Document X3T79.2/92-199 Revision 2

SCSI 3 Serial Bus Protocol
A Logical I/0 Model for
SCSI on the 1394 Serial Bus

November 6, 1992

Gerald Marazas
Scott Smyers
Ed Gardner

Point of Contact:
Gerald A. Marazas
IBM Corporation
P.O. Box 1328
Boca Raton, Florida 33429
Mail Stop 5432

Phone: (407) 982-4423

Internet: marazas@bcrvmpc2.vnet.ibm.com

Secretariat
Computer and Business Equipment Manufacturers Association

Abstract: This document is a proposed working drafl of the GCS8!1 3
Serial Bus Protocol. The purpose of the protocol is to define how
SCSI 3 functions are transported over the IEEE 1394 High Speed Serial Bus.

This is an internal working document of X379.2, a Task Group of
Accredited Standards Committee X3. This is not a completed standard
and has not been approved by Task Group X3T9.2. This document is made
available for review and comment only.

COPYRIGHT NOTICE: In accordance with the usual ANSI policy on the revision
of standards, this draft may be reproduced, for purposes of review and
comment only, without further permission, provided this notice is included.

All other rights are reserved.

/83

il SCSI 3 Serial Bus Protocol l e 4

Contents

1.0 Overview 1
2.0 Referenced Standards 2
3.0 Glossary and Conventions 3

4.0 Model of Serial Bus Protocol 4
4.1 Model of Serial SCSI Initiator 4
4.1.1 Setting of the M_Flag 4
4.1.2 Focus of a Command Chain 5
4.1.3 Composition of a Command Chain 5
4.1.4 Refention of a Command Block by the Initiator 5
4.1.5 Shoulder Tap Protocol for Command Delivery 6
4.2 Model of Serial SCSI Target 6
4.2.1 Usage of the Status FIFO 7
4.2.2 Usage of the M_Flag 7
4.2.3 Management of Target Resources 7

5.0 Command Transfer Protocol 11
5.1 Conceptual Initiator - Target Connection 11
5.2 Multiple Initiator Environment 13

6.0 Packet Types 14

7.0 SCSI 3 Serial Bus Protocol Support Elements 15
7.1 Target “Register” Definitions 15

7.1.1 Normal FIFO 16

7.1.2 Urgent FIFO 16
7.2 Initiator “Register” Definitions 16

7.2.1 Status FIFO 17

8.0 Command and Status Information 18
8.1 Command Blocks 1B

8.2 Status Block 23

8.3 Initiator Scatter/Gather List 23

9.0 Payload Specification For Command Transfer Packets 25
9.1 Payload of Initiator to Target Packet - “Tap Packet” 25
9.1.1 Request Payload 25
9.1.2 Response Payload 26
9.2 Command Read Request 26
9.2.1 Request Payload 26
9.2.2 Response Payload 26

10.0 Data Transfer Protocol 27

10.1 Asynchronous Transfer 27
10.1.1 Data Read From Device Medium 27
10.1.2 Data Written To Device Medium 27

11.0 Status Transfer Protocol 28

les Contents iii

12.0 Examples 29
12.1 Target Read Command 29
12.2 Target Multiple Read Commands 29

13.0 Messages 31

13.1 Payload of Abort Packet 31

13.2 Payload of Abort Tag Packet 31
13.3 Payload of Reset Packet 32

13.4 Payload of Clear Queue Packet 32

14.0 Contingent Allegiance 33
14.1 Aims 33

15.0 Compatibility to Parallel SCSI 34

15.1 Increased Initiator problems 34 -

15.2 Asynchronous Event Notification 34
15.2.1 Aims 34

Appendix A. Packet Formats 35
A.l1 Write Packets 35
A.2 Read Packets 36

Appendix B. Isochronous Transfer 38

B.1 Read from media - Isochronous 38
B.2 Write to media - Isochronous 38

iv sCSI 3 Serial Bus Protocol

166

o o

Figures

1. Conceptual Initiator-Target Conversation, Example | 11
2. Conceptual Initiator-Target Conversation, Example 2 13
3. Command Block 19
4. Control Flags 20
5. Status Block 23
6. Scatter/Gather List Format -- Single 16-Byte Unit 24
7. Payload of Initiator “Tap” packet 25
8. Tarpet Read Command 29
9. Target Multiple Read Commands 30
10. Payload of Abort Packet 31
11. Payload of Abort Tag Packet 32
12. Payload of Reset Packet 32
13. Payload of Clear Queue Packet 32
14. Quadlet Write Request Packet 35
15. Block Write Request Packet 35
16. Write Response Packet 35
17. Read Request Packet 36
18. Read Response Packet 36
19. Block Read Request Packet 36
20. Block Read Response Packet 36
21. Isochronous packet 37
22. Isochronous packet 38
Acknowledgements

The editors wish to express appreciation to the multiple partics who have provided input and/or critique to

this document. In particular, the following individuals have made valuable contribution by virtue of their
inputs of text and their comments:

Jon Haswell
IBM Fujisawa, Japan

Andy McNeill
IBM Boca Raton, Florida

Michael Teener
Apple Computer Cupertino, California

187

Figures

A

Goals and Objectives

This document describes a command and status delivery protocol for controlling the operation of devices
attached to an IEEE 1394 Serial Bus physical interface. This protocol is based on a mapping of parallel
SCSI commands and messages. Trade offs have been made in function placement so as to provide improve-
ments in performance and subsystemn functionality, while allowing Target and Initiator designers to build
upon existing parallel SCSI hardware and software.

A major goal motivating this protocol definition was to definc a model acceptable to device vendors, looking
for an evolution from parallel SCSI, and systems designers looking for opportunities to more fully exploit the
capabilities inherent to the IEEE 1394 1/O bus.

The protocol described in this document attempts to solve some of the problems associated with parallel
SCSI protocol through provision of additional functional capability such as:

1. Ability to queue multiple commands for a Target without concern for arbitrary "qucue full” conditions
within the Target.

2. Target does not need to interrupt processing of a prior command in order to quecuc a subsequent
command.

3. Ability to design Target devices that have varying levels of support for command qucucing or overlapped
command processing without affecting the design of the Initiator. Conversely, the Initiator design can be
structured so as to support multiple device and/or command queucing capability.

4. Distribute the system DMA context handling (Disconnect, Reconnect, Save Data Pointer, Restore
Pointers, etc.) required by parallel SCSI so as to reduce device and adapter overhead for higher sub-
system performance. The Target device is given an important role in maintenance of DMA context.

This protocol also attempts to ease the transition to a Scrial SCSI environment by consideration of signif-
icant aspects of the Parallel SCSI environment:

1. Integrates standard parallel SCSI Command Descriptor Block (CDB) within Serial SCST Command
Block.

2. Closely follows standard parallel SCSI command queuing/error recovery procedures and concepts.

3. Requires less packet overhead becausc of command/status list management being performed locally in
the Initiator.

In striking a balance between support for cxisting Parallel SCSI functions, and providing a growth path to
exploitation of new features of Serial SCSI environment, a new fixed length command block has been
defined. This command block provides support for advanced features of todays SCSI such as automatic
sense data reporting and scatter/gather host data buffer handling. Support is provided for interesting new
features of the IEEE 1394 High speed Serial Bus such as Isochronous data transfer. The present approach
does not require “locked” memory operations for list pointer update/management.

¥i SCSI 3 Serial Bus Protocol Iee

Other aspects of this protocol address the broader elements of operation currently under discussion in the
SCSI 3 community.

1. Taking into account the command chaining capability of Serial SCSI as well as the SCST 3 Queueing
Model so as to achieve comparable order of command fetching and command execution between Serial

SCSI and Parallel SCSI.

2. It is desired to maintain some level of commonality for similar functions between SCSI as supported by
by the IEEE 1394 transport mechanism and SCSI as supported by Fibre Channel transport.

l 39 Goals and Objectives Vii

SCSI 3 Serial Bus Protocol
November 6, 1992 7:05 p.m. Doc. 92_199 Rev 2

1.0 Overview

The SCSI 3 Serial Bus Protocol has the following featurcs:
« Fixed length command blocks (See note 1 below)
= Fixed length status blocks
= Tair support for multiple Initiators
« Separate command queues for each Initiator/Target pair
* Ability to support multiple command queues per Initiator
» Command queue depth determined by Initiator
» Number of overlapped commands in progress limited by Target
» Supports parallel SCSI error recovery procedures
» Supports Isochronous operation

Implementation Note: Target vendors (particularly at the low end) have cxpressed strong prelerence for a
solution in which every effort is made to reduce the size of the command block. Opportunities should
be sought to obtain a smaller command block if this can be done without making unacceptable com-
promises in functional capability. One accommodation to vendors of low-cnd Target devices is the
organization of the command block into a baseline section which must be fetched under all circum-
stances and an extended portion for which the option is granted that it may be fetched only when a
check condition occurs during execution of the command. It would be anticipated that high-end
Target devices would always fetch both the bascline as well as the extended portions of the command

block.

, w Overview 1

SCSI 3 Serial Bus Protocol
November 6, 1992 7:05 p.m. Doc. 92 199 Rev 2

2.0 Referenced Standards

This Serial Bus Protocol document describes a Logical 1/0 Model for the physical Transport means pro-
vided by the IEEE 1394 High Speed Serial Bus.

For compatibility purposes reference is made to SCSI 2 (X3.131-1992)

2 SCSI 3 Serial Bus Protocol I ’/

SCSI 3 Serial Bus Protocol
November 6, 1992 7:05 p.m. Doc. 92_199 Rev 2

3.0 Glossary and Conventions

This section is to be provided in a later revision level.

I , z Glossary and Conventions 3

SCSI 3 Serial Bus Protocol
November 6, 1992 7:05 p.m. Doc. 92_199 Rev 2

4.0 Model of Serial Bus Protocol

This section describes the architectural model for the SCSI Initiator and for the SCSI Target as they interact
within the SCSI 3 Serial Bus Protocol.

