X379 2/~

P1394 High Speed Serial Bus

A Technical Summary

This document is a techical summary of the proposed IEEE P1394 High Speed Serial Bus
based on draft 3.2 of the standard and other working group documents.

written by Michael D. Teener, P1394 Chair

Bunday, January 13, 1991

1. Introduction

The P1394 standard describes a high speed serial bus designed for low cost yet providing the data transfer
speed and low latency needed for a peripheral bus or as a backup to a traditional parallel backplane bus.
The highlights of the Serial Bus include:

1) A physical layer supporting both cable media and many ANSI/IEEE standard 32-bit busses. This
includes the proposed ANSI/IEEE standards P1196-1990 NuBus Revison, P896.1 Futurebus+ and
P1596 Scalable Coherent Interface,

2) Variable speed data transmission with a standard speed of almost 40 Mbit/sec over cable lengths
greater than 10 meters. A higher speed 160 Mbit/sec version is also under development, although
it has not been characterized at this time.

3) Both fair and priority arbitration mechanisms with all nodes guaranteed at least partial access to
the bus, regardless of priority.

4) Bus transactions that include both block and single quadlet reads and writes, as well as an
“isochronous” mode which provides a low-overhead guaranteed bandwidth service.

5) Dynamic address assignment that does not require switches or a physical “slot number.”
6) Consistent with the IEEE P1212 Control and Status Register Architecture Specification

The draft P1394 standard is maintained by the chair of the working group, Michael Teener (408-974-3521).
Copies of the related P1212 standard can be obtained from Kinkos Copy Service at xxxx, although this may
change at any time since P1212 has almost completed it's standardization process.

1.1. Serial Bus Applications

There are three primary applications that have driven the architecture and design of the Serial Bus: an
alternate for a parallel backplane bus, a low-cost peripheral bus, and as a bus bridge between
architecturally compatible 32-bit busses.

1.1.1. Alternate Bus ,
There are five primary reasons for providing a serial bus on a system that already has a parallel bus:

1) The system is built out of modules that are based on different backplane bus standards, yet it must
all operate as a cohesive whole.

Printed 1/14/91 page 1

(1

Serial Bus Summary Preliminary Michael D. Teener

2) The system is too large or physically dispersed to have only a single backplane, yet modules in the
different backplanes must communicate. This is called "inter-crate” communication.

3) One or more communicating modules of a system are not located on the backpanel. This is called
"off-crate” communication.

4) The system requires a certain level of failure tolerance. In particular, a redundant communication
path can diagnose and isolate errors without using the failed parallel bus.

5) Many of the modules in a system are particularly price-sensitive and do not need the full band-
width of a parallel bus.

1.1.2. Low Cost Peripheral Bus

The Serial Bus can also be used as a powerful and low cost peripheral interconnect. The cable is a simple
shielded twisted pair with a small coniiector and yet the bandwidths are comparable with existing /O
interconnect standards. The Serial Bus has the added advantage of architectural compatibility with 32-bit
parallel computer busses. This can impose less overhead than limited-function dedicated /O
interconnects.

1.1.3. Bus Bridge

As mentioned above, the Serial Bus can be used in multiple-bus system configurations. The Serial Bus
architecture limits the number of nodes on any bus to 63, but supports bus bridges which connect two or
more buses together. The addressing structure follows the P1212 CSR standard and so has sufficient
address space to support 1023 buses.

In normal operation, a bus bridge eavesdrops on the bus transactions, but ignores all of the transactions to
local addresses. For transactions to remote addresses, a bus bridge is the agent which forwards the packet
to the adjacent bus. After initialization, the bus bridges are transparent to the normal system operations.

Although the Serial Bus may be used in many bus configurations, it is expected to be used mostly in
hierarchical bus topologies, as illustrated in Figure 1-1 below, where bus #5 is a Serial Bus and bridges
together busses 1 through 4.

Bus #5 (Serlal Bus)

bus
ﬁ b .
I Bus #4 1 ridga
node 1 node 2 node 3 W node n
l bus
Bus #3 bridge
node 1 node 2 node 3 e — node n

bus
I I I x — bridge

Bus #2
node 1 node 2 node 3 node n

l bus
Bus #1, #2, #3, #4 are lower in the bus Bus #1 bridge |

hiamachy than tis#5 node 1 node2 | | node3 oy ks 7

Figure 1-1. Example hierarchical bus topology

Printed 1/14/91 page 2

Serial Bus Summary Preliminary Michael D. Teener

1.2. Document Notation

The terms half-word, word, and double-word are avoided in the Serial Bus and CSR descriptions. These
definitions are dependent on the processor’s word size, which could easily be 16, 32, or 64 bits. Instead, the
Serial Bus notation uses the conventions established by previous IEEE bus standards, which are
independent of the processor's word size. This notational convention is illustrated below:

Size 32-bit Word Notation IEEE Std. Notation
1 Byte Byte
2 Half-word Doublet
4 Word Quadlet
8 Double Octlet

The Serial Bus uses big-ending ordering for byte addresses within a quadlet, and quadlet addresses within
an octlet. For 32-bit quadlet registers, byte 0 is always the most significant byte of the register. For a 64-
bit quadlet-register pair, the first quadlet is always the most significant. The field on the left (most
significant) is transmitted first, and within a field the most significant bit is also transmitted first. This
ordering convention is illustrated below:

bits in a quadlet

MSB coe LSB
1 30 1
msg Dytesinaquadlet |
B[0] | B[1] | B[2] | B[3]
8 8 8 8

/ quadlets In an octlet
MSB LSB

quadlet_high quadlet_low
32 32

Note that specifications use field widths
Figure 1-2. Bit and byte ordering

Although the P1394 standard is defined to be big-endian, their data values may also be processed by little-
endian processors. To minimize the confusion between conflicting notations, the location and size of bit
fields are specified in terms of their widths, rather than their absolute positions, as is also illustrated
above.

1.3. Topology

The physical topology of the Serial Bus is divided into two parts as shown in figure 3-1. The first part is
called the "backplane environment" and there are several different versions corresponding to the different
backplane bus standards. The other part is called the “cable environment" and is completely specified in
section 6. Nodes on a single bus may reside in different backplane environments, or directly in the cable
environment. There is no requirement that the Serial Bus have any particular set of environments. All
nodes may reside strictly in a single backplane, or they all may be directly attached to the cable.

Printed 1/14/91 page 3

(13

Serial Bus Summary Michael D. Teener

P e P Y T T PP

\——] sarial bus (cable anvironmant)
----------- o (T W)
I—CPU |fnury o Ij"u o /o o

sarial bus (backplane environment)

-

R L I P

Nt

Figure 1-3. Serial Bus Physical Topology

Note that this physical topology does not describe anything beyond a single bus. The actual imple-
mentation of multiple bus systems using bus bridges is not defined: only the addressing and transactions
are specified.

1.3.1. Cable Environment

The physical topology for the cable environment is a non-cyclic network with limited branches and extent.
The media consists of 3-pair shielded cables with terminators, transceivers and simple logic dedicated to
each port. The trasceivers attach together at the nodes to provide a very short “silicon bus”. The cable
and transceivers act as bus repeaters between the silicon busses to simulate a single logical “dominant
mode” bus. This dominant mode is needed since the bitwise arbitration method used by the Serial Bus
requires that each node receive the "OR" of the transmissions of all nodes.

Since it will frequently be inconvenient for low power serial devices to have a separate power wiring
system, the media will also have a power pair carrying 30 VDC at no more than 1.5 AL, The actual current
available is system-dependent.

