X3T9.2/91-207R0O
December 5, 1991

To: X3T9.2 Membership

From: Edward A. Gardner, Digital Equipment Corporation
gardner@ssag.enet.dec.com

Subject: Periodic LRC/CRC Proposal .

During the November working group meeting there was a lively
discussion of George Penokie’s "SCSI Data Phase LRC Proposal"
(91-176R0). One point that was discussed was whether a single LRC or
CRC should be used for all data transferred by a command, versus
inserting an LRC or CRC for each period of data. This is a proposal
for how a periodic LRC or CRC might be implemented. It primarily
discusses how the data phase transfer operates, leaving. the details of
initialization and parameter negotiation to a later decument.

The SCSI LRC or CRC arena includes many controversial issues in
addition to periodicity. While this proposal concept is general, I
have included concrete examples that incorporate certain assumptionsa:

1. The LRC, CRC, or whatever error detection code is used is 32
bits long. I personally favor a 32 bit CRC, specifically the
Autodin-II CRC used by Ethernet, FDDI, and many other busses.
However this proposal is trivially adaptable to any error
detection code.

2. The LRC, CRC, or whatever detection code is only calculated
on data phase information. Again, this proposal can be
extended if we can agree on what other information should be
included.

1l Periodic CRCs

Through some yet to be defined negotiation process, the initiator and
target agree to use an LRC or CRC during data tranafers. As part of
this negotiation they agree on two quantities, a period size and an
alignment. The period size specifies the number of data bytes covered
by each LRC or CRC. The alignment specifies the transfer boundary
(e.g., 1, 2, or 4 byte boundary) at which the LRC or CRC must appear.
If the period size is not an exact multiple of the alignment, pad
bytes will be inserted. Note that the alignment is not necessarily
the same as the bus width. For example, a device might have 32 bit
internal data paths and wish to ensure 32 bit alignment even though it
uses an 8 bit SCSI bus. Of course, it would simplify things if we
could all agree to always use (for example) 32 bit CRC alignment, but
lots of options and parameters are necessary to comply with existing
SCSI practice.



X3T9.2/91-207R0 Periodic LRC/CRC Proposal Page 2

The data transferred for a command (i.e., what would appear on the bus
if all data phase information were transferred without disconnecting)
consists of one or more periods. Every period except the last
includes the agreed upon period size number of data bytes. The last
period is shortened (if necessary) to accomodate arbitrary transfer
sizes. Following the data bytes are pad bytes (if necessary) to
achieve the agreed upon alignment and then the CRC. The CRC covers
both the data bytes and the pad bytes. I believe it advantageous to
require that CRC pad bytes be zero, despite the precedent of wide data
transfer padding.

The number of data bytes, number of pad bytes, and overall size of
every period except the last are determined from the agreed upon
period size and alignment. If the last period is a full period (it
contains the period size number of data bytes) then it too is
formatted according to the period size and alignment. If the last
period is shortened, then an IGNORE WIDE RESIDUE message is sent if
any pad bytes are present. Note that the IGNORE WIDE RESIDUE message
is sent after the CRC, although the pad bytes are before the CRC.

Note also that this results in IGNORE WIDE RESIDUE being used on 8 bit
SCSI busses. Also, if we want to allow the alignment to be smaller
than the bus width, then there are ugly special cases that result from
there being both CRC period padding and bus width padding. While
there are several ways to deal with this, I choose to postpone writing
anything down until persuaded that SCSI-3 should allow such a crock.

Examples (periodic without disconnection):

Transfer 1026 bytes with 513 byte period size and 4 byte alignment:
Period 1 [513 data bytes, 3 pad bytes, 4 CRC bytes], Period 2 [513
data bytes, 3 pad bytes, 4 CRC bytes].

Transfer 1024 bytes with 513 byte period size and 4 byte alignment:
Period 1 [513 data bytes, 3 pad bytes, 4 CRC bytes], Period 2 [511
data bytes, 1 pad byte, 4 CRC bytes], IGNORE WIDE RESIDUE specifying 1
byte.