4.1 Model of Serial SCSI Initiator

The Initiator is responsible for building the command blocks, qucucing multiple command blocks, allocating
status block buffers, and handling the correlation between command blocks and status blocks. It is antic-
ipated that the Initiator may find it beneficial to associate command blocks together into a structure com-
monly called a command block chain, or more simply a chain. Individual commands within the chain do
not need to have any particular connection to one another cxcept that they originate from the same Initiator.
One reason for forming commands into a chain is that processing efficiency is enhanced within the Initiator.
An additional reason for forming commands into a chain is that there is some relation among the commands

as viewed by the Initiator.

Editorial Note: Care should be taken to distinguish between the new facility of commands formed into a
chain and the existing facility in SCSI known as the Linked command. With regard to the SCSI 3
Queueing Model, the entire collection of Linked commands arc considered as a single I/O Process.
The elements within a Linked 1/O process must be completed hefore work may be done on behalf of
any other I/O process. In important contrast to this situation for elements of a Linked 1/O process,
within the command chain, each command is considered a separate and distinet I/OQ Process. If there
are multiple chains, then the Target may interlcave its work activity among the chains. Link com-
mands may be used in a chain as can any other SCSI command.

In the SCSI 3 Serial Bus Protocol, command blocks must be qucued by the Initiator and the Initiator must
be capable of providing the queued command blocks one at a time to the Target whenever the Target is
ready to begin processing a new command. This helps to avoid busy conditions where the Target cannot
accept any further command blocks. As a supported and encouraged option within the Serial Bus Protocol,
Target devices may fetch multiple commands (one at a time) from any Initiator. In this manner (via pre-
fetch), the Target has the optimization option of overlapping certain process steps for a later command while
the current command is in execution.

411 Setting of the M_Flag

The mechanism for forming commands into a chain makes usc of the ficld in the command block which is
the address of the next command. Thus, a chain consists of those commands connected to one another by
the Initiator through use forward pointer consisting of the next command address field found in each
command block. Each command block also contains a flag, called the More_I'lag, or more briefly the
M_FLAG. When the M_FLAG has value equal to onc, it means there is at least one command block in
the chain occurring after this present command block. ‘The very Inst command block in the chain is indi-
cated by having value equal to zero for the M_FLAG. The Initiator preserves for later use the address of the
first command in the chain. It is convenient to refer to the starting address of a command block chain as
being the address of the first command block in that chain.

4 SCSI 3 Serial Bus Protocol ,qg

SCSI 3 Serial Bus Protocol

November 6, 1992 7:05 p.m. Doc. 92_199 Rev 2

4.1.2 Focus of a Command Chain

In conformity to the SCSI 3 queueing model, each chain of command blocks is directed to a specific Logical
Unit Number (LUN) of a specific Target. An Initiator is allowed to have multiple command block chains
directed to the same Target/LUN combination. An Initiator is also allowed (in fact required) to have a
different command block chain for each and every Target/ILUN which is to receive commands from that
Initiator. Observe that a given Target/LUN combination may also have multiple command block chains
directed to it. Each command block chain within an Initiator is distinguished by having a different starting
address within that Initiators address space.

4.1.3 Composition of a Command Chain

The following four types of 1/O process are defined in the SCSI 3 queueing modcl:
1. Simple . | ~
2. Ordered
3. Head of Queue
4. Autocontingent Allegiance (ACA)

A chain of command blocks is restricted to contain one and only onc type 1/O process drawn from the list
above. A TYPE_ID parameter is connected to each chain for the purpose of identifying the nature of com-
mands contained within any given command block chain.

If an Initiator has a sequence of Simple I/O commands which arc to be completed before a sequence of one
or more Ordered commands,then the Initiator must construct one chain consisting only of the Simple com-
mands and a second chain consisting only of the Ordered commands. The Initiator must first inform the
Target of the chain of Simple commands, and second, inform the Target of the chain of Ordered commands.
These restriction on contents of a chain and this procedure for informing the Target about chains facilitate
processing by the Target which conforms to the completion sequence rules defined in the SCSI 3 Queueing

Model.

4.1.4 Retention of a Command Block by the Initiator

The Initiator must be aware that the Target may have legitimate need to refetch the same command block at
any arbitrary time after the time of original fetch up to the time of return of completion status and/or sense
data. One reason for a refetch is that a Target may clect to take advantage of the option in which ending
portions of the command block are read only when a check condition occurs. A sccond instance of
refetching a command is the optimization policy in which many command blocks read and then discarded in
order to which command is best to execute next so as to achicve hest performance. The command selected

for execution is then refetched.

Thus, the Initiator must maintain the command block in memory at the same location as originally stated to
the Target. The Initiator must assume full consequences for any change in contents of the command block
from the time of first fetch of that block until the time of any later fetch. Aborting a command is an example
of a situation in which the Initiator may feel it has a proper and good reason for altering some part of a
command block after it has been fetched and before return of completion status information.

I qq Model of Serial Bus Protocol 5

SCSI 3 Serial Bus Protocol
November 6, 1992 7:05 p.m. Doc. 92_199 Rev 2

4.1.5 Shoulder Tap Protocol for Command Delivery

As there are potentially multiple initiators in a system, there has to be a method for an Initiator to indicate
to a Target that it has some work for that Target. A conceptual “tap on the shoulder” is performed via a
SCSI Command Initiation Packet sent to a set of Command FIFOs maintained by the Target. Two
members are defined for this set of Command FIFQs. The first member is the Normal FIFO and this is
intended for use by command chains. The second member is the Urgent FIFO and this is intended for use
by SCSI messages sent to the Target by the Initiator for various control purposes. Onc set of these two
FIFOs shall be provided per Target. This single set is to be shared by all Logical Units connecled to the

given Target.

Many implementation choices are available as to hardware and/or software means to support the Normal
FIFO and the Urgent FIFO data structures. A comparable structure, the Status FIFQ, is defined for use
within the Initiator in order to receive status information from the Target regarding command completion.
Observe, at the conceptual level, the Status FIFO and the Normal FIT'O and the Urgent FIFO have many
notions in common. A key element common to both the Status IITO in the Initiator and the set of two
FIFOs in the Target is that the same size packet (12 Bytes of payload) is sent to all of them. This is not to
say that any requirement exists to provide the same hardware implementation for the Normal FIFO, the

Urgent FIFO, and the Status FIFO.

There are always limits as to the number of “Shoulder Taps” which can be accommodated at any one time
by a Target. The Initiator must be prepared to accept a response from a Target which states the present Tap
cannot be accepted. Various software means may be employed by the Initiator to deal with this situation
that a Target is temporarily not able to accept a Tap. Various elements of the Command Delivery architec-
ture of the Serial Bus Protocol operate so as to make it an unusual and infrequent circumstance that a given

Tap cannot be accepted.

After the Target has received this “Tap”, it will read command blocks, one at a time, using a Read Trans-
action as defined by the Transaction Layer architecture of the IREL 1394 standard. The Request portion of
the Read Transaction makes use of IEEE 1394 style address of the command block. For the first command,
the needed command block address is supplied via the SCSI Command Initiation Packet. For second and
following commands within a chain, the address for the next command is contained as a ficld within the

present command block.

4.2 Model of Serial SCSI Target

The Target is responsible for fetching command blocks, onc at a time from the various Initiators having
indicated to it there is work to be performed on their behalf. Upon completion of any given command, the
Target returns completion status information back to the appropriate Initiator. The addressing scheme of
IEEE 1394 is sufficiently flexible that specification can be made for the Target to return Status information
to a different Initiator than originated the command block.

Since a given Initiator may have multiple commands fetched by a Target and not yet completed, the Target
must provide correlation information between command blocks and status blocks. The address of the asso-
ciated command block shall be placed in the status block in order to provide this needed correlation.

Conceptually, there is a one to one relation between Sense Data blocks and Command blocks. Also, there is
also a one to one conceptual relation between a Status block and its associated Command block. Sense Data
blocks are most often written by the Target to general purposec memory within the Initiator address space.
Status blocks may be written by the Target to special purpose hardware provided in support of the Status
FIFO. While a Sense Data block may not be written for cach and every command completing with “good
status”, there is the notion of allocating a Sense Data block arca for cach and cvery command.

6 SCSI 3 Serial Bus Protocol | 9:

& &9 o9 299

SCSI 3 Serial Bus Protocol
November 6, 1992 7:05 p.m. Doc. 92_199 Rev 2

Editorial Note: Based upon discussion within the SCSI Committee, it was determined to be necessary to
maintain full generality in the specification of starting address for the Sense Data buffer within the
Initiator. As a result, the Sense Data buffer start location is specified by means of a full 64-bit
address. The notion of a Sense Data Buffer Offset has been removed from this document.

4.21 Usage of the Status FIFO

For purposes of this Serial Bus Protocol, status information is sent by the Target to a Status FIFO within
Initiator address space. Many implementation choices arc available as to hardware and/or software means to
support the Status FIFO data structure. Observe, at the conceptual level, the Status FITO and the
Command FIFO have many notions in common. A key clement common 1o both the Status FIFO in the
Initiator and the Command FIFO in the Target is that the same size packet (12 Bytes of payload) is sent to
both. This is not to say that any requirement exists to provide the same hardware implementation for the
Command FIFO and the Status FIFO. However, if specialized hardware support is provided for each FIFO
it can involve the same hardware desigm One useful result of the same hardware treatment for each FIFO is
that it becomes more convenient for an Initiator with its Status FIF'Q) to use the same equipment as a
Command FIFO and thereby be able (at the hardware level) to also function as a Target.

4.2.2 Usage of the M_Flag

When a Target reads a command it must examine the M_Flag. If the M_T'L.AG is sct to value equal zero,
then the Initiator has no further commands for the Target. If the flag has value equal one, then further com-
mands within the given chain are waiting for the Target. In this casc the “next command address” field will
contain the address from which the Target should read the next command. Note that this quantity is a full
64-bit address per the format specified within the IREE 1394 standard. Consequently, the command could
be physically located in any device attached to the IEIE 1394 bus.

