X314a.2 /49/-/0l

NN O V E L L

12 July 1991

John Lohmeyer

NCR Corporation
3718 N. Rock Road
Wichita, KS 67226

Dear John,

I have forwarded for committee consideration copies of the proposed
Standard AT Compatible Register Map and the Common Configuration
Method for storage devices. These two documents outline a standard
way of addressing AT compatible controllers/host bus adapters as well
as a standard way of storing device specific geometry and information

on ATA/IDE storage devices.

The proposed Standard AT Compatible Register Map defines four
"standard" sets of addresses based at; 1F0Oh, 170h, 1E8h, and 168h.

The device-specific information is recorded on the device in logical
sector number two. Any driver or operating system can access the
information for configuration purposes, etc. Specific fields can be
updated or mairtained by the operating software if desired. If this
were done, a new check sum would be recomputed and saved in the
location defined. The device-specific information would either be
recorded on the device by the manufacturer or by a separate utility

program.

Using the Standard Register Map and the Common Configuration Method,
a stardard software driver would be able to locate each controller/
host bus adapter and identify each storage device with its specific

information.

This would provide a standard way to access disk drive geometry in
configurations using multiple controllers/host bus adapters and
multiple storage devices attached to each controller/host bus adapter.

This proposal is not specific to any operating system but is intended
for general industry use.

Sincerely,

Royes B. Richins
Sr. Software Engineer

cc Larry Lamers
VL, MC, Maxtor Corp.
22 EAST
700 SOUTH
2204, LTAR
s G427
i01-429.7000
SMN.ES7AT

+29

Common Configuration Method

Proposed Common Configuration Method

July 9, 1991

The Common Configuration Method (CCM) simplifies configuration of disks and other storage devices. This
definition includes a Standard AT Compatible Register Map, and a configuration sector layout. Drivers
incorporating this method of configuration will be able to find the controller and recognize the geometry and
options of any media formatted and containing the CCM signature and required information in the indicated fields
in sector 02 (third logical sector of the media on the device, assuming 512 byte sectors). This method of
configuring for drives allow media to be identified universally independent of a given operating system or system
BIOS. A driver incorporating this technique for configuration will be required to read sector 02 in the driver,
recognize the Common Configuration Signature, and get the necessary information from the fields as defined in
the Common Configuration sector layout in the following pages.

Common Configuration Method

Common Configuration Method
Sector 02 Layout

Fiel d|Of fset (hex) |Of f set (dec) Data Type Descri ption
1 000 - OFF | 000 - 255 |unsigned char [256]|Vendor Unique
Reserved for vendor use
2* 100 - 101 256 - 257 |unsigned int Si gnature
Cont ai ns the signature (55AAh)
3 102 - 105 258 - 261 |unsigned | ong User bl ocks (Il ow order |ong word)
Low order half of follow ng
4 106 - 109 262 - 265 |unsigned | ong User bl ocks (high-order |ong word)
The user sectors divided by the bl ock
size**
5* 10A - 10B || 266 - 267 |lunsigned int User Data Heads
Nunber of user-accessible data heads**
6* 10C - 10F || 268 - 271 |lunsigned |ong User Cylinders
Number of user accessible cylinders** (not
i ncludi ng spares)
7 110 - 111 272 - 273 |unsigned int Average Sectors Per Track
Aver age nunber of user-accessible sectors
in each track**
8* 112 - 115 274 - 277 |unsigned | ong User Sectors (low order |ong word)
I ower half of nunmber of sectors (below)
9* 116 - 119 278 - 281 |unsigned | ong User Sectors (high-order |ong word)
Total user accessible sectors on device**
10 11A - 11B || 282 - 283 |lunsigned int Bl ockSi ze
Data transfer size in sectors per block**
11* 11C - 11D || 284 - 285 |lunsigned int Sector Data Length
Nunmber of data bytes in each sector**
12 11E - 13D || 286 - 317 |lunsigned char [32] |Support Field
Feature identification (for vendor use)
13* 13E - 13F || 318 - 319 |lunsigned int Controller Interface Type
0 = unknown 3 = ESDI 6 = ST-506
1 = | DE/ ATA 4 = S\D
2 = SCsSl 5=1P
If greater than 6, refer to Controller Nane
14* 140 - 14F || 320 - 335 |lunsigned char [16] |Mbdel Name***
15 150 - 15F || 336 - 351 |lunsigned char [16] |Controller Name***

Common Configuration Method

Common Configuration Method
Sector 02 Layout (cont)

Fiel d|Of fset (hex) |Of f set (dec) Data Type Descri ption
16* 160 - 161 352 - 353 |lunsigned int Peri pheral Device Type****
00 = Hard disk
01 = Magnetic Tape
02 = Printer
03 = Processor Device
04 = WORM Device
05 = CD-ROM
06 = Scanner
07 = Optical D sk
08 = Medi um Changer Device
09 = Communi cations Device
0Ah-0Bh = Defined by ASC I T8
0Ch- 1Eh = Reserved
1Fh = Unknown or no device type
7Fh = Logical Unit M ssing
80h- FFh = Vendor Uni que

17* 162 - 175 354 - 373 |unsigned char [20] | Device Serial Number***

18 176 - 179 374 - 377 |unsigned char [4] Uni que Devi ce Address
In famly

19 17A - 199 378 - 409 |unsigned |ong [8] Start-up Sector Pointers
Sector numbers for devices that require
speci al start-up routines

20 19A - 1FB | 410 - 507 |lunsigned char [98] |Reserved
Reserved for future use

21* 1FC - 1FF || 508 - 511 |junsigned |ong CRCDoubl eWr d
32-bit CRC of the CCM area (0100h- 01FBh)

* Fields that nmust contain valid data if the signature is witten to bytes 100h-101h
> An absolute count; i.e., a whole nunber total; O=zero units, 1=one unit, etc.
i A null-term nated and nul | - padded ASCI| string
ok From SCSI ANSI Standard X3.131-1986, 23 Jun 1986, p. 70; see also SCSI || ANSI Standard X3.131-1990, 31 Aut
1990, p. 7-21
Not e: The deci mal whol e nunbers in brackets [] indicate the storage allocation in bytes in the designated data
type
DEFI NI TI ONS
byt e An 8-bit unit, such as a character
wor d A 16-bit unit, such as an integer
I ong word A 32-bit unit, such as a long integer

vendor Manuf acturer of the device

Common Configuration Method

This section details the contents and definitions of al the fields specified by the Common Configuration Method
(CCM) for sector 02 of peripheral devices. All addresses are designated in hex and pertain to the data field of
sector 02. All fields are unsigned.

Field 1: Vendor Unique 256 bytes unsigned char

The Vendor Unique field is reserved for purposes specific to the manufacturer and is comprised of
addresses 000h through OFFh (the lower-addressed half of sector 02); Because the information stored at
this location is vendor-specific, the generic data type unsigned char is assigned to it.

Field 2: Signature 2 bytes unsigned int

The Signature field contains the hex number 55AA (decimal 21930) at address 100h of sector 02 to
indicate the remaining data follows the CCM standard. This signature aso indicates that valid data is
stored in the User Data Heads, Average Sectors Per Track, User Type, and Serial Number fields, and a
valid checksum for the CCM data is stored in the Checksum field.

Field 3: User Blocks, low order long word 4 bytes unsigned long

Field 4: User Blocks, high order long word 4 bytes unsigned long

The lower 32 bits of the 64-bit number representing the number of blocks on the device is stored at
address 102h, the low order long word of the User Blocks field. The upper 32 bits of the same 64-bit
number is stored at address 106h, the high order long word of the User Blocks field. Thisis equal to the
User Sectors divided by the Block Size. The number of user blocks is a whole number, indicating an
actual count of the number of blocks available to the user; i.e., 0 = zero blocks, 1 = one block, 2 = two
blocks, etc.