Transfer 1021 bytes with 513 byte period size and 4 byte alignment:
Period 1 [513 data bytes, 3 pad bytes, 4 CRC bytes], Period 2 [508
data bytes, 4 CRC bytes].

2 Non-Periodic CRCs

One particular value of period size, perhaps zero, will be reserved to
indicate that the period size is arbitrarily large. This results in a
non-periodic CRC. The entire data transfer is a single period
consisting of data bytes, pad bytes if necessary for alignment, and a
single CRC. The single period is always a shortened period as defined
above.

Examples (non-periodic without disconnection):

Transfer 1024 bytes with no CRC period and 4 byte alignment: Period 1
(1024 data bytes, 4 CRC bytes].

2065



X3T9.2/91-207R0 Periodic LRC/CRC Proposal Page 3

Transfer 1021 bytes with no CRC period and 4 byte alignment: Period 1
[1021 data bytes, 3 pad bytes, 4 CRC bytes], IGNORE WIDE RESIDUE
specifying 3 bytes.

3 Disconnection and Reconnection

Except for fatal or non-recoverable errors, targets shall not
disconnect or change bus phase between the last data byte of a period
and the last CRC byte of that period. Once the last data byte of the
period has been transferred (strictly speaking, once REQ has been
asserted for that data byte), the target shall continue the data phase
transfer at least until the last byte of the period’s CRC. Failure to
do so is an illegal bus phase segquence.

The SCSI protocol as already defined allowa disconnection,
reconnection, and data pointer modification at arbitrary data byte
boundaries, although such generality will probably not be supported by
most devices. Those functions work the same as at present. In
particular, MODIFY DATA POINTER only counts data bytes, it ignores or
skips pad and CRC bytes, and therefore positions to the same data byte
as at present.

There is no way to position the data pointer to a pad or CRC byte.

The only way to transfer the pad and CRC bytes at the end of a period
is to transfer the last data byte of the period and the subsequent pad
and CRC bytes in one fell swoop.

One of the motivations for a periodic CRC is that it can substantially
simplify implementation. The obvious approach is to always transfer
entire periods (data, pad, and CRC) during a single data phase. Two
separate restrictions accomplish this.

First, restricting MODIFY DATA POINTER to only reposition to a period
boundary. While it’s easy for MODIFY DATA POINTER to specify a
location in the middle of a period, implementing such messages is
likely to be impossible for most initiators. The initiator would need
to be able to regenerate the CRC corresponding to an arbitrary point
in the transfer rather than calculating it as the transfer proceeds.
In the case of a Data In tranafer the initiator might receive a CRC
for which it has not yet received the data. In general, practical
implementations will require that MODIFY DATA POINTER position the
data pointer to a period boundary. The CRC setup negotiation must
allow the initiator to specify such a restriction.

Second, restricting disconnection and reconnection.to period
boundaries further simplifies initiator implementation. If
disconnection and reconnection may occur at arbitrary points, then the
initiator must save the CRC context as well as the data pointer. If
disconnection and reconnection only occur at period boundaries, then
the initiator need only save the data pointer.

Combining these two we get the following possible combinations of
restrictions that the initiator may need to impose on data tranafers:

21 A~



X3T9.2/91-207R0 Periodic LRC/CRC Proposal Page 4

Disconnection / Reconnection

At Period
Not Allowed Boundaries Anywhere

P
M 0 Not Allowed E * E
0D 1
DAN At Period - * *
I T T Boundaries
FAE
Y R Anywhere = - E

]

E Exists in SCSI today.
* Needs to be added.
- Meaningless combination.

4 Unexpected Short Transfers

The initiator and target must agree on where CRCs are located, on the
length of each period, for CRC checking to work. This is
straightforward when the entire expected transfer length is
transferred. The initiator knows the expected transfer length when it
issues a command. The target determines the expected transfer length
from the CDB, in which the length is explicit or implicit. So long as
the entire expected transfer length is transferred, both agree on the
actual transfer length and will agree on which bytes are data bytes,
pad bytes, or CRC bytes.

Dealing with unexpected short Data Out transfers is also
straightforward. The initiator always formats the transfer into
periods and supplies CRCa as if the .entire expected transfer length
would be transferred. The target accounts for this and responds
accordingly, even if an exception terminates the transfer prematurely.
For example, if the target needs to verify the CRC of an unexpected
short transfer, it would fetch and discard data from the initiator
until the end of a period.

The difficult case is unexpected short Data In transfers. The
initiator will not know a priori that the transfer will be shorter
than expected. In some cases the target may not know a priori either.
The Data In transfer must occur first, and the fact that the overall
transfer is unexpectedly short communicated afterwards.

Consider what happens if a data period being transferred to the
initiator is unexpectedly shortened. The target stops sending data,
inserts pad bytes if necessary, sends a CRC, then changes the bus
phase. The initiator cannot distinguish the pad and CRC bytes from
data bytes until after the bus phase change. Thus the initiator will
process the pad and CRC bytes as data bytes, presumably storing them
in the application’s buffer. ,

However, mistakenly storing pad and CRC bytes in the application’s

buffer is benign in this case, since the buffer is guaranteed to have
room for them. Since the data transfer is unexpectedly short, the

20 5



X3T9.2/91-207R0 Periodic LRC/CRC Proposal Page 5

application’s buffer has room for more data bytes than were actually
transferred. The pad and CRC bytes will be stored into those
available but unused locations. (If there are fewer available
locations than pad and CRC bytes, the pad and CRC bytes will only be
stored up to the end of the data buffer. The normal initiator logic
will process the remainder as if they really were pad and CRC bytes
and either discard them or store them elsewhere).

An initiator adapter could, if its designer so wished, preserve the
last few bytes of the data transfer in a FIFO until it knew they were
valid data. The FIFO would have to be at least as large as the
maximum number of pad bytes plus the size of the CRC. This is
analogous to an adapter preserving the last word of a wide data
transfer until it knows whether an IGNORE WIDE RESIDUE message will be
sent. In practice such an approach may be difficult to retrofit to
current adapter designs. :

Checking if the CRC was valid after the fact is trivial for initiators
that only allow disconnection and reconnection at period boundaries.
When the target changes the bus phase, it denotes either the end of
the transfer or a disconnection. Either way the initiator knows that
the immediately preceeding four bytes were the CRC. The initiator
need merely latch whether or not its CRC checker contains the unique
pattern denoting a valid CRC when it sees the phase change,

Initiators that allow disconnection and reconnection anywhere must
preserve the entire CRC checker contents. They do not know that it is
a CRC (and therefore cannot determine if it was wvalid) until the
target indicates the transfer is complete. This includes such complex
cases as, for example, the target transferring the data and CRC,
disconnecting, then later reconnects to say the command is complete.
The initiator cannot determine that the last four bytes were the CRC
and not data until the target reconnects.

This is likely to be somewhat complex to implement in SCSI protocol
chips without the cooperation of higher level software. If needed, we
can add some protocol to allow the initiator to immediately
distinguish data from CRC. If any pad bytes were inserted to align
the CRC, an IGNORE WIDE RESIDUE is already being sent after the CRC.
This message not only specifies the number of pad bytes, it also
implies that the last four bytes were in fact a CRC. It would be
straightforward to always send an IGNORE WIDE RESIDUE message after an
unexpectedly short tranafer to inform the initiator that the last four
bytes were the CRC. The IGNORE WIDE RESIDUE parameter would be zero
if no pad bytes had been inserted. This is a tradeoff between the
complexity of deferring the CRC validity check until the initiator
knowa the transfer has completed versus the complexity of an extra
message. Presumably we should follow the SCSI precedent and allow
both as options.

309