4.2.3 Management of Target Resources

It is important to recognize there are two important and potential very different resources for the Target to
manage. One resource is associated with processing a "Shoulder Tap” sent by the Initiator to the Target’s
Command FIFO. The Shoulder Tap may be sent at any arbitrary time with no prior warning given to the
Target. It is important to the successful operation of the Serial Bus Protocol that the Target be able to
accept a stated minimum number of the shoulder taps at any point during processing of some command or
at any point in any other activity undertaken by the Target. In order to fulfill these obligations, it is quite
possible that specialized hardware would be used to implement the Normal FIFO. The specific obligation of
the Target relative to a Shoulder Tap is to place the contents of the 12-Byte Tap Packet (SCSI Command
Initiation Packet) into storage. It is convenient to usc the term “T'ap Slot” when dealing with the obligations
associated with accepting a Shoulder Tap. The requircment placed upon the Target is to support an archi-
tected minimum number of Shoulder Taps which must be supported by an Target compliant to the Serial
Bus Protocol.

The second resource which must be managed by the Target is the storage nccessary 10 hold a command
block. In managing this second resource it is most significant that command blocks do not come at unex-
pected points in time. Each command block is specifically requested by the Target. Thus the target can
ensure that sufficicnt storage is available. The Target can also make sure the request for a new command
block is only made at a favorable time in the processing activity currently underway.

Management of these two resources is likely to proceed by substantially different means as discussed below.
One technical issue with management of the Tap Slot resource is the minimum number of shoulder taps
which can be guaranteed to exist at any Target. A key point regarding a Tap Slot is the time duration it is
kept in a committed state dedicated to one given chain. With regard to storage of command blocks, some
questions are: how many can be prefetched, how much of the command block must be fetched, and the
policy for fetching blocks from different chains.

I ,‘ Model of Serial Bus Protocol 7

SCSI 3 Serial Bus Protocol
November 6, 1992 7:05 p.m. Doc. 92_199 Rev 2

4.2.31 Management of the Tap Slot Resource

The Command Delivery protocol does not require any notice to be given by the Target to the Initiator con-
cerning completion of processing for the chain. Nor docs this protocol require the Target to give any notice
when it can make free a Tap Slot. Should a Tap Slot be a resource limiting the capability of the Target
and/or Initiators using that Target, then it can be argued that the Target should make this item available for
reuse at the earliest possible time. On the other hand, if active Tap Slots become too numerous, it may mean
the Target has to manage an excessive number of commands chains, thereby providing a severe challenge to
the management of the resource for storing command blocks fetched hy that Target.

The very earliest point in time that a Tap slot can be relcased for use by another chain is immediately after
the contents of the Tap Packet have been copied to the general storage pool available to the Target.
Observe, this earliest time is prior to actual fetch of the first command block from the Initiator to the Target.
A somewhat later point in time to release the Tap Slot is immediately after the fetch of the very first
command block in the chain. At this point (first command block stored by the Target), all necessary infor-
mation is available to the Target in order to proceed down the chain. The very latest point in time for the
Target to release a Tap Slot is when the last command block has been completed and all necessary status
information has been returned back to the Initiator. While still later release times for a Tap Slot are possible,
they would seem to undue delay in making free a valuable resource. Clearly, the Target can choose to release
a Tap Slot at any time between the above earliest time and the above latest time.

The advantage in making an early release of a Tap Slot is that it makes the hold time for the Tap Slot
resource less than the hold time for the command block storage resource. In effect, the carly release policy
for Tap Slots serves to increase the effective number of Tap slots relative to the number of command chains
which can be serviced by the Target. Such early releasc of Tap Slots may prove useful against factors which
tend to increase the number of chains to be managed. Onc factor increasing the need for command chains is
the RAID environment in which a large number of Logical Units arc present. Another factor increasing the
number of chains is the environment in which a given Target/ I, UN must be given commands of different
types and the requirement that only one type of command may be placed in any chain.

The Serial Bus Protocol does not place any requirement upon the Target to conform to any specific policy
for release time management of Tap Slots. Such release time policy is left to the Target as an implementation

consideration.
4.2.3.2 Management of the Command Block Storage Resource

The Command Delivery protocol does not require a Target to fetch multiple command blocks for purpose
of storing them so as to attempt overlap of processing or performance optimization. A logically correct and
internally consistent implementation is to fetch and process one command block up to the point of return of
completion status before any effort is made to fetch another command block. Thus, even when the archi-
tected minimum number of 32 Tap slots are made active by the various Initiators, the Target is allowed to
process one and only one command block at a time, and process it 1o completion before fetching some other
command block. A more interesting case, is for the Target to fetch multiple command blocks so that there
is overlap in the processing of a command in exccution phase with other commands for which pre-
processing is underway prior to entry into execution phase.

4.2.3.3 Schedule Policy for Fetching Among Multiple Command Chains

Means are provided within the Tap Packet (SCSI Command Initiation packet) to identify the type of

command exclusively contained within each and every command chain presented to a Target. An implied
time stamp exists for each of these chains. That implied time stamp is the relative order of arrival of each
Tap packet at the given Target. Thus, information exists for the Target to comply with the order of exe-
cution rules established by the SCSI 3 Queueing model for treatment of Simple, Ordered, [ead of Queue,

and ACA 1/O processes.

8 SCSI 3 Serial Bus Protocol I 9 7

SCSI 3 Serial Bus Protocol
November 6, 1992 7:05 p.m. Doc. 92_199 Rev 2

In the situation in which an Ordered chain is present along with chains of Simple 1/O processes the fol-
Jowing command fetch and command completion policy is required. All Simple commands with lower value
of implied time stamp must be fetched and completed prior to start of an Ordered 1/O process with higher
(later) value of implied time stamp. No fetch or completion of Simple /O processes is undertaken for those
command blocks within a chain having an implied time stamp is higher (later) than the time stamp of an
Ordered chain. It is convenient to give the name “deferred chains” to these chains having a higher (later)
implied stamp than some Ordered command chain. Once completion is achieved for cach command in the
subject Ordered chain, it is no longer necessary to defer fetching and completion for commands in the previ-

ously named “deferred chains”.

Within any chain, all of the included 1/O processes have the same implied time stamp as dictated by the
arrival at the Target of the associated Tap packet. Thus, for all chains of Simple commands with lower time
stamp than some ordered command, every command in such a Simple chain will be fetched and subse-
quently completed prior to any attempt at completion for the subject ordered command.

Before further discussion on fetch polic§ and completion policy for chains of Simple Commands, it is neces-
sary to consider the case of Head of Queue chains, and also the case of ACA chains. The ACA chain comes
into existence only upon an ACA condition having been established by a Target/L.U N. As such, the ACA
chain becomes the only chain from which commands can be fetched and completed for the associated
Target/LUN. In a somewhat similar fashion, when a Head of Queuce chain is accepted by a Target/LUN
(subject to no ACA condition existing), that the Head of Queue chain becomes the very next chain from
which an I/O processed is fetched. Once fetched, the 1ead of Queuc command becomes the very next
command to be completed relative to all other non-ACA commands fetched but not yet completed by the

Target/LLUN.

Now it is appropriate to return back to the case of fetching 1/0 processes from chains of Simple commands.
It is required that fetching is allowed from these chains of Simple commands as per the above policy of
dealing with Ordered commands, Head of Queue commands, and ACA commands. For convenience, refer
10 this set of Chains of Simple commands for which fetching is allowed as being the “Allowed Set”. For this
Allowed Set, it is required that Round Robin scheduling be employed for the command block fetch policy
when multiple command chains are involved. This requirement is intended to cnsure fairness in the treat-
ment given to each chain when multiple chains of Simple commands are presented to a Target. The
sequence of fetching one command block within a given chain relative to all other command blocks within
that same chain is dictated by the Initiator though the mechanism of the "Next Command Address” field.

Next, refer to the collection of Simple commands blocks which have in fact been fetched by the Target/LUN
as the “Fetched Set”. Observe, entry into the “Fetched Set” is exclusively on the basis of Round Robin
policy for fetching commands from multiple chains of Simple commands. Once a command is within the
Fetched Set, it is left to the Target to determine the appropriate order of exccution. No requirement is placed
by the Serial Bus Protocol as to preferred order of exccution for commands within the "Fetched Set” of
Simple commands. Thus, the Target is free to cxecute the commands in the same order as fetched or in

some other order if advantage is felt to be gained.

As a specific emphasis point, it is allowed for a low-end Target to fetch and complete commands on a one at
a time basis. Should the “Fetched Set” be restricted by Target implementation to consist of only one
command, the only requirement is for that single command to be determined by a Round Robin fetch
policy. It is encouraged for targets to pursue a more advanced implementation such that the “Tetched Set” is
allowed to be larger (perhaps much larger) than one command.

I'g Model of Serial Bus Protocol 9

SCSI 3 Serial Bus Protocol

November 6, 1992 7:05 p.m. Doc. 92 199 Rev 2

4.2.3.4 Option to Defer Fetch of Command Block Extended Portion

Another aspect of the storage management problem is influenced by the organization of the command block
into a baseline section and into an additional component called the extended portion. This division of the
command block is intended to offer an option to low-end Target devices in which the storage resource for
command blocks may be very limited. The baseline portion is composcd of those clements which must be
fetched in all cases by all levels of implementation for a Target. The basclinc portion contains those fields
needed to pursue completion of the associated 1/O process under normal circumstances in which no check
condition occurs and for those commands which do not require return of sense data even when completion

with pood status occurs.

