Copies of this proposal may be purchased from: BSR X3.***
Global Engineering, 2805 McGaw St, Irvine, CA 92714 X379.2/90-186
800-854-7179 714-261-1455
working draft proposed American National
Standard for Information Systems -
SCSI-2 Common Access Hethod
Transport
and
SCSI Interface Module

Rev 3.0 April 27, 1992

Secretariat

Computer and Business Equipment Manufacturers Association (CBEMA)

Abstract: This standard defines the software interface between device drivers
and the Host Bus Adapters or other means by which SCSI peripherals are
attached to a host processor. The software interface defined provides a common
interface specification for systems manufacturers, system integrators,
controller manufacturers, and suppliers of intelligent peripherals.

draft proposed American National Standard
This is a draft proposed American National Standard of Accredited Standards
Committee X3. As such this is not a completed standard. The X3T9 Technical

Committee may modify this document as a result of comments received during
public review and its approval as a standard.

POINTS OF CONTACT:

John B. Lohmeyer
Chairman X379.2
NCR

1635 Aeroplaza Dr
Colorado Springs, CO 80916

719-596-5795 x362

I. Dal Allan
Vice-Chairman X379.2
ENDL

14426 Black Walnut Court
Saratoga CA 95070

408-867-6630

An electronic copy of this document is available from the SCSI Bulletin Board
(719-574-0424).

This document has been prepared accordin

T en pr to the style guide of the IS0
(International Organization of Standards).

If this document was printed in a 2-up form directly from the printer, NOTEs
had to be adjusted to fit into a half-page, which may have resulted in an
imperfect representation of the format within the NOTE. This is most likely to
occur if a series of NOTEs are mixed in without any line separation.

This is the version of CAM XPT/SIM that was forwarded in April 1992 from
X379.2 to X319 for further processing as an American National Standard. X3T9
will consider forwarding this document to X3 for a public review period at its
June 1992 meeting.

[

AHlpdT L2

SNoaRI-0Lh/ThLISY

{ggeu?rd (This Foreword is not part of American National Standard X3.***-
X.

In this standard, the Transport (XPT) and SCSI Interface Module (SIM) for
the SCSI1-2 Common Access Method 1s defined.

When the Small Computer System Interface (SCSI) was introduced, a large number
of systems inteﬁratoys included support in their operating systems. However,
they were garoc ial in implementation and a diverse set of strategies to
support SCSI devices were implemented in software.

Some companies published their specifications and encouraged third-garty
suppliers to add new peripherals. Others failed to add support for 3CSI or
did not publish the specifications. An increasing demand developed for some
common_method to attach SCSI peripherals to a number of operating systems
and a large range of computer systems. Much of this impetus stemmed from the
growth in the desktop computing environment.

In October 1988 a number of peripheral suppliers formed the Common Access
Method Committee to encourage an industry-wide effort to adopt a_common
software interface to despatch input/output requests to SCSI peripherals.

The primary objective was to define a set of software constructs and tables
that would permit the manufacturers of host adapters to provide software or
microcode to interpret requests in a common manner.

Qut of the proposals made by a large number of contributors, the CAM
Committee selected the best concepts and used them to develop the standard.

Some of the companies which contributed had designed their own methods to
support SCSI devices, and for the most part set aside individual business
considerations to foster the development and adoption of this standard.

Suggestions for improvement of this standard will be welcome. They should be
sent to the Comﬁuter and Business Equipment Manufacturers Association, 311
First Street N.H., Suite 500, Washington, DC 20001.

This standard was processed and ap?roved for submittal to ANSI by the
Accredited Standards Committee on Information Procsessing Systems, X3.
Committee approval of this standard does not necessarily imply that all
committee members voted for its approval. At the time it approved this
standard, the X3 Committee had the following members:

X3 Committee list goes here:
Subcommittee X379 on I/0 interfaces, which reviewed this standard, had the
following members:

X379 Committee list goes here:

Task Gfoug X379.2 on Lower-lLedel Interfaces, which completed the development
of this standard, had the following members:

X379.2 Committee list goes here:

The initial development work on this standard was done by the CAM Committee,
an industry group formed for this purpose. The membership of the CAM
Commi ttee consisted of the following organizations:

Adaptec Data Technology NCR

AMD Eastman Kodak Olivetti

Agg]e Emulex uantum

ATAT Bell Labs Fujitsu uElectronics cientific Micro Systems
Caliper Future Domain Seagate

Cambrian Systems Hewlett Packard Sony

Cipher Data 1BM Storage Dimensions
Cirrus Logic Imprimis Sun Microsystems
Columbia Data Interactive Systems Syquest Technology
CompuAdd JVC Sytron

Conner Peripherals LMS 0SD Trantor

Dell Computer Maxtor Western Digital
Dl?lta] quipment Micropolis

op Miniscribe

AHlddy L2

Common Access Method XPT/SIM Support Rev 3.0 April 27, 1992 T0C 1 Common Access Method XPT/SIM Support Rev 3.0 April 27, 1992 TOC 2

TABLE OF CONTENTS 7.1.3 Callback on Completion 19
7.1.4 Pointer Definition in the UNIVOS Environment 19
1. Scope, 1 7.1.5 Re?uest Mapping Information 19
1.1 Description of Clauses 1 7.1.6 XPT Interface 19
7.1.6.1 Functions for Feriﬁheral Driver Support 19
2. References and Conformance 2 7.1.6.2 Functions for SIM Module Support 20
2.1 References 2 .
2.2 Conformance 2 1.1.7 SIM Interface 20
3. General Description 2 7.2 LANOS ' 21
3.1 Environment 3 7.2.1 Initialization 21
3.2 Peripheral Driver Functions 4 7.2.2 SIM and peripheral driver unloading 22
3.3 XPT Functions 5 7.2.3 Accessing the XPT 22
3.4 SIM Functions 5 7.2.4 Hardware Registration 23
7.2.5 Miscellaneous 23
4, Definitions and Conventions 5
4.1 Definitions 5 7:3 D0S (Disk Operating System) 23
4.2 Conventions 6 7.3.1 Initialization 23
7.3.1.1 Multiple XPTs 24
5. Background 7 7.3.1.2 Device Table Handling 24
5.1 Software 7
5.2 CAM (Common Access Method) 7 7.3.2 Accessin? the XpT 24
5.2.1 XPT {Transport) 7 7.3.2.1 Testing for the presence of the XPT/SIM 24
5.2.2 SIM (SCSI Interface Module) 7 7.3.2.2 Sending a CCB to the XPT 25
5.2.3 CCB (CAM Control Block) 8
5.2.4 0SD (Operating System Dependent) 8 7.3.3 Callback on Completion 26
7.3.4 Asynchronous Cal Tbacks 26
5.3 Principles of Operation 8 7.3.5 Pointer Definition 27
5.4 Requirements 9
: 8. CAM Control Blocks 27
6. Transport 10 8.1 CCB Header 28
6.1 Accessing the XPT 10 g.1.1 Address of this CCB 28
6.2 Initialization 10 8.1.2 CAM Control Block Length 28
6.3 CCB Completion 10 8.1.3 XPT Function Code 28
6.3.1 Completion of Immediate CCB 10 8.1.4 CAM Status 29
6.3.2 Completion of Queued CCB 10 8.1.5 Connect ID 29
B.1.6 CAM Flags 29
6.4 SCSI Request Queues 11
6.4.1 The Target/LUN and the Peripheral Driver 11 8.2 Function Codes 29
6.4.2 The SIM 11 8.2.1 Get Device Type 29
6.4.3 SIM ueuing 11 8.2.2 Path Inquiry 30
6.4.3.1 SIM Queue Priority 11 8.2.3 Release SIM Queue 33
6.4.3.2 Tag Recognition 12 8.2.4 Scan SCSI Bus) 13
6.4.3.3 Error conditions and Queues within the Subsystem 12 8.2.5 Set Async Callback 34
8.2.6 Set Device Type 34
6.5 SIM Handling of SCSI Resets 13 .
6.6 Asynchronous Callback 13 8.3 SCSI Control Functions 35
6.7 Autosense 15 8.3.1 Abort SCSI Command 35
6.8 Loadable Modules 16 8.3.2 Reset SCSI Bus 36
8.3.3 Reset SCSI Device 36
7. 0SD Sﬂperating System Dependent) Operation 17 8.3.4 Terminate 1/0 Process Reguest 37
7.1 UNIVOS Operating System 17
7.1.1 Initialization 17 9. Execute SCSI I/0 37
7.1.2 Accessing the XPT 18 9.1 CAM Control Block to Request 1/0 37
7.1.2.1 From the Peripheral Driver 18 9.1.1 Callback on Completion 38
7.1.2.2 From the SIM : 19 9.1.2 CAM Control Block Length 38
9.1.3 CAM Flags 38

AHludr L2

Common Access Method XPT/SIM Support

LI

- é?acnsumcn:- U L L

O oUCUVUVLUUUULLODULLLODOODWOOOO WY
« s s e s 8 s oe s P I T Py
TN et et et ot ok ot ok ot o ot ot e et et et ot e et et e et ettt et e
“ s s s e 8 & 8 % o8 s w o= s & @ MR
—
=

-
(=]

. v e s = & &

i PAINRIR2—

. . . .
%]

p—
p—
. e on
N

FIGURE

Rev 3.0 April 27, 1992

Byte 1 Bits
Byte 2 Bits
Byte 3 Bits
Byte 4 Bits

CAM Status
CDB

CDB Length
Data Transfer Length
{ﬁﬂction Code

Message Buffer Length (Target on]y;
Message Buffer Pointer (Target-only
Next CCB Pointer

Number of Scatter/Gather entries
Path ID

Peripheral Driver Pointer

Private Data

Request Happlnﬁ Information (0SD)
Residual Lengt

SCSI Status

Sense Info Buffer Length

Sense Info Buffer Pointer

SG List/Data Buffer Pointer

Tagged Queue Action

Target 1D

Timeout Value

VU Field

VU Flags

Command Linking

Target Mode (Optional)
Enable LUN

Phase Cognizant Mode

Target Operation of the HBA
Execute Target I/0

Processor Mode
CCB Acceptance
Target Operation of the HBA

HBA Engines
Engine Inquiry
Execute Engine Request (Optional)

FIGURES

3-1 CAM ENVIRONMENT MODEL

Common Access Method XPT/SIM Support

TABLE
TABLE

TABLE
TABLE
TABLE

Rev 3.0

TABLES

1 ASYNC CALLBACK OPCODE DATA REQUIREMENTS
1 CAM CONTROL BLOCK HEADER
2 SUPPORT OF SCSI MESSAGES
3 XPT FUNCTION CODES

4 GET DEVICE TYPE CCB

5 PATH INSUIRY CCB - Part 1 of 2
5 PATH INQUIRY CCB - Part 2 of 2
6 RELEASE SIM UEUE

4 SCAN S

7 SET ASYHC CALLBACK ccs
8 SET DEVICE TYPE CCB

9 ABORT SCSI COMMAND CCB

10 RESET SCSI BUS CCB

11 RESET SCSI DEVICE CCB

12 TERMINATE [/0 PROCESS REQUEST CCB
1 SC5I I/O0 REQUEST CCB

2 CAM _FLAGS % SD)

3 SCATTER GATHER LIST
4 CAM STATUS i
-1 ENABLE LUN CCB

0
0-2 TARGET CCB LIST
} 1 ENGINE INQUIRY C

6-
8-
8-
8-
8-
8-
8-
B-
8-
8-
8-
8-
8-
8-
8-
9-
9-
g-
9
1
%
11-2 EXECUTE ENGINE REQUEST ccs

April 27,

1992

TOC 4

iHlsar L2

Common Access Method XPT/SIM Support Rev 3.0 April 27, 1992 Page 1

Information Processing Systems --
Common Access Method --
SCSI and Generic 1/0

1. Scope

This standard defines the CAM (Cuﬁnnn Access Method) for SCSI (Small Computer
Systems Interface).

The purpose of this standard is to define a method whereby multiple
environments may adopt a common procedure for the support of SCSI devices.

The CAM provides a structured method for supporting peripherals with the
software (e.q. device driver) and hardware (e.g. host bus adapter) associated
with any computer. :

SCSI has provided a diverse range of peripherals for attachment to a wide
range of computlng equipment. Some system manufacturers have developed
approaches for SCSI attachment which are widely followed, increasing the
aﬁp]ications avajlable for the attachment of SCSI peripherals. In markets
where no standard method of attachment exists, however, variations between

third party sellers has made it near-impossible for end users to rely on being

able to attach more than one SCSI peripheral to one host bus adapter.

In an effort to broaden the application base for SCSI peripherals an ad hoc
industry ?roup of companies representing system integrators, controllers,
peripherals, and semiconductors decided to address the issues involved.

The CAM Committee was formed in October, 1988 and the first working document
of the XPT/SIM for SCSI I/0 was introduced in October, 1989.

1.1 Description of Clauses

Clause 1 contains the Scope and Purpose.

Clause 2 contains Referenced and Related International Standards.
Clause 3 contains the General Description.

Clause 4 contains the Glossary.

Clause

q
Clause 5 describes the services provided by the XPT and SIM.
6 describes the facilities that use the Transport and SIM.
7

Clause
the XPT.

Clgug?nﬁ contains the description of non-1/0 functions supported by the XPT
an 2

describes the ways that the Operating Systems support CAM and access

Clause 9 contains the description of I/0 functions supported by the XPT and

‘status and return codes.

Common Access Method XPT/SIM Support Rev 3.0 April 27, 1992 Page 2

Clause 10 contains the description of Target Mode functions supported by the
XPT and SIM.

2. References and Conformance
2.1 References

IS0 DIS 10288 (ANSI X3.131-1991)
SCSI-2, Enhanced Small Computer Systems Interface

2.2 Conformance

An implementation claiming conformance to the XPT for a specified operating
system and language environment shall:

- provide all the XPT functions and services s?ecified in this standard.

- correctly interoperate with any conforming SIM for the specified
environment.

- Eroulde the necessary interface specifications that a conforming SIM will
e required to interface with the XPT.

An implementation claiming cqnformance to the SIM for a specified operating
system and language environment shall:

- provide all the SIM functions and services sgecified in this standard.
- correctly interoperate with any conforming XPT for the specified
environment.
- Brouide.the necessary interface specifications that a conforming XPT will
e required to interface with SIMs.

A conforming implementation shall execute all function codes as required by
this standard, and in resRonse to these codes shall only return specified

d ; .conforming implementation may provide additional
capabilities via Vendor Unique function codes.

Claims of conformance to this standard shall state:
- whether conformance is claimed with the XPT or the SIM or both.
- which operating systems and environments are supported.
- whether the optional capabilities of target mode or executing engines are
supported.
3. General Description

The aﬁplication environment for CAM is any computer addressing a SCSI
peripheral through a protocol chip on a motherboard or a Host Bus Adapter.

SCSI is a widely-used interface which provides common attachment for a variety

of peripherals, Unfortunately, there is no common way to provide access to
SCSI peripherals.

The purpose of the Common Access Method is to define a standard for the
support of Host Bus Adapters and the like by device driver software.

Software in the Operating System dispatches I/0 (Input/Output) requests to
the SCST peripherals in a number of different ways depending on the software
architecture. The 0SD (Operating System Dependencies) are defined in Clause

LHlbdr L2

Common Access Method XPT/SIM Support Rev 3.0 April 27, 1992 Page 3

6 for named software and hardware platforms.

3.1 Enviromment

A model of the CAM usage environment is illustrated in Figure 3-1, where there
may be multiple application and several device drivers attached to support the
peripherals on the system.

Requests for SCSI 1/0 are made through the CAM Transport (XPT) interface.

The XPT may execute them directly or pass them on to a lower level SIM for
execution.

The XPT (Transpurt} function is illustrated as a separate element. In many
applications, the XPT operations will be incorporated into a single module
which integrates both XPT and SIM functionality. The logical separation
between the two is maintained as there may be more than one SIM loaded.

The XPT function may be ?rguided by the operating system, or can be achieved
through chaining when multiple SIMs are loaded.

Common Access Method XPT/SIM Support Rev 3.0 April 27, 1992 Page 4
Fomm e + Fommm e ——e + Fmmm e +
| Application | | Application | : : : : : | Application |
A ——— + S — + Fomm o +
Operating System
| | | |
o +
--------- Fommmmmmemt e 1 App Level
Disk Tape Any Pass-Thru
Driver Driver Driver Driver
————————— + —————————— P Fommme et
I | | l
+—-- e +
== XPT/SIM Interface (using CCBs)
RISV S ;
| XPT |
Fm o o +
I
B + Fommmmm e ——— + o +
SIM saai SIM ABIOS
E e s + T + e e e +
Venéor Uenéor l
Spec?fic Specific SCB
R ekt + -—_..-l-....-i- --..-.-l.-.——-+
| HBA | + | HBA | + | HBA |
F i + | Fo s e + Fosossasn +
Fem + Fomm———— +

FIGURE 3-1 CAM ENVIRONMENT MODEL
3.2 Peripheral Driver Functions
Peripheral drivers provide the following functionality:

a) Interpretation of application or system level requests.
b Happin% of application level requests to XPT/SIM Control Blocks.
c Regues ing of resources to initiate a CAM request.
- CAM Control Blocks and supporting blocks that may be needed.
- Buffer requirements. .
d) Handling of exception conditions not managed transparently by SCSI e.g.
Check Condition status, unexpected Bus Free, Resets etc).
Logging of exception conditions for maintenance analysis programs.
Format utility or services required by format utilities.
Establish parameters for HBA operation.
Set up routing of SCS! requests to the correct Path/Bus, target and LUN.
Initialization and configuration functions of a target not handled by a

ST =h (D

ANlbdar L)

Common Access Method XPT/SIM Support Rev 3.0 April 27, 1992 Page &

utility at installation and formatting time.
Jj) Establish a timeout value for a task and pass this value in the CCB.