1.3.2. Backplane Environment

The Serial Bus can be extended within each physical device as a two-signal electrical bus. This can provide
a simple and direct way for internal processing resources to communicate with appropriate peripherals.

The backplane interface to the Serial Bus will make use of the two pins reserved for a Serial Bus by the
various ANSI/IEEE bus standards. These two pins are redefined either as a transmit-receive pair or a
dominate mode differential pair. Drivers and receivers for these signals follow the conventions established
by the appropriate parallel bus standard: e.g., Futurebus using BTL, Fastbus and SCI using ECL, and
NuBus using an adaption of the Serial Bus cable environment. Even in systems without standard busses,
the electrical equivalent can be routed wherever needed to provide a low cost interconnect.

1pgrameters that are still being developed by the working group are shown in italics.

Printed 1/14/91 page 4

11

Serial Bus Summary

Preliminary Michael D. Teener

1.4. Node and Board Architectures

The Serial Bus architecture is defined in terms of entities called nodes. A node is an addressable entity,
which can be independently reset and identified. More than one node may be co-located on a single
module, and more than one function may be co-located on a single node. This architectural concept is
illustrated below:

1.5. Addressing

The Serial Bus follows the P1212 standard for 32-bit addressing, where the upper sixteenth of the address
space is reserved for node-specific addressing. This allows a system of up to 1023 busses each with 63
nodes to be accessable with a direct and well-known address. This standardization is continued within the
node, with 4096 bytes divided between core P1212 resources, registers specific to the Serial Bus, a ROM ID
area, and node-specific resources.

Module Architecture

."c_)_ | l Mé;ﬁory : ‘

v stiem Bus
>

| Module| Replace together

‘8 Initialize and test together

Independent in normal operation

Figure 1-4. Module architecture.

11

0
O bus# 0 - node #0 Core
bus # 1 node # 1 e 512

bus %

gapendant 1024 .

. ROM 2

Extendad Space . (151 1K) g
2048 §

a

3

K

available]

13 E

5 — bus # 1022 node # 62 @
= bus # 1023 noda # 63 S

15 oadcast =
Noda Space {local bus) {or) o5

spaca dastination bus numbar dest node # destrag address
Exampla: 15 1023 63 512 J
1111111111 111111 001000000000

Figure 1-5. Serial Bus Addressing

Printed 1/14/91

page 5

(1S

Serial Bus Summary Preliminary Michael D. Teener

1.6. Protocol Architecture
The serial bus protocols are described as a set of three stacked layers as shown in figure 3-4:

1) The Transaction Layer defines a complete request-response protocol to perform the bus
transactions required to support the P1212 architecture.

2) The Link Layer defines a one-way data transfer service to the Transaction Layer. It provides
access to the medium, addressing, data checking, and data framing. One Link Layer transfer is
called a “subaction”.

3) The Physical Layer translates the logical symbols used by the Link Layer into actual physical
signals on the different Serial Bus media.

Note that the Transaction Layer does not add any services for isochronous data.

Configuration & i .
Ermg Control Channels

Link Layer
[Cvele Controt |
Aaration | [Packet Tranamitied] rpm] g

L
c
o
E
@
=
@
é
0
3
m
©
=
[
wn

Physical Layer

|| Medin interface 1]

Interface

Figure 1-6. Serial Bus protocol stack

2. Transaction Layer

Data is transferred between nodes (a requester and one or more responders) on the serial bus by three
different types of transactions, where each transaction consists of one or two subactions: a request and
possibly a response. The three transactions are:

1) Get — data is transferred from a responder back to a requesterl.

1This could also be called a "read”, but it is useful to emphasize that the Serial Bus uses split transactions, so the "get”
term was chosen. Note that there can only be one responder. Broadcasts have no meaning in Serial Bus Get
transactions.

Printed 1/14/91 page 6

1/

Sérial Bus Summary Preliminary Michael D. Teener

2) Set — data is transferred from a requester to one or more respondersl.

3) Lock — data is transferred from a requester to a responder, operated on by the responder, and then
transferred back to the requestor.

Transactions actually have four actions:

1) Request — the action taken by a requestor to start the transactions.

2) Indication — the reception of a request by a responder.

3) Response — the action taken by the responder to finish the transaction.
4) Confirmation — the reception of the response by the requestor.

These actions and their relation to the data flow is shown below:

Requester Responder
~Transaction Transaction
Layer Layer
Transaction Request]
\]"ranchﬁ
Oaty
ls.o,gq,‘ Wﬁon Indication
5351'\0“ "

Tpri:sponsﬂ — Transaction Respanse
Xl
s

Figure 2-1. Transaction operations.

]

Transaction Confirmation

Transactions can exchange arbitrary amounts of data up to 2048 bytes with arbitrary alignment (no
address restrictions). Implementations, however, are allowed to place restrictions on this. In particular, if
isochronous link-layer services are implemented, the maximum packet length is restricted to 62 psec. This
means that packets are limited to 256 bytes at 49 Mbaud and 1024 bytes at 196 Mbaud. The only required
transactions are quadlet set/get on quadlet aligned addresses (these are the transactions necessary to
access the standard CSR resources).

2.1, Lock Subcommands

Since the Serial Bus supports split transactions, it cannot be easily locked while transaction sequences
implement indivisible test_and_set operations, Therefore, special lock transactions are defined, which
communicate the intent from the requester to the responder, thus allowing the indivisible updates to be
performed at the responder. There is one standard lock transaction format, but several different
subcommands define conditional and unconditional update actions,

The lock subcommands are based on the implementation model necessary to implement the fetch_and_add
and compare_and_swap primitives. The other subcommands define other update actions which can be
easily performed with minimal additions to the basic lock-operation hardware. In the lock implementation
model two data values (data and test) are sent in the lock request; one data value (old) is returned in the
lock response. These are illustrated in Figure 2-2.

15imilarly, this could be called a "write". In broadcast Serial Bus Set transactions, the responders do not actually
generate a response.

Printed 1/14/91 page 7

(17

Serial Bus Summary Preliminary Michael D. Teener

old test data command

Figure 2-2. Simplified lock model
The three data values (data, test, and old) are all quadlets.

3. Link Layer

The Link Layer provides access to the bus and a one-way data transfer with simple acknowledgement.
This transfer is called a “subaction”, and there are two types used in the Serial Bus Link Layer:

1) Asynchronous Subaction — 0 to 2048 bytes of data and an upper layer control block are transferred
to an explicit address. The subaction has three parts:

° Arbitration Sequence — a node that wishes to become a source performs a bit-serial
arbitration process to gain control of the bus. This is implicit for isochronous transfers.
° Packet Transmission — a bus transfer code, addresses of the source and destination nodes,

and data are sent by the source node. Isochronous packets only include the transfer code
and data, the addresses are implicit.

° Acknowledgement — a uniquely addressed destination will return a “complete”, "pending”,
or one of two “rejected” acknowledgements. Asynchronous broadeast packets do not have
acknowledgements.

2) Isochronous Subaction or “Channel” — 0 to 256 bytes are transferred without explicit addressing.
Channel transfers use a form of time division multiplexing to provide an implicit address. Note
that there ig no arbitration or acknowledgement for channels.

. Asynchronous Subaction cubacton

gap gap
arbitration packat ack

' Isochronous Subaction
subaction subaction

packet

Figure 3-1. Subactions.

The link layer operations also have the request, indication, response, and confirmation actions:

Printed 1/14/91 page 8

[18

Serial Bus Summary Preliminary Michael D. Teener

1) Request — the action taken by a link requestor to transmit a packet to a link responder.
2) Indication — the reception of a packet by a link responder.
3) Response — the transmission of an acknowledgement by a link responder.