The extended portion of the command block contains those ficlds providing information as to process steps
when a check condition occurs and/or return of sense data is nceded. The option is extended to low-end
Target devices that they may defer fetch of this portion of the command block until it is determined that a
check condition has occurred and/or it is necessary to rcturn scnse data to the Initiator. The option is
intended to provide the benefit of reducing the amount of storage needed in the Target to hold the command
block. For high-end devices, the expected situation is that both the bascline and the extended portion of the
command block would be fetched at the same time and as a single operation.

4.2.3.5 Repeated Access to Same Command Block

The Target is allowed the option to the same command block more than one time prior to completion of
the command and return of status information and/or sensc data. Should the Target elect to fetch a given
command block more than one time, the requirement exists that the same contents would obtained by the
Target upon each of the fetch operations toward the same command block. One cxpectation is allowed as to
the same contents, field by field, being read each time. This exception is when the Initiator elects to abort the
command prior to having received notification of completion for that command. In this exception circum-
stance, the Target is allowed to change such field as needed in order to satisfactorily mark the command
block as having been aborted.

4.2.3.6 Support of Autosense
The Serial Bus Protocol supports the model of a Target device in which automatic return of sense data to

the Target is enabled. A flag is provided in the command block provides means for the Initiator to inform
the Target on a command by command basis whether autosense is enabled or disabled.

10 SCSI 3 Serial Bus Protocol I 9?

SCSI 3 Serial Bus Protocol

November 6, 1992 7:05 p.m. Doc. 92_199 Rev 2

5.0 Command Transfer Protocol

51 Conceptual Initiator - Target Connection

Example 1 below provides a sequence of IEEE 1394 packets which illustrate the operation of the Command
Delivery protocol used by the SCSI 3 Serial Bus Protocol. The example depicts the situation within a single
Initiator such that a chain has been formed consisting of threc commands. ‘The commands are referred to as
Command 1 (first command), Command 2, and Command 3 (last command). Only Command 3 has the

M_FLAG set equal to value zero since it is the last command in the chain.

Initiator Target
Tap on shoulder ------ > Receive Tap Packet
Cemme Tap Acknowledgement
hhkhhRkREhER A A AR A AR ARk d bk hhhhddhhd IEEE 1394 Transaction
Smmmmm- Read Request (For a Command Block)
Command 1 ~ =~----- > Read Response (Supply Command Block)
(M_Flag = 1)
hkkhhbrhhhhkhrrkhdhrrrrbdrrdhhhrrt IEEE 1394 TT‘&TISE!CUOH
e Read Request (For a Command Block)
Command 2 =~ =====-- > Read Response (Supply Command Block)
(M_Flag = 1)
hhkkhhkh kAR RART R AN LI A kb hhdhhd IEEE 1394 Transaction
SEEEEEE Read Request (For a Command Block)
Command 3~ ------ > Read Response (Supply Command Block)
(M_Flag = 0)

Figure 1. Conceptual Initiator-Target Conversation, Example |

The Initiator sends the Target a SCSI Command Initiation Packet, more informally known as a “Tap”
packet. This “tap” packet is the mechanism by which the Target is informed as to the existence of a chain
consisting of one or more commands and representing “work” to be done by the Target on behalf of the
Initiator. The Tap packet is called the “Tap on the Shoulder” in the figure and contains the address of
Command 1 within the Initiator address space. The Target sends an acknowledgement to the Initiator that
the Tap correctly received (CRC tests passed) and that the payload has been stored in an appropriate
manner in a available Tap slot. In an alternative scenario, the Target may not have a free Tap slot and
would therefor have to reply that the the payload of the Tap packet could not be accepted. The combination
of Tap on Shoulder and associated Acknowledgement constitute one IGEL 1394 Write Transaction.

As shown in the figure, the Target sends to the Initiator a Read Request packet containing the address of
Command | as provided within the “Tap” packet. The Initiator sends a Read Response Packet to Target
with payload consisting of the command block associated with Command 1. The combination of Read
Request and Read Response constitute an IEEE 1394 Read Transaction. Tior a list of the various IEEE
1394 packet types refer to 6.0, “Packet Types" on page 14. Tor information describing the format of these
various types of packets refer to Appendix A, “Packet Formats™ on page 15. Tor the detailed contents of

2” Command Transfer Protocol 11

SCSI 3 Serial Bus Protocol

November 6, 1992 7:05 p.m. Doc. 92 199 Rev 2

the Command Block refer to 8.1, “Command Blocks” on page 18. [For details of the contents of the SCSI
Command Initiation Packet refer to 9.1, “Payload of Initiator to Target Packet - “T'ap Packet”™ on page 25.

Before continuing with Example 1, it should be mentioncd that in order to simplify the drawing, no informa-
tion is provided regarding either data delivery or status delivery. The exclusive focus is upon providing an
explanation of the command delivery mechanism. In this spirit, the cxplanation continucs as to command
delivery. The Target is able to determine from the value of the M_IFLLAG within command block 1 that at
least one and possibly more commands follow the present command (Command 1) within the given
command chain. Each command has a field containing the address of the next command in the chain. At a
time determined by the Target to be appropriate, the Target sends to the Initiator another Read Request
Packet containing the address of Command 2. The Initiator provides another Read Response Packet now
containing the command block associated with Command 2. As a major emphasis point, this Command
Delivery Protocol leaves it to the Target to decide when to fetch the next command. One choice which could
be made by a low-end Target is to wait until it completes Command | before it attempts to fetch command
2. Another choice is to fetch Cormnmand 2 prior to completion of Command 1 so that some degree of overlap

processing may be achieved among the commands.

Eventually the Target fetches a command (Command 3 in this cxample) which is the last command in the
chain. Upon completion of of Command 3, the Target is to consider all required processing to be completed
relative to the subject command chain. The Command Delivery protocol does not require any notice to be
given by the Target to the Initiator concerning completion of processing for the chain. The only notice
expected by the Initiator from the Target is associated with making normal and appropriate indication of end
of processing for each command in the chain. In low-end Targets, there would be some limit to the number
of command chains which can be accommodated at any onc time by that Target. 'There would also be a
limit on the number of Tap Slots. Upon completion of processing for one chain, the Target has the ability
to accept a new command chain, assuming that it was at the limit of ability to accept new chains prior to
completion of the subject chain. The Target makes an independent choice as to when it finished with a
given Tap Slot and can return it to a “pool” of available Tap Slots. The Target may clect to release a Tap
Slot at the same time it releases (completes) the associated command chain. The Target also has the privilege
of releasing the Tap Slot at an earlier time than it releases the command chain.

Example 2 provides a second sample sequence for the command delivery protocol. The only difference
between the situations depicted between the two examples is that example 2 explicitly shows the completion
of one chain and the start of a new chain. The sccond chain is made known to the Target by means a
second shoulder tap. In the case shown, the first chain has been completed. At time after the end of chain 1,
the second chain is created by the Initiator and then the associated tap is sent to the Target.

While not shown in Example 2, it is also possible for the same Initiator to have two or more chains in
existence at the same time and in processing by the same T'arget. Thus, it is possible for the new chain to be
made known to the Target by means of a new tap prior to end of processing heing reached for some earlier

chain.

12 SCSI 3 Serial Bus Protocol 20 f

SCSI 3 Serial Bus Protocol

November 6, 1992 7:05 p.m. Doc. 92_199 Rev 2

Initiator Target
Tap on shoulder ------ > Receive Tap Packet

<emmm- Tap Acknowledgement
T Lt s e R 22 A LR 2 2t dt b gt b IEEE 13911 Transact10n

s Read Request (For a Command Block)
Command 1 ~ ==----- > Read Response (Supply Command Block)
(M Flag = 1)
hhkkkhkhkhkhhkkhhkhhrhbhhhrhhhrkdhhhk IEEE l]gq Transaction

o e Read Request (For a Command Block)

Command 2 ~ ====-- > Read Response (Supply Command Block)
(M Flag = 0)
hhkhAR AR AR ARk Ak h kb dhhhrhhhbdhdhdd IEEE 1394 Transaction
Tap on shoulder ------ > Receive Tap Packet

L Tap Acknowledgement
khkhkhhhhEhrhkhkhhthrhhhhhkhhdhhkhhrst IEEE 1394 TFanSﬂCtion

e Read Request (For a Command Block)
Command 3=~ = ------ > Read Response (Supply Command Block)
(M_Flag = 1)

Figure 2. Conceptual Initiator-Target Conversation, Example 2

5.2 Multiple Initiator Environment

At any point in time, a “Tap” packet may be received by a Target from any Initiator connected to the bus.
The Target must accept this Tap unless the Target already has reached its particular limit on the number of
concurrent chains it supports. When a Target receives a Tap, it must store the information passcd in the
Tap Packet. Provided within the Tap Packet is a R-Byte 1394 style address of a command block and a
1-Byte TYPE_ID. Because this amount of information is relatively small, it is expected that even low-cost
Targets would be able to support a relatively large number of Tap Slots, with multiple Initiators. This docu-
ment sets 32 as the minimum number of Taps that a Target should be able to process concurrently.

Note: When implementing the system level software, a choice can be made in terms of how the finite
number of Tap slots in the Target may be handled. The first choiee is to include code to handle the rejection
of a "Tap” request and to retry at a later time. Clearly, provision must be made so that system software will
appropriately release Tap slots from each Initiator. Another alternative (and probably good practice) is to
check the number of Tap slots each Target in the system may suppori at power on time or configuration/re-
configuration time. The host software may then either choose to limit the number of “Taps” it has out-
standing at any time or declare a configuration error if the number of Taps available is less than it requires.

Editorial Note:

The section “Conversation Packets” has been removed from the Serial Bus Protocol document during
the transition to Revision Level One. The content of this section has been reassigned to other
sections, mainly the sections describing support clements for the Serial Bus Protocol.

20 z Command Transfer Protocol 13

SCSI 3 Serial Bus Protocol
November 6, 1992 7:05 p.m. Doc. 92 199 Rev 2

6.0 Packet Types

The IEEE 1394 High speed Serial Bus defines a number of packet types, such as read and write. These all
have a header which identifies the type of the packet and its source and destination.