3.3 XPT Functions
XPT services provide the following functionality to process CCBs:

a) Routing of the target CCB to the proper SIM.

b) 0SD allocation of CCB resources e.?. Get CCB, Free CCB.

c) Maintenance of the SCSI Device Table. This consists of owning the table
and servicing requests to read and write the table.

d) Providing properly formatted control blocks and priming the fields needed
to accomplish a request.

e) Routing of asynchronous events back to peripheral driver.

3.4 SIM Functions
SIM services provide the following functionality to process CCBs:

a) Perform all interface functions to the SCSI HBA.

b) Manage or delegate, as required, all the SCSI HBA protocol steps.

c) Distinguish abnormal behavior and perform error rgcovs;x, as required.

d) Management of data transfer path hardware, including circuitry and
address mappin?, and establish DMA resource requests (if necessary).

e) Queueing of multiple operations for different LUNs as well as the same
LUN and assign tags for Tag Queueing (if supported).

f} Freeze and unfreeze the queue as necessary to accunEltsh queue recovery.

g) Assuring that the completed operation is posted back to the initiating
device driver.

h) Management of selection, disconnection, reconnection, and data pointers of
the 5CSI HBA protocol.

i) Mechan%sgs to accept the selecting and sensing of the SCSI HBA functions
supported.

i) lmp?ement a timer mechanism, using values provided by the peripheral

driver.

4. Definitions and Conventions

4.1 Definitions

For the purpose of this standard the following definitions apply:

4.1.1 Block: This defines an action to prevent access e.g. Busy.

4.1.2 CCB (CAM Control Block): The data structure provided bg ﬂeriphgral
drivers to the XPT to control execution of a function by the SIM. An immediate
CCB provides valid completion status when the call to xpt_action (g returns
e.g. Path Inquiry. A queued CCB provides valid completion status when the
Completion Callback routine is called.

4.1.3 (DB (Command Descriptor Block): A block of information containing the
SCSI opcode, parameters, and control bits for that operation.

4.1.4 DMA (Direct Memory Access): A means of data transfer between peripheral
and host memory without processor intervention.

4.1.5 Freeze: This defines a software action to quiesce activity e.g. freeze

Common Access Method XPT/SIM Support Rev 3.0 April 27, 1992 Page 6

the queue.

4.1.6 HBA (Host Bus Adapter): The hardware and microcode which provides the
interface between system memory and the SCSI bus.

4.1.7 Llock: This defines a hardware action e.g. data cartridge in a
removable media drive. :

4.1.8 Nexus: A block of information containing the SCSI device, LUN, and
Queue Tag Number (if any, as used in command queuing).

4.1.9 HNull: A value which indicates that the contents of a field have no
meanigng. This value is typically, though not necessarily, zero.

4.1.10 Optional: This term describes features which are not required by the
standard. However, if any feature defined by the standard is implemented, it
shall be done in the same way as defined by the standard. Describing a feature
as optional in the text is done to assist the reader. If there is a conflict
between text and tables on a feature described as optional, the table shall be
accepted as being correct.

4.1.11 Reserved: Where this*term is used for bits, bytes, fields and code
values; the bits, bytes, fields and code values are set aside for future
standardization. The default value shall be zero. The originator is required
to define a Reserved field or bit as zero, but the receiver should not check
Reserved fields or bits for zero.

4.1.12 SCSI (Small Computer Systems Interface): The /0 interface which this
standard is designed to support.

4.1.13 SIM (SCSI Interface Module): A module designed to accept the CAM
Control Blocks routed through the XPT in order to execute SCSI commands.

4.1.14 VU (Vendor Unique): This term is used to describe bits, bytes, fields,
code values and features which are not described in this standard, and may be
used in a way that varies between vendors.

4.1.15 XPT (Transport): A layer of software which peripheral drivers use to
originate the execution of CAM functions.

4.2 Conventions

Within the tables, there is a Direction bit which indicates In or Out. The
presumption is from the view of the peripheral driver i.e. information is Out
g?che SIM from the peripheral driver and In to the peripheral driver from the

Certain terms used herein are the proper names of signals. These are printed
in uppercase to avoid possible confusion with other uses of the same words;
e.g., ATTENTION. Any lower-case uses of these words have the normal American-
English meaning.

A number of conditions, commands, sequence parameters, events, English text,
states or similar terms are printed with the first letter of each word in
uppercase and the rest lower-case; e.g., In, Out, Request Status. Any lower-
case uses of these words have the normal American-English meaning.

Nludr L

Common Access Method XPT/SIM Support Rev 3.0 April 27, 1992 Page 7

There are places in the standard where programming language is used to define
or express a concept in order to assist the reader. These are not copyrighted
program steps, and implementors are encouraged to use the code wherever it

suits the application.

The American convention of numbering is used i.e., the thousands and higher
multiples are separated by a comma and a period is used as the decimal point.
This is equivalent to the ISO convention of a space and comma.

American: 0.6 150: 0,6

1,000 1 000
1,323,462.9 1 323 462,9

5. Background

SCSI (Small Computer Systems Interface) is a ?eripheral interface designed to

germit a wide variety of devices to coexist. These righerals are tyglca]]y,

Agt got)necessar1ly. attached to the host by a single SCSI HBA (Host Bus
apter).

5.1 Software

0S (Operating System) support for peripheral devices is_normally achieved
through peri?heral drivers or utility programs. No single driver or program
can reasonably support all possible SCSI peripherals, so separate drivers are
needed for each class of installed SCSI device. These drivers need to be able
to share the SCSI HBA hardware.

These drivers also have to work with a broad range of HBA hardware, from
highly intelligent coprocessors to the most primitive, including a SCSI chip
on a motherboard.

A standard SCSI programmig? interface layer is essential to insulate SCSI
peripheral drivers and utilities from the HBA hardware implementation, and to
allow multiple drivers to share a single SCSI hardware interface.

5.2 CAM (Common Access Method)

This standard describes the general definition of the CAM (Common Access
Method). CAM functiomality has been separated into a few major elements.

5.2.1 XPT (Transport)

The XPT (Transg&rt) defines a protocol for SCSI peripheral drivers and
programs to submit I/0 reguests to the HBA specific SIM module(s). Rout1n% of
requests to the correct HBA and posting the results of a request back to the
driver are capabilities of the Transport.

5.2.2 SIM (SCSI Interface Hodule)

The SIM (SCSI Interface Module) manages HBA resources and provides a hardware-
independent interface for SCSI applications and drivers i.e. the SIM is
responsible to process and execute SCSI requests, and manage the interface to
the HBA hardware.

There are no requirements on how the SIM is implemented, in RAM (Random Access

Common Access Method XPT/SIM Support Rev 3.0 April 27, 1992 Page B

Memory) or ROM (Read Only Memory), provided the XPT is properly supported. A
ROM-based SIM may need a transparent (to the user% software layer to match the
?éﬂ-agqu1reﬂ services to the specific manner in which they are requested of

e 0S.

5.2.3 CCB (CAM Comtrol Block)

The CAM Control Block is a data structure passed from the peripheral driver to
the XPT. The contents of the data structure describe the action required and
provides the fields necessary for successful processing of a request.

5.2.4 0SD (Operating System Dependent)

The system environment in which the CAM is operating is a function of the
hardware platform and the Operating System being executed e.g. the byte
orderin?_is different between an Intel-based and a Motorola-based machine, and
the calling structure differs greatly between Operating Systems.

Although the fields of a CCB may have a common meaning, the contents will vary
by platform and 0S. These dependencies cause differences in operation and

lﬂﬂ ementation, but do not prevent interoperation on the same platform of two
CAM modules implemented by dififerent manufacturers.

The 0SD issues are predominantly described in the XPT for each 0S environment.
5.3 Principles of Operation

Ideally, a single XPT model would suffice for all 05 environments for a single
HBA, but this is impractical in light of the wide architectural differences
between the various processor architectures.

Programming effort has been minimized by makin% the interfaces as similar as
possible across 0S platforms, and customizing the SIM for each HBA to maximize
gerformange under each 05S. HBAs vary widely in the capability and functjons
hey provide so there may be an internal (transparentg interface to isolate
hardware interface routines from routines which make use of 0S resources.

In order to prevent each peripheral driver from having to scan the SCSI bus
for devices at initialization, the XPT determines all installed SCSI devices
and constructs an internal table. A XPT function is used by drivers and
programs to access this table.

Peripheral drivers need to be developed with documentation provided by the
operating system vendor in addition to that supplied by this standard.

Under a UNIVOS (Universal Operating System) (1), the XPT and SIM would
typically be compiled with the kernel at System Generation time, so that entry
points would be resolved during linkage-editing.

Third ?arty attachments may be supported without the need for a sysgen if
suitable routing facilities are provided by the system vendor.

Under a LANOS (Local Area Networking System) (2), the XPT can be loaded as a
loadable device driver. SIMs are aiso implemented as loadable device drivers.

Under DOS, there is one logical XPT with one entry point, but it may consist
of a number of separate modules (perhaps supplied for each HBA in tﬁe system).

IMlbar LT

Common Access Method XPT/SIM Support Rev 3.0 April 27, 1992 Page 9

Routing is a mechanism to support concurrent SIM modules being co-resident so
that different HBAs can be mixed in the same system. This task is handled by
the XPT logical entity. The XPT is implemented differently under each
opezat1ng system, but the logical functionality is the same for all operating
systems.

Once one or more of the SIMs are loaded, the peripheral drivers integrate each
ﬁypg of SCSI device into the 0S through XPT, independent of the installed HBA
ardware.

Footnotes: i
(1) One example of a universal operating system is Unix (a Trademark of ATET)
and as described in this standard, Software developed for a UNIVOS could
be compatible within a Unix system.
(2) One example of a local area network operating system is Netware 386 (a
Trademark of Noue]]& and as described in this standard, software
developed for a LANOS could be compatible within a Netware 386 system.

5.4 Requirements
System requirements addressed in defining the CAM include:

a) Device drivers and grograms should be able to use any SCSI command, both
defined in SCSI-2 X3.131-1991 or Vendor Unique.

b} No_ assumptions on the size and format of transferred data.

c) Allowing all the capabilities of high end host adapters to be fully
utilized and accommodate HBAs which do most of the SCSI processing on
board (this precludes interfaces which exgect to control SCSI phases).

d) Interpretation of sense data returned by SCSI devices shall be by the
calling driver or program.

e& Fully re-entrant code.

OTE: This is an obvious requirement for multitasking environments such as
UNIVOS but even in single tasking DOS applications, multithreaded 1/0
is required to achieve maximum performance. SCSI devices such as
printers, communication parts and LAN interfaces are often serviced in
the background under DOS. If an HBA cannot supﬁort mul tithreading,
requests can be queued and serialized within the SIM module
transparently to the XPT.

f} Support of multiple HBAs.

g) If optional features are not supported in a minimum functionality XPT and
SIM, peripheral drivers shall be provided a means to determine what
features are available. .

h) Providing an initialization service so that the process of identifying the
attached SCSI devices need not be repeated by each peripheral driver which
loads in the system.)

i) Ergvid;ng a mechanism to abort 1/0 threads (at request of peripheral

river).

j) Ability to issue multiple 1/0 requests from one or more peripheral drivers
to a single Target/LUN.)

k) Providing peripheral drivers with a mechanism for allocating a Sense data
area and for specifying the number of Sense bytes to be automatically
requested on a CHECK CONDITION.

Common Access Method XPT/SIM Support Rev 3.0 April 27, 1992 Page 10

6. Transport
6.1 Accessing the XPT

The 05 peripheral drivers access the XPT through a software call to a single
entry point. The method for obtaining and using the entry peint differs
between operating systems.

;heiéPT is responsible for routing a CCB to the SIM indicated by the Path ID
jeld.

The XPT is not involved in the reverse process to advise the peripheral driver
of the completion of a request. The completion callback permits a direct
return from the SIM to the peripheral driver (the exact method employed in
callback is Operating System dependent).

The XPT is responsible to notify peripheral drivers of asynchronous events via
the Asynchronous Callback mechanism

6.2 Initialization

The XPT is respansible for deﬂermining the interface cnnfi%uration at power u?
initialization for the SIM drivers. De?ending on the Operating System, the XP
may perform a scan of the attached SCSI peripherals automatically.

The scan by the XPT/SIM would follow a pattern such as the following:

for all SCSI buses
for all target IDs (excluding the initiator)
find the device
if device exists
for all LUN's
use Inquiry command and save returned information
end for
end if
end for
end for

6.3 CCB Completion
6.3.1 Completion of Immediate CCB

All CCBs except the Execute SCST CCB and Execute Engine Request are
completed when the CCB function returns.

6.3.2 Completion of Queued CCB

Callback on Completion refers to the XPT/SIM making a call to the routine
addressed by the Callback on Completion pointer in an Execute SCSI CCB. The
gallhacktis used by a peripheral driver in much the same manner as a hardware
interrupt.

Callback routines have the same privileges and restrictions as hardware
interrupt service routines.

The Callback on Completion routine is called to indicate that the Reguested
I/0 is complete. The specific address of the CCB completed is passed to the

Aliluzr LD

Ql

o/

Common Access Method XPT/SIM Support Rev 3.0 April 27, 1992 Page 11

callback routine.

6.4 SCSI Request Queues

Queues are used in systems where there is a need to manage many outstanding
rquests. There are various types of queues and each has different support
needs.

A SCSI request gqueue can occur in.the following places:

o in the SIM
o in the Target/LUN
o in the peripheral driver

The SIM keeps a queue of all the CCB requests from the various peripheral
drivers that access a LUN.

A SCSI device may be able to keep a large queue using Tag Queues, or a simple
queue of one element.

A ﬂeripheral driver can also keep a queue e.g. a simple elevator sort, if the
LUN does not support tagged queuing.

6.4.1 The Target/LUN and the Peripheral Driver

The eeripheral driver is responsible for maintaining the queue(s) internal to
the Target/LUN.

The SIM, acting on behalf of the peripheral driver, sends the appropriate
commands or messages to manage the Target/LUN queue(s).

When the Tarﬁet/LUN has completed an operation, the perighera] driver is
advised by the SIM via a callback or by checking CAM status for completion.

The peripheral driver needs to be aware that there may be other peripheral
drivers and other systems working with the same Target/LUN.

6.4.2 The SIN

The SIM maintains a queue for each LUN which is logically shared by all
peripheral drivers. The queue may support tagged commands. Queue priority
shall be supported.

6.4.3 SIM Queuing
6.4.3.1 SIH Queue Priority

When SIM Queue Priority=1, the SIM places the CCB at the head of the queue for
the LUN, instead of at the end. One use of this CAM flag is during error
handling. If the queue is frozen and a CCB with SIM Queue Priority=1 is
received, the CCB shall be placed at the head of the Eueue and the queue
remains frozen. When the SIM queue is released, any CCBs with SIM Queue
Priority=1 are executed individually, in LIFO sequence.

To force step-by-step execution, the peripheral driver can set S5IM Queue
Freeze=1, so that when the queue is released and a CCB with SIM Queue
Priority=1 is executed, the queue is re-frozen by the SIM at completion.

Common Access Method XPT/SIM Support Rev 3.0 April 27, 1992 Page 12

6.4.3.2 Tag Recognition

To suggort_tagged queueing recognition the SIM maintains a reference between
the CCB pointers and the {(ueue Tags for a LUN. By this means, the SIM can
handle both the gueue tag resource allocation and reconnection of the I_T_L_Q
nexus (see SCSI-Z X3.131-1991) for the CCB from a peripheral driver.

The peripheral driver is required to allow the SIM/XPT to handle the
a551ﬂnment of the queue tag ID for the request. The SIM assigns unique TAG IDs
to the Target/LUN operation based on its internal reference table.

When a LUN that supports tagEed ﬂueuin reconnects to the Initiator (SIM/HBA

pair), it will send the SIMPLE QUEUE TAG message with the ﬁueue tag value for
the I_T_L_Q nexus. Usinﬂ the returned queue tag ID, the SIM restores what is

necessary to complete the 5CSI transaction. The queue tag ID is freed by the

SIM at the completion of the SCSI request.

