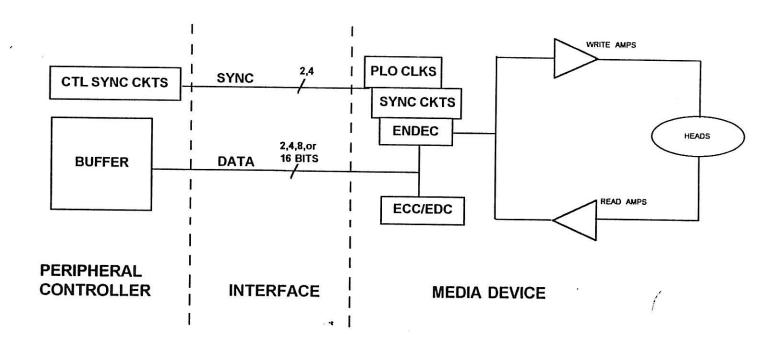
-4 STATUS WORDS TRANSMITTED

PERFORM SPECIFIED COMMAND

4 STATUS WORDS RCV'D

PERIPHERAL DEVICE INTERFACE

WHERE DOES IT FIT ? IN THE HIERARCHY OF THE SUBSYSTEM


TYPICAL PERIPHERAL SUB-SYSTEM

75

PERIPHERAL DEVICE INTERFACE

DATA PATH LAYOUT