4) Confirmation — the reception of the acknowledgement by the link requester.

Requester LInk Responder Link
Layer Layer

Link Requast Aty
trat
.\ Tparfadf:‘n &
0 g W&g,o"
ety
- \m-wmﬁun

e ms nse
N;\l.!\o'mm g(d"""‘ Ragpa

P

Link Confirmation

Figure 3-2. Link Layer operations.

The Transaction Layer and Link Layer interact in a way that optimizes the use of the bus. In particular,
transactions can be implemented in two different ways: unified or split. The simplest transaction, a Set
with no errors, can be implemented with a single Link Layer subaction: the transmission of a packet and
the corresponding acknowledgement as shown below.

Requester Responder
Transaction Eln u':;:rr E[:kpﬂ’yd:rr Transactlon

Layer Layer
- Medla
Request Data Packet
“~a.i{__ Request
\ Data Packat
-~ Data Packet
= ~m§ Indication
Sat Indication
Acknmuld%e ‘;/S‘“
o gsponse
Caonfirmation (Com‘pile_l_e_ “t Response (Complate)
Set (Complete) fa=—"— (Complate)
[&)
-

Figure 3-3. Unified Transaction Example.

For Get and Lock transactions and Set transactions that have error status, or where the response takes
longer to generate, then a split transaction is required with separate Link Layer subactions for the request
and the response. Note that other Link Layer subactions occur on the bus between the request and
response subactions of a single transaction.

Printed 1/14/91 page 9

1149

Serial Bus Summary Preliminary Michael D. Teener

Requester R Rasponder
Transaction Lin uL.:;':, Ej.:m:: Transaction

Layer Layer
R sl Madi
aquast adia
Data Pachet
T Raequest
\ | Data Packet
el Data Packet
AN | w‘
T —
Responsa
{Pending) rimaou
Canfirmation SN -
(Ponding) e = rowted
Other Link-Layor (Pending?a
operati can
m-';m.m Ty = - — -
betwaen the two r o =1
subaclions No-data Packet
‘Flsq*ar =
Set No-data Packet
Confirmation Indication
{Completa)
e
Response i Confirmation
(Complete) g “opf {(Complete)
cknowl a
{Complete \

Figure 3-4. Split Transaction Example

When the Transaction Layer is busy and cannot accept a packet, the Link Layer sends a “reject” back to
the requesting node. As an option, the Link Layer at the requesting node can retry the packet for a limited
period. If bus retry traffic is high, then slower-acting nodes may be starved. To prevent this from
happening there is a two-phase reject/retry protocol which allows all retries to be processed in a timely
fashion.

3.1. Access Methods

To enhance the usefulness of Serial Bus, each node on the bus can use one of three different access
methods. These access protocols are:

1, Fair Arbitration. Fair arbitration can be used by nodes which can equally share the bus
bandwidth. This is the default method.
2. Urgent Arbitration. Urgent arbitration can be used by nodes which desire a majority of the bus

bandwidth or have severe latency requirements. For example, a high-bandwidth real-time data
collection node may use priority arbitration when critical data buffers are more than half full.

3. Isochronous Access. Data that is regularly generated and consumed, such as digital sound, can be
transferred using an isochronous access method that guarantees bandwidth on the bus with very

low overhead.

Urgent arbitration protocols are based on the node's priority. However, at least one half of the
asynchronous subactions are always allocated fairly, which bounds the maximum time between bus
arbitration and bus ownership. Even the lowest-priority node is never starved.

If a node wishes to send a transfer it first waits until the bus is idle for the appropriate period and then
transmits its arbitration number, most-significant-bit first. Just before the end of each code-bit-period, the
arbitrating nodes compare their arbitration bit to the value on the bus. As long as they are the same,
arbitration continues, When they are different, arbitration has been lost; the node observing the difference

Printed 1/14/91 page 10

Serial Bus Summary Preliminary Michael D, Teener

immediately withdraws from the remainder of the arbitration process. The timing of the start of an
arbitration sequence is critical: the maximum delay between valid bus state detection (subaction_gap,
arbitration_reset_gap) and the assertion of the first arbitration symbol must be less than 41ns.

3.1.1. Fair Arbitration

This arbitration method guarantees that only one node will still be transmitting by the end of the arbi-
tration period. As described above, it only provides a strict priority access; the node with the highest
arbitration number will always win. The Serial Bus adds a simple scheme that guarantees roughly half of
the bus access opportunities to fair access and half for urgent access. This protocol depends on their being
two gap lengths between subactions: a short “subaction gap” and a “fairness gap” which is somewhat
longer. The modified method works as follows:

1) If the bus is idle for longer than the arbitration reset gap, a new “ownership interval” starts and all
nodes set their “arbitration enable” flag.

2) All nodes have a “phase flag” that toggles after each transaction on the bus (even if the node is not
participating). This flag is also cleared whenever the bus is idle longer than the arbitration reset
gap.

3) A node using the fairness protocol may arbitrate for any transaction cycle as long as its arbitration
enable flag is set. This flag is reset whenever the node wins an arbitration and does a transaction.
This means that a fairness node can only do one transaction each ownership interval, i.e., it must
wait until all other nodes using fairness protocols get a transaction in, at which point the bus will
be idle long enough for an arbitration reset gap which ends the ownership interval and all nodes’
arbitration enable flag is set.

4) A node using the urgent protocol may arbitrate for any transaction cycle as long as its arbitration
enable flag is set OR its phase flag is set. Since the phase flag toggles each transaction, an urgent
node that wants to continually use the bus will be restricted to using only half the bus access
opportunities, plus whatever it would have gotten using the fairness protocol (even priority nodes
can use the fairness protocol).

For example, assume that there are three nodes arbitrating for the bus with arbitration numbers 1 (node
C), 2 (node B), and 3 (node A), and that B and C are fair nodes and A is an urgent node:

Printed 1/14/91 page 11

[21

Serial Bus Summary Preliminary Michael D. Teener

subaction gaps

arbitration arbitration
resei gap ‘// l \\ resei gap

] [TnodeA || node A] [node B | [node A ||_nodeC [nodeA | | nodeA |
00 ®@ O © O, @

Phase Bit Enable Bit Enable Bit Enable Bit
(allnodes) (node A) (node B) (node C)

@ arbitration reset gap, fairness interval
starts, all nodes clear phase, setendb@ = === ="==~"==77 > 0 0 0)

@ fairness arbitrate, all arbitraion enable flags are set
so the node with the highest address (node A) wins = ===="= B 1 1 0 0

@ any arbitrate - phase flag is 1,
sonode Acanwin again @ TTTTTTTTTTTTTTT e 1 0 0

o fairness arbitrate, arb enable for
node Ais clear, sonode Bwins ===—==—========= == i i 1 0

@ any arbitrate — phase flag is 1,
so node A can win again ——==—=— == oS Ssssses B> 0 1 1 0

@ fairness arbitrate, arbitration enable flags for
nodes A and B ara reset, so node Cwing === === ee=o- B 1 1 1 1

@ any arbitrate — phase flag is 1,
sonode Acanwin again ————— === sm——oms———= &0 1 1 1

no nade can arbitrate, phase bit and all arbitration enable
flags are clearad, so the bus stays idle until an arbitration
resat gap opens up, and a new faimess interval starts. == ==~ =0 0 0 0

Figure 3-5. Arbitration example.