6.4.3.3 Error conditions and Queues within the Subsystem

The SIM shall ﬁlace its internal queue for a LUN into the frozen state for any
status other than Request Completed Without Error and Request in Progress,
unless the SIM Queue Freeze Disable bit has been set in the CCB. If the SIM
Queue Freeze Disable bit is set, the queue is not frozen and CCB execution
continues from the SIM queue.

In the event that a SIM encounters an error condition which cannot be
associated with a CCB, the SIM shall not freeze the queue. NOTE: The SIM
should attempt to continue operation.

When a LUN's queue is in the frozen state, the SIM shall not dispatch any CCBs
to that LUN. Peripheral drivers can still send CCBs to the SIM for the LUN, or
any other LUN. Any new CCBs received by the SIM shall be placed at the end of
the queue, uniess SIM Queue Priority=1 forces them to the head.

Following a Check Condition or Command Terminated status, the target's LUN
queue is also frozen, and all other tagged commands stay in the queue until
the allegiance condition is cleared. The allegiance condition is either
cleared by an incoming command or following the return of sense data for the
same initiator.

Since the SIM is the initiator, the SIM's internal queue shall go into a
frozen state so that the pending sense information in the LUN will not be
discarded. The SIM holds it's internal LUN queue in the frozen state until a
Release SIM Queue CCB is received.

Using the Callback on Completion pointer contained in the CCB the SIM returns
control of the CCB to the peripheral driver along with CAM Status indicating
the frozen queue condition and other information.

The peripheral driver acts upon the information returned via the CCB. In the
event that there is not a valid pointer in the callback field, the peripheral
driver that originated the CCB shall retain re5ﬁ0nsibi1ity for the CCB Ey
watching the CAM Status field. The setting of the Autosense bit in the CAM
flags does not affect how the SIM handles freezing the SIM's internal queue
i.e. the Request Sense command issued by the SIM to recover status for
Autosense does not release the SIM queue.

LHIddr LD

/4

Common Access Method XPT/SIM Support Rev 3.0 April 27, 1992 Page 13

If the perighera] driver has to Eerform recovery with the LUN, a CCB can be
placed at the head of the queue by setting SIM Queue Priority=1, and the SIM
queue released. [f the peripheral driver has other pending CCBs in the queue
which it does not want to be sent to the LUN (depending on the cause of the
Check anditiong. then it can use a CAM Flag to freeze the queue upon
completion of the CCB at the head of the queue. A SIM may reject a CCB with
SIM Queue Freeze=1 if the queue is not frozen at the time the CCB is received.

6.5 SIM Handling of SCSI Resets

The CAM shall not define support for the "Soft Reset" SCSI option, but
implemgntors may use the services of the SIM to provide vendor-specific
support.

Following a SCSI Bus Reset, the SIM shall:

a) Blocg Path IDs to the reset bus i.e. new CCBs are rejected with status of
usy.
b) Return all outstanding CCBs with status of SCSI Reset.
c) Unblock all Path IDs for the bus.
d) Call: xpt_async(opcode=reset,
path_id=bus that was reset,
target id=-1,
lun=-17
buffer ptr=null,
data_cnt=0
e) Resume normal processing of CCBs.

6.6 Asynchronous Callback

In_an event such as a SCSI Bus Reset or an Asynchronous Event Notification the
XPT/SIM has to be able to make a callback to the peripheral driver(s), even
though there may be no CCBs active for the peripheral driver(s).

Callback routines have the same privileges and restrictions as hardware
igterr? g SEFUICE routines. The peripheral driver is required to return from
the callback.

During system startup and driver initialization, the peri?hera] driver should
register an Asynchronous Callback routine for all the SCSI devices with which
it is working. In order for a peripheral driver to receive asynchronous
callbacks, it shall issue a Set Asynchronous Callback CCB with the
Asynchronous Event fields set to 1 for those events the peripheral driver
wishes to be notified of through an asynchronous callback. The peripheral
driver is required to explicitly register for the path IDs, targets, and LUNs.
The use of a wildcard is not supporfed for the Set Asynchronous Callback CCB.

It is required that the Asynchronous Callback field be filled in with the
callback routine address if any of the Asynchronous Events Enabled bits are
set,

The peripheral driver can change its Asynchronous Callback for a particular
SCST device by issuing the Set”Asynchronous Callback CCB with the Events field
set to the replacement value and the Callback pointer containing the original
registered value.

Common Access Method XPT/SIM Support Rev 3.0 April 27, 1992 Page 14

The peripheral driver can de-register its Asynchronous Callback for a
Eartlculgr SCSI device by issuing the Set Astnchronous Callback CCB with the
vents field cleared to zero and the Callback pointer containing the original
registered value,

A ?eripheraf driver changes jts Callback Pointer by de-registering and then
following the registration procedure.

The XPT shall pass all As¥nch0nuu5 Event Notification requests to the SIM in
addition to performing XPT table maintenance related to the Asynchonous Event
Notification request. This allows the SIM to perform its own Asynchronous
Callbacks to peri?heral drivers, foregoing the available (and required) XPT
services. The callback interface to the ?eripheral driver is the same whether
the Asynchronous Callback is from the XPT or directly from the SIM.

Upon detection of a supported enabled event, the SIM shall do the follawing
once for each detected event:

a) Elassl;g the event: determine the opcode which is the same as the encoded
bit number of the Asynchronous Events Enabled.

b) Format the associated data within an internal, to the SIM, local buffer,
e.?. the sense data receilved from an AEN.
NOTE: This is a multiple processor "lock" point.

c) Perform the XPT reverse routing required by the event. The SIM will call
the Async Callback entry point in the XPT:

long xpt_async(opcode, path_id, target_id, lun, buffer ptr, data_cnt)
Alternatively, the SIM shall call the peripheral driver directly.

All of the arguments, other than the pointer, are long values of 32 bits. The
value of -1 in Path, Target and LUN can be used as a wild card. A null buffer
pointer value and a count of 0 are valid for opcodes that do not require any
data transfer.

NOTE: This call to the XPT is a multiple processor "lock™ point.

Usinﬁ the Path ID, Target, LUN and event opcode information available directly
to the SIM or to the XPT from the xpt_async() call, the XPT or SIM scans its
internal tables looking for "matches™ with the registered Asynchronous
Callback peripheral drivers {see 8.2.4). When a match is found, either exactly
or with a wild card of "-1," the XPT or SIM shall copy the data for the
opcode, if available, into the area reserved by the peripheral driver and then
call the peripheral driver's Async Callback routine.

The arguments to the peripheral driver's Async Callback routine are the same
as the xpt_async() routine.

void (*cam_async_func) (opcode.path_id,target_id,Iun.buffer_ptr.data_cnt)

The buffer ptr value shall be the peripheral driver's buffer. The data cnt
value shalT be what the XPT has to transfer from the SIM's buffer up to the
limit of the peripheral driver's buffer.

Almost all of the information relatinﬁ to the different opcodes can be
included in the Path ID, Target and LUN arguments. The only opcoedes that
require an additional buffer area are AEN, Path ID Registered and Path ID De-

1Hlddr L2)

4

z!

Common Access Method XPT/SIM Suppart Rev 3.0 April 27, 1992 Page 15

Registered. Table 6-1 lists the opcodes and the expected data requirements for

the number of bytes to be transferred.
TABLE 6-1 ASYNC CALLBACK OPCODE DATA REQUIREMENTS
L o + +

D ittt Fommmm e B Rttt e T +
| Event | Opcode | Path ID | Target | LUN | Data Cnt
Fommm s e ——-——— L] R B Fmmmm——— Fomcnccna—— +
Unsol. SCSI Bus Reset | 0x0001 Valid n{a n{a n/fa
Unsol. Reselection 0x0002 | valid Valid Valid n/a
reserved 0x0004 . . .
SCSI AEN 0x0008 Valid Valid Valid | Min. 22

Sent BDR to Target 0x0010 | Valid Valid n/a nfa

Path ID Registered 0x0020 XPT ID n/a n/a Min. 1
Path ID De-Registered | 0x0040 XPT ID n/a n/a Min. 1
New Devices Found 0x0080 Valid n/a nfa n/a

o v, i b PN ¥ RN S - N —— +

The AEN data requirements are a minimum of 22 bytes of buffer space. This
space includes the 4 bytes required by the AEN Data Format and 18 bytes
defined by the Sense Data Format (see SCSI-2 X3.131-1991).

The Path ID Registered and Path ID De-Registered data requirements_are a
minimum of 1 byte. This byte contains the Path ID to access SCSI. This Path ID
is different from the path_id arﬂument. The path_id argument contains the
unique XPT ID of OxFF. The XPT ID is the ID used by the peripheral driver to
register for async notification.

The New Devices Found opcode shall be returned whenever the XPT/SIM issues an
Inquiry which detects that a device is attached which was not ?reviousl found
e.g. a printer powered on after system initialization was completed. NOTE:
Some devices provide minimal information at power-on and cannot provide
complete Inquiry information until after some delay. An XPT{SIH may scan the
bu? after initialization to update its tables with the complete Inquiry
information.

If there is valid data placed in the peripheral driver's data buffer by the
XPT/SIM, the peripheral driver is required to save or discard that data before
returning control to the XPT/SIM.

6.7 Autosense

Autosense causes sense data to be retrieved automatically if a Check Condition
status is reported in the SCSI Status field.

A SCSI Request Sense command is constructed and sent to the same target. The
location and amount of the Sense data is specified in the Sense Info Buffer
Pointer and Length fields respectively of the SCSI I/0 Request CCB. If the
length field is 0 or the buffer field is null, the Request Sense command shall
still be issued, but with a data allocation length of -0 (this should only be
done by the peripheral driver when it is not interested in the sense
information). :

After completing the Request Sense sequence the CAM Status and SCSI Status
Eie&ds co?tain the status of the original command (which caused the Check
ondition).

The target can return fewer than the number of Sense bytes requested. This is

Common Access Method XPT/SIM Support Rev 3.0 April 27, 1992 Page 16

not reported as an error, and Sense Status shall be flagged as valid.
6.8 Loadable Modules

Some operating system environments provide the ability to load or unload
software drivers, thus peripheral drivers or SIM modules can be loaded
dynamically. In such systems,,h the XPT module (ty?Tca11y supplied by the 05
vendor) is either part of the system or must be loaded first.

The XPT, as part of a loadable 0S, exports it's "label,” which is to used as a
reference by the other loadable modules. The XPT manages the loading of SIMs
and provides the common access point for peripheral drivers to register a
loaded or unloaded SIM.

When a peripheral driver is loaded, it can go through it's initialization
process (see 0SD 1n1tlallzation%. call the XPT initalization point and then
query the XPT for the HBAs (Path IDs) that are Rresent in the system and
targets that have been identified as being on the SCSI channels.

When a SIM is loaded, the SIM and XPT have to work together to have the SIM-
supported HBAs registered to addressable Path IDs.

The SIM shall call the XPT onde for each supported bus in order to obtain the
Path ID for that bus.

long xpt_bus_register(CAM_SIM_ENTRY *)

The argument is the pointer for the data structure defining the entry points
for the SIM. The value returned is the assigned Path ID; a value of -1
indicates that registration was not successful.

The SIM shall call the XPT once to de-register the bus for a given Path ID:
long xpt_bus_deregister(path_id)

The argument is the Path ID for the bus being de-registered. A return value of
zero indicates the bus is no longer registered, any other value indicates the
call was unsuccessful.

When the XPT is called it will update it's internal tables and then call the
sim_init(path_id) function pointed to by the CAM SIM ENTRY structure. The
initialization for the loaded SIM is no different than for a SIM statically
included in the kernel at boot time. After the SIM has gone through the
initialization process the XPT shall scan the SCSI bus in order to update its
internal tables containing Inquiry information.

Peripheral drivers can reguest to be informed when a Path ID (SCSI bus) is

gegiggered or de-registered via the Async Callback feature (see 6.6 and

The CAM_SIM_ENTRY table is used to define the entry points for the SiMs.
typedef struct

long *sim_init)(;; /* pointer to the SIM init routine */
long (*sim action)(); /* pointer to the SIM CCB go routine */
} CAM_SIM_ENTRY;

LHlddar L2

Cl

g/

Common Access Method XPT/SIM Support Rev 3.0 April 27, 1992 Page 17

7. 0SD (Operating System Dependent) Operation
7.1 UMIVOS Operating Sysiem

ThedCAM subsystem is intended to provide a set of services for third-party
vendors.

There are several sets of modules for UNIVOS:

- peripheral drivers that are device class specific
- a configuration driver for initialization

- the XPT -

- SIMs that are HBA-specific

Each member of these sets is treated as a UNIVOS driver and is linked into the
kernel. The XPT and configuration_driver (which is responsible for
initialization) are 0S-vendor spetific; other drivers may come from any
source. ;

At kernel configuration and link time the cam conftbl[% is created and
contains entry points for the SIMs, which are used by the XPT.

The cam confthl[] is used by the XFT/confiBuratian_driver to call routines and
Eass CAM parameters between them e.g, the Path 1D contained in the CCB created
y the peripheral driver is used to index into the cam conftbl[]. The entry
point for the selected SIM, sim action() is called with a pointer to the CCB
as an argument.

The cam_edt[] data structure is used and created during the initialization
process to contain the necessary information of all the targets found on all
the HBAs during the init seguence.

The CAM Flags used are as described in Table 9-2.

The Success of a function is reported in a CAM Status of Request Completed
without error,

The Failure of a function is reported in any other CAM Status except Command
in progress.

7.1.1

The initialization of the XPT and SIMs is under the control of the
configuration_driver.

Due to the different UNIVOS-based systems, there is no comman injtialization
process that can control the order of calls to the peripheral driver's and
configuration driver's initg) routines. It is necessary to make sure that the
subsystem is Tnitialized before any requests can be serviced from the
peripheral drivers, Due to this constraint when the peripheral driver's
initialization routines are called the driver shall call the X?t_lﬂlt(a
routine. If the subsystem is not yet initialized, the XPT shall call the
configuration driver to formally initialize the subsgstem. Once the subsystem
is set u? either from a previous xpt_init call or the configuration driver
being ca fed, all subsequent xpt_init calls shall simply return,

Initialization

Common Access Method XPT/SIM Support Rev 3.0 April 27, 1992 Page 18

When the configuration_driver is called for initialization, it uses the

cam conftbl[] entry stFuctures. The confiﬁuration driver makes the init()
routine calls, to the XPT, and to each SIM in turdi, allowing them to
initialize. The initialization routine for the SIM is called with its Path ID
as the argument. Interrupts shall be disabled or blocked by the
configuration_driver during the initialization process.

After the initialization process has been completed, the configuration driver
obtains information about each SIM, HBA, and target device detected, and
maintains a table, the cam edt[], of these devices. The information is
obtained by using CCBs through -the CAM interface.

Once the CAM subsystem is initialized and the cam edt[] set, the

peripheral drivers can use the subsystem. This alTows them to determine what
devices are known and make appropriate memory allocations and resource
requests of the XPT.

The SCSI-2 Inquiry command shall be issued to all Target/LUNs on the attached
interfaces, and shall contain an allocation length of 36 bytes, which is
sufficient to transfer the.de¥1ce information and the product information. The
EVPD and Page code fields in the Inquiry command shall be set to 0. It is
assumed that the responding devices will return the Inguiry data, even though
the device may not be ready for other commands. A 1imited number of retries
will be done for devices that return Busy Status following the Inquirg
command. If the retry limit is reached, the status of the device in the XPT
will be set to "Not Found”. The Inquiry command shall be the only command
issued by the XPT to the devices during initialization.

7.1.2 Accessing the XPT
7.1.2.1 From the Peripheral Driver

The XPT ?rovides functions to obtain CAM system resources for the peripheral
driver. These functions are used to allocate and free CCB resources.

There are two routines used in the handling the CCB resources. The two
routines are: :

CCB *xpt ccb allocég and
void xpt_ccb_free(CCB *):

- The xpt_ccb_alloc() routine returns a pointer to the allocated CCB. The
periﬁheral driver cap now use this CCB for it's SCSI/XPT requests.

- The xpt_ccb_free() routine takes a pointer to the CCB that the
peripheral driver has finished with, and can now be returned to the CAM
subsystem CCB pool.

- The pointer to the CCB returned from the xgt cch alloc() call shall be
]ar?e enough to contain any of the possible XPT/SIM function request CCBs.
- The CCB can only be used i.e. sent to the XPT, once. Once the CCB has

completed it shall be returned usin? the xpt_ccb_free() routine.

- The xpt cch a]]nc{) routine shall return @ nuTl if memory resources are
not immediately available.

All returned status information is obtained at the callback point via the CAM
and SCSI status fields.

LHludy L1

&1

Common Access Method XPT/SIM Support Rev 3.0 April 27, 1992 Page 19

7.1.2.2 From the SIH

The SIMs obtain requests from the XPT as they are passed across from the
peripheral driver, via a routine included in the SIM's confiquration
information. The field in the configuration table is declared as

"Ion? (* sim action)(CCB *)." The XPT does not modify CCBs or CDBs. The XPT
shall intercept those CCBs which must be redirected to_the
configuration_driver (Get Device Type, and Set Device Type).

7.1.3 Callback on Completion
The Callback on Completion field in the CCB_is a structure that is platform

sEecific. but always contains at least a callback function pointer, named
cbfcnp, and declared as "void (*cbfcnp)(CCB *)." The argument to cbfcnp shall

be the address to the CCB.

The Disable Callback on Completion feature should not be used. Peripheral
drivers should not poll the CAM Status field.

7.1.4 Pointer Definition in the UNIVOS Enviromment

Pointers in the CAM environment are treated as any other pointer in_a gjven
UNIVOS implementation. For the Intel 80386 platforms, pointers are 32-bit
virtual addresses into a flat address space.

7.1.5 Request Mapping Information
This field is expected to contain a pointer to the buf structure that the SCSI

1/0 CCB was created for. This copy of the buf structure pointer, bp, is used
by the SIM to get to the I/0 mapping information needed to access the data
buffers allocated by the application ﬁroﬂram. A value of NULL is allowed if
there is no need for the SIM to map the data buffer addresses i.e. data count

is zero, the buffer is internal to the kernel, or the addresses are physical.
7.1.6 XPT Interface

The XPT interface provides functions that peripheral drivers and SIM modules
can access in order to transfer information and process user requests. The
followlng]deflnes the entry points, and describes the required arguments and
return values.

7.1.6.1 Functions for Peripheral Driver Support

a) long xpt_init()
This routine is called by the peripheral driver to request that the XPT and
sub-layers be initialized. Once the sub-layers are initialized any subsequent
calls by other peripheral drivers shall quickly return.
There are no arguments and the CAM Status is either Success or Failure.

b) CCB *xpt_ccb_alloc()

This routine is used whenever a peripheral driver needs a CCB (the common data
structure for processing SCSI requests). It returns a pointer to the allocated

CCB which the peripheral driver can now use as the CCB for it's SCSI/XPT
requests. The returned CCB shall be properly initialized for use as a SCSI 1/0

Common Access Method XPT/SIM Support Rev 3.0 April 27, 1992 Page 20

Request CCB. The SIM Private Data area shall have been already set up to be
used by the XPT and SIM, and shall not be modified by the peripheral driver.

Eggre are no arguments and the return value is a pointer to an initialized

c¢) void xpt_ccb free(CCB *) -

This routine takes a pointer to the CCB that the Beripheral driver has
finished with so it can be returned to the CAM subsystem CCB pool.

The argument is the pointer to the CCB to be freed, there is no CAM Status.
d) long xpt_action(CCB *)
All CAH{SCSI cCcB reguests to the XPT/SIM are placed through this function

call. All returned CAM status information is obtained at the callback point
via the CAM and SCSI status fields.

;hg]argument is a pointer to the CCB, and the CAM Status is either Success or
ailure.

7.1.6.2 Functions for SIM Ho&ule Support
a) See 6.8 for loadable module support:
long xpt_bus_register(CAM_SIM_ENTRY *)
long xpt_bus_deregister(pa{h_id)
b) void xpt_async(opcode, path_id, target_id, lun, buffer ptr, data cnt)

The SIM calls this routine to inform the XPT that an async event has occured
and that there may be peripheral drivers which need to be informed.

- Th? opcode, path_id, target_id, lun, and data_cnt arguments are long 32-bit
values.

The path_id, target_id, and lun define a nexus for the Async Callback.

The opcode contains the value for what has happened.

The buffer_ptr and data_cnt are used to inform the XPT where and how much
data is asSociated with™the opcode,

7.1.7 SIM Interface

The SIM interface provides functions to the XPT, and should never be accessed
directly by the peripheral driver. Each vendor's SIM should provide a
publicly-defined entry structure such a. CAM_SIM_ENTRY cse vendorname.

The following defines the entry points, and describes the required arguments
and return values.

a) long sim_init(pathid)

This routine is called by the XPT to request that the SIM be initialized.
There are no arguments and the CAM Status is either Success or Failure.

b} long sim action(CCB *)

iHluar LD

Sl

74

Common Access Method XPT/SIM Support Rev 3.0 April 27, 1992 Page 21

A1l CCB reguests to the SIM are placed through this function call. All
returned CAM status information is obtained at the callback point via the CAM
and SCSI status fields.

Ehelargument is a pointer to the CCB, and the CAM Status is either Success or
ailure.

7.2 LANOS

LANOS drivers are called NLMs {LAHOS Loadable Modules). These modules are
registered and linked dynamically with LANOS: they are loaded after the
operating system is initialized and may be unloaded at any time.

The LANOS CAM subsystem consists of 3 sets of NLMs:

- peripheral drivers §NLM5) that are device class specific
- the XPT router and SIM maintenance NLM
- SIM NLMs that are HBA-specific

The peripheral drivers and SIMs communicate with the XPT through labels
exported by the XPT when it is loaded.

The CAM Flags used are as described in Table 9-2.
7.2.1 Initialization

As the LANOS dynamic linker will not allow an NLM to load if it makes
references to a label it cannot resolve, the order in which the NLMs load is
important. The XPT module exgorts four entry points when it is loaded, and
both peripheral drivers and 5IM modules make references to them. The XPT shall
be loaded first, after which either peripheral drivers or SIMs may be loaded.

el T T —p— +
Peripheral
Driver references labels exported by XPT
L S
|
v
tomme e c s aaa +
XPT xpt_action E):
xpt_async ();
(first) xpt_bus_register ();
Pt xpt_bus_deregister ();
I
Fosm e +
| SIM | SIM - references label exported by XPT
tommmr e e m—- +

For an overview of SIM SCSI registration with the XPT see 6.8. For an overview
of peripheral driver registration with the XPT see 6.6 and 8.2.4.

When LANOS loads a SIM, it shall call the initialization routine
specified in the LANOS linker definition file. At this point the SIM can
perform its initialization functions.

Common Access Method XPT/SIM Support Rev 3.0 April 27, 1992 Page 22

As part of initialization the SIM shall call the xpt bus register function
once for each HBA it will supﬁort. to register the address of its entry point
with the XPT and to get a path ID for each HBA from the XPT. The XPT then adds
this SIM to its internal tables so it can route requests to the new SIM. The
XPT also notifies all peripheral drivers that re?istered an asynchronous
callback routine with the XPT (with the SIM Module Registered bit set), that a
new path 1D exists. Upaon regeivinﬁ this message the peripheral drivers can
check for new devices on this path.

When LANOS loads a peripheral driver, the initialization routine
specified in the linker definition file shall be called. At this time,the
driver needs to determine which, if any, SIMs are registered.

The peripheral driver sends a Path Inquiry CCB to each path to determine if a
SIM is registered. If a valid response is returned the peripheral driver
checks for devices that it will support on that path. If the peripheral driver
supports any devices on this path, it shall register an as¥nc ronous cal lback
routine and specify the SIM registration in the opcode field so that if the
SIM is de-regitered, the peripheral driver shall be notified. In addition, a
peripheral driver should also register for SIM registration to alert the
driver of the need to locate devices on a newly added SIM module.

7.2.2 SIH and peripheral driver unloading

Before a SIM unloads, it shall call the xEt_bus deregister() function once
for each path the SIM supports. The XPT then caTls every peripheral driver
that has registered an asynchronous callback routine with the SIM Module De-
Registered bit set on this ﬁath. Peripheral drivers then notify LANOS

that the drives on this path are in an inactive state. The XPT will then
remove the path from its internal tables and further peripheral driver
requests on this path shall return CAM Status of Invalid Path ID.

Before a peripheral driver unloads, it _needs to notify the XPT module so that
the dependency tables can be updated. This is done by registering an
asynchronous callback routine with the opcode set to zero. The XPT will then
remove this driver from its callback tables.

The XPT can only be unloaded after all peripheral drivers and SIM modules have
been unloaded. LANOS will not allow an NLM to unload if it has

exported labels that other NLMs are using. As all SIM and peripheral drivers
refer to labels exRorted by the XPT, LANDS will not allow the XPT to

unload until all the SIMs and peripheral drivers have been unloaded, at which

point there is nothing left for the XPT to support and it can be safely unloaded
=>

?.2.3‘Accessing the XPT

LANOS allows an NLM to exﬁort functions which NLMs loaded at a later

time can reference. An NLM calls an ex?orted function in the same way it calls
any other function. The C language calling convention is assumed. In order for
communication between the peripheral drivers, XPT, and SIM modules to work
correctly the names of the XPT entry points have to be constant.

The entry points in the XPT module are:

- xpt_action () accepts CAM blocks from the peripheral driver and routes them
to The correct SIM .

- xpt_async () is used by the SIM module to notify the XPT when an

AH1ddY LD

9

7/

Common Access Method XPT/SIM Support Rev 3.0 April 27, 1992 Page 23

asynchronous event occurs.

- xpt_bus_register (} is used bg the SIM to register a SCSI bus with the XPT
and obtain"a Path ID for the SCSI bus.

- xpt_bus deregister () is used to de-register the passed Path ID and
associated SCSI bus. i

7.2.4 Hardware Registration

The SIM module needs to do the actual registration of the host adapter with
LANOS. Since only one SIM may support a given host adapter this prevents any
hardware options from be1nﬁ registered twice. The SIM does not register any
devices with LANOS, only the hardware options used by the card e.q.
interrupt line, base address, DMA etc.

Interrupts %enerated by the host adapter will be handled by the SIM module, so
the SIM must also register its interrupt service routine with LANOS.

A peripheral driver registers a logical card with LANOS for each path_id

it supports. This 1081cal card uses no hardware resources, but does have entry
points for [0 and IOCTL requests from LANOS. The peripheral driver also
reports the devices that it will support to LANOS.

The XPT does not register any hardware or devices with LANOS. It loads
as a driver, but does not register any IOPOLL or IOCTL entry points.

7.2.5 Hiscel laneous

It is the responsibility of the peripheral driver to allocate memory for its
CCB blocks. Normally the peripheral driver needs to keep one CCB structure for
each device it will support, so the memory can be allocated in the

data structure provided by LANOS when a device is added to the system.

Since fast disk channels are essential for a LANOS server, peripheral

drivers should never poll the CAM status field to wait for completion. The
driver should send the CCB to the XPT module and then either do more work, or
exit immediately. The SIM module will call the function whose address is in
the callback field of the CCB block when the request is finished. The callback
function runs at interrupt level, so it cannot call any LANOS routines

that are "blocking™ or the file server will abend.

7.3 DOS (Disk Operating System)

Under DOS, a software interrupt is used to access any of the XPT or SIM
functions, which are combined into a single module.

The routing functions of the XPT are performed by the DOS concept of
"interrupt vector chaining." During execution, an XPT/SIM module determines
if a particular CCB is one that it should handle. If not, it routes the CCB

to the previous "owner" of the interrupt vector.
The CAM flags used by the DOS XPT/SIM are described in Table 9-2.
7.3.1 Initialization

During initialization, the XPT/SIM modules should be loaded as character
device drivers.

Common Access Method XPT/SIM Support Rev 3.0 April 27, 1992 Page 24

As character device drivers are required by DOS to have unique names, the 8-
character device name_should be "$3CAMxxx", where xxx is_the ASCII decimal
numeric value of the lowest path ID supported by this XPT/SIM module.

The programming examples in this clause are used to assist the reader's
understanding. Implementations do not need to use the same code, but they
are required to accomplish the same goals.

7.3.1.1 Hultiple XPTs
The pseudocode for the XPT initialization sequence is as follows:

Get INT 4Fh interrupt vector;

Save this address for chaining;

IF there is a CAM XPT already installed (see 7.3.2.1)
Perform PATH INQUIRY (Path ID=0FFh) to get Highest Path ID;
First Path ID = Highest Path ID + 1;

First Path ID = 0;
END IF;
Count number of Path IDs needed;
IF no HBAs to gugport (Cdunt = 0)
END IEx1t initialization without installing driver;
Set INT 4Fh interrupt vector to point to CAM entry point;
Save Highest Path ID used (First Path ID + Count - 1);
Set character device name to "$$CAMxxx",
where xxx=First Path ID;
Perform all necessary HBA initialization;
FOR each SCSI Bus squorted:
FOR each SCSI ID (excluding initiator)
IF device exists
FOR each LUN
Perform INQUIRY to get PDT for table;
END FOR;

END FOR;

7.3.1.2 Device Table Handling

The XPT/SIM is only required to keeg the peripheral device type of the
devices connected to the supported SCSI bus{es).

7.3.2 Accessing the XPT

There are various mechanisms used to access XPT or SIM functions from
peripheral drivers or application programs.

7.3.2.1 Testing for the presence of the XPT/SIH

Periqheral drivers and applications can check for the presence of an XPT/SIM
module e.g. by performing a "check install™ function such as:

IHlddr L

-+

L7

Common Access Method XPT/SIM Support Rev 3.0 April 27, 1992 Page 25

On entry:
AX

= 8200h
CX = 8765h
DX = CBASh

On return:
AH = 0 (if successful)
9ABCh :

CX

DX = 5678h

ES:DI = address of character string "SCSI_CAM"
All other registers unaffected. -

nonou

The fol]owin? routine checks for the presence of an XPT/SIM module. It
returns a value of 1 if a module is found and a value of 0 if not found.

CHK_FOR_CAM PROC NEAR
-7 MOV CX,B8765H
MOV DX, 0CBAGH
MOV AX,B8200H
INT 4FH

AH,0
JNE NOT THERE
CHP DX,5678H
JNE NOT THERE
CMP CX,JABCH
JNE NOT THERE

load 1.s.w. of signature
load m.s.w. of signature
load "check install™ code
perform "check install”
function supported?

if not, no xpt/sim

check m.s.w. of signature
if invalid, no xpt/sim
check 1.s.w. of signature
if invalid, no xpt/sim

T R R T

CLD set direction fla
MOV Cx.8 load string lengt
MOV SI,OFFSET SCSI_CAM get string address
REPE CMPSB compare s rings
JNE NOT THERE if strings ditfer, no xpt/sim
MOV AX,T load "found” status
RET return to caller
NOT THERE: MOV AX,0 load "not found" status
- RET return to caller
CHK FOR CAM ENDP
SCST_CAH DB 'SCSI_CAM' : string to find

7.3.2.2 Sending a CCB to the XPT

Once it is determined that an XPT/SIM module is present, the peripheral
driver_or application can access the XPT/SIM functions by sending a CCB to
the XPT/SINM e.g.

On entry:
ES:BX = address of the CCB
AX = 8100h

On return:
AH = 0 if successful
= any other value if an error occurred
All other registers unaffected.

NOTE: The SIM may complete and return control to the location pointed to by
the Callback on Completion field in the CCB before the software interrupt
returns.

Common Access Method XPT/SIM Support Rev 3.0 April 27, 1992 Page 26

The following routine sends a CCB to the XPT/SIM module. It returns a value of
0 if successful and 1 if not.

SEND_CCB PROC NEAR

MOV AX,8100H

MOV ES,SEGMENT CCB
MOV EEQOFFSET ccs

load "send cch™ function
load segment of cch
load offset of cch
call xpt/sim module

mrmsma s

SHR AX,8, put return code in al
RET return to caller
SEND_CCB ENDP

7.3.3 Callback on Completion

When an 1/0 oﬁeration has completed, a XPT/SIM module shall make a FAR call to
the routine which had its address ﬁassed in the Callback on Completion field
of the CCB. The first 4 bytes of this field are used to indicate the routine's
address in the Intel Se?ment:ﬂffset format. When the callback is made, all
hardware interrupts shall be disabled and ES:BX shall point to the completed

.

7.3.4 'Asynchronous Callbacky

There are some differences in the DOS XPT/SIM imElementation of Asynchronous
Callbacks as compared with the description in 6.6.

The DOS XPT/SIM does not supgort the SIM Module Loaded and SIM Module Unloaded
gpcod?? Eeported by the XPT/SIM module when the Asynchronous Callback Routine
is called.

The Set Async Callback CCB is held by the XPT/SIM until it is "de-registered.”
This is accomﬁlished by sending another Set Async Callback CCB to the XPT/SIM
with all of the Asynchronous Event Enables reset and the address of the
original Set Async Callback CCB in_the Peripheral Driver Buffer Pointer field.
At that point the oriﬁlnal CCB shall be dequeued and both CCBs shall be
returned to the peripheral driver or application.

NOTE: There is an implication here that a peripheral driver or application

which wishes to be notified when the specified asynchronous event occurs, has

to register separately‘with each path ID.

The Peripheral Driver Buffer Pointer and Size of Allocated PeriBheral Buffer
fields in the Set Async Callback CCB are considered as Private Data by the
XPT/SIM, to be used for CCB queuing.