To implement the SCSI 3 Serial Bus Protocol, an Initiator and a Tarpet need to understand and be able to
create the following types of packets:
1. Quadlet Write Request
2. Block Write Request
3. Write Response
4. Quadlet Read Request
5. Block Read Request
6. Quadlet Read Response
7

. Block Read Response
The SCSI 3 Serial bus Protocol utilizes packet formats as defined by the IEEL 1394 Iligh Speed Serial Bus
standard. In recognition of ownership of packet formats by the named TEEE standard, no change in packet

header or packet structure is considered within this document. Packet payload in the form of a command
block and a status data block is the object of definition by this SCSI 3 Serial Bus Protocol document.

14 SCSI 3 Serial Bus Protocol 203

SCSI 3 Serial Bus Protocol
November 6, 1992 7:05 p.m. Doc. 92_199 Rev 2

7.0 SCSI 3 Serial Bus Protocol Support Elements

Implementation of the SCSI 3 Serial Bus Protocol may proceed by various hardware or software means.
The operational phase entails, conceptually, definition of a First In First Out (FIFO) data structure in the
Target and a counterpart FIFO data structure in the Initiator. A key property associated with the concept of
a FIFO is that when several data values are sent to the FIFO, cach value is preserved by being stored within
the structure rather than having the last value replacc and writc over all previously received values.

In many instances it may be convenient to think of the FIFO as having a hardware register and acting as an
access port at the given address. It is beyond the scope of this document to suggest implementations. A
particular implementation possibility may be used as an aid to providing a more concrete and therefore a
more easily understood explanation of the protocol requircments. Likewise, in the configuration management
and in the parameter control phases, additional data structures arc defined within this document. Whenever
the term register is used, this term is for convenicnce only and is not meant to suggest or to dictate a pre-

ferred implementation.

7.1 Target "Register” Definitions

As stated, the term register is used without prejudice to aid in the understanding of functional elements
required within an implementation compliant to present SCSI 3 Serial Bus Protocol. Such functions as
needed during operational, control, or configuration phases may be viewed as posscssing associated “register”
addresses. Such “register” addresses are specified within architected locations of Read Only Memory (ROM)

located within the given Target.

The address of a needed data structure (or register) may be viewed as a relocatable constant for devices
implementing the Serial Bus Protocol. The notion of a relocatable constant means the following. An archi-
tected location in the Target device configuration ROM contains the address (or offset) of the given structure
within the the Target address space. Vendors have the choice of which location within Target memory
address space may be placed in this configuration ROM location.

It is expected that during system initialization any Initiators wishing to use the Target will read the addresses
of the various structures indicated below and store them internally. It would be possible for an Initiator to
read the address of the registers more frequently but this would reduce system performance. As needed,
Targets and/or other Initiators may read such configuration ROM as provided within the Target.

There are a number of pieces of information which an Initiator must send 10 a Target to help it manage the
processing of commands. Some of thesc items of information arc at the specific request of the Target. In
such cases of information being sent by invitation and therefor being expected, the Target has cnsured that
necessary room exists within Target memory spacc. In other instances, a Target must be prepared to accept
information from a Initiator without prior warning or expectation that such information is to be sent. A
particularly significant part of this architectural definition is the description of capabilities required at a
minimum to accommodate such unexpected inputs.

The following sections describe the several data structures needed to respond to unsolicited data packets send
$ to a Target supporting the SCSI 3 Serial Bus Protocol. ‘These unsolicited transmissions are divided into two
$ categories, named, Urgent and Normal. The Urgent category contains those packets for which the Initiator
$ desires the Target undertake a reaction on a high priority hasis. These urgent items represent management
$ type activity as directed by some Initiator. The Normal catcgory consist of ongoing activity which is to
$ receive a timely reaction rather than a priority reaction. Submission of a Tap packet is a key example of an
$ item in the Normal category.

20 4 SCSI 3 Serial Bus Protocol Support Elements 15

=% o

= 5% 9% 59 & o9

&% &9 o9

SCSI 3 Serial Bus Protocol
November 6, 1992 7:05 p.m. Doc. 92 199 Rev 2

The FIFO address alone is sufficient to determine the nature of the packet being received and the degree of
immediacy required for the processing expected per such a packet. In all instances, there are multiple dif-
ferent types of packets which may be sent. to both the FIFO servicing Urgent items as well as the FIFO
servicing Normal items. Under these circumstances, the T YPE_ID ficld within the packet payload must be
examined in order to determine what type of processing is to be specifically undertaken.

The case of solicited data packets occurs as a Response Packet in relation to some Read Request sent by the
Target. These Response packets are expected so that the Target can ensure sufficient memory to hold them.
The Response packets are sent to the general node address of the Target rather than to some specific register
address within the Target. Examples of such expected Response information arc the SCSI command block
and the data to be placed onto Target Media in relation to some SCSI Write command. Correlation infor-
mation within the header of the IEEE 1394 packet header is used to distinguish among the several different
type information sent to the general node address of the Target.

Implementation Note:

While is is true that multiple “register” addresses are defined below, there is no requirement to imple-
ment each of these registers as a unique item of register hardware. It is fully possible to consider some
of these register addresses as defining a "virtual register” supported by a much smaller collection of
actual hardware. The key element of the “virtual register” is its address. This address is intended to
define the content of the payload portion of any packet sent to that address. Also defined from the
address of the “virtual register” is the nature of a special processing needed.

7.1.1 Normal FIFO
This data structure shall have its register space address specificd by an address in configuration ROM.

This FIFO is intended for use receiving shoulder taps associated with command chains containing Simple,
Ordered, Head of Queue, and Autocontingent Allegiance (ACA) command types.

A very crucial element of capability for a Target is the number of “command Taps” which may be accepted
from a set of connected Initiators. A well configured system should match the number of Initiators and work
process queues to known capabilities of connected Targets so that the number of instances is very small
wherein a Target’s capability to accept command Taps will be exceeded. In such instances where Target
capabilities are exceeded, then resource conflict type of busy condition must be returned back from the

Target to the Initiator,

7.1.2 Urgent FIFO

This data structure shall have its register space address specificd by an address in configuration ROM.

Items of control information which may be sent 1o the Urgent 1Y are analogous to parallel SCSI mes-
sages and state changes. The payload of these control packets is to he placed into the same fnrmat as the
12-byte payload used various command Tap packets.

7.2 Initiator "Register” Definitions

In many important cases the public knowledge concerning Initiator registers is different than the public
knowledge concerning Target repisters. In particular, the Status FIF'0) address is an cxample of a quantity
which is not put into configuration ROM and made publicly available to any interested party. The Status
FIFO address is included in the command block and thereby communicated to only the Target having need
for this information.

16 SCSI 3 Serial Bus Protocol 208

SCSI 3 Serial Bus Protocol
November 6, 1992 7:05 p.m. Doc. 92_199 Rev 2

The observation is made that implementation by the Initiator for the Command FIFO set of registers is
needed only when that Initiator desires to be able to function as a SCSI Target device.

7.2.1 Status FIFO

The obligation of the Target is to present status information back to the Initiator regarding completion of a
command. A critical issue is the manner of control of interrupts to be presented to the Initiator when the
Target delivers operation complete status. One desired option is that the Initiator have the ability to specify a
general interrupt to be presented on completion of a command. An alternative option also desired is to have
status information stored in an area which might be examined by the Initiator at a convenient time rather
than on an interrupt driven time basis. In either option it is necessary for the Target to provide back to the
Initiator some form of correlation information between command blocks and status blocks. This Serial Bus
Protocol requires the very suitable form of correlation information which is the 64-bit address of the associ-
ated command block. Placement of completion status information is to be made to the Status FIFO main-

tained within Initiator memory address-space.

In the most frequent case, the completion of an 1/O process is with “good status” and no specific action is
required by the Initiator. The Target sends to the Initiator a 12-Byte Status Block directed to the Status

FIFO address specified by the Initiator in the command block.

Should the completion status be "bad”, then both a Status Block and a Sense Data Block would be made
available to the Initiator. If the Initiator has specified automatic presentation of Sense Data for this
command, then the Target first sends to the Initiator a W rite Request packet which contains the Sense Data
as payload. This Sense Data is sent to the Sense Data Buffer address specified by the Initiator in the associ-
ated command block. As a second operation, the Target sends to the Initiator a Write Request packet with
the 12-byte Status Block as payload. This Status Block is sent to the Status FIFO specified by the Initiator
in the associated command block.

If the Initiator does not want automatic presentation of Sense Data, then the Target holds this information
for request by the Initiator as provided by SCSI 2. The Target still must send the Status Block to the Initi-
ator in this situation of completion with “bad” status.

206 SCSI 3 Serial Bus Protocol Support Elements 17

59 0% B% Y8 58 0 a8 o8

SCSI 3 Serial Bus Protocol
November 6, 1992 7:05 p.m. Doc. 92_199 Rev 2

8.0 Command and Status Information

8.1 Command Blocks

As described below, the SCSI 3 Serial Bus Protocol uses a 60-Byte command block which embeds a
standard parallel data SCSI Command Descriptor Block (CIDB) of up to 12 Bytes in length. Additional
standard or vendor unique CDBs may be defined for Target types or functions which were not defined for
parallel SCSI, see 15.0, “Compatibility to Parallel SCSI” on page 34.

In support of the need by low-end Target devices, the command block is dived into a baseline portion and
an extended portion as follows. The baseline portion consists of the first 48-Bytes of the command block.
This baseline portion must fetched in all instances and by SCSI devices at all levels of implementation. The
option is granted to devices that they maychoose to fetch the final 12-Bytes (I'xtended Portion) of the
command block only when a check condition occurs during exccution of the SCSI command specified by
the baseline portion. It is expected that only low-end SCSI devices might wish to take advantage of this

option.