Field 5: User Data Heads 2 bytes unsigned int

The number of data heads on the device accessible to the user is stored in the User Data Heads field at
address 10Ah and does not include servo heads. Valid data must be present in this field if the proper
signature is written to the Signature field. The number of user data heads is a whole number, indicating
an actual count of the number of data heads available to the user; i.e.,, 0 = zero heads, 1 = one head, 2
= two heads, etc.

Common Configuration Method

Field 6: User Cylinders 4 bytes unsigned long

The number of cylinder so the device accessible to the user is stored in the User Cylinders field at address
10Ch and does not include spare cylinders. Valid data must be present in thisfield if the proper signature
is written to the Signature field. The number of user cylinders is a whole number, indicating an actual
count of the number of cylinders available to the user; i.e., 0 = zero cylinders, 1 = one cylinder, 2 = two
cylinders, etc.

Field 72 Average Sectors Per Track 2 bytes unsigned int

The average number of sectors in each track accessible to the user is stored in the Average Sectors Per
Track field at address 110h. Valid data must be present in this field if the proper signature is written to
the Signature ;field. The average number of sectors per track is a whole number, indicating an actua
count of the average number of sectors per track available to the user; i.e.,, 0 = zero sectors per track, 1
= one sector per track, 2 = two sectors per track, etc.

Field 8: User Sectors, low order long word 4 bytes unsigned long

Field 9: User Sectors, high order long word 4 bytes unsigned long

The lower 32 hits of the 64-bit number representing the number of sectors on the device is stored at
address 112h, the low order long word of the User Sectors field. The upper 32 bits of the same 64-bit
number is stored at address 116h, the high order long word of the User Sectors field. Thisis equa to the
User Blocks multiplied by the Block Size. Valid data must be present in this field if the proper signature
iswritten to the Signature field. The number of user sectors is awhole number, indicating an actua count
of the number of sectors available to the user; i.e., 0 = zero sectors, 1 = one sector, 2 = two sectors, €etc.

Field 10: Block Size 2 bytes unsigned int
The data transfer size in the number of sectors per block is stored in the Block Size field at address 11Ah.

The block size is a whole number, indicating an actual count of the number of sectors per block available
to the user; i.e., 0 = zero sectors per block, 1 = one sector per block, 2 = two sectors per block. etc.

Common Configuration Method

Field 11: Sector Data Length 2 bytes unsigned int

The number of data bytes in each sector is stored in the Sector Data Length field at address 11Ch. Valid
data must be present in this field if the proper signature is written to the Signature field. The sector data
length is a whole number, indicating an actual count of the number of data bytes per sector available to
the user; i.e., 0 = zero data bytes per sector, 1 = one data byte per sector, 2 = two data bytes per sector,
etc.

Field 12: Support Field 32 bytes unsigned char
The support Field is an information field that is alocated for feature identification of the device and is
reserved for use by the vendor.

Field 13: Controller Interface Type 2 bytes unsigned int

The 16-bit number that identifies the type of interface the device communicates with is stored in the
Controller Interface Type field at address 13Eh. This information is defined as follows:

0 = unknown controller type 3 = ESDI 6 = ST-506
1 =IDE/ATA 4 =SMD
2 =SCSl I/sCSl I 5=1P

Controller types represented by numbers greater than 6 are identified in the Controller Name field. Valid
data must be present in this field if the proper signature is written to the Signature field.

Field 14: Mode Name 16 bytes unsigned char
The model name of the device is stored in the Model Name field at address 140h. Thisis a null-padded
and null-terminated ASCII string, meaning that (1) the last byte must be a null (00h) character and (2) all
other unused bytes must also be null characters.