When an Asynchronous event occurs that is enabled by the bits in the
Asynchronous Event Enables field of the Set Async Callback CCB, the virtual
address specified by the Asynchronous Callback Pointer field shall be called
with the following registers:

On entry:
Al = opcode as specified in Table 6-1.
AL = path ID that generated the callback.
DH = target ID that caused event (if ag?Iicable).
DL = LUN that caused event (if a ?lica e).
CX = data byte count (if applicable).
ES:BX = address of data buffer (if applicable).

1Hlddy LD

3l

&/

Common Access Method XPT/SIM Support Rev 3.0 April 27, 1992 Page 27

On return:
All registers shall be preserved.

It is the responsibility of the peripheral driver or ap?lication to copy any
or all required data out of the data buffer into a local buffer before
returning from the Asynchronous Callback routine.

7.3.5 Pointer Definition

All pointers shall be passed to the XPT/SIM as segment:offset type virtual
addresses.

8. CAM Control Blocks

The CCBs used by drivers and applications to request functions of the XPT and
SIM have a common header, as shown in Table 8-1.

TABLE 8-1 CAM CONTROL BLOCK HEADER
+

+
|Size|Dir|
B e R] —————— e o e e e e +
4 | 0| Address of this CCB
2 | 0| CAM Control Block Length
1| 0 | Function Code
1| I | CAM Status
Connect ID
reserved
Path ID
Target ID
UN

L
CAM Flags (0SD)

R e e e e S S i S O +

The sequence of the fields in the data structures shall be consistent between
vendors i.e. the binary offset shall be the same for every field. The binary
contents of fields may vary according to the memory addressing protocol of the
processor which is operating.

The definition of the fields in the data structures can vary beween operating
systems and hardware platforms, but the vendors are expected to provide
compiler definitions which can be used by third-party attachments.

Several fields in the CCB are pointers, and their meaning is dependent on the
0S which is being supported. In genera|. these pointers are interpreted as
either virtual or physical addresses.

Additional bytes beyond the CCB Header are dependent on the Function Code.
Most SCSI messages are handled transparently by the SIM, but in some cases,

the peripheral driver has been given the ability to force the SIM to issue a
message. Table 8-2 summarizes the message support.

Common Access Method XPT/SIM Support Rev 3.0 April 27, 1992 Page 28

TABLE 8-2 SUPPORT OF SCSI MESSAGES

Fomm o e +
Abort Discretely supported by function codes
Abort Tag Discretely supported by function codes
Bus Device Reset Discretely supported by function codes
Clear Queue Not Supported
Command Complete ; Transparently supported by SIM
Disconnect Transparently supported by SIM *
Identify Transparently supported by SIM
Ignore Hide Residue : Transparently supported by SIM
Initiate Recovery Not Supported
Initiator Detected Error Transparently supported by SIM
Linked Command Complete - Transparently supported by SIM
Message Parity Error Transparently supported by SIM
Message Reject Transparently supported by SIM
Modify Data Pointer Transparently supported by SIM
No Operation Transparently supported by SIM
Queue Tag Messages .

Head of Queue Tag Discretely supported by function codes
Ordered Queue Tag Discretely supported by function codes
Simple Queue Tag Discretely supported by function codes
Release Recovery I Not Supported
Restore Pointers Transparently supported by SIM
Save Data Pointers Transparently supported by SIM
Synch Data Transfer Request | Transparently supported by SIM *
Terminate I/0 Process Discretely supported by function codes
Wide Data Transfer Request Transparently supported by SIM

+
| * Issuing this message influenced by peripheral driver via CAM
4

8.1 CCB Header

The Function Codes used to identify the XPT service being requested

in Table 8-3.

8.1.1 Address of this CCB

Pointer containing the Physical address of this CCB.
8.1.2 CAM Control Block Length

See 9.1.3

8.1.3 XPT Function Code

are listed

Nludr L21

-

47

Common Access Method XPT/SIM Support Rev 3.0 April 27, 1992 Page 29

| Code|
+ Frm e r e s rr s s s e ——————— +
00-0F| Common Functions
00h NOP
01h Execute SCSI [/0 (see 9.x)
02h Get Device Type
03h Path .Inquiry
04h Release SIM Queue
05h Set Async Callback
06h Set Device Type
07h Scan SCSI Bus
08-0F reserved
10-1F| SCSI Control Functions
10h Abort SCSI Command
11h Reset SCSI Bus
12h Reset SCSI Device
13h Terminate [/0 Process
14-1F reserved
20h | Engine Inguiry (see 11.x)
21h | Execute Engine Request
22-2F reserved
30-3F| Target Mode (see 10.x)
30h Enable LUN
3ih Execute Target I/0
32-3F reserved
40-7F reserved
80-FF| Vendor Unique
f B T A ————— 1

If a Function Code which is not sugported is issued to the XPT, the XPT shall
complete the request and post CAM Status of Invalid Request.

8.1.4 CAM Status
See 9.1.4
8.1.5 Comnect ID

The Connect ID consists of 4 separate fields, of which the first is reserved.

- Path ID: See 9.1.14.
- Target 1D: See 9.1.24
- LUN: See 9.1.9

8.1.6 CAH Flags

ghe gAH glags qualify the Function to be executed, and vary by Function Code,
ee 9.1.3.

8.2 Function Codes
8.2.1 Get Device Type

This function is executed at driver initialization in order to identifﬁ the
targets they are intended to support e.g. A CD ROM driver can scan eac

Common Access Method XPT/SIM Support Rev 3.0 April 27, 1992 Page 30

Target/LUN address on each installed HBA to look for the CD ROM device type.

Fom i
|Size|Dir| Get Device Type
o o e s e e +
0 | Address of this CCB
CAM Control Block Length
Function Code
CAM Status
Connect 1D
reserved

Path ID

Target ID

LUN

CAM Flags (0SD)
Inquiry Data Pointer
Peripheral Device Type of Target/LUN

R B e om0 e +

lapl=1=]

b bt bk ek e e PO
o000

The information on attached SCSI devices is gathered at power on by the
XPT/SIM (to eliminate the neell for each driver to duplicate the effort of
scanning the SCSI bus for devices).

The Peripheral Device Type is a l-byte representation of Byte 0 of SCSI
Inquiry Data i.e. bits 7-5=000.

If the Inquiry Data Pointer contains a value other_than Null, it is a pointer

to a buffer in the peripheral driver's data space large enough to hold the 36

bytes of Inquiry data associated with the TarﬁetILUN. The data shall be

EOQ;Ed from the internal tables of the XPT/SIM to the peripheral driver's
uffer.

This function shall return non-zero CAM Status. .
- CAM Status of Request Completed Without Error indicates that the specified
device is installed and the Peripheral Device Type field is valid.
- CAM Status of SCST Device Not Installed indicates that the Peripheral
Device Type field is not valid.
- CAM Status of Invalid Path ID indicates that the Path ID is invalid.

Drivers are always able to use SCSI I/0 requests to check for devices which
may not have been found at power up.

8.2.2 Path Inquiry

This function is used to get information on the installed HBA hardware,
including number of HBAs installed. To obtain further information on any other
HBAs attached, this function can be issued for each HBA.

If the Path ID field of the CCB has a value of FFh on a PATH INQUIRY request,
then the only field that shall be valid upon return to the caller is the
Highest Path ID Assigned field. In addition, the Highest Path ID Assigned
flﬁ]d sEaIIFEgt be valid if the Path ID field in the CCB contains a value
other than . ‘

AMldar L)

Q7

or

Common Access Method XPT/SIM Support

Rev 3.0

TABLE 8-5 PATH INQUIRY CCB - Part 1 of 2

+
|Size
4

mmmmtesatecnma

[b et et et Pt bt N S

R C—)

|Dir
0

—0D

0000

+.
| Path Inquiry

Address of this CCB
CAM Control Block Length
Function Code
CAM Status
Connect 1D
reserved

Path ID .

Target ID

LUN

CAM Flags (0SD)
Features Supported
Version Number
00-07h Prior to Rev 1.7
08h Implementation Version 1.7
09-FFh Rev No e.g. 31h = 3.1
SCSI Capabilities
7 Modify Data Pointers
6 Wide Bus 32
5 Wide Bus 16
4 Synchronous Transfers
3 Linked Commands
% . resgr&ed .
agged Queueing
0 So g Reset
Target Mode Supﬁort
Processor Mode
6 Phase Cognizant Mode
5-0 reserved
Miscellaneous .
7 0=Scanned Low to High
1=Scanned High to Low
6 O=Removables included in scan
1=Removables not included
5 1=Inquiry data not kept by XPT
4-0 reserved

April 27, 1992 Page 31

Common Access Method XPT/SIM Support Rev 3.0 April 27, 1992 Page 32

TABLE 8-5 PATH INQUIRY CCB - Part 2 of 2
S TR SRS, | g g iy S S S g +
HBA capabilities
211 Engine count
14 [1 Vendor Unique
4 | 1| Size of Private Data Area
4 | I | Asynchronous Event capabilities
31-24 Vendor Unique
23- B reserved
" 7 New Devices found during rescan
SIM module De-Registere
SIM module Registered
Sent Bus Device Reset to Target
SCSI AEN
reserved
Unsolicited Reselection
Unsolicited SCSI Bus Reset
I Highest Path 1D Assigned
I | SCSI Device ID (of Initiator)
reserved
reserved
Vendor ID of SIM-supplier
Vendor ID of HBA-supplier
0SD Usage

ORI~

1
1

o O O bt et et et
)

In some Operating System environments it may be possible to dynamically load
and unload SIMs, so Path IDs may not be consecutive from 0 to the Highest Path
ID Assigned.

The Path ID value of FFh is assigned as the address of the XPT.

If the Path ID is FFh Sthat of the XPT), then only the highest Path ID
Assigned field is valid on CCB completion.

If no Path IDs exist, i.e. no SCSI buses are registered, then the Highest Path
1D assigned shall be FFh, the ID of the XPT.

;he SCSI Capabilities field is a duplicate of the Byte 7 field in Inquiry Data
ormat .

The 0SD Usage Pointer field is provided for 0S-specific or platform-specific
functions to be executed by the SIM. The contents of this field are vendor-
specific and are not defined by this standard.

In some environments, the Private Data value returned may be zero because the
0SD has central allocation of private data requirements, or it is a fixed size
as defined by the 0SD vendor.

See the vendor specification for the definition of Vendor Unique HBA
capabilities peculiar to a particular HBA implementation.

The Asynchronous Event capabilities indicate what reasons cause the SIM to
generate an asynchronous event.

This function shall return non-zero CAM Status.
- CAM Status of Request Completed Without Error indicates that the other

1Hlgdy LI

4

Common Access Method XPT/SIM Support Rev 3.0 April 27, 1992 Page 33

returned fields are valid.

- CAM Status of Invalid Path ID indicates that the specified Path ID is not
installed.

8.2.3 Release SIM Queue

This function is provided so that the perigherai driver can release a frozen
SIM queue for the selected LUN (see 6.4.3.3).

TABLE 8-6 RELEASE SIM QUELE
S N

|Size|Dir| Release SIM Queue
Fom ot o +
0 | Address of this CCB
0 | CAM Control Block Length
0 | Function Code
I | CAM Status
Connect 1D
reserved
0 Path 1D
g Target ID

LUN
0 | CAM Flags (0SD)

B It e btk LT T T oy +

1 o et et et e Pt et N

+
1
1

This function shall return CAM status of Request Completed Without Error.
8.2.4 Scan SCSI Bus

This function is executed to get information on the installed devices on the
identified path. The Target and LUN fields are ignored. The XPT/SIM shall
scan each Target/LUN address on the SCSI bus and update it's tables with the
Inquiry information provided by each Target/LUN that responds.

TABLE 8-4 SCAN SCSI BUS

+ +

|Size|Dir| Scan SCSI Bus
Fommmt e e e e +
4 | 0 | Address of this CCB

2 | 0| CAM Control Block Length
1 | 0| Function Code

1 I | CAM Status

Connect ID

1 reserved
110 Path ID
110 Target ID
110 LUN

4 | 0| CAM Flags (0SD)

The information on attached 5CSI devices is gathered at power on by the
XPT/SIM. This function is provided to force an update of the table contents
and it is not recommended that it be used often as execution can take a long
time. Any new devices detected during the scan shall generate Asynchronous
Callbacks to peripheral drivers registered for New Devices Found.

This function shall return non-zero CAM Status.

Common Access Method XPT/SIM Support Rev 3.0 April 27, 1992 Page 34

- CAM Status of Request Completed Without Error indicates that the
devices have been scanned and the table updated.
- CAM Status of Invalid Path ID indicates that the Path ID is invalid.

Drivers are always able to use SCSI I/0 requests to check for devices which
may not have been found at power up.

8.2.5 Set Async Callback

This function is provided so that a Eeripheral driver can register a callback
routine for the selected Bus/Target/LUN nexus.

+
|Size|Dir| Set Async Callback
B s T, SRR -
4 | 0 | Address of this CCB

0 | CAM Control Block Length
0 | Function Code
I | CAM Status
Copnect 1D

reserved
Path ID
Target ID

LUN

CAM Flags (0SD)
Asynchronous Event Enables
31-24 Vendor Unique
23- 8 reserved
New Devices found during rescan
SIM module De-Registere
SIM module Registered
Sent Bus Device Reset to Target
SCSI AEN :

reserved
Unsolicited Reselection
Unsolicited SCSI Bus Reset
4 | 0 | Asynchronous Callback Pointer
4 | 0 | Peripheral Driver Buffer Pointer
1| 0| Size of Allocated Peripheral Buffer

B et e RS
ocoooo

i NS L LN CY

This function shall return:

- CAM Status of Request Completed Without Error indicates that the
registration of the callback routine was accepted.

- CAM Status of Request Completed with Error indicates that the registration
was rejected (possibly due to invalid parameter settings).

8.2.6 Set Device Type

This function requires the XPT/SIM to add the Target ID, LUN and ?eripheral
type to the table of attached peripherals built during CAM initialization.

IHIbBar LA

C

(14

Rev 3.0

Common Access Method XPT/SIM Support April 27, 1992 Page 35

TABLE 8-8 SET DEVICE TYPE CCB

+ +
|Size|Dir| Set Device Type
B e M +
4 | 0 | Address of this CCB
0 | CAM Control Block Length
0 | Function Code
I | CAM Status
Connect ID
reserved
Path ID
Target ID
LUN

CAM Flags (0SD

bt P et e ot ok —

The XPT/SIM does not check the validity of the information supglied by the
peripheral driver. This function shall return non-zero CAM Status.

NOTE: Blind insertion of device tg?e information may corrupt the table, and
results would be unpredictable.

- CAM Status of Request Completed Without Error indicates that the specified
information was inserted into the table of SCSI devices.

- CAM Status of Request Completed with Error indicates a problem e.g. not
enough room in the table to add the device information.

8.3 SCSI Control Functions
8.3.1 Abort SCSI Command

This function requests that a SCSI command be aborted by identifying the CCB
associated with the request. It should be issued on any 1/0 request that has
not completed that the driver wishes to abort. Success of the rt function
is never assured. This request does not necessarily result in an Abort message
being issued over SCSI. -

TABLE 8-9 ABORT SCSI COMMAND CCB

0 | Address of this CCB
CAM Control Block Length
0 | Function Code
I | CAM Status
-Connect 1D
reserved
0 Path ID
0 Target ID
0 LUN
0 | CAM Flags ADSD)
0 | CCB to be Aborted Pointer
b T —————— 4

T bt ek ok — e PO S

This function shall return CAM Status of Request Completed Without Error.

Common Access Method XPT/SIM Support Rev 3.0

April 27, 1992 Page 36

The Abort operation shali always succeed.
8.3.2 Reset SCSI Bus

This function is used to reset the specified SCSI bus. This function should
not be used in normal operation. This request shall always result in the SCSI
RST signal being asserted (see 6.4.3.3 and 6.5).

+
|Size|Dir| Reset SCSI Bus
B i S i et et +
0 | Address of this CCB
0 | CAM Control Block Length
0 | Function Code
I | CAM Status
Connect ID
reserved

Path ID

Target ID

LUN

Ul
CA{ Flags (0SD)

ocooo

T - Pt D L

This function shall return CAM Status of Request Completed Without Error.

The actual failure or success of the Reset SCSI Bus is indicated by the
Asynchronous Callback information.

8.3.3 Reset SCSI Device

This function is used to reset the specified SCSI target. This function should
not be used in normal operation, but if I/0 to a particular device hangs up
for some reason, drivers can abort the I/0 and Reset the device before trying
again. This request shall always result in a Bus Device Reset message being
issued over SCSI (see 6.4.3.3 and 6.5).

TABLE 8-11 RESET SCSI DEVICE CCB
+

Fommmt e
|Size|Dir| Reset SCSI Device
L T T T +
4 | 0| Address of this CCB
2 | 0 | CAM Control Block Length
1| 0| Function Code
11 I | CAM Status
Connect 1D
1 reserved
110 Path 1D
110 Target ID
110 LUN
4 | 0 | CAM Flags (0SD)
T T . LT +

This function shall return CAM Status of Request Completed Without Error.