In support of Initiator units in which memory cache is employed, the requirement is set that the command
block is to start upon an 8-Byte boundary. Additionally, cach address in the command block is to start as
well upon an 8_Byte boundary. In conformity to the IEEE 1394 standard, cach of these addresses is an
8-Byte quantity. Observe, given that each command block is a 60-Byte quantity, there would need to be a
4-Byte pad after the first command block and between cach of the following command blocks so that cach
command block starts on an 8-Byte boundary when these blocks are located immediately following one
another within a chain. Clearly, the Target does not need to fetch field since there is no start boundary
requirement in Target memory for for the copy of the command black fetched by the Target.

I8 SCSI 3 Serial Bus Protocol 2 o 7

SCSI 3 Serial Bus Protocol

November 6, 1992 7:05 p.m.

Doc. 92 199 Rev 2

2 88 &% 69 57 &2 o8 5989 58 o9 &9 o9 o7 29 &8 89

Byte Function
0 Flags Initiator_ID
4 CDB 0 CDB | CDB 2 CDB 3
8 CDB 4 CDB 35 CcDB 6 CDB7
12 CDB 8 CDB 9 cDB 10 CDB 11
16 Reserved Reserved Reserved Reserved
20 Transfer Tength
24 Data Buffer Address (MSQ)
28 Data Buffer Address (1.5Q)
32 " Next Command Address (MSQ)
36 Next Command Address (1.5Q)
40 Status FIFO Address (MSQ)
44 Status FIFFQ Address (1.SQ)
48 Sense Data Buffer Address (MSQ)
52 Sense Data Buffer Address (1.8Q)
56 Reserved Reserved Reserved Sensc Length

$ Figure 3. Command Block

$ Note: The terms MSQ and LSQ mean Most Significant Quadlet and I.east Significant Quadlet respectively.

208

Command and Status Information

19

SCSI 3 Serial Bus Protocol
November 6, 1992 7:05 p.m. Doc. 92_199 Rev 2

$ Field Function
$ Flags The flags field currently has the following bits defined. All bits not specified are reserved.

Bit(s) Name Function

15 (MS) Reserved These bits are reserved for possible future expansion
to 9 of the Flags field.

8 A_Flag When set equal to value one, the Initiator wishes this
command to be aborted if possible. If this bit has
value zero then no cxpression of intent has been
made to abort this command. For information
regarding the SCSI Abort message please refer to13.1,
“Payload of Abort Packet” on page 31.

7 M_Flag When set equal to value one, the Target must fetch
the next command when it is ready. If this bit has
value zero, the present command is the last in the
chain from the Initiator.

6 O _Flag When set equal to value one, this bit indicates the
Target must transfer data in sequential order to/from
the Initiator. If this bit has value zcro, the Target may
transfer data out of order.

$

$

$

$

$

$

$

$

%

$

$

b

$

$

$

$

$

$ 5 I_Flag When set equal to valuc one, this bit indicates that
5 the data transfer for this command will be via an
b Isochronous channcl. Value cqual one for this bit
b implies ordered data transfer and the O_Flag will be
$ ignored by the Target. Value cqual 7cro for this bit
$ indicates Nonisochronous (Asynchronous) data

$ transfer.

$

$

$

$

$

$

$

$

b

b

$

h)

$

$

4 C_Flag When set equal to value ong, this bit indicates an
automatic clearing of any contingent allegiance condi-
tions which may occur as a result of this command.
When this bit is reset to value zero, contingent alle-
giance conditions arc handled as in SCSI 2 and SCSI
3. The Target waits for action by the Initiator.

3 S Flag When set equal to value one, this bit indicates the
optional Initiator memery scatler / gather function is
being invoked for the present command.

2to 0 Queue Type Value 001 means Tag T'vpe is Simple Tag.
(L) Value 010 means Tag T'vpe is Ordered Tag.
Value 011 means Tag T'ype is Head of Qucue.
Ya]ue 100 means Tag Type Autocontingent Alle-
piance (ACA)

All other values for this field are reserved.

$ Figure 4. Control Flags

20 SCSI 3 Serial Bus Protocol 2 o?

29 % &% 67 o5 o9 o9 &9

=% o5

SCSI 3 Serial Bus Protocol
November 6, 1992 7:05 p.m. Doc. 92_199 Rev 2

Initiator_ID

CDB

Reserved

These 16-bits provide “in-band” means to identify the Initiator who originated the present
command block.

Fditorial Note: This field serves to aid in the compatible support for Serial SCSI via the IEEE
1394 serial bus and Serial SCSI via the Fibre Channel. In the situation in which various
bus bridges intervene between source Initiator and destination Target, the IEEE 1394
packet header does not supply the correct information to identify the source Initiator.
The subject field does provide the correct identification information.

This field carries a standard SCSI CDB.

These four field, each at 8_bits in length are reserved for possible future growth in function
assigned to the command block.

Transfer Length

This field supports one of two functions, depending on the value of the S_Flag within the Flag
field of this command block. When the S_Flag has value equal to one, This field supports the
Initiator memory scatter/gather function, which is an optional support capability provided by the
Target. The length value indicates the number of Bytes of scatter/gather entries which are to be
found in the list found at the 1394 style address specified by the Data Buffer Address entry of this
command block. When the S_Flag has value equal 7ero, the present command does not involve
scatter/gather, and the Transfer Length ficld contains the number of bytes which are o be trans-
ferred as a result of successful completion.

Data Buffer Address

This field can have two meanings depending on the setting of the I_Flag.

I Flag =0
This indicates data transfer using standard asynchronous packets. In this case the
Data Buffer Address field contains an IEIT 1394 format 64-bit address that the data
should be written to or read from. It is observed that this data address may or may
not be associated with the same node (Initiator) having sent the given command. If
the optional feature of Initiator memory scatter/gather is supported , and has been
indicated by means of the S_Flag having value equal one, then the Data Buffer
Address location contains the scatter/gather list. As an additional observation, the
Data Buffer Address has no specific alignment restriction so that it can point to a

byte boundary.

I Flag = 1
In this case Isochronous transfers have been requested. Refer to Appendix B for
information describing Isochronous data transfer. When the Isochronous transfers
have been requested, the four Bytes within the Data Buffer Address field (LSQ) are
reassigned as follows.

Byte Name Function
0 Reserved
l Reserved
2-3 Length This field gives the length of cach Isochronous packet
for the transfer of data.

For commands which do not require any data the valuc in this field is undefined.

:la Command and Status Information 21

SCSI 3 Serial Bus Protocol
November 6, 1992 7:05 p.m. Doc. 92 199 Rev 2

Next Command Address
This field contains a 1394 format 64-bit address which is used by the Target when it
fetches the following command from the Initiator. In all circumstances, the least sig-
nificant two bits of this field must be cqual to value 7ero. A full description of the
mechanism by which the Target fetches commands is presented in 5.0, “Command
Transfer Protocol” on page 11.

Status FIFO Address
This field contains the IEEL 1394 style, 64-bit address of the Status FIFO associated
with the given Initiator responsible for the associated command. A given Target may
use more than one Status I'IFO address for a given Initiator.

Implementation Note 1: The Status FIIFO address can be used by the Initiator to
control whether or not interrupts are to be signalled to the Initiator upon
receipt of a status block. Thus, the Target can elect to accumulate Status
Blocks within a given Status FII'O and then process them at leisure.

Implementation Note 2: Attention is called to the fact that alignment restrictions
apply to certain types of objccts pointed to by an IEEE 1394 style address. In
particular, the Status FIFQ (also the Command FFITFO) must be aligned on a
4 Byte boundary. Thus, low order two bits of the Status FIFO address must
be zero with the consequence that the least significant bit can vsed as a
Validity Indicator for that address. Should the Status FIFO address be indi-
cated as not valid, (least significant bit of the address has value equal to one),
this means can be used by the Initiator to inform the Target that status block
information should not be returned to the Initiator by means of the Status
FIFO.

Sense Data buffer address

This field contains the IEEE 1394 style, 64-bit address of the Sense Data Buffer asso-

ciated with the given Initiator responsible for the associated command. This field and

all following fields of this command block are all clements of the extended portion of

the command block. The option is granted to a Target relative to the Extended
Portion that it only must be fetched should a check condition occur or if sense data is

to be returned.
Reserved This 8-bit field is reserved.
Reserved This B-bit field is reserved.
Reserved This 8-bit field is reserved.

Sense Length
This 8-bit field represents an unsigned number which specifies the number of 16-Byte
units of length for the Sense Data buffer.

22 SCSI 3 Serial Bus Protocol 2 ’l

SCSI 3 Serial Bus Protocol
November 6, 1992 7:05 p.m. Doc. 92_199 Rev 2

8.2 Status Block

The status Byte for a command as carried in the status bhasc under parallcl SCSI is embedded in a short
packet which is used to end a command under the SCSI 3 Scnial Bus Protocol. Tfor good completion, only
this one Byte field needs to be set in the status block. For bad completion the remainder of the fields need to

be also be filled by the Target.

Byte Function
0 Command Address (MSQ)
4 Command Address (1.5Q)
. B Status ~| Sense Key ASC ASCQ

Figure 5. Status Block

Command Address
This is the address from which the command block was read. This value is returned to the Initi-

ator in the status packet to simplify the hardware design required to correlate the status with the
command.

Status This is the status byte normally returned during a parallcl SCSI status phase. It will be zero for
good completion.

Sense key This is the “sense key” from the SCSI sense data. If an error occurs on the current command
then this field is set by the Target, otherwise it is undefined.

ASC This field holds the “Additional Sense Code” from the SCSI sense data if an error occurs, other-
'wise it is undefined.

ASCQ This ficld holds the “Additional Sense Code Qualificr” from the SCSI sense data if an error
occurs, otherwise it is undefined.

8.3 Initiator Scatter/Gather List

The scatter/gather list shall consist of one or more 16-Byte units in the format depicted below. While there is
1o restriction against creation of a scatter/gather list consisting of only one 16-Byte unit, such usape would
be wasteful of Initiator memory. If there is only onc clement to the scatter/gather list, that single element
could be accommodated much more efficiently using on 12-Bytes within the command block.