The timing for the gaps and arbitration bits is determined by the worst-case round-trip delay time for a
signal on the medium. In particular, the unasserted portion of the arbitration bit time must be greater
than the round-trip time plus the time necessary for a circuit to make a state decision.

For fair arbitration, the address has a minimal impact on the allocation of transmission opportunities. For

urgent arbitration, the node with the largest priority value gets the majority of the bus transmission
opportunities.

3.1.2. Extended Arbitration

Extended arbitration is used for the address selection operation of the bus management protocols. It
always follows the fair arbitration algorithm, but it adds a set of bits to resolve the case of two nodes using
the same test address during the an arbitration.

3.1.3. Isochronous Access

The basic arbitration protocol is quite adequate for nodes that do not require a guaranteed amount of
bandwidth or a relatively precise timing reference (less than a microsecond, for instance). Some data, such
as that related to digital sound or instrumentation, are more conveniently handled using an isochronous

access method.

Printed 1/14/91 page 12

/29

Serial Bus Summary Preliminary Michael D. Teener

These isochronous services can be provided without upsetting the basic access protocol by establishing the
convention that the highest priority arbitration number (all ones) is reserved for a "cycle" master that is
responsible for maintaining a common clock source. The cycle master will try to transmit a special timing
request called a "cycle start” at very specific intervals set by a "cycle synch" source (nominally 8 KHz + 100
ppm, or 125 pusec + 12.5 nsec). If another transfer is still taking place when the cycle synch occurs, then
the cycle-start will be delayed resulting in significant jitter in the start time of the transfer. Since this
jitter is frequently unacceptable for a node, the amount of time that the cycle start request was delayed is
encoded within the request.

To simplify implementations, the cycle start request is encoded as a Transaction Layer quadlet set request
with a local bus broadcast to the “cycle timer register”. The cycle timer register is a 32-bit register in each
node with isochronous service with lower half being a modulo 1536 counter which increments once each
82.5 nsec and the upper half a counter of the overflows from the lower half. The cycle master uses the cycle
start set request to transfer its copy of the cycle timer register to all other isochronous nodes, keeping all
nodes within a constant phase difference.

The response packets to the cycle-start request are isochronous "channels", with the ordering of the
packets corresponding to the channel number, i.e., channel 1 is the first packet after the cycle-start,
channel 2 is the second packet, etc. Nodes are assigned to channels by standard Set transactions sent by a
manager application.

The second modification to the basic access protocol requires that all nodes cannot arbitrate for the bus
until all the nodes that wish to transmit isochronous channels have done so. This is easily done by
requiring a smaller minimum gap between channels than is needed for arbitration to start. The next
figure illustrates the basic isochronous access system.

channel (short) gaps

subaction {long) gaps

MAIE cyesiant |l g1 ||cnez2 |[enea| ©00 fcnan| |packat ¥ |packet cff Tﬂ:‘_j‘;" che 1
cycle #m A :
' start delay = x cycla #m+1
startdelay =y
- nominal cycle period = 125 usec v
cycle synch cycle synch

Figure 3-6. Cycle Structure

4, Physical Layer

The Physical Layer has two sublayers: the data encoding standards and the connector and physical
interface standards.

4,1. Data Encoding
The requirements for the physical layer signal are:

1) During arbitration any node must receive a reliable “or” of the signals transmitted by all the nodes
within one half of an arbitration bit time.

2) During packet transmission the signal must be sufficiently undistorted so that data can be reliably
decoded at the chosen data rates.

Printed 1/14/91 page 13

/23

Serial Bus Summary Preliminary Michael D. Teener

There are two types of signals that can be present on the bus: arbitration and packet. Arbitration signals
have the characteristics of long bit times and unreliable edges!. Packet signals are used whenever it is
reliably known (via the protocol) that only a single node is driving the bus. The information signal is
encoded in two different ways to match these characteristics, either a simple level-based signal for
arbitration and acknowledgements, or with a relatively DC-free self-clocked block code for packet data.

4.1.1. Code Bit

Peer Physical Layer entities on the bus communicate via fixed-length code bits. Depending on the mode of
operation, a code bit is either represented by an NRZI method (“1” is a transition, “0" is the absence of a
transition) or an NRZ method (“1” is the high state, “0” is the low state). The NRZI method is used for
packet symbols, NRZ for arbitration symbols. For the standard 49.152 Mbaud rate, each code bit is
(1/49152000) seconds long (= 20.3 nsec).

4.1.2. Code Group

A code group is consecutive sequence of code bits and is used to represent a symbol on the medium.
Implicit in the definition of code group is an establishment of code group boundaries by the Physical Layer.
The two different types of symbols use different codes: a 4B5B block code for packet symbols, and a pulse-
length modulated system for arbitration symbols.

4.1.3. Packet Data Coding

The packet symbol encoding system translates hexadecimal (4-bit) data symbols and special control
symbols into 5 sequential NRZ code bits which are then further translated into an NRZI (transition) code.
Decoding follows a reverse process, first translating NRZI code bits into NRZ code bits, and then into
hexadecimal data or control symbols. The particular code is a modification of that used in the FDDI PHY

document.

lDuring arbitration more than one node may be asserting the bus at the same time. Since the start times of the
arbitration bits at the different nodes cannot be synchronized (and spatial differences result in significant skews in any
case) the signal will only be reliable after a long settling time.

Printed 1/14/91 page 14

o4

Serial Bus Summary

Preliminary

Michael D. Teener

NRZI
Code
11110
01101
10100
10101
01010
01011
01110
01111
10010
10011
10110
10111
11010
11011
11100
11101
11111
00100
10001
11001
all others

Symbol

<ﬂgm~wmuaw>wmqmmpwm|-ao

Meaning

data symbol 0
data symbol 1
data symbol 2
data symbol 3
data symbeol 4
data symbol 5
data symbol 6
data symbol 7
data symbol 8
data symbol 9
data symbol 10
data symbol 11
data symbol 12
data symbol 13
data symbol 14
data symbol 15

first three symbols of start delimiter
third symbol of start delimiter
packet termination symbol 0
packet termination symbol 1

violation

Table 4-1. Packet Data Symbol Table

The start delimiter of ITTH (“11111 11111 11111 00100”) has two functions; first, to provide an edge-rich
signal to start up the clock recovery, and second, to prevent ambiguities about the exact location of a code
group boundary.
There are two different packet termination symbols, with T1 used when the ending bus state of the

previous data symbol is asserted and TO used when the ending bus state of the previous data symbol is
unasserted. This guarantees that the last symbol consist of 3 asserted NRZ code bits and a single

unasserted NRZ code bit.

last data tarminating
symbol= "2* symbol
codesit | 1] 2] 3] 4] 5] 1] 2] 3] 4] 5
last code bit of
last data symbol “To*
is unasserted o |
Nnu-1|n|1|o 1|u|u|a[1-
last code bil of T
last data symbol == Ty
isasserted
wez 1]of 1fofo| [1fo]of 1]

Figure 4-1. Termination Symbol

The V symbol is generated by the Physical layer whenever it receives an NRZI code that is not a data

symbol or an I, H, or Tn.

Printed 1/14/91

|12S

page 15

Serial Bus Summary Preliminary Michael D. Teener

The transmission speed will be 49.152 Mbaud (given the 4B5B modulation, this translates to 39.3216
megabits/second).

4.1.4. Arbitration Bit Encoding

The arbitration bit codes for both “1” and “0” have asserted periods so that long strings of “0” bits do not
look like gaps between packets. The minimum period of each bit of arbitration is dependent on the length
and signal propagation speed of the bus, with the primary requirement that the unasserted state of the “0”
must be twice the bus round-trip transit time plus an amount for circuit delays. For the standard Serial
Bus topology, this needs to be greater than 400 ns. To further simplify implementations, the arbitration
bits are exact multiples of the 49.152 Mbaud packet code bits, so the unasserted period is 20 packet data
code bits long = 407 ns. To keep the arbitration bits as short as possible, the “0” bit only has a short
asserted period, 5 packet code bits long = 101 ns, resulting in a an arbitration bit period of 508 ns — so
arbitration proceeds at roughly 2 megabits per second.

4.2. Physical Interface

The two environments for the Serial Bus, cable and backplane, have different physical interfaces. The
backplane interface is specific to a particular backplane standard and includes the driver and receiver
specifications as well as the particular signal lines used and their characteristics. There is only a single
cable physical interface, and it has the following characteristics:

1)

2)

3

4)

5)

Up to four cables can be attached to a single node, but each node only has a single electrical
interface. The cable interfaces are bussed together with the node interface as shown in the next
figure.

Each cable provides a bus repeater function to propagate the signals between nodes, and there can
be up to six cables separating any two nodes.

The electrical interface consists of two differential pairs carrying a low-voltage-swing signal in each
direction and an additional pair of power conductors.

There can be a maximum of 6 cable hops between any two nodes (note that a backplane interface
may count as one or two of these cable hops, depending on its speed).

The total cable length between any two nodes must be less than 10 meters.

| |
|
Bus ol Bus r'-llu rw&-
Catle Cabla Calie Cable
Intartace Inwriece hisrizce Inisrface
1 i h —
|

Serlel Bus
Hodo Intsriace |

Serial Bus Higher Layors

Figure 4-2. Cable interface.

Printed 1/14/91 page 16

(b

Serial Bus Summary Preliminary Michael D. Teener

b. Formats

5.1. Subaction Formats

Subactions consist of an interpacket gap, an arbitration sequence (for asynchronous subactions), a packet,
and an acknowledgement (for non-broadeast asynchronous subactions).

5.1.1. Interpacket Gap

The interpacket gap is an period of time during which the bus is unasserted. There are three types of gaps
depending on the type of arbitration:
Iso_gap — Appears before channels (isochronous packets). The bus has been in a low (unasserted)
state for at least /500 ns].
Asynch_gap — Appears before asynchronous packets within a fairness interval. The bus has been
in a low (unasserted) state for at least /1 us/.
Arh_reset_gap — Appears before asynchronous packets when the fairness interval starts. The bus
has been in a low (unasserted) state for at least /1.5 us/.

5.1.2. Arbitration Sequence

The arbitration sequence is the bit-by-bit transmission and testing of an arbitration number using the
algorithm outlined previously. The bits are encoded using the special arbitration bit code described later.
This is no#¢ the same encoding used for the packets! There are two types of arbitration numbers: Standard

and Extended.
5.1.2.1. Standard Arbitration Number

The standard arbitration number is used for all asynchronous packet transfers for normal data transfer.
This field consists of a priority_class bit, an priority_number field, and a constant “one” bit, as illustrated
below:

standard arbitration_number format

priority number | 1
1 6 1

Where:
p selects one of two priority classes, 0 = fair, 1 = urgent
If p = 0, then priority number is the node's offset_ID,
otherwise it is a unique number establishing an access class of

service

Printed 1/14/91 page 17

(27

Serial Bus Summary

Preliminary

Michael D. Teener

5.1.2.2. Extended Arbitration Number

The extended arbitration number is used for the address selection process. The
extended_arbitration_number field consists of a constant “zero” bit, a test_address field, another constant
“zero” bit, a random_number field, and a final contstant “one” bit, as illustrated below:

Where:

extended _arbitration number format

test_address

0

random number 1

6

1

6 1

test_address is a tentative node offset ID
random_number is a 7-bit” random number

The random number must change in a non-deterministic way each time the address selection process is

run.

5.1.3. Packets

Packets are encoded using a 4B5B block code described in a later section. All packets begin with a starting
delimiter and end with a termination symbol:
° Starting_delimiter — The starting delimiter provides the edge-rich signal that aids the startup of
the clock recovery circuit in the Physical Layer and also provides a unique framing boundary. On
transmission it is three I symbols followed by an H symbol. For reception only a single I followed
by an H is required.

U Termination — The packet termination. It consists of either a TO or a T1 symbol.

5.1.3.1. Asynchronous Packet
There are three fundamental types of asynchronous packets:

No-data packet:

] -=> cont.

| sd | h I dest l src l tl Irtl rsv [hcre |t4|
8 4 32 16 [2 8 16 q
Quadlet packet:
I sd] h I dest sre I tl | rtl Lsv | qgdata hcre I t I
8 4 32 16 [2 8 32 16 4
Long packet:
l sd I h I dest [sre l EL Irtl £sv I ecode l rsv | len herc
B 4 32 16 6 2 8 g 12 12 16
cont. --> l gdata I pere
g8xlen 16
Printed 1/14/91 page 18

128

Serial Bus Summary Preliminary Michael D. Teener

where:
sd starting delimiter
h packet header
dest destination address
sTC source address
tl transaction label

Tt retry code

rsv reserved (send as zero)

qdata quadlet information

ecode extended transaction code

len number of bytes in block data (<2048)

here header cre- (from sd to here, exclusive)

bdata block data

pere- packet cre (from sd to ficre, exclusive, plus bdata)
t termination symbol

5.1.3.2. Isochronous Packet

Isochronous (channel) packet:

I sd l h | idata icre 1 t I
8 4 8+*n 16 4
where:
ad starting delimiter
h packet prefix = 0110

icrc isochronous packet crc (from sd to icrc, exclusive)
idata isochronous data

5.1.3.3. Packet Components

5.1.3.3.1. Packet Header
The packet header is a single 4-bit symbol and has the following format:

addr_size tcode
0 3

where:
addr_size is 0 for 32-bit addresses and 1 for 64-bit address

tcode is the basic transaction code defined in 6.2.2.4

Tcode, the basic transaction code, is a 3-bit field carried in the 4-bit packet prefix defined in the Link Layer
section:

000 quadlet set request

001 quadlet get request

010 quadlet set response

011 quadlet get response

100 (reserved)

101 extended request

110 isochronous packet

111 extended response

Printed 1/14/91 page 19

|29

Serial Bus Summary Preliminary Michael D. Teener

51.3.3.2. Destination Address (Request)
The addresses used by the Serial Bus Transaction Layer follow the P1212 standard. In particular,

addresses are of two types: CSR and memory. The CSR addresses are the top 1/16th of the 32-bit address
space and have the following mapping:

CSR_destination_address

1111 bus_number offset_ID register 00
4 10 6 10 2
where:

bus_number = 0 through 1022 = explicit bus address

. . = 1023 = local bus
offset_ID = 0 through 62 = explicit node number

= 63 = all nodes (broadcast)

register = CSR location

The only transactions that are guaranteed to work in CSR space are aligned quadlet get and set.
Memory addresses include all those in the lower 15/16ths of the 32-bit address space.

memory destination_address

memory_address
32

where:
memory_ address = 32-bit number smaller than 0xF0000000

Printed 1/14/91 page 20

126

Serial Bus Summary Preliminary Michael D, Teener

5.1.3.3.3. Destination Address (Response)

The destination address for a packet has a different structure. It is always sent to CSR space, and the
register field is replaced with the transaction label corresponding to the request and the response code.

response_destination_address

1111 bus_number offset_1ID trans_label | rsv| r_code
4 10 6 6 2 4
Where:
trans_label transaction label of the corresponding request
TSV reserved, transmitted as zeros but make no assumptions on
reception -
r_code response code:
_correct x000 Completion successful, normal operation
_advise x001 Completion successful, abnormal operation
(reserved) x010 (reserved error condition)
_size x011 Transaction size limit exceeded
_conflict x100 Conflict
_data x101 Data error, bad CRC on data
_type x110 Unsupported transaction
_address x111 Addressing error
responder_ Oxxx Responder provided status
agent_ 1xxx Bridge provided status

5.1.3.3.4. Source Address

The source_address is the node_ID of the source of the packet. This is simply the concatenation of the
bus_number and offset_ID fields.

bus_number offset_ID
10 6

Printed 1/14/91 page 21

[31]

Serial Bus Summary Preliminary Michael D. Teener

5.1.3.3.5. Transaction Label & Retry Codes

The transaction label and retry code follow the source_address in a packet and have the following format:

transaction_label retry code

6 2

Where:

transaction_label In a request, this is a unique ID for transactions pending from a particular
requesting node. A node may not have more than one transaction pending
for each transaction label.

In a response this field is reserved.

retry_code =~ Identifier for the transaction retry protocol:
00 initial transaction
01 (reserved)
10 retry-A
11 retry-B

5.1.3.3.6. Extended Transaction Code

The extended transaction code is 32 bits and is located in the “qdata” field of the packet used in any
extended request or response:

ettype sub_cmd reserved length
4 4 12 12
Where:
ettype extended transaction type
0000 set
0001 get
0010 lock

0011 reserved
x1xx reserved
1xxx reserved

sub_cmd lock sub-command! (field is reserved if ettype # lock)
0000 (reserved)
0001 mask_swap
0010 compare_swap
0011 fetch_add
0100 (reserved)
0101 bounded_add
0110 wrap_add
0111 (vendor dependent)
1xxx (reserved)

length the number of bytes in the block data field (< 2048)

1These operations are defined in detail in the P1212 specification.

Printed 1/14/91 page 22

St

Serial Bus Summary Preliminary Michael D. Teener

5.1.3.3.7. CRC’s
All CRC'’s use the CCITT V.41 equation: X16 + X124+ X5+ 1. The CRC generator is preset to zeros.

[0 Ject jof c2 Jof = fe€Pafct o o5 fef s e o7 Je o8 Jof o9 JejctoleDefct Jo] crzfeferale] crafefors]

Figure 5-1. 16-bit CRC generator.

5.1.3.4. Acknowledge

The acknowledge is a base-one code of arbitration “1” symbols (i.e., the acknowledge is 1, 2, 3, or 4
arbitration “1” symbols):

Number of
Code arb “1” Meaning
symbols
missing 0 No node at the destination addresses or CRC error on the packet header.
complete 1 The packet was accepted and the destination Transaction Layer

completed the transaction. A “complete” response is sent to the source
Transaction Layer,

pending 2 For requests: the packet was accepted and forwarded to the destination
Transaction Layer. The destination Transaction Layer will generate a
response later.

For responses: there was an error in the data field of the response packet.

reject_A 3 The packet could not be accepted. The destination Transaction Layer was
busy and will not send a response.
reject_B 4 The packet could not be accepted. The destination Transaction Layer was

busy and will not send a response.

The acknowledge can be preceded by gap no greater than an iso_gap. The two types of rejects: reject_A
and reject_B, are used by the Transaction Layer to allow fair access when retries are necessary.

5.1.34.1. Acknowledge Timing

Acknowledge timing is equivalent to arbitration timing, with the timing trigger being the end of the data
packet:

Printed 1/14/91 page 23

133

Serial Bus Summary

Preliminary

Michael D. Teener

§
source node

_-I 1
IIIIUI—IHHI?IHIln!lll|I||||||l|||w|IIIIIIIIIII!IHHIIHII

54

LI

& -:'{F-r—lﬂ

DN

DN

N

transmitted paciet
termination symbol

15

received acknowledge bit 1

received acknowledge bit 2

B
s NI HT N it

=~ 3 P 7y
2
packet
deatination
oo transmitted acknowlsdge bit 1 \ transmitted acknowledge bit 2 \
transmitied p;dm
termination symbol
Figure 5-1. Acknowledge timing
£l code bit time 1/(49.152 MHz £ 100ppm)
t2 first acknowledge symbol 8*tl
delay
t3 rise time 10 ns max
% fall time 20 ns max
th acknowledge symbol period | 24 * £l
t6 sampling delay (1st bit) 30*tl
t7 setup time 10 n8 min
t8 hold time 0 nsg min

5.2. Transaction Packet Formats

5.2.1. Set Request

5.2.1.1. Quadlet
Quadlet packet:
I sd ' h l dest | src I tl |rt| rsv I qdata here | o l
8 4 32 16 6 2 8 32 16 4
h = 0000
Printed 1/14/91 page 24

13Y

Serial Bus Summary

Preliminary

Michael D. Teener

5.2.1.2. Block

=-=> cont.

Long packet:
I sd l h dest src | tl I rt | rsv I ecode I Csv] len I here
| 4 32 16 6 2 8 8 12 12 16
cont. ——>| gdata I pcrc | t I
B*len 16 [
h = 0101, ecode = 0000 0000
5.2.2. Set Response
No-data packet:
[sd l h | ’ dest sre tl [rtl rsv I here I 4 l
8 4 3z 16 6 2 8 16 4
h =0010
5.2.3. Get Request
5.2.3.1. Quadlet
No-data packet:
I sd [h dest src tl Irtl rsv , herc | t l
8 4 32 le 6 2] 16 4
h = 0001
5.2.3.2. Block
Long packet:
l sd I h dest sre £l Irtl rsv I ecode | rsv len hcre It |
8 4 32 16 6 2 8 8 12 12 16 4
h = 0101, ecode = 0001 0000
5.2.4. Get Response
5.2.4.1. Quadlet
Quadlet packet:
I sd I h | dest src tl |rt| rsv | gdata hecre I t |
8 4 32 16 [2 8 32 16 q
h=0011
Printed 1/14/91 page 25

Serial Bus Summary

Preliminary

Michael D. Teener

5.2.4.2. Block
Long packet:
I sd | h dest l src | tl lrtl rsv | ecode I rsv I len | here --> cont.
8 4 32 16 6 2 B 8 12 12 16
cont. ——> | gdata | pcrc [t l
. 8*len 16 4
h = 0111, ecode = 0001 0000
5.2.5. Lock Request
Long packet: - =
[sd | h dest I src I tl l ct | £sv I ecode | rsv len = 4 herc --> cont.
8 4 32 16 6§ 2 8 8 12 12 16
cont. -->| gdata l pcre | t J
32 16 4
h = 0101, ec oce = 0010 mmmm, where “mmmm” is the lock operation code
5.2.6. Lock Response
Long packet:
l sd | h dest | srec | tl l rt | csv I ecode | rsv len = 4 I hcch -=> con
8 q 32 16 § 2 8 8 12 12 16
cont. =-=> | gdata | pcrc I t I
32 16 4
h = 0111, ec oce = 0010 mmmm, where “mmmm” is the lock operation code
5.2.7. Cycle Start Request
The Cycle Start request is just a particular form of the quadlet set request.
Quadlet packet: .
[ad I h | dest I sre I tl 1 rt | rsv I gdata | hcre I t l
8 4 32 16 6 2 8 3z 16 4

h = 0000 (Quadlet Set Request), dest = OxfFff f200 (Broadcast to all nodes’ Cycle Timer Register)

6.

Bus Management

The Bus Management protocol provides a multitude of management facilities:

1) Arbitration number/address assignment. It is unacceptable to require the user to manually set the
address of a node. Instead, the Serial Bus protocol defines a special address arbitration mechanism

that allows nodes to chose a unique address dynamically.

2) Cycle master arbitration. Before any cycle transactions can start, all candidate cycle master nodes
must arbitrate which will actually become the cycle master. The candidate with the most accurate
clock should become master. Most of the time, there will only be a single cycle master candidate.

Printed 1/14/91

!

2/

page 26

Serial Bus Summary Preliminary Michael D. Teener

3) Isochronous channel assignment.

4) Error control. The basic philosophy for error handling is to note that there is an error, but to not
necessarily retry any transfer (retries are reserved for busy conditions). The Serial Bus itself does
not guarantee delivery: that is up to higher layers.

1. Performance

The performance of the Serial Bus varies according to two primary parameters: data packet bit rate and
bus round-trip time. For the P1394 standard the bus round trip time is limited to 25/ 49.152 MHz = 0.51
usec and the data packet bit rate is either 4 A5 * 49.152 MHz) = 39 Mbit/sec or 4/(4 * 196.61 MHz) = 157
Mbit/sec. The true carrying capacity of the bus varies in a complex way with the offered traffic since the
per-packet overhead is largely fixed.

7.1. Asynchronous
The per-suhzictioh overhead for asychronous data is:
fixed asynch overhead = intertransaction gap + arbitration+ fixed part of packet + ack gap + ack

The intertransaction minimum is 1.5 psec, the normal arbitration takes 8 * 0.5 = 4 pusec, and the
acknowledge gap is about 0.5 pusec. The acknowledge is either 0.5 psec for the “complete” ack or 1.0 psec
for the “pending” ack, while the fixed part of a block packet (= 4 byte) is 152 bits long (starting delimitor,
transaction code, addresses, label, length field, header and data CRCs, and termination). A quadlet
subaction is fixed size at 136 bits. Putting all this in the formula above we get:

Subaction type 49.15 196.61

Mbaud Mbaud
quadlet subaction 10.04 7.45 Lsec
block subaction fixed overhead 10.45 7.55 Msec
256 byte subaction 62.54 20.57 Lsec
1024 byte subaction 218.79 59.64 psec

Although a unified transaction “set” is the same as a subaction, “get” transactions have the additional fixed
overhead of the request subaction:

get fixed overhead = request subaction + response subaction fixed overhead

For a quadlet transaction, the request is a no-data subaction and the response is a quadlet subaction, For
a block transaction, the request is a quadlet subaction and the response is a block subaction, giving us:

Get transaction type 49.15 196.61

Mbaud Mbaud
get quadlet (4 byte) 19.28 14.70 Hsec
get block (#4 byte) fixed overhead 20.50 15.00 psec
256 byte get 72.58 28.02 Usec
1024 byte get 228.83 67.09 psec

The actual data throughput for transactions will vary with the number of bytes transferred, since smaller
packets have a higher percentage used for overhead. The throughput can be calculated using the following

equation:

of data bits per transaction
transaction time

actual data throughput =

Printed 1/14/91 page 27

[37

Serial Bus Summary Preliminary Michael D. Teener

The following table contains example throughput numbers for several interesting cases:

Transaction 49,15 196.61

Mbaud Mbaud
quadlet set 3.19 4,29 Bits/sec
256-byte set 32.75 99.55 Bits/sec
1024-byte set 37.44 137.37 Bits/sec
quadlet get 1.62 2.10 Bits/sec
256-byte get 28.02 71.78 Bits/sec
1024-byte get 35.72 121.19 Bits/sec

7.2. Isochronous
The per-packet overhead for isochronous data is:
o fixed iso overhead = interchannel gap + fixed part of channel

The interchannel gap is no larger than 1.0 usec while the fixed part of the channel is 40 bits long (starting
delimitor, transaction code, CRC, and termination). This gives a channel overhead time of 1.5 psec at 49

Mbaud and 0.8 psec at 196 Mbaud.

Channel size 49.15 196.61
Mbaud Mbaud
0 byte 1.53 0.76 Lsec
1 byte 1.73 0.81 Hsec
(ISDN B channel 64 kbit/sec)
24 byte 7.02 2.14 Hsec
(DAT stereo pair, T1 channel,
1.536 Mbit/sec)

The overall capacity of the isochronous transport is limited to the number of channels that can be sent in
125 psec (less the cycle start overhead). The cycle start transaction is a normal quadlet set (always at 49
Mbaud), so the following inequality must be met for correct isochronous operation.

sum of all channels < 125 psec - quadlet set = 115 psec

This allows the following example isochronous traffic mixes:

Channel size 49,15 196.61
Mbaud Mbaud
1 byte ISDN B channels) 69 147 channels
24 byte (DAT stereo pairs) 18 60 channels
Printed 1/14/91 page 28

135

6l

Project 1394 of the
Microcomputer Standards Committee
of the IEEE Computer Society

Michael Tesner

Chalr, P1384 Workdng Group
Apple Computer, Inc.

2533 Monres 81, MS 854

Santa Clerk, CABS031

4089743211

mener@appie.com

Apple Compuaer Inc k11, dike 1

» Alternaie Bus

Bridging between different parallel busses
Redundant path for configuration and maintenance
For extremely low cost modules
» Low cost peripheral bus
 Bus bridge
» Compatible architecture with other IEEE
32-bit busses

Follow proposed P1212 CSR standard (control and
status register)

Apple Corpaar, Inc. i LT alde 2

» Modest cost

< §15 for cable, sockst & interface ICs (very large
volume)

» High bandwidth
Fast as possible given cost goals
Lower CPU overhead via simpler protocols & DMA
Performance extensibility

» Add isochronous service

from 64 kbps for voics to 1.5 Mbps for stereo HiFi
sound to >20 Mbps for compressed video

Apple Computar, Inc. a1, dide 3

* Iso (same) chronous (time) :
— Uniform in time
— Having equal duration
- Recurring at regular intervals
- Examples
(source and destination for real-time data)

ISDN | 8 kHz x 8 bits 64 kbpa
cD 44.1 kHz x 16 bits x 2 channels 1.4 Mbps
DAT 48 kHz x 16 bits x 2 channels 1.5 Mbps
Video |250r301ps variable

Apple Cacpuar, Inc A1y, e {

079/

» Reduce EMC problems

Low voltage swing, low current, low skew
differential signal.

Shielding & isolation designed in from the start.

» Improved ergonomics
Small, flexible cable
Robust small connectors with seif-locking feature

No terminators, few topology rules

=HUAL dide 3

Terminator

af ikl T F'ﬁ, :

Typical “pupanized cabling*— daisy-chain lie SCSI; {may be intarmal)
terminators at ends; devices with intsmal lerminationa must be
atone end

Bem 2
chu

unepanised cabing”— Serial Bus "non-cyclic network®;
no rminsiors, lncations are prhiery

Apple Commass, Lo

W, ahde 6

» P1394 High Speed Serial Bus

"Bus-like" logical architecture

* P1212 CSR Architecture
Standardized addressing
Waell-defined contral and status registers
Standardized transactions

Agple Compa, b

e 1M,dde 7

Sysiem Bus
=

0] pogice et

Indlependent in normal cperation

mklALdde @

1/

——
[bua 80

node 8 0 [
a1 nade d | 2

17 ey
. hou 3
: [RC°R1] E
. ET]
' £
3
i
¢
'

[~] L1t

1o
LIRERIRERT] 1mn S31003500008

=AM, dde

Serial Bus Management

w7, abde 10

AR ARLLR AR AR R R LA AR AR AR R LR,

s
L

Im-'nwyl! o !'CPUI

-

errrervre

o

P

-

-

lala

ok UMk 1

« Sillcon bus provides
"or"lng of signal

e B sl [wsa] ° Cables and transceivers
wima| viean] [SR, are bus repeaters
Sacon Bus = Limit of 6 cable hops and
| Secsten 10 meters of cable between
any two nodes
i
Sadal Bua Highet Layers
Apple Computer I a1 dde 12

T/

» Connector bus architecture
transceivers are bus repeaters

 3-pair shielded cable

- Small and rugged connector

Two sockets in the same area as one mini-DIN
socket

» CMOS transceiver
300 mv peak-to-peak
4 ma drive
< 100 ps skew

Apple Corputar, Iec.

el 1AL dk »

« Live attach/detach
System protected from power on/off cycling

Higher iayers provide simple management (remote
power control)

» Peripheral power
30 VDC with mimimal regulation

Each peripheral interface needs 1/4 wait while
active

1
Total available power is system dependent
Cable system allows up to 1.5 A (45 watis)

Apple Compuaer, Inc. st U9, ede W

= 49.152 Mbaud data transport

DAT, ISDN & compressed video rate-compatible
2 Mbaud full duplex rate for arbitration and
acknowledgement

196 Mbaud growth path

» Data encoding
4B5B block code with NRZI translation for simple
clock recovary with good sificiency
Yields = 40 Mbps burst data rate

o1 dde B

» Flexible addressing using P1212
architecture

Direct 32-bit addressing to memory
Simpler addressing for up to 63 nodes
Standardized register addresses

* Flexible packet formats
Optimized for 4-byte data

Optional 0-256 byte packets
Up to 1024 bytes at 196 Mbaud

» Immediate acknowledge
Normal ack < 1 psec
Non-hogging retry mechanism

Agple Comparr, . oA 14, dde 1§

ehl

PI394 B
High Specd |

Sedal Bus
. . . Requester Link Responder Link
» Fair and priority access e hag
Blt-sarla! arbltr.anon ik Figinsi 5 e
Aulomatic assignment of addresses ~. Slian

Pacyon &
. ; ; - Trang it
Access opportunities split between fair and priority “ﬂtn-u,n:tsmisslon

modes S L Lo

» Isochronous transport

o : N‘y\nﬂ‘med s Lirk Response
ptional —
. ot P
Up to 32 "channels" each 125 psec period :
. Link Conlirmation

0-256 bytas in each channal .

82 ns max jitter in 125 psec clock
Apple Cormpreer, Ine i1, dd: g Apple Compser, [nc, ULl 18

vt 2ubaction geps. e
A roselgap inzet gap
4-byta subaction ‘ “/’/J \ i
Subktun subacion .
v e I~] %. (=] B
A O O ® ® ® 0 ®
I amaiuon ’nuH Gt wsn |‘“I';“'n” 32 b cuts lcnc T I ach I _— ik " e
L 164 E W o8 e a2 W TEe O — I roces) fode A) [rode B} {ncce C)
@ 24t L 4-byle packat s Q2 Mosg £, 44 fodes e Brsse, el engg= == === = == s mn -0 [0 [}
FV S usec Lpanc 130083 @ 49.352 Maud - 15 s 05 psac)
\ ~05 psac 15 e famets abaras, 8 oroiraion enatls Rags e s
‘“.,ul 13 tha nods with e highse! w ses (00 A) wing === === -1 1 [} (]
)
i &0 - pheg fag la Y,
,u"’v e:;rm.nun-mqm ------------------- =0 & 0 6
EOwege
b ! 1 4 studion (D) t8rwsa o e, om enati or
Lol | ‘"l l 1 e rode Ak dear, 40 rode 0 wina —= === === mmmmme - 1 1 0
Abaan Sibpta dan
1 11 By arbaB - phasa g b 3,
FREerS o 2 Vet S Sanode ACINWNAGUA = - memm e emaas = 1 i °
4 psac 64-byle packat: 85 paec
- - I-mumm.m.mmoﬁmb«
864845 @ 40152 Mond = 17 juae 05 s em»\mjnw-mltumc-nu ----------- -1 1 1 '
64-byte subaction (@ s g, ‘ -
401008 A GO WA BMN — == m s e e e -0 1 '
Ommﬂmmuu.mncﬂluddnblummﬂc
e arw claar e, 89 P bus Sliys K3u urel en ebirston
TR G40 PO LD, AT A Narw [afmess el sl == === | [} L]]
Apple Computer, Inc. mdt 191, slide 19

Apple Computer, Inc. med /91, slide 1o

channd (chart) gaps
subachon (long) gaps

mnH T;:."Ilunlln:"uul see F—-uHE "::::‘le
@ hm
".1‘ -w?:-uy-z '-4--#-' cydo fm-+1
start dalay =y
nominal cyde parlod = 125 psac -
cyde synch cycte synch
Apple Compueer, I 1AL dide B

» Multiple transaction types
Optimized for 4-byte operations
Read and write quadlet are required
0-256 byte operations optional
Lock fransactions optional

Compare-and-swap
- Advanced management

Automatic address assignment (no switches)
Standardized addrgsses
command, stalus, interrupt, elc.

Configuration ROM

devica Iype, nama, manufaclurer, power requirements,
capabilities, driver code

Apple Compuey, [ne. rd UMkl 1

el

Requoestar HResponder
Tranzactlon Transectlon
Layer Layar
Transaction Reques!
T
"qg,, 05t
Cazy L
o log Transactlon Indicatlon
_—
T'anaanu;: ‘T‘r-ans/ambn Respanse
ResPl T
BaB
"
Transactlon Conflrmation
Apple Compraer, Inc mk M,k n

¥

Teanpacuon Transeciion
(e Unk Layer Liak Laysr i
Sat .
““*“ﬂ‘___m Dula Pachat L

Raquatt
\ Dala Pacswt

po Data Pachel
=t Indcation

/

\ﬁ.
Ratpons s
(Pondegl | ey
Contumaton | =T
{Parching} "
Cines Uit Leyw / - :lpmq”
O BN CAA
s pine = = = T
[Soumefer
utvors Hadata Packat
"

s
Madata ‘_‘_:‘_.—/
Packal __d

Sel
Confrmaton Vdealon, e
{Conglala]
| \
Rezponss fed Contematon
M

“““ ~w] (Corplais)

}

hpple Computey, Inc. mdt 1791, shde 24

St

Requester Respo HResponder
Transaction mul-;:: Unk u"::: Transaction

Layer Layer
Cuadiot Sat
Roquest Quadiut Data Magla
%_ %::I:l(
PRI iT =y Quadiat Sat
\ g‘m
Acknowd Sat
Confirmation /"
o

1S, dde B

 Configuration
Using P1212 configuration ROM
Automatic minimal configuration
Extensive self-identification possible

Software finishes configuration, possible user
interaction

» Bridges to other busses

Full support for P1212 transactions and addressing
* DMA standard in«evelopment

Part of P1212.2 standard

May include standard command interface

Apple Compurar, lez. o UM, bde 2§

« Current draft 3.2

Link layer and transaction layer mostly complete
Detalled simulation has started

Physical layer needs more work
Initial simulations very promising
Connector & cahle work juat staried
Higher speed optian being evaluated

» Completion scheduled summer 1391
Formal approval within working group
Foward to Microcomputer Standards Committes

U ade m