The actual failure or success of the Reset SCSI Device is indicated by the
Asynchronous Callback information.

iludr L2

A

14

Common Access Method XPT/SIM Support Rev 3.0

April 27, 1992 Page 37

8.3.4 Terminate 1/0 Process Request

This function requests that a SCSI I/0 request be terminated by identifyin
the CCB associated with the request. It should be issued on any 1/0 reques
that has not completed that the driver wishes to terminate. Success of the
Terminate [/0 Process is never assured. This request does not necessarily
result in a Terminate I/0 Process message being issued over SCSI.

TABLE 8-12 TERMINATE I1/0 PROCESS REQUEST CCB
T S

[Size|Dir| Terminate I/0 Process Request
Fommmtm e e ———— +
0 | Address of this CCB
CAM Control Block Length
Function Code
CAM Status
Connect ID
reserved

Path ID

Target 1D

LUN

CAM Flags (0SD)
CCB to be Aborted Pointer

-0

B e s L] ot e N L

I coooo

b Te— + -
This function shall return CAM Status of Request Completed Without Error.

The actual failure or success of the Terminate 1/0 Process operation is
indicated by the CAM Status eventually returned in the CCB specified. .

9. Execute SCSI 1/0

The most commonly executed request of the SIM is an 1/0 command, as defined in
the CCB with a Function Code of Execute SCSI 1/0.

9.1 CAHM Control Block to Reguest 1/0

Peripheral drivers should make all of their SCSI 1/0 requests using this
function, which is designed to take advantage of all features of SCSI which
gag]begpiovided by virtually any HBA/SIM combination. The CCB is as defined in
able 9-1.

This function will typically return with CAM Status of zero indicating that

the request was queued successfully. Function completion can be determined by

?gl}éng for non-zero status or through use of the Callback on Completion
ield.

Common Access Method XPT/SIM Support Rev 3.0 April 27, 1992 Page 38

TABLE 9-1 SCSI I/0 REQUEST CCB
Fome et et
|Size|Dir| SCSI I/0 Request
Pt e e e e e e e +
4 | 0-| Address of this CCB
CAM Control Block Length
Function Code
CAM Status
Connect ID
reserved
Path ID
Target 1D
LUN

CAM Flags (0SD)
Peripheral Driver Pointer
Next CCB Pointer
Request Mapping Infarmation (0SD)
Callback on Completion
3G List/Data Buffer Pointer
Data Transfer Length
Sense Info Buffer Pointer
Sdnse Info Buffer Length
CDB Length
Number of Scatter/Gather entries
VU Field
SCSI Status
Autosense Residual Length
reserved (0SD)
Residual Length
CDB
Timeout Value
Message Buffer Pointer {Target-only;
Message Buffer Length Target-only
VU Flags
Tag Quéue Action
reserved
Private Data

o= 1=]

D e e P e bt et s b bt N3
oooooCOoOooDoOCoOoOd

——

Y—
I 3RO B B 5 P e

10 o0ooCoCO-—

+
]
]

9.1.1 Callback on Completion

This is an 0SD field which contains the method by which the SIM is to return
to the caller. In some applications it is a pointer, but in others the
location of the Callback on Completion routine may be a fixed location and the
CCB would contain an argument. See the 0SD-specific considerations in

Clause 6. The address of the Completed CCB shal] be passed on the stack to
inform the peripheral driver which CCB has completed.

9.1.2 CAM Control Block Length

This field contains the length in b{tes of the CCB, including this field and
the Address of this CCB in the total.

9.1.3 CM Flags

This field contains bit settings as described in Table 9-2 to indicate special
handling of the requested function.

[
]
]
]
I
I
1
1
1
1
1
]
]
[}
]
:
I
1
1
]
]
I
I
1
1
1
1
1
]
1
1
]
1
]
i
]
|
+

1Hlddr L]

te

&7

Common Access Method XPT/SIM Support Rev 3.0 April 27, 1992 Page 39 Common Access Method APT/SIM Support Rev 3.0 April 27, 1992 Page 40

5 Disable Autosense - When set to 1 this bit disables autosense.

TABLE 9-2 CAM FLAGS (0SD) 4 Scatter/Gather - when set to 1 this bit indicates that data is not_ to be
tasmataant transferred to/from a single location in memory but to/from several. In
|Size|Bits| CAM Flags (0SD) this case the Data Buffer Pointer refers to a list of addresses and length
Fom et b e e + in bytes at each address to which the data is to be transferred. The

1| 7-6| Direction format of the 5G List is defined in Table 9-3. :
00= reserved i
01=In TABLE 9-3 SCATTER GATHER LIST
10=0ut toomnt
11=No Data Transfer | Size|
5 | 1=Disable Autosense N T e PP +
4 | 1=Scatter/Gather 4 | Data Address 1
3 | 1=Disable Callback on Comp 4 | Data Length 1
2 | l=Linked CDB . 4 | Data Address 2
1 1=Tagged Queue Action Enable 4 | Data Length 2
0 | 1=CDB is a Pointer :
1 7 | 1=Disable Disconnect 4 | Data Address n
* 6 | l=Initiate Synchronous Transfers 4 | Data Length n
* 5 | 1-Disable Synchronous Transfers tommto o +
4 | SIM Queue Priority .
1=Head insertion 3 Disable Callback on Com?letlon - When set to 1 the peripheral driver does
0=Normal (tail insertion) not want_the SIM to callback automatically when the request is completed.
#3 | SIM gueue Freeze This implies that the caller will be polling for a non-zero CAM Status
2 | SIM Queue Freeze Disable (which indicates successful completion or termination of the request).
1 | Engine Synchronize 2 Linked CDB - When set to 1 this CDB is a linked command. If this bit is
0 reserved set, then the Control field in the CDB shall have bit 0=1. If not, the
1 7 | SG List/Data 0=Host 1=Engine results are unpredictable. See 9.2.
6 | CDB Pointer 0=VA 1=PA 1 Tag Queue Actions are to be enabled.
5] SG List/Data 0=VA 1=PA 0 If the CDB is identified as a Pointer, the first four bytes of the CDB
4 | Sense Buffer 0=VA 1=PA field contain a pointer to the location of the CDB.
3 | Message Buffer 0=VA 1=PA
2 | Next CCB 0=VA 1=PA 9.1.3.2 Byte 2 Bits
1 [Callback on Comp 0=VA 1=PA
0 reserved 7 When Disable Disconnect=1 the Disconnect capability of SCS1 is disabled.
1 Target Mode-Specific CAM Flags The default of 0 sets bit 6=1 in the SCSI Identify MSG (which indicates
7 | Data Buffer Valid that the initiator has the ability to disconnect and reconnect.
6 | Status Buffer Valid 6 When Initiate Synchronous Transfers=1 the SIM shall negotiate Synchronous
5 | Message Buffer Valid transfers, and wherever possible execute s¥nchronous transfers.
4 reserved 5 When Disable Synchronous Transfers=1 the SIM shall negotiate Asynchronous
3 | 1=Phase-Cognizant Mode transfers (if previously negotiated Synchronous). If unable to negotiate
2 | 1=Target CCB Available Synchronous or negotiation has not yet been attempted, the SIM shall not
1 | 1=Disable AutoDisconnect initiate negotiation,
0 | 1l=Disable AutoSave/Restare 4 When SIM Queue Priority=1 the SIM shall place this CCB at the head of the
R T ST T e T TP + Target/LUN internal ?ueue to be the next operation sent to the Target/LUN
* These bits are mutually exclusive by the SIM. If the SIM is in the midst of an extended I/0 operation it may
These bits are mutually exclusive géaempt to disconnect from the current Target/LUN in order to service this
9,1.3.1 Byte 1 Bits 3 dhen SIM Queue Freeze=1 the SIM shall place its internal Target/LUN queue
into the frozen state. Upon callback, the CAM Status for this CCB shall
7-6 Direction - These encoded bits identify the direction of data movement have the SIM Queue Freeze flag set. This bit should only be set for SIM
during the data transfer phase, though when used in conjunction with error recovery and should be used in conjunction with the SIM Queue
Engine processing, they have a little diffferent meaning (see 11). Priority bit and the Release SIM Queue command.
- a setting of 0? indicates a Read operation (data transfer from target to 2 When SIM Queue Freeze Disable=1 the SIM Queue Freeze mechanism shall be
initiator). disabled i.e. the SIM Queue shall not be frozen for the Target/LUN
- a setting of 10 indicates a Write operation (data transfer from . addressed in this CCB in the event of a non-complete CAM status. NOTE:
initiator to target). This capability relieves the pgriﬁheral driver from having to unlock the
- a setting of 11 indicates there is to be no data transfer. SIM Queue, thus simplifying peripheral drivers.

FUTE, W 2]

GZ

514

Common Access Method XPT/SIM Support Rev 3.0 April 27, 1992 Page 41

1 The Engine Synchronize=1 is used in conjunction with the In or Out setting
to flush any residual bits before terminating engine processing (see 11).

9.1.3.3 Byte 3 Bits

The Pointer fields are set up to have one characteristic. If a bit is set to 1
it means the pointer contains a Physical Address. If set to 0 it means the
pointer contains a Virtual Address. If the SIM needs an address in a different
form to that provided, it should be converted by the SIM (using 0SD
facilities) and stored in Private Data.

9.1.3.4 Byte 4 Bits

The Tagget Mode Only Flags are only active on Enable LUN or Execute Target 1/0

commands.

7-5 The Buffer Valid bits identify which buffers have contents. In the event
that more than one bit is set, they shall be transferred in the sequence
of Data Buffer, Status, Message Buffer. i

3 Phase-Cognizant Mode - if target operations are supported, when set to 1,

the SIM shall operate in Phase-Cognizant Mode, otherwise it shall operate
in Processor Mode.

2 Target CCB Available - when set to 1 this bit indicates that the XPT/SIM
can use this CCB to process this request. A value of 0 indicates that this
CCB is not available to the XPT/SIM.

AutoDisconnect - when set to 1 this bit disables AutoDisconnect. The

default of 0 causes the XPT/SIM to automatically disconnect, if the

Identify message indicates DiscPriv is set.

0 AutoSave - when set to 1 this bit disables AutoSave. The default of 0
causes the XPT/SIM to automatically to send a Save Data Pointer message on
an AutoDisconnect.

9.1.4 CAM Status

This field is returned by the SIM after the function is completed. A zero
status indicates that the request is still in progress or queued. CAM Status
is defined in Table 9-4.

I1f Autosense information is available, the code returned shall be incremented
by 80h e.g. 04h indicates an error occurred, and Bih indicates that an error
occurred and Autosense information is available for analysis.

—

Common Access Method XPT/SIM Support Rev 3.0 April 27, 1992 Page 42

- 00h
- 01h

[I I I R |

02h
03h
04h
05h
06h
07h

09h

TABLE 9-4 CAM STATUS

00h | Request in progress
01h | Request completed without error
02h | Request aborted by host
03h | Unable to Abort Request
04h Rgﬂuest completed with error
CAM Busy
06h | Invalid Request
07h | Invalid Path ID
08h | SCSI device not installed
0Sh | Unable to Terminate 1/0 Process
0Ah | Target Selection Timeout
0Bh | Command Timeout
0Ch reserved
0Dh | Message Reject received
OER | SCSI Bus Reset Sent/Received
0Fh | Uncorrectable Parity Error Detected
10h | Autosense Request Sense Cmd Failed
11h | No HBA detected
12h | Data OverRun/UnderRun
13h | Unexpgcted Bus Free
14h | Target bus ?hase sequence failure
15h | CCB Length Inadeguate
16h | Cannot Provide Reguested Capability
17h | Bus Device Reset Sent
18h | Terminate I/0 Process
19-37h reserved

38h | Invalid LUN

39h | Invalid Target 1D

3Ah | Function not Implemented

3Bh | Nexus not Established

3Ch | Invalid Initiator ID

30h | SCSI CDB Received

3Eh | LUN Already Enabled

3Fh | SCSI bus Busy

tommm i + 1 2 e e o e e +

+40H | to indicate that SIM Queue is frozen
+B0h | to indicate that Autosense is valid

Target Mode Only Status

Request in progress; the request is still in process.

Request completed without error: the request has completed and no error
condition was encountered.

gequest aborted by host: the request was aborted by the peripheral
river.

Unable to Abort Request: the SIM was unable to abort the request as
instructed b{ the peripheral driver.

Request completed with error: the request has completed and an error
condition was encountered.

CAM Busy: CAM unable to accept request at this time.

Invalid Request: the request has been rejected because it is invalid.
Invalid Path ID indicates that the Path ID is invalid,

SCSI device not installed: Peripheral Device Type field is not valid.
Unable to Terminate [/0 Process: the SIM was unable to terminate the
request as instructed by the peripheral driver.

AMlBdr LD

9C

O

Common Access Method XPT/SIM Support Rev 3.0 April 27, 1992 Page 43

- 0Ah Target Selection Timeout: The target failed to respond to selection.

- 0Bh Command Timeout: the specified command did not complete within the
timer value specified in the CCB. Prior to reporting this status the
EIH ii responsible for ensuring the command is no longer active in the

arget.

- 0Bh Hessage Reject received: The SIM received a Message Reject MSG.

- DEh SCSI Bus Reset Sent/Received: The SCSI operation was terminated at some
Bomnt because the SCSI bus was reset. ,

- OFh Uncorrectable Parity Error . Detected: An uncorrectable SCSI bus parity
error was detected. When this occurs, the SIM sends the ABORT message
to the target.

- 10h Autosense Request Sense Command Failed: The SIM attempted to obtain
sense data and failed.

- 11h No HBA detected: HBA no longer responding to SIM (assumed to be a
hardware problem).

- 12h Data Overfun: tarEet transferred more data bytes than peripheral driver
indicated in the LCB.

- 13h Unexpected Bus Free: an unexpected Bus Free condition occurred.

- 14h Target Bus Phase Sequence Failure: the target failed to operate in a

proper manner according to X3.131-1991 e.g. it went to the Message Qut

Ehase after the initiator asserted ATN.)

- 15h CCB Length Inadequate: More private data area is required in the CCB.

- 16h Cannot Provide Requested Capability: Resources are not available to
Brouide the capability requested (in the CAM Flags).

- 17h Bus Device Reset Sent: this CCB was terminated because a Bus Device
Reset message was sent to the target.

- 18h Terminate I/0 Process: this CCB was terminated because a Terminate I/0
Process was sent to the target. .

- 38h Invalid LUN indicates that the LUN specified is outside the supported
range of the SCSI bus.

- 39h Invalid Target [D indicates that the Target ID does not match that used
by the HBA specified by the Path ID field.

- 3Ah Function Not Implemented indicates that Target Mode is not su?ported.

- 3Bh Nexus not Established: There is currently no connection established
between the specified Target ID and Target LUN and any initiator.

- 3Ch Invalid Initiator ID: The initiator 1D specified is outside the valid

range that is supported.

NOTE: ?his status can also be returned if the target tries to reselect an

initiator other than the one to which it was previously connected.

- 3Dh SCSI CDB Received: Indicates that the target has been selected and that
the SCSI CDB is present in the CCB.

- 3Eh LUNb?IEeady Enabled: The LUN identified in Enable LUN was previously
enabled.

- 3Fh SCSI bus Busy: The SIM failed to win arbitration for the SCSI Bus
during several different bus free phases.

9.1.5 (DB

This field either contains the SCSI CDB (Command Descriptor Block), or a
pointer to the CDB, to be dispatched.

9.1.6 CDB Length
This field contains the length in bytes of the CDB.

Common Access Method XPT/SIM Support Rev 3.0 April 27, 1992 Page 44

9.1.7 Data Transfer Length

This field contains the length in bytes of the data to be transferred.
9.1.8 Function Code

See 8.1.2.

9.1.9 LUN

This field identifies the SCSI LUN to which this CCB is being directed.
9.1.10 HMessage Buffer Length (Target-only)

This field contains the length in bytes of the field which is to be used to
hold Message information in the event that the Peripheral Drivers needs to
issue any MSGs. This field is exclusive to Target Mode operation.

9.1.11 Message Buffer Pointer (Target-only)

This field contains a ?ointer to buffer containing Messages. This pointer is
only valid for use in Target Mode.

9.1.12 Mext CCB Pointer

This field contains a pointer to the next command block in a chain of command
blocks. A value of 0 indicates the last command block on the chain. This field
is used for the linking of commands.

9.1.13 Mumber of Scatter/Gather entries
This field contains the number of entries in the 5G List.
9.1.14 Path ID

The Path ID specifies the SCSI port on the installed HBA to which the request
is addressed. Path IDs are assigned by the XPT, begin with zero, and need not
be consecutive. The Path ID of FFh is assigned for the XPT. An HBA may have
more than one SCSI port. A SIM may support more than one HBA.

9.1.15 Peripheral Driver Pointer

This field contains a pointer which is for the exclusive use of the Peripheral
Driver, which use is not defined by this standard.

9.1.16 Private Data

This field is used to contain whatever fields the CAM Module needs to execute
the reauest. As such it constitutes a scratchpad of working space needed by
the SIM and/or the XPT. The size of this area is an 0SD as it may differ
between SIMs and XPTs by environment or by vendor implementation. The device
driver is responsible to guery the XPT and ensure that enough Private Data
area is available to the SIM and/or XPT.

1HTbar L)

LT

Common Access Method XPT/SIM Support Rev 3.0 April 27, 1992 Page 45

9.1.17 Request Mapping Information (0SD)

This field is a ?ointer to an 0SD dependent data structure which is associated
with the original 1/0 request.

9.1.18 Residual Length

This field contains the difference in twos comﬁlement form of the number of
gat%hbyégg transferred by the HBA compared with the number of bytes requested
y the .

9.1.19 SCSI Status

This field contains the status byte returned by the SCSI target after the
command is completed.

9.1.20 Sense Info Buffer Length

This field contains the Iength in bytes of the field which is to be used to
hold Sense data in the event that a Request Sense is issued.

9.1.21 Sense Info Buffer Pointer

This field contains a pointer to the data buffer for Request Sense data. This
pointer will only be used if a Check Condition occurs while perfarming the
specified command.

9.1.22 SG List/Data Buffer Pointer

This field contains a pointer to either the data buffer to which data is to be
transferred, or to the 56 List which contains the list of scatter/gather
addresses to be used for the transfer.

9.1.23 Tagged Queue Action

SCST provides the capability of tagging commands to force execution ina
specific sequence, or of letting the target optimize the sequence of execution
to improve performance. This function provides a similar ca abilltg. For a
description of the tagged conmand queueing philosophy see SCSI-2 X3.131-1991.

When the Queue Action Enable bit in the CAM Flags is set, the CDB issued by
the SIM shall be associated with the Queue Action specified as:

20h = Simple Tag Request
21h = Head of Queue Tag Request
22h = Ordered Queue Tag Request

9.1.24 Target ID

This field identifies the SCSI target which is to be selected for execution of
the CCB request.

9.1.25 Timeout Value
This field contains the maximum ?eriod in seconds that an issued SCSI command

request can remain outstanding. If this value is exceeded then the CAM Status
shall report the timeout condition. A value of 00h in the CCB means the

Common Access Method XPT/SIM Support Rev 3.0 April 27, 1992 Page 46

Eeriphergl.driver accepts the SIM default timeout. A value of F...Fh in the
CB specifies an infinite period.

9.1.26 VU Field

The uses for this field are defined in the vendor specification.
9.1.27 WU Flags '

The uses for this field are defined in the vendor specification.
9.2 Command Linking

The SIM supparts SCSI's abilitY to link commands in order to guarantee the
sequential execution of several requests. This function requires that both the
HBA and the involved target(s) support the SCSI Link capability.

To utilize linkinE a chain of CCBs is built with the Next CCB Pointer bein
used to link the C(Bs together. The CAM Flag Link bit shall be set in all CEBS
but the last in the chain. When a SCSI target returns the Linked Command
Complete message, the next CCB is processed, and its associated CDB is
dispatched. I

ARy_Check Condition returned by the target on a linked command shall break the
chain.

10. Target Mode (Optional)

If a Target Mode function is specified by a CCB and this functionality is not
?rouided by a particular SIM implementation, then a CAM Status of Function Not
mplemented shall be returned in the CCB.

The Target Mode functieonality causes the HBA associated with the specified
SCSI 1ink to be set up so that it may be selected as a target i.e. when an HEA
lsb?perating in Target mode, it is responding to other HBAs on the same SCSI
cable.

There are two different modes of target operation, either or both of which may
be supported b% the XPT/SIM as defined by the Target Mode Support flags in the
Path Inquiry CCB.

- Processor mode
- Phase-Cognizant mode

Processor mode permits an aﬁplication to register itself as a LUN and provide
a set of one or more CCBs that the XPT/SIM can use for receivinﬂ and sending
data. In this mode, when the adapter is selected and the XPT/SIM receives an
Identify message for a LUN that has registered as a Processor LUN, the XPT/SIM
will accept any processor device commands (Inquiry, Request Sense, Send,
Receive) and, using one of the available CCB's, process the SCSI command
through compfetion.

Upon disconnection, the SIM calls back on completion to let the application
know that the CCB has been processed. From the time that the application
registers itself until the time a command has completed, there is no callabck
to the application.

LHlbdy L1

87

8¢

Common Acces. Method XPT/SIM Support Rev 3.0 April 27, 1992 Page 47

In summary, Processor applications ?et called back only after the SCSI command
has been completely processed, and leaves all phase handling and SCSI command
processing nuances to the XPT/SIM and the previously registered CCB's.

Phase-Cognizant mode permits an application tighter control over what takes
place when a SCSI command is received by the SIM. When a Phase-Cognizant
application registers itself and a command is received, the XPT/SIM does an
immediate Callback on Comgletiun after placing the SCSI command in an
available CCB. The Phase- ognizant application is responsible to set up data,
message, status fields and CAM-Flags in the CCB and re-issue the CCB with an
Execute Target I/0 function code so that the XPT/SIM knows which phases it
should execute. The "callback-reissue CCB" cycle may happen multiple times
before a command completes execution.

In summary, Phase Cognizant applications get a callback immediately after the
SCSI command block is received and is expected to instruct the XPT/SIM as to
which phases to go through to perform the command.

10.1 Enable LUN

The specified Target ID shall match that returned by the HBA Inquiry Function
for tﬁe HBA. The specified LUN is the one enabled for selection, and if the
HBA is to respond as an additional LUN, another Enable LUN is required.

In addition to providing a hook into the a? lication, this function is
intended to provide an area that the XPT/SIM can use as working space when the
HBA is selected.

TABLE 10-1 ENABLE LUN CCB
| T R
|Size|Dir| Enable LUN CCB
tommetmmmt e +
0 | Address of this CCB
0 | CAM Control Block Length
0 | Function Code
I | CAM Status
Connect ID
reserved
Path ID
Target ID
LUN

CAM Flags (0SD)

Group 6 Vendor Unique CDB Length
Group 7 Vendor Unique CDB Length
Pointer to Target CCB List
Number of Target CCBs

Fomcatanadt i T e e -

N PN TN e et ot ot ot i =]
cooooooo

If the Number of Target CCBs is zero, then Target Mode is disabled, otherwise
the Pointer to Target CCB List refers to a list of addresses of CCBs to which
the data is to be transferred (see Table 10-2).

Common Access Method XPT/SIM Support Rev 3.0 April 27, 1992 Page 48

TABLE 10-2 TARGET CCB LIST

t———=t

|Size| Target CCB List
Fom et +

4 | CCB Address 1
4 | CCB Address 2

4 | CCB Address n

L T +

The XPT/SIM shall place the pointer to the CCB, or the pointer to the list of
CCBs, in a list until the specified Target ID and LUN is selected on the SCSI
link specified by the Path ID field. While the request is being held, the CAM
Status field of the Target CCB, shall be set to Re?uest in Progress. The
application is required to po]i on the CAM status field of the Target CCB or
provide a Completion Callback routine through the Target CCB.

The XPT/SIM shall keep an indication of whether a single CCB or list of CCBs
was provided on the Enable LUN service.

The XPT/SIM shall set the following in each Target CCB when they are first
provided: I

- CAM Status to Request In Progress
- CAM Flags shall be the same as those in the Enable LUN CCB
- CAM Flags shall set the Target CCB Available as needed

Hi%han the Target CCB provided, the following information shall be present and
valid,

- CAM Flag information including AutoDisconnect and AutoSave.

- CchB fie?d is valid for the Command Blocks that may be received. That is
either CDBs are embedded in the CCB, or a pointer to a CDB area is provided
in the CDB field.)])

- The Group 6 and 7 Vendor Unique CDB Length fields contain the number of
bytes a target application expects to receive for it's vendor unique
command set. The previous item shall go hand-in-hand with this requirement.
The Group 6 and 7 Vendor Unique CDB Length fields shall be retained for
each LUN enabled.

If the target agplication supports Vendor Unique Command Blocks, then the CDB
field of the CCB shall reflect the nature and size of those Vendor Unique
Command Blocks. Ample space shall be provided to contain the CDBs that may be
received. If a CDB greater than the size of the CDB field is desired, then the
CDB field shall contain a pointer to a CDB.

To disable the selection of a specific LUN, the application performs an Enable
LUN with a zero value for the Number of Target CCBs.

If a LUN is disabled, after havin? been enabled, then the Inquiry data and the
Vendor Unique CDB Length data shall be cleared.

The XPT/SIM shall prevent a nexus bein? established between an initiator and a
specified LUN that has been disabled. If there is a pre-existing nexus, then
Invalid Request shall be returned.

This function shall return non-zero CAM Status.

AHldar L2

bZ

b%

Common Access Method XPT/SIM Support Rev 3.0 April 27, 1992 Page 49

- CAM Status of Request Completed Without Error indicates that the Enable LUN
was completed successfully.

- CAM Status of Invalid Request indicates that there is currently a nexus
established with an initiator that shall be terminated, first.

- CAM Status of Invalid Path ID indicates that the Path ID is invalid.

- CAM Status of Invalid Target ID indicates that the Target ID does not match
that used by the HBA specified by the Path ID field. \

- CAM Status of Invalid LUN indicates that the LUN specified is outside the

sgﬂported range of the SCST bus.

CAM Status of Function Not Implemented indicates that Target Mode is not

supported by this implementation of CAM.

10.2 Phase Cognizant Mode
10.2.1 Target Operation of the HBA

When the HBA is selected, the XPT/SIM automatically sets the HBA to the
Message Out phase to receive the Identify, Synchronous Data, and other
messages that may be sent by the Initiator. The XPT/SIM response to these
messages shall be as defined in X3.131-1991.

The LUN shall be extracted from the Identify Hessage and the apgrupriate CCB
shall be extracted from the list of CCBs being held by the XPT/SIM.

If the LUNTAR bit 5or anﬁ of the reserved bits) of the Identify Message is set
;0_%! :hen the XPT/SIM shall send a MESSAGE REJECT message back to the
initiator.

If no CCBs are being held b{ the XPT/SIM for a Tar?et ID, then the XPT/SIM
shall not respond to the selection of that Target ID.

If CCBs are being held by the XPT/SIM, and the LUN indicated by the Identify
Message does not have a CCB provided by an application, then the XPT/SIM shall
provide the following support:

a) If an Inquiry command is sent to this LUN, then the XPT/SIM shall respond
with Inquiry Data that indicates "Logical Unit Not Supported.”

b) If any other command (except Request Sense) is sent to this LUN, then the
XPT/SIM shall respond with a Check Condition. .

c) If a Request Sense command is sent to this LUN after a Check Condition
status is sent, then the XPT/SIM shall respond with sense data that
indicates "Logical Unit Not Supported”.

The XPT/SIM shall scan the CAM Flags in the CCB(s) provided with Enable LUN.
If none of them have the Target CCB Available bit set, the XPT/SIM shall
reguest the SCSI CDB and post BSY status. The XPT/SIM shall not modify the
SCSI CDB(s) in the CCB(s).

After processing the CDB from a Target CCB, the target application shall set
CCB Available in the CAM Flags, which allows the application to pass the same
CCB back to the XPT/SIM ugon Callback on Completion {th1s prevents the
possibility that the XPT/SIM could use the CCB on selection). The setting of
the Target Available bit could be done at the Callback on Completion after the
Exectute Target 1/0 which trasnmits SCSI Status.

If a target application sets Target Available upon recognizing that a CDB has

Common Access Method XPT/SIM Support Rev 3.0 April 27, 1992 Page 50

been received and uses a different CCB to perform the data transfer, there is
a Iq?egll:kellhood of a BSY response to the initiator when a CCB is not
available.

The Disable Disconnect bit in the CAM Flags field shall be updated to indicate
the state of the DiscPriv bit in the Identify message that was received from
the initiator. If the DiscPriv bit was set in the Identify Message, then the
Disable Disconnect bit shall be cleared, and vice-versa. NOTE: The default
state of the Disable Disconnect bit in the CAM Flags is cleared, implying that
disconnect is enabled.

The Target ID field shall be set to the ID of the initiator that performed the
selection. This field can then be used by subsequent functions, such as
reselect, to determine the Initiator's ID.

Once the initial Message Out Phase is complete, the XPT/SIM automatically sets
the HBA to the Command Out Phase to request the SCSI CDB. After receiving the
SCSI CDB bytes, the XPT/SIM shall set the CAM status field to CAM Status of
SCSI CDB received, and clear the CCB Available bit in the CAM Flags.

Upon completion of the data phase, the XPT/SIM shall send the aﬁpru riate SCSI
status and Command Complete ahd then disconnect from the bus. The XPT/SIM
shall then post the required CAM Status in the CCB, or Callback on Completion.

If the Group Code of the Oﬁeration Code of the Command Block is Vendor Unique
the XPT/SIM shall ensure that only the indicated number of command bytes are
received. If the required number of bytes are exceeded or not transferred,
then the XPT/SIM shall return a status of Check Condition, the Sense Key in
the Sense Buffer shall be set to Illegal Request, and the Additional Sense Key
and Qualifier shall be set to Command Phase Error.

IT the DiscPriv bit in the Identif¥ message was set, which results in the
Disable Disconnect bit of the CAM lags being cleared, and the Disable
AutoDisconnect bit of the CAM Flags field is cleared, the XPT/SIM shall
automatically disconnect u¥un recelgt of the command block. The subsequent
invocation of the Execute Target I/0 function shall perform an automatic
reselect when it is invoked.

If a BUS DEVICE RESET messa?e is received at any time, the XPT/SIM shall set
the CAM Status field to SCSI Bus Reset Sent/Received for any CCB being held
(through Enable LUN), or that is active in the XPT/SIM.

If a SCSI Bus Reset occurs the asgnchronous callback and bus reset mechanism
defined for initiator mode shall be followed.

The SIM shall reject any CCB which has a Timeout Value of other than infinity.
10.2.2 Execute Target 1/0

If the Data Valid bit is set, the XPT/SIM shall enter the data phase indicated
bﬁ the direction bit in the CAM Flags field (ie. DATA IN or DATA OUT). It
shall send/receive data to/from the buffer(s) indicated in the CCBs Scatter
Gather List or Data Pointer.

If the Status Valid bit is sef. the XPT shall send the status byte sgecified
in the SCSI Status field to the current initiator and then send the Command
Complete Message. ’

INIEdr LD

8

Gt

Common Access Method XPT/SIM Support Rev 3.0 April 27, 1992 Page 51

If the Message Valid bit is set, the XPT shall enter the Message phase and
transfer the contents of the Message buffer.

The XPT/SIM shall receive and respond to any messages resulting from ATN being
@Sﬁﬁthd by the initiator, in addition to any messages it sends to the
initiator.

The XPT/SIM shall be able to execute all the ghases indicated by the Buffer
Valid bits of the CAM Flags, within a single invocation of the Execute Target
1/0 i.e. if more than one bit is set, the order of execution of the phases
shall be data, status, and message.

If the Data Buffer Valid and Status Buffer Valid bits of the CAM Flags are
both set for an invocation of Execute Target I/0, the AutoDisconnect and
AutoSave features shall be disabled.

If the Disable AutoDisconnect bit of the CAM Flags is cleared, and the Disable
Disconnect of the CAM Flags bit is cleared, then the XPT/SIM shall disconnect
on the completion of the data transfer.

If the Disable AutoSave bit of the CAM Flags is cleared, then the
éET/SIM s?all send a Save Data Pointers message to the initiator prior to
isconnect.

The XPT/SIM shall perform an automatic reselect if the XPT/SIM had .
disconnected after the receipt of the CDB, or had disconnected upon completion
of a previous Execute Target I/0 (within the same I/0 process). :

Upon the last Execute Target I/0, the target application should consider
Bettigg the Disable AutoSave bit, which shall disable the sending of the Save
ata Pointers.

This function typically returns with CAM Status of zero indicating that the

request was executed successfullﬁ. Function comﬁletxon can be determined by

?9]};“9 for non-zero status or through use of the Callback on Completion
ield.

10.3 Processor Hode
10.3.1 CCB Acceptance

In Processor mode, the Target CCB List shall cohtain at least one pre-built
CCB that the SIM can use when it responds to selection. The Target CCBs .that
are supported by the SIM include CDBs for the following commands:

Inquiry
Receive
Request Sense
Send

The SIM shall verify that the CCBs in the Target CCB List contain supported
commands, valid data buffers etc.

Any invalid CCB in the list shall be rejected and the LUN shall not be
enabled.

Common Access Method XPT/SIM Support Rev 3.0 April 27, 1992 Page 52

10.3.2 Target Operation of the HBA
When the target HBA is selected, it shall automatically request the CDB.

The SIM shall search the Target CCB List to find a matching CDB. If a matching
CDB is found, it shall verify that Target CCB Available=1, and use the
contents of the data buffers to process the command received. The SIM shall
clear Target CCB Available, and if the peripheral driver wants the CCB to be
re-used it is responsible to set Target CCB Available-1,

Ugon completion of the CDB received, the SIM shall report CAM Status in the
CCB and call back the peripheral driver.