Editorial Note: The format below consisting of 16-Byte units has not received careful review, The moti-
vation for use of a 4-Byte pad ficld is so that a scquence of Data Buffer addresses can be made to line
up on 8-Byte storage address boundaries in the Initiator. Such consistent line up upon address
boundaries could not be achicved if each scatter/gather entry was only 12-Bytes in length.

2 lz Command and Status Information 23

o & o9 58 &% o9

o058 D99 69 o8 B8 S 59

SCSI 3 Serial Bus Protocol
November 6, 1992 7:05 p.m.

Doc. 92_199 Rev 2

Byte

Function

0

Data Buffer Address (MSQ)

4

Data Buffer Address (1.SQ)

8

Transfer Length

12

Pad

Figure 6. Scatter/Gather List Format -- Single 16-Byte Unit

Data Buffer Address

This field contains an IEEE 1394 format 64-bit address that data should be written to or read
from. It is observed that this data address may or may not be associated with the same node
(Initiator) having sent the given command.

Transfer Length

This 32-bit field contains the number of bytes which are to be transferred as a result of successful

completion.

Pad This is a 32-bit field having no function other than to ensure that the multiple Data Buffer
Address entries within this list are each separated from onc another by some multiple of 8-Bytes.

24 SCSI 3 Serial Bus Protocol

213

SCSI 3 Serial Bus Protocol

November 6, 1992 7:05 p.m. Doc. 92_199 Rev 2

9.0 Payload Specification For Command Transfer Packets

This section details the contents of the payload for those packets used by the Command Transfer Protocol.
Refer to Appendix A for a summary of the format of the IEEI 1394 packets used to transfer these payloads.

9.1 Payload of Initiator to Target Packet - "Tap Packet”

9.1.1 Request Payload

The packet carrying this payload is to be sent 1o the Destination Offsct address within the Target repres-
enting the Normal FIFO.

Next Command Address (MSQ)
Next Command Address (1.5Q)
TYPE_ID Reserved LUN

Figure 7. Payload of Initiator “Tap” packet

Field Function

Command Address
This 64-bit field carries the Address of the first command in the command chain.

Type_ID This field states which type of command cxclusively contained in the associated command chain.
Value Type Command

01 Hex
Simple Commands

02 Hex
Ordered Commands

03 Hex
Head of Queue Commands

04 Hex
ACA Commands

Reserved This 8-bit field is reserved.

LUN This 16-bit field carries the I.ogical Unit Number (I UN) as specified in the SCSI
Identify message. Unused bits are reserved. It is observed that SCSI 2 uses only 3 bits
and these are the right justified bits in this ficld. SCSI 3 is anticipated to expand this
field to at least 5 bits, and some argue this filed needs to be larger than 8 bits in order

to support future RAID applications.

zlfaylnad Specification For Command Transfer Packets 25

SCSI 3 Serial Bus Protocol
November 6, 1992 7:05 p.m. Doc. 92_199 Rev 2

9.1.2 Response Payload

There will always be a response to a SCSI Command Initiation Packet. Normally, an acknowledge code of
“complete” will be returned immediately and a split transaction will not be required. If a split transaction is
required, a standard Write Response packet will be returned. If the Target cannot accept the “Tap” packet
due to an overrun of the Command FIFO, (because the Target has no storage available to hold the next
command address) it will return a ‘resp_conflict’.

9.2 Command Read Request

9.2.1 Request Payload

A Target requests a new command by sending a Read Block request packet to the address indicated in the
“Tap” packet or to the address specified in the previous command. Normally, this request will be handled as
a split transaction. The data transfer amount referenced by this request packet shall be 60-Bytes if both the
baseline and extended portions of the command block are being requested. If the Target elects in favor of
using the option to request only the baseline portion of the command block, then the data transfer amount

shall be 48-Bytes.

9.2.2 Response Payload

The response payload consist of the 60-Byte combination of Bascline plus Fxtended portion of the
command block, or the 48-Byte Baseline portion, as originally requested by the Target.

26 SCSI 3 Serial Bus Protocol 2 l 5

SCSI 3 Serial Bus Protocol
November 6, 1992 7:05 p.m. Doc. 92_199 Rev 2

10.0 Data Transfer Protocol

10.1 Asynchronous Transfer

The transfer of all data required by commands is accomplished by standard format (per IEEE 1394) read
request and write request packets sent by the Target to the Initiator. 'The combination of a request packet
and its associated response packet form a Transaction per IEEE 1394, For various commands the number
of bytes required to be transferred will not be an even multiple of 4. In this case the transfer will be padded

to 4*n bytes. The padding bytes may be of any value.

The starting address the packets are read/written from/to is the address passed in the Data Buffer Address
field in the command block. For each packet read/written from/to a buffer, the address is specified by the
Target and placed in an appropriate type request packet. As nccessary, the Target must increment the refer-
enced data address by the packet size for subsequent packets 1o the same buffer unless the out-of-order flag
bit has enabled the target to transfer data in any order it desires. In that case the Target must insure the

starting address of each packet is set properly.

10.1.1 Data Read From Device Medium

This is the case where the device is producing data to be transferred to the initiator. This is done using a
series of Write Block request packets. The Target is responsible for updating the address being referenced
within the Initiator buffer. Such updating accounts for portions of data from the buffer previously trans-

ferred.

The size of the data packets sent by the Target to the Initiator is of a maximum defined in the device ROM
or dictated by the speed of the particular IEEE 1394 Scrial Bus. In the case of Write Block packets sent from
a Target to an Initiator, it is desired that after receiving a data packet from a Target with the header and data
CRC correct, the Initiator should return an acknowledge code indicating “complete”. If an Initiator is *
unable to receive a packet because of temporary buffering limitations or receives a packet with incorrect
CRC, the Initiator should return an appropriate acknowledge code as dictated by the IEEE 1394 standard.
In the case of Read Block request packets sent from a Target 1o a Initiator, the Target may send multiple
outstanding requests to the Initiator provided that each outstanding request (split-transaction) has a unique
transaction label (number) in the Read Block request packet header so that the multiple response packets
being returned to the Target may be correlated to the original requests.

10.1.2 Data Written To Device Medium
For the case where the Target is receiving data from the Initiator, it requests this data via Read Block

request packets. It sends these requests as it requires the data. Tlence the Target automatically paces the
transfer.

2[‘ Data Transfer Protocol 27

SCSI 3 Serial Bus Protocol
November 6, 1992 7:05 p.m. Doc. 92 199 Rev 2

11.0 Status Transfer Protocol

At the end of a command the Target must return status information to indicate success or failure. This is
done using a Write Block request packet. The packet is sent to the address specified in the Status Buffer
Address field passed in the command block.

In reply to the status packet, a split transaction is allowed if nceded; otherwise, the Initiator should return a
“complete” acknowledge code.

28 SCSI 3 Scrial Bus Protocol 2' 7

SCSI 3 Serial Bus Protocol

November 6, 1992 7:05 p.m. Doc. 92_199 Rev 2

12.0 Examples

This section details a few typical commands being processed by a single Initiator and Target. Note, not all
packet acknowledge (acks) are shown in the diagrams to make them more readable and optional split-
transactions should be avoided as much as possible to optimize performance.

121 Target Read Command

This example shows a read command to a simple low-cost Target which can process a single command at a
time with no queueing in the Target.

Initiator Target
------------- Initiator shoulder taps target ------------
Block Write Packet = ===--- >
Address=Normal FIFQ
Data=Address of First Command
R Ack (complete, busy X, or pending)
<- - - Block VWrite Response Packet
(optional if ack=pending)

-------------- Target requests command -------w-----ov--n--

R Block Read Request Packet
Address=First Command Address
Ack (e.g. pending) ------ >
Block Read Response ~ ==---- >
Data=Command Block
M Flag=0

-------------- Target returns data read -----------====---
S Block Write Packet

Address=Data Address
Data =Requested data

Ack (complete, pending, — ------ >
or, busy X)
Block Write Response - - >

(optional if initiator ack=pending)

—————————————— Target returns status ------==----"o-ommmoo
Lmmmmm - Block Write Packet
Address=Status FIFD
Data=Status Block

Ack (complete, pending, — ------ >
or, busy X)
Block Write Response I —

(optional if initiator ack=pending)

Figure 8. Target Read Command

12.2 Target Multiple Read Commands

This example shows two read commands being issued to a Target which can internally queue commands.
Note that multiple data packets may be required to complete the data transfer for each command.

218 Cxamples 29

SCSI 3 Serial Bus Protocol
November 6, 1992 7:05 p.m.

Doc. 92_199 Rev 2

Initiator Target
————————————— Initiator shoulder taps target -----v-vcen--
Block Write Packet ~ ------ > '
Address=Normal FIFO
Data=Address of First Command

Commmmn Ack (complete, busy X, or pending)
<~ - - - Block Write Response Packet
{optional if ack=pending)
-------------- TJarget requests 1st command ---------------
S Block Read Request Packet
Address=First Command Address
Ack (e.g. pending) ------ >
Block Read Response = ------ >

Data=Command Block #1, M FlLag=1
—————————————— Target requests 2nd command ------cceemen-=

e Block Read Request Packet
Address=Next Command Address

Ack {e.g. pending) = ------ >
Biock Read Response @ =-==--- >
Data=Command Block #2, M_Flag=0
----------- Target returns data read for cmd #1 ----------
T Block Write Packet
Address=Data Address #1
Data =Requested data

Ack (complete, pending, ------ >
or, busy_X)
Block Write Response - - >

(optional if initiator ack=pending)
------------ Target returns status for cmd #1 ---cecwann-n-
Commmmn Block Write Packet
Address=Status Address #1
Data=Status Block

Ack (complete, pending, ------ >
or, busy X)
Block Write Response v e ne

(optional if initiator ack=pending)
B Target returns data read for cmd #2 ------ww--
Cmmmm Block Write Packet
Address=Data Address #2
Data =Requested data

Ack (complete, pending, ------ >
or, busy X)
Block Write Response R

(optional if initiator ack=pending)
“mmmmm—————— Target returns status for cmd #2 -----e--- —.
T Block lrite Packet
Address=Status Address #2
Data=Status Block

Ack (complete, pending, ---=-- >
or, busy_X)
Block Write Response ——

(optional if initiator ack=pending)

Figure 9. Target Multiple Read Commands

30 sCSI 3 Serial Bus Protocol 2’,

SCSI 3 Serial Bus Protocol
November 6, 1992 7:05 p.m. Doc. 92_199 Rev 2

13.0 Messages

There are a number of operations, such as aborts and resets, which the Initiator may wish the Tarpet to
perform which are not covered by the standard command protocol. To support these situations, a number
of “message packets” are defined. These would be sent by the Initiator to the Target Urgent FITO, in a
similar fashion as the “Tap” is sent to the Normal FIT'Q when a new command chain is ready. Message
Packets are standard write quadlet packets. The response to these if a split transaction occurs would be a
standard Write Response packet.

The defined message packets are
TAP This establishes that an Initiator has commands for a Target

ABORT This aborts all commands from this initiator

ABORT TAG
This aborts a particular tagged command

RESET This resets the Target

CLEAR QUE
This aborts all commands from all Initiators which arc already quecued at the Target.

CONTINUE

This clears any contingent allegiance condition and has no side cffects

13.1 Payload of Abort Packet

The function of this message is identical to the parallel SCSI “Abort” message. In order to sccure proper
correlation, there may be a need to expand upon the cross reference information indicated here.

Command Address (MSQ)
Command Address (1.5Q)

Message Id Reserved LUN
ABORT
Code = Il Hex

Figure 10. Payload of Abort Packet

13.2 Payload of Abort Tag Packet

The function of this message is identical to the parallel SCSI “Abort Tag” message. There may be a need to
consider the Reserve and Release situations if the Serial Bus Protocol decides to deal with these SCSI con-

cepts.

220 Messages 31

& 5 o

SCSI 3 Serial Bus Protocol
November 6, 1992 7:05 p.m.

Doc. 92_199 Rev 2

Command Address (MSQ)

Command Address (1.5Q)

Message Id Tag lun
ABORT TAG (See Note)
Code = 12 Hex

Figure 11. Payload of Abort Tag Packel

$ Editorial Note: The intention for SCSI 3 is to use the 64-bit command address as a tag or anywhere else a
correlation ID is required. The above 8-bit Tag is used as a place holder should discussion be found

$
$

necessary as to compatibility with SCSI 2 regarding the Abort Tag.

13.3 Payload of Reset Packet

The function of this message is identical to the parallel SCSI “Bus Device Reset” message.

Command Address (MSQ)
Command Address (LSQ)

Message Id Reserved Reserved Reserved
RESET
Code = 13 Hex

Figure 12. Payload of Reset Packet

13.4 Payload of Clear Queue Packet

The function of this message is identical to the parallel SCSI “Clear Queuc” message.

Command Address (MSQ)

Command Address (1.50)

Message Id Rescrved Iun
CLEAR_QUE
Code = 14 Iex

Figure 13. Payload of Clear Queue Packet

32 SCSI 3 Serial Bus Protocol 22[

SCSI 3 Serial Bus Protocol
November 6, 1992 7:05 p.m. Doc. 92 199 Rev 2

14.0 Contingent Allegiance

141 Aims
It is desired to attempt to follow the model presented by parallel SCSI to as great a degree as possible.

Additional detail is to be supplied in a later version of this document.

222 Contingent Allegiance 33

SCSI 3 Serial Bus Protocol

November 6, 1992 7:05 p.m. Doc. 92_199 Rev 2

15.0 Compatibility to Parallel SCSI

It has been the intention in drawing up this document to maintain as closc a compatibility with parallel
SCSI, as defined by the SCSI-2 specification as possible. There are the obvious changes in delivery of
packets as described above but other than that it is the intention that any SCSI CIDB could be delivered and
any data could be sent and received with higher level microcode on both the target and the initiator being
unaware of the change from a parallel interface to the serial.

Listed below are a number of additions that are required to the SCSI standard to support the serial interface.
The rule that has been followed in drawing up this list is ALl EXISTING SCSI COMMANDS MUST

WORK AS TODAY.

15.1 Increased Initiator problems

In parallel SCSI various parameters are stored on a per initiator basis. For example check conditions and
certain read and write parameters.On IEEE 1394 it is possible that a target may have to deal, at various
times, with 65534 Initiators. It clearly becomes impractical 1o store any parameters on a per Initiator basis.

This affects the following

Power on Reset
After a power on or reset each Target usually holds a check condition for each Initiator. In this

model it is considered a jog of the IELE 1394 management layer to notify Initiators about recon-
figurations in the network and hence this function is delegated to this layer. After a power on or
reset a Target will accept and action the first command reccived.

Microcode code changed/media changes/parameters changed by another initiator
There is no inherent check condition gencrated for cach Initiator under this model. If an initiator

wishes to be notified of such an event then it may register to reccive a callback from the target to
be notified of this or any other asynchronous cvent.

Per Initiator mode sense/select pages
These are no longer supported. All parameters arc now global across all initiators. In a multi
Initiator system it is expected that the Initiators can agree on a common set of parameters.

15.2 Asynchronous Event Notification

15.2.1 Aims

It is desired to attempt to follow the model presented by paralle] SUST to as great a degree as possible.

Additional detail is to be supplied in a later version of this document.

34 SCSI 3 Serial Bus Protocol 2 13

Appendix A. Packet Formats

For purposes of convenient reference, the section describes the packet formats specified in the IEEE 1394
standard and utilized in support of the SCSI 3 Serial Bus Protocol. Ownership of these packet is acknowl-
edged as being with the stated IEEE committee. No effort shall be made in this SCSI 3 Serial Bus Protocol
document to alter these formats.

A.1 Write Packets

Destinatiomnr ID Tl Rt| TCode| Res (P

Source ID Destination Offset

Destination Offsct
Byte 0 Byte | Byte 2 Byte 3
Header CRC

Figure 14. Quadlet Write Request Packet

Destination ID Tl Rt| TCode| Res [P

Source 1D Destination Offsct

Destination Offsct
Block Length Tr Data 0000
Header CRC
Data block

Data CRC
Figure 15. Block Write Request Packet
Destination 1D Tl Ri] TCode| Res |P
Source 1D RCode
Reserved
Header CRC

Figure 16. Write Response Packet

22 q Appendix A. Packet Formats 35

A.2 Read Packets

Destination ID Tl Ril TCode| Res |P
Source ID Destination Offsct
Destination Offsct
Header CRC
Figure 17. Read Request Packet
Destination 1D Tl Rt TCode| Res (P
Source 1D RCode
Read Data
Header CRC
Figure 18. Read Response Packet
Destination 1D Tl Ri| TCode| Res |P
Source ID Destination Offsct
Destination Offset
Block length
Header CRC
Figure 19. Block Read Request Packet
Destination 1D 1 | R TCode| Res [P
Source ID RCode
Data Length It Data

IHeader CRC

Data Block

Data CRC

Figure 20. Block Read Response Packet

36 SCSI 3 Serial Bus Protocol

225

Data Length

Channel

TCode| Sy| Rs

Header CRC

Data

Isochronous CRC

Figure 21. lsochronous packet

Destination ID

This is the bus and node ID of the unit receiving the packet.

Destination Offset

This is the address within the receiving node at which the data should be read from or stored

mnto.

Source ID This is the bus and node ID of the unit sending the packet.

T This field carries the transaction label.

Rt This field carries the retry code.

RCode This field carries the response code. This code defines the type of responsc being returned (e.g.
normal, abnormal, bad CRC, etc.)

R This bit field is reserved.

P This bit field is used as a priority indicator.

Data Length

This is the length of valid data that follows the header CRC field.

Tr Data (Reserved)
A reserved field - all zeros.

Header CRC

The CRC code for the header information only.

Data This field, of variable size holds the data to be transported. Tor a quadlet operation it is 4 bytes

wide. For a block operation it is n*4 bytes in size. The Data Length ficld indicates the exact

number of bytes of valid data in this field.

Data CRC

This CRC field protects the data within a block operation.

226

Appendix A. Packet Formats

37

Appendix B. Isochronous Transfer

Note well, it is anticipated that Apple Computer (and other partics) intend to make additional and substan-
tial input to the description of the Isochronous data transfer process. Thus, the material below is presented
as a “place holder” subject to the understanding that it is subjcct to significant change.

When the 1_Flag is set in the command packet this indicates a request to transfer the data via Isochronous
channels rather than by Asynchronous packets. In this case the Data Address ficld of the command packet
contains the Isochronous channel and packet size to be used for the transfer.

All Isochronous transfers, either read or write, use a common packet type.

Data Length Channel TCode| Sy| Ry
Header CRC
Data

Isochronous CRC

Figure 22. Isochronous packet

Each Target will support a number of Isochronous channels simultancously, varying from 0 to N. Proper
and appropriate management of the Isochronous transfer facilitics ensures there will be a resource available

to handle the Isochronous packet.

B.1 Read from media - Isochronous

This is the case where the Target device is generating data and transmitting it to a remote device. Under
these circumstances the Target is responsible for scheduling the data reads from the media and sending the
data in the appropriate channel. For this type of transfer all the normal error checks performed for an asyn-
chronous read must be carried out but in addition a check must be made for any underrun conditions, i.e. if
the Target device fails to supply data in the appropriate time slot.

B.2 Write to media - Isochronous

In this case the data will be transmitted to the Target by another deviee, The Target has no means to pace
the data and must accept every Isochronous packet received on its channel.

38 SCSI 3 Serial Bus Protocol 2 27

228

39