Field 15: Controller Name 16 bytes unsigned char
The controller name of the device is stored in the Controller Name field at address 150h. Thisis a null-

padded and null-terminated ASCII string, meaning that (1) the last byte must be a null (00h) character and
(2) al other unused bytes must also be null characters.

Common Configuration Method

Field 16: Peripheral Device Type 2 bytes unsigned int

The 16-bit number that identifies the medium or periphera device type is stored in the Peripheral Device
Type field at address 160h. This information is defined as follows:

00h = Hard Disk 08h = Medium Changer Device
0lh = Magnetic Tape 09h = Communications Device
02h = Printer OAh-0Bh = Defined by ASC IT8

03h = Processor Device 0Ch-1Eh = Reserved

04h = WORM Device 1Fh = Unknown/No Device Type
05h = CD-ROM 7Fh = Logical Unit Missing

06h = Scanner 80h-FFh = Vendor Specific

07h = Optical Disk

Valid data must be present in this field if the proper signature is written to the Signature field.

Field 17: Serial Number 20 bytes unsigned char
The serial number of the device is stored as an ASCII string in the Serial Number field at address 162h.
Thisis anull-padded and null-terminated ASCII string, meaning that (1) the last byte must be a null (00h)
character and (2) all other unused bytes must also be null characters. Valid data must be present in this
field if the proper signature is written to the Signature field.

Field 18: Unique Device Address 4 bytes unsigned char
The unique address that distinguishes the device from other members of the same family is stored in the
Unique Device Address field at address 176h.

Field 19: Startup Sector Pointers 32 bytes unsigned long
The Startup Sector Pointersfield is provided to store sector numbers that locate routines required by some
devices to complete the startup process.

Field 20: Reserved 98 bytes unsigned char

The Reserved field is allocated for future expansion.

Common Configuration Method

Field 21: CRCDoubleword 4 bytes unsigned long

This field contains a 32-bit CRC of the CCM data starting at location 0100h and ending with location
01FBh. The CRC is calculated using the supplied "C" routine. Please note that the CRC accumulator is
initialized to al ones (OFFFFFFFFh) and that the resulting value is inverted. This standard technique
prevents generating a matching CRC when data is erroneoudly shifted by one or more bytes, with more
or less initial zero bytes. The polynomia used in the 32-bit CRC is found in the ANSI X3.66
specification, or FED-STD-1003, and is represented as:

X324 %2653 4522 4 164 3124 %114 310, 3B 57 155 13132 4 L4 %0

Valid data should be present in this field if the proper signature is written to the Signature field.

Following are sample routines to calculate the CRCDoubleWord in both "C" and Assembler, along with
a sample definition file to allow the 32-bit mode assembler routine to be loaded as an NLM, exporting
the routine for drivers and other NLMs:

Common Configuration Method

Sample 32-bit CRC32 Routine

COMVENT ~

* ENTRYPO! NT: Gener at eCRC32

* PURPCSE: Generates 32-bit CRCs for data bl ocks (32-bit node flat nodel)

* PROTOTYPE: CRC = Generat eCRC32(bufferlength, @uffer)

* PARAMETERS: bufferlength - LONG buffer length in bytes
@uffer - LONG pointer to data buffer

* RETURNS: CRC - LONG new accunul at ed CRC (EAX)

*NOTES: This CRC polynomial is in the ANSI X3.66 specification. 32-bit CRCs
are approxi mately 100,000 tinmes nore likely to detect an error than
16-bit CRCs. The 32-bit polynomal used is:

32 26 23 22 16 12 11 10 8 7 5 4 2 1 O
X +X X X X +X X +X X X +X +X +X +X +X
*:,_..

name Gener at eCRC32

assune ds: OSDATA, es: OSDATA, ss: OSDATA

CPush nmacr o

push ebp

push ebx

push esi

push ed

cld

endm

CPop maecr o

pop edi

pop esi

pop ebx

pop ebp

endm

Common Configuration Method

; following used to fetch values fromthe stack
ParnOf fset equ 20 ; for ebx, ebp, esi,edi plus near call

Par nD equ ParmOffset + 0
Par mL equ ParnmOfset + 4
poly equ 04C11DB3h

OSDATA segment rw public ’ DATA
OSDATA ends

OSCODE segnent er public ’ CODE
assune cs: OSCODE
public GenerateCRC32

align 4
CRC32C proc
Gener at eCRC32 | abel near

CPush ;push standard registers for C
nmov ecx, [esp + ParnD] ;*** get # bytes to process
nmov esi, [esp + Parmil] ;*** get buffer pointer

Xor eax, eax ;initialize crc accumnul ator
dec eax ;to all ones

mov edx, poly ; get pol ynomi al const ant

j ecxz exit ;*** | f no bytes to process

al i gn 4
byt el oop:
rol eax, 8
xor al, [esi] ;update with new byte
ror eax, 8
nov bh, 8 ;set bit counter
align 4
bit1 oop:
shl eax, 1 ;shift accunulator left 1 bit
jnc bitzero ;if bit was zero
xor eax, edx ; updat e accunul at or
align 4
bi t zero:
dec bh ;done with byte ?
jnz bitloop ;no - do next bit
inc esi ;adj ust buffer pointer

| oop byt el oop
exit:

xor eax,-1

CPop

ret

CRC32C endp
OSCCDE ends
end

;loop til buffer processed

;1's conplenent result
;restore saved regs
;return to caller

Common Configuration Method

Sample DOS real-mode CRC32 C-callable routine

COMVENT ~
* MODULE: CRC32. ASM
* PURPCSE: Generates 32-bit CRCs for data bl ocks (DOS Real - Mode)
* ENVI RONMVENT: DCS d i ent *MODI FI ES ENVI RONMENT:
* MODEL : HUGE *BLOCKI NG

*MODI FI ES | NTERRUPTS: n
*REQ CALL DI SABLED: n

*C- CALLABLE:

*RESTORES | NTERRUPTS:
*REQ CALL ENABLED:
*CALLABLE FROM I NT:

<< 33535

y

*PROTOTYPE: CRC = CRC32(bufferlength, @uffer)

* PARAMETERS:

* RETURNS:

*MODI FI ES:

*NOTES:

The

bufferlength - LONG buffer length in bytes

@uffer - LONG pointer to data buffer
CRC - (AX: DX) LONG new accunul ated CRC
AX, BX, CX, DX, FLAGS

Assenble with the /MX option.

32-bit polynom al used is:

32 26 23 22 16 12 11 10 8 7 5 4 2 1 O
X +X X X X +X +X +X X X +X +X +X +X +X
The polynom al is defined in ANSI X3.66.

*:,_..

Par s equ 6 ;far call plus bp

ParnOLo equ Par ns+0

ParmOH equ Par nms+2

ParmlLo equ Parns+4

ParmlH equ Par ms+6

polylo equ 1DB3h ;low word of 32-bit pol ynom al

polyhi equ 04Clh ;high word - note that 32 bit polynomials actually are

;33-bit by definition

Common Configuration Method

Sanpl e DOS real -node CRC32 C-cal l able routine (cont)

public _CRC32

TEXT segment DWORD public ’ CODE
assunme CS: _TEXT

Gener at eCRC32 proc far

CRC32 | abel DWORD

; this routine alters AX, BX, CX, DX (Turbo C or MSC 5.1 conpati bl e)

push bp
mov bp, sp ;setup bp
push es ; save
push Si ; save
push di ; save
mov cx, [bp + ParnOLo] ;*** get # bytes to process
mov bx, [bp + ParnDHi] ;*** get high word of count
mov si, [bp + ParmnillLo] ;*** get buffer pointer offset
mov ax, [bp + ParnlHi] ;¥** get segnent address
nmov es, ax ;set up ES
nov ax, OFFFFh vinitialize 32-bit accunul at or
nov dx, ax
or bx, bx ; hi-order count non-zero
jnz SHORT byt el oop ;yes - do it
j cxz SHORT exi t ;if no bytes to process
al i gn 2
byt el oop
xor dh, ES:[si] ;update with new byte
mov bh, 8 ;loop for each bit in byte
align 2
bit1 oop:
shl ax, 1 ;shift accunulator left 1 bit
rcl dx, 1 all 32 bits

if bit shifted out was zero
update crc with polynom a

jnc SHORT bitzero
xor ax, polylo
xor dx, polyhi

align 2
bi t zero:
dec bh ;done with byte ?
jnz bitloop ;no - do next bit
inc si ;adj ust buffer pointer
jz SHORT fixseg ;skip if at segnent end
align 2
byt echk:
| oop byt el oop ;loop til buffer processed
dec bl ;theoretical limt 16M bytes
jnz bytel oop ;until all done
exit:
xor ax, OFFFFh ;1's conpl enent result
xor dx, OFFFFh ; per ANSI standard
pop di ;restore
pop si ;restore
pop es ;restore
pop bp ;restore
ret ;return to caller
fixseg:

;fixup ES:si if end of segnent reached
;nove up 64k

nmv si, es
add si, 1000h

nov es, si ;restore
xor si, si ;registers
jmp bytechk ;return to nminline

Gener at eCRC32 endp
_TEXT ends
end

Common Configuration Method

B O A T T

/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/

Sample CRC32 routinein C

CRC32.C Generates 32-bit CRCs for data bl ocks
crc32 = CGenerat eCRC32(bufferlength, @uffer)

PARAVETERS: bufferlength - unsi gned long buffer length

@uffer - pointer to data buffer
RETURNS: crc32 - unsigned long 32-bit CRC
NOTES: The 32-bit polynom al used is:

32 26 23 22 16 12 11 10 8 7 5 4 2 1 O
X X +X X +X +X +#X 4+X X X X +X +X +X +X

The polynom al is defined in ANSI X3.66.

unsi gned | ong CGenerat eCRC32(unsi gned | ong bufferlength,

{

unsi gned char *buffer)

unsi gned | ong crc;
unsi gned | ong t np;
unsi gned | ong byt ecnt ;
unsi gned | ong bitcnt;

crc = OxffffffffL,;
if (bufferlength == 0) return (crc ™ OxffffffffL);
for (bytecnt = 0, bytecnt < bufferlength, bytecnt++)

tnp = (unsigned long int) *buffer;
crc A= (tnp << 24);
for (bitcnt = 0, bitcnt < 8, bitcnt++)

tnp (crc & 0x80000000L);
crc (crc << 1);
if (tmp) crc ~= 0x04Cl11DB3L;

buf f er ++;

}
return (crc ™ OxffffffffL);

Proposed Standard AT Compatible

Register Map

25 Jun 1991

This document lists the proposed Standard AT Compatible
Register Map for IBM AT systems and true compatibles.

Proposed Standard AT Compatible Register Map

(all addresses are in hex)

Register Primary Secondary Tertiary Quaternary Register
Name Address Address Address Address Type

Data 1F0 170 1E8 168 Read/Write
Error 1F1 171 1E9 169 Read Only
Write Precomp 1F1 171 1E9 169 Write Only
Sector Count 1F2 172 1EA 16A Write Only
Sector Number 1F3 173 1EB 16B Read/Write
Cylinder Low 1F4 174 1EC 16C Read/Write
Cylinder High 1F5 175 1ED 16D Read/Write
Drive/Head 1F6 176 1EE 16E Read/Write
Status 1F7 177 1EF 16F Read Only
Command 1F7 177 1EF 16F Write Only
Alternate Status 3F6 376 3EE 36E Read Only
Fixed Disk 3F6 376 3EE 36E Write Only

Digital Input 3F7 377 3EF 36F Read Only