If the Target CCB List has no CCBs with Target CCB Available=1, but matches
were found, the SIM shall send Busy Status to the Initiator.

If the Target CCB List contained no matching CCBs, then the SIM shall return
Check Condition to the Initiator. Upon rec915t of a Request Sense command, the
SIM shall return a Sense code of "Invalid CDB" to the Initiator.

If an Inguiry CDB is received but there is no Inquiry CDB in one of the CCBs
in the Target CCB List then the SIM shall return Inquiry Data of "LUN Not
Supported” to the Initiator. ROTE: A CCB to respond to an Inquiry CDB should
be provided in every Target CCB List.

If an Inguiry COB is and there is an Inquirﬁ CDB in one of the CCBs in the
Target CCB List then the SIM shall return the Inquiry information ?rovided by
the data buffer pointer. The SIM does not clear Target CCB Available or call
back as it is a placeholder of consistent information.

11. HBA Engines

An engine is a hardware device implemented in an HBA to perform time-intensive
functions not available on target devices. Generally, these engines are

‘required to process data prior to building a (DB and submitting to the device.

There may be more than one engine in a HB.

One use of engines is to compress data. In this mode, a device driver first
submits data to the engine. Once the engine has completed processing the data,
an Execute SCSI CCB can be built for the SCSI transfer.

The enﬂine model allows for the addressing of buffer memory located on the
HBA. The buffer addressing appears to the host as contiguous space. Using this
model, it is possible to submit multiple requests until the engine buffer is
full. Once the full condition is met, an Execute SCSI CCB can be built.

When the full condition occurs &as.defined bﬁ the Destination Data Length
equalling the Destination Data Maximum Lengt }. the amount of unprocessed
source data is reported in the Source Residual Length. The residual data may
then be re-submitted at a later time.

11.1 Engine Inquiry

This function is used to gather information about the data processing engines
installed in the HBA hardware.

AHlddr L)

=

&

Common Access Method XPT/SIM Support Rev 3.0 April 27, 1992 Page 53

TABLE 11-1 ENGINE INQUIRY CCB
tommmm et
|Size|Dir| Engine Inguiry
tommntemetaa-
0 | Address of this CCB
CAM Control Block Length
Function Code
CAM Status
Connect ID
reserved
Path ID
Target ID
LUN
CAH_F]aﬂs (0SD)
Engine Rumber
Enﬂine Type
1

— N
£t e =t =t P
—oooO0o Ll =1~

Buffer Memory
=Lossless Compression
2=Lossy Compression
3=Encryption
4-FF reserved
1 I Enﬂine Algorithm ID

=Vendor Unique

1=L71 Variation 1 (STAC
2=1L72 Variation 1 (HP DCZL)
3=LZ2 Variation 2 (Infochip)
4-FF reserved
q I | Engine Memory Size
O S S 1

The Engine Type reports the generic function the addressed engine is capable
of supporting.

The Engine Algorithm ID reports the specific capability the addressed engine
supporis.

The amount of buffer memory provided for an engine is reported in the Engine
Memory Size.

This function shall return non-zero CAM Status.
- CAM Status of Request Completed Without Error indicates that the other
returned fields are valid.
- CAM Status of Invalid Request indicates that the specified Engine Number is
not installed.

11.2 Execute Engine Request (Optional)

To accomodate buffering associated with the engine, the CAM Flag SG List/Data
set to 1=Engine is used to specify that the normal Data Buffer Pointer is
actually a physical address in the buffer space of the engine.

;?ere are four modes associated with engine processing established by CAM
ags:

- A Direction setting of Qut is used to Encrypt or Compress the data
- A Direction setting of In is used to Decrypt or Decompress the data
- Synchronize is used in conjunction with In or Qut to flush any residual

Common Access Method XPT/SIM Support Rev 3.0 April 27, 1992 Page 54

bits prior to terminating engine processing.

The Execute Engine Request CCB activates the engine to perform the requested
function. Some functions change the data size e.g. a compression engine
reduces the size of data prior to transmission over SCSI.

TABLE 11-2 EXECUTE ENGINE REQUEST CCB
+

%
|Size|Dir| . Execute Engine Request
tmmmtometam- —_——
0 | Address of this CCB
0 | CAM Control Block Length
0 | Function Code
I | CAM Status
Connect 1D
reserved

Path ID

Target ID

LUN

CAM Flags (0SD)
Peripheral Driver Pointer
feserved (0SD)
Request Mapping [nformation (0SD)
Callback on Completion
SG List/Data Buffer Pointer
Data Transfer Length
Engine Buffer Data Pointer
reserved (0SD
reserved (0SD
Number of Scatter/Gather entries
Destination Data Maximum Length
Destination Data Length
Source Residual Length
_reserved (0SD)
Timeout Value
reserved
Engine Number
VU Flags
reserved
reserved
0 | Private Data

_____ e e e e e e L L T

oooooDoooooo

SWNNALBNEEBRN— — BB E SR —— RS
oo [== i =l =]

4

This function will typically return with CAM status of In Progress indicating
that the request was queued successfully. Function completion can be
determined by ?oiling for non-zero status or through use of the Callback on
Completion field.

AHlbar L)

zE

Common Access Method XPT/SIM Support Rev 3.0 April 27, 1992 Page 55

ANNEX
Annex A. Physical/Logical Translation in 80x86 Enviromment (Informative)
A.1 0SD Formatting of Disk Drives

The DOS Ehysigai address to/from logical block address conversion al?orithms
to map SCSI disks into int 13h Head-Cylinder-Sector format vary widely between
suppliers of software to support third party disks.

The fol]owin? "C" routines have been ado?ted by CAM as representing the most
efficient utlization of capacity. The following code is ANSI "C" that can be

compiled using the Microsoft C compiler, version 5.1.

a) SETSIZE converts a Read Capacity value to int 13h Head-Cylinder-Sector
requirements. It minimizes the value for number of heads and maximizes the
number of cylinders. This will supgort rather large disks before the
number of heads will not fit in 4 bits (or 6 bits). This algorithm also
minimizes the number of sectors that will be unused at the end of the disk
while allowing for very large disks to be accomodated. This algorithm does
not use physical geometry.

b) LTOP does logical to physical conversion
¢) PTOL does physical to logical conversion
d) MAIN is a test routine for a, b and c.
A.1.1 SETSIZE

*

typedef unsigned int UINT;
typedef unsigned long ULNG:

:/ Convert from logical block count to Cylinder, Sector and Head (int 13)

int setsize(ULNG capacity,UINT *cyls,UINT *hds,UINT *secs)

{
UINT rv = O;
ULNG heads, sectors, cylinders, temp;

cylinders = 1024L;

/* Set number of cylinders to max value */
sectors = 62L;

/* Max out number of sectors per track */

temp = cylinders * sectors; /* Compute divisor for heads */
heads = capacity / temp; /* Compute value for number of heads */
if (capacity % temp) { /* If no remainder, donel */
heads++; /* Else, increment number of heads */
temp = cylinders * heads; /* Compute divisor for sectors */
sectors = capacity ; temp; /* Compute value for sectors per track */
if (capacity % temp /* 1f no remainder, done! */
sectors++; /* Else, increment number of sectors */

temp = heads * sectors; Compute divisor for cylinders */
gy]inders = capacity / temp; /* Compute number of cylinders */

Common Access Method XPT/SIM Support Rev 3.0 April 27, 1992 Page 56
.
if (cylinders == 0) rv=1;

;UINTE cylinders;

/* Give error if 0 cylinders */

cyls / Stuff return values */
*5ecs UINT) sectors;

*hds UINT) heads;

return(rv);

}
A.1.2 LTOP

*
:/ logical to physical conversion

goid)]top(ULHG block,UINT hd_count,UINT sec_count,UINT *cyl,UINT *hd,UINT
sec

t UINT
spc;
spc = Rd count * sec_count;
*cyl = bTock / spc; I
*hd = {b]ock % spc} / sec_count;
sec = ock % spc sec_count;
% block % spc) % ¥

b

A.1.3 PTOL

*
:/ Physical to logical conversion

ULNG ptol(UINT cyl,UINT hd,UINT sec,UINT cyl_count,UINT hd_count,UINT
sec_count)

{
ULNG cylsize;
cylsize = sec_count * hd_count;
return((cyl *"cylsize) + (hd * sec_count) + sec);

A.2 Backwards Compatibility

The selection of a new algorithm for CAM solves the problem of future
cnm?atibility. but it does not solve the problem of the installed base. The
following techniques are an examgle of how a supplier can update the installed
base to UAM-compliant operation but not require users to reformat their
drives. These techniques are suitable for suEport of more than one device, as
long as the number of sectors per track is the same on all devices.

A.2.1 ROM-based

The one sector that is independent of the algorithm is sector 00. Under DOS
and many other Opgr@tin? S¥stems this sector is used for the boot sector and
contains the Partition Table for a fixed disk.

If the Partition Table is structured according to M5 DOS and IBM DOS

LHlbdw L2

£

€€

Common Access Method XPT/SIM Support Rev 3.0 April 27, 1992 Page 57 Common Access Method XPT/SIM Support Rev 3.0 April 27, 1992 Page 58

standards, partitions end on cylinder boundaries e.g. If not equal
. Use Defaults
Offset from start of Partition Table entry Exit
00h Boot Indicator 80h Cyls = Capacity / (End_head+1 * End_sector)
0lh Beginning or start head 01h ¥
02h beginning or start sector 01lh A.2.2 RAM-based
03h Beginning or start cylinder 00h
04h System indicator 04h Under DOS it is possible to madify the code of the boot sector to accomplish
05h Ending head 07h bootahillt¥. Access to other partitions is dependent on the device driver to
06h Ending sector 91h do a translation.
07h Ending cylinder) . 7Ch ‘ . .
08h Starting sector (relative to beginning of disk) This method is a patch just prior to jumping to code loaded in memory at
OCh Number of sectors in partition segment 00 offset 7C00h.
The endinﬁ head 07h indicates a device with 8 heads (0 to 7). The ending . PUSH AX ; Save registers used in patch
sector 91h contains 2 bits of high cylinder so it has to be masked to obtain PUSH DX
ending sector = 11h (17 decimal). MOV AH,08 i set function code = 8 get drive parameters
INT 13 ; do INT 13 call
To verify these values calculate: - INC OH ; inc head number to convert from zero based
MOV E?CIA].DH y fix value of heads in BPB table
Logical Ending sector (from Beginning Head, Cylinder, and Sectar) AND L,3F ; Mask off non-sector information
MOV 37618}.CL ; fix value of sectors in BPB table
and compare it to: pop X
pop AX ; Restore registers used in patch
{Starting Sector + Number of Sectors in Partition) JHP 7C00 ; jump to partition boot loader
This leaves Number of Cylinders as the one unresolved parameter. This is 01B0 00 00 00 00 00 00 00 00-00 0O 00 00 00 00 80 01
obtained by: 01C0 01 00 06 07 91 7C 11 00-00 00 57 52 01 00 00 00
01D0 . 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
Read Capacity divided by (Heads * Sectors). 01E0 00 00 00 00 0O 00 00 00-00 00 00 00 00 00 00 00
01F0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 55 AA
All of this can be done by the BIOS in ROM or RAM. To be capable of booting
from any drive or cartridge re?ardless of the algorithm used to partition and tomm e e o Fommm oo Fommm e
format the media, the BIOS would need to respond to int 13 function 8 with the | 7C00 | 7003 | 7c0B | 7COD | 7COE |
head, sector, and cylinder values obtained from this information. In addition, Fomm e F oo ————— o e e Fommmmee T
the BIOS would need to use those values in its calculation from physical to Name Bytes/ |Sectors/ |Reserved
logical sectors. jump nop I B M 4 . 0 Sector | Cluster | Sectors
Fommme e et T . R e toemmmme e Fommee o +
Example of Pseudocode: | EB3C 90 | 49 42 4D 20 20-34 2E 30 | 00 02 | 04 | 0100 |
Femrmcmcnm—— Fem e ——.—— b —— Fomm e B R T +
For each Drive
Read Boot Sector (LBA 0) Homemeee + —--t- -+ Fommmmaaae b R +
Validate The Signature at end of Sector éESAA) | 7€w0 | 7Ci1 | 7€13 | 7C15 | 7C16 | 7C18 | IClA |
Find Partion with largest Logical Start Cyl P + -———t -+ P e +
DIR # Log'l | Media # FAT #
If No Partitions found FATs entries | Sectors | Descrip | Sectors | Sectors Heads
Use Defaults 02 00 02 00 00 55 00 11 00 08 00
Exit + L Ter— + B T Fomacaaas Fommm e Fommm e +

SECS = Ending Sector (from partition table
Heads = Ending Head+1 (from partition table)

Logical End = End cyl * (End_head+l * End sector) +
- (End_head * End_sector) + End_sector

Compare Logical End to Starting _sec + Number sec

1Hlddy L

+€

bE

Common Access Method XPT/SIM Support Rev 3.0 April 27, 1992 Page 59

Annex B: Target Application Examples (Informative)

The following are examples of how a Target Application can operate the Target

Mode capabilities defined in Section 10.

B.1 Phase-Cognizant Examples

B.1.1 Initfalization Sequence with Single Target CCB Provided

- fi1l Target CCB #1 with required info
targetCCBl.callbackPointer = callback routine address #1

- targetCCBList [0] = pointer to targetlCCB

NOTE: where targetCCBList is an array of pointers

]

fill Enable CCB with the required information

enableCCB. functionCode = function code for enable lun

enableCCB. targetid = the id of the target

enableCCB.targetLun = the lun to enable

enableCCB.group6VULength = vendor unique length for Group 6 {[F required
enableCCB.group7VULength = vendor unique length for Group 7 (IF required
enableCCB. targetCCBListLength = 1)

enableCb.targetCCBPointer = &targetCCBList

Eg??le LUN (&enableCCB)

]

B.1.2 Initialization Sequence with Multiple Target CCBs Provided

fill Target CCB #1 with required info

tar ethEB.callbackPointer = callback routine address #1

- fil Target CCB #2 with required info
target2CCB.callbackPointer = callback routine address #2

tar?etZCCB.camStatus.= request completed by target application

fil Tarﬂet CCB #n with required info .

targetnCCB.cal lbackPointer = callback routine address #n

targetnCCB.camStatus = request completed by target application

targetCCBList Eoi pointer to targetl1CCB

1

targetCCBList |1 pointer to target2CCB
targetCCBList [n pointer to targetnCCB

NOTE: where targetCCBList is an array of pointers

fill enable CCB with the required information

enab]eCCB. functionCode = function code for enable lun

enableCCB.targetid = the id of the target

enableCCB. targetLun = the lun to enable .
enableCCB.groupbVULength = vendor unique length for Group 6 (IF requ1red}
enableCCB.group/VULength = vendor unique length for Group 7 (IF required
enableCCB.targetCCBListLength = n, where n is the number of target CCBs
enableCb. targetCCBPointer = &targetCCBList

- EQ??IE LUN (&enableCCB)

B.1.3 Application Sequence with Single Execute Target 1/0

- loo? until target1CCB.camFlags Tar?etCCB Available bit is reset, OR
callback routine called from XPT/SIM

Common Access Method XPT/SIM Support Rev 3.0 April 27, 1992 Page 60

- process Scsi (DB field in target1CCB

- fill targetlCCB with required information
target1CCB. functionCode = function code for execute target io
targethCB.tamFla$s = data phase and status phase
target1CCB.dataBufferPointerLength = length of data
target1CCB.dataBufferPointer = pointer to data buffer
target1CCB.scsiStatus = whatever status is appropriate

- Execute Target I/0 (&targetCCB)

/* return target CCB to pool =/

- set targetl1(CB.camFlags TargetCCB Available bit

B.1.4 Application Sequence with Multiple Execute Target 1/0 .

-]00? until targetxCCB.camFlags Tar?etCCB Available bit is reset, OR
callback routine called from XPT/SIM (where x is one of the targetCCBs
provided in targetCCBList)

- ?rocess Scsi CDB field in targetxCCB

- oo?_unti] all data transferred

i1l targetxCCB with required information
targetxCCB. functionCode = function code for execute target io
targethCB.camFla?s = data phase
targetxCCB.dataBufferPointerLength = length of data
targetxCCB.dataBufferPointer = pointer to data buffer

IF (last data block)
targetxCCB.camFlags = data phase AND status phase
targetxCCB.scsiStatus = whatever status is appropriate

Execute Target 1/0 (&targetxCCB)

- end loop
/* return target CCB to pool =/ .
- set targetl1CCB.camFlags TargetCCB Available bit

B.2 Processor Mode Examples
B.2.1 Initialization Sequence with Single Target CCB Provided

- fill Target CCB #1 with required info
target1CCB.callbackPointer = callