A Serial Link for Storage Sub-Systems

I D Judd

IBM UK Laboratories Ltd
Mail Point 200
Hursley Park
Winchester
England SO21 2JN
Tel: 011-44-703-701421

Fax: 011-44-962-842327

4 December 1990

Development activities in UK Storage Products:

Hard disks for mid-range systems

Power and packaging solutions

Storage sub-systems

We have experience of IPI-3 and SCSI

The serial link is a technology effort encompassing:

Overall sub-system architecture

Development of a working prototype in CMOS LSI

The serial link has significant advantages in:

Sub-system performance

Packaging, especially for small form-factor devices

Power dissipation

Reliability, Availability and Serviceability (RAS)

Overall sub-system cost

IBM wants an industry-standard architecture

Customer requirement for alternate sources

Wider choice of devices

A general-purpose link for I/O devices

Dual-simplex protocol (8 Mbytes/s each way)

Packet multiplexing allows concurrent I/O operations

Can support high-level and low-level command sets

Currently allows point-to-point communication only

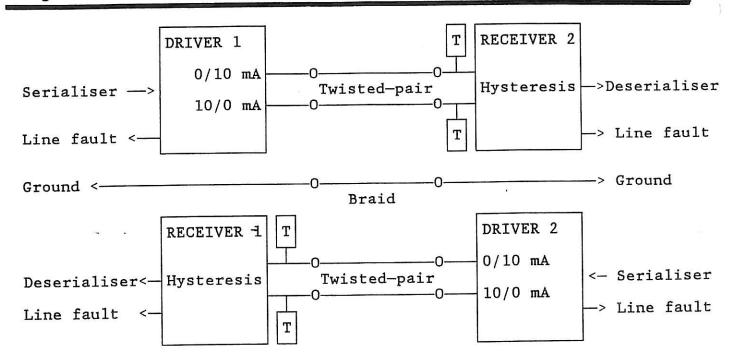
Specified distance is 10 Metres using 2 twisted pairs

Compact and economical

Low foot-print for small form-factor devices

Prototype is fully integrated in 1 micron CMOS

Low-cost cables and connectors


Excellent Reliability, Availability & Serviceability

High degree of error detection

Transparent packet recovery

Simple fault isolation and concurrent maintenance

Wrap mode for power-on self-test

Cable

2 x 100-ohm twisted pairs, 24 AWG Individual foil shields and overall braid 6 mm diameter, 10 Metres maximum length Vendor: Brand-Rex

Connectors

6-pin latching cable plug and fixed receptacle Vendor: DuPont ('Latch N Lok' series)

Line driver

Differential open-drain current sink + /- 2 Volt common-mode range

I ine receiver

Differential comparator with hysteresis Terminators are 51R to +5 Volts

10-bit frames at 80 Mbits/s

Synchronous clocking with NRZI signalling

Digital clock recovery in deserialiser

Data frames contain two 5-bit symbols using 4/5 code

•	SYMBOL	DATA	SYMBOL	DATA
	11110	x′0′	10010	x'8'
	01001,	x′1′	10011	x′9′
	10100	x'2'	10110	x'A'
	10101	x'3'	10111	x'B'
	01010	x'4'	11010	x′C′
	01011	x′5′	11011	x′D′
	01110	x′6′	11100	x'E'
	01111	x′7′	11101	x′F′

•	PROTOCOL FRAMES	MEANING
	1000100100	FLAG (Delimiter & sync)
	0110101101	ACK (Acknowledgement)
	111111111	RR (Pacing)
	1100111001	NUL (Pad)

	CONTROL	ADDRESS	DATTA	ከ ለሞለ	CRC	CRC	FLAG
FLAG	CONTROL	ADDRESS	DATA	DATA	CKC	CRO	THO

FLAG

A protocol frame delimiting the start and end of a packet Trailing FLAG can also be the leading flag of next packet FLAG does not occur elsewhere in any bit phase Sent continuously when the line is idle

CONTROL FIELD

A single data frame managed by the transport layer:

2-bit Packet Sequence Number

Link Reset bit for error recovery

Total Reset bit

4 user-definable bits

ADDRESS FIELD

A single data frame specifying the packet source/destination Supplied by the application and used by the transport layer

DATA FIELD

From zero up to some maximum number of data frames
Of interest only to the application

CRC FIELD

2 data frames to check all frames between the FLAG's Managed by the transport layer

Control packets

FLAG CONTROL ADDRESS CRC CRC FLAG

Used for hardware resets

Identified by bits in control field

Message packets

FLAG CONTROL AD	DRESS MESSAGE	CRC	CRC	FLAG
-----------------	---------------	-----	-----	------

Used for commands, status and initiating data transfers Identified by pre-assigned destination address(es)
Interrupt the microprocessor in the destination node

Data packets

FLAG	CONTROL	ADDRESS	DATA	CRC	CRC	FLAG
------	---------	---------	------	-----	-----	------

Used for data transfer

Address is often allocated dynamically using messages Source & destination are often hardware DMA channels

Serial Link

- Packets are transferred in 'dual simplex' mode
 A node can transmit and receive packets simultaneously
 Inbound and outbound packets are treated independently
 Both nodes are peers, ie. the link is symmetric
- A node acknowledges valid inbound packets:
 Source node sends the trailing FLAG to finish a packet
 Destination node must send an ACK within 10 us
 Source node can then reuse the outbound packet buffer
- A node paces each inbound packet:
 Source node sends the control field of a packet
 Destination sends an RR only when ready for next packet
 Source node can then send another packet
- ACK and RR are protocol frames, not packets
 Duplicated for checking
 Can be interleaved within a packet to reduce latency
- Source can start the next packet while waiting for ACK
 Must not send the trailing FLAG if still waiting for ACK
 Send NUL frames instead until ACK received or time-out
 Provides an unambiguous relation between ACK and packet

To optimise cost/performance the implementation defines:

Maximum packet size

Number of packet buffers

•	PACKET SIZE	SIMPLEX	DUAL-SIMPLEX
	16 bytes	6.1 MB/s	2 x 5.1 MB/s
	32 bytes	6.9 MB/s	2 x 6.2 MB/s
	64 bytes	7.4 MB/s	2 x 7.0 MB/s
	128 bytes	7.7 MB/s	2 x 7.5 MB/s

Minimum for slave node (Master polls for asyncs.):

1 floating buffer for transmit or receive

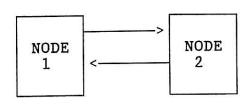
High-speed slave node (Master polls for asyncs.):

A/B floating buffers for transmit or receive

High-speed dual-simplex node:

A/B buffers dedicated for transmit

A/B buffers dedicated for receive


Dedicated message buffers are also useful if:

A node has no other buffering, and,

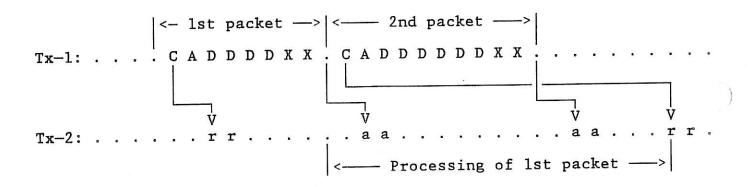
Real-time data transfers are essential

eg. for hard disks with a low-level command set

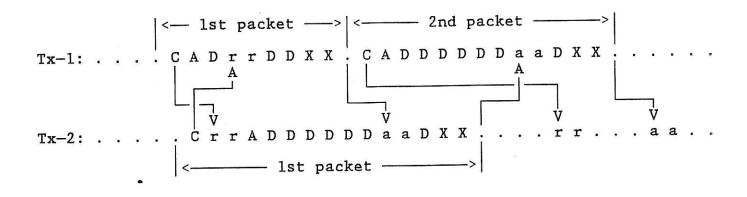
Nomenclature

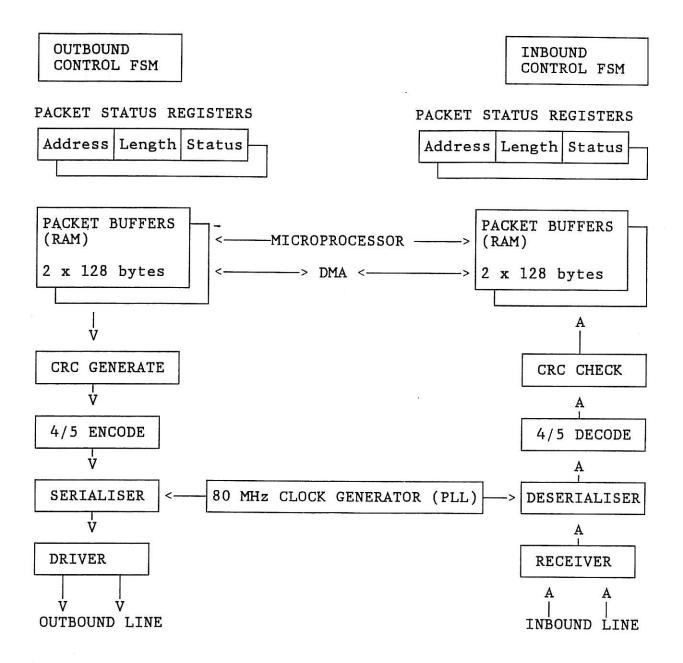
C - Control . - FLAG

A - Address


a - ACK

D - Data


r - RR


X - CRC

Simplex transfer with A/B buffering

Dual-simplex transfer with A/B buffering

- Approximately 10K equivalent gates
- Line driver/receiver and PLL are analogue circuits

- Wrap' provides an excellent power-on self-test
 Serialiser output is switched to local deserialiser input
 Can also exchange 'wrap' messages with remote node
- The hardware provides comprehensive error detection

Line faults

Illegal frames

CRC errors

Non-sequential packet sequence numbers

Protocol errors

ACK time-outs

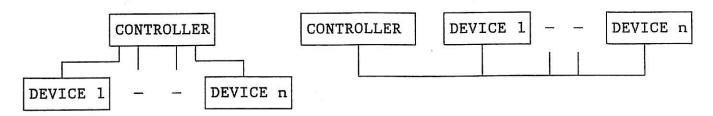
When a node detects an error:

Transmission stops at the end of the current packet

The hardware enters the 'check' state

An Error Recovery Procedure (ERP) is invoked

The link ERP is architected


Avoids potential incompatibilities

Transparent to the application (If successful)

Minimises the impact of errors if the link is shared

- Each node recovers errors on its own outbound line
- Each node maintains a Transmit Sequence Number (TSN)
 2 bits, incremented modulo 4 for each packet sent
 Included in each packet as Packet Sequence Number (PSN)
- Each node maintains a Receive Sequence Number (RSN)
 2 bits, incremented modulo 4 for each ACK sent
 Compared with PSN in received packets
- A 'Link Reset' control packet is defined
 Contains the RSN in the address field
 Forces the destination node into the 'check' state
- When a node enters the 'check' state it invokes the ERP:
 Transmit a Link Reset (Contains local RSN)
 Wait to receive a Link Reset (Contains remote RSN)
 Compare local TSN and remote RSN
 Discard outbound packets corresponding to any lost ACK's Restore hardware to 'ready' state
 Retransmit any lost packets from outbound buffers

• We chose point-to-point in preference to multi-drop:

- Point-to-point
 - + Overall simplicity
 - + Better RAS characteristics:

Fault isolation

Inherent concurrent maintenance

- More ports altogether

2N rather than N+1

May also need dual-ported controllers/devices

- Cable congestion at controller
- Multi-drop
 - + Can readily attach more devices
 - + Inherent peer-to-peer communication
 - Needs higher bandwidth; may be difficult due to:

Technology break-points

Increased cost of each node

Transmission line is degraded by stubs

Cable must be longer overall

- Extra overheads:

Arbitration to resolve contention

Resynchronisation of deserialisers

Queuing for a single interface

- Need data buffer in device to avoid lost revolutions
- Conflicts with read-ahead to buffer in controller
- Not transferable to an optical medium

Future disk applications will need higher speed due to

Technology advances (BPI, RPM, parallel heads)

Disk arrays (Striping)

Smaller form-factors (Higher controller fan-out)

Limiting factors for a faster link:

Logic delays, especially in the deserialiser
Rise/fall times of line driver and receiver
High-frequency losses in the cable

8 MB/s is proven today using,

1 micron CMOS (1 ns loaded gate delay)
Twisted pair cabling up to 20 Metres

Up to 20 MB/s should be feasible in 1991 using:

0.7 micron CMOS (0.4 ns loaded gate delay)

Improved/shorter cable, OR,

Low-cost fibre optics

- The interface must not limit performance
 Low-level orders to reduce device over-head
 Device sends raw read data to avoid latency
 No data buffer in the device
 Read-ahead to controller buffer & terminate quickly
 Zero-latency reads and writes
 Back-to-back writes
- Read and write orders can access multiple sectors
 No critical paths in the array controller
 Gaps are not constrained by link turn-around
- No device-dependent hardware above the interface eg. ECC check/generate should be in the device
 Common controller hardware for a range of devices
- Integrated spindle synchronisation
 Controller broadcasts a special control packet
 Controller has Rotational Position Knowledge (RPK)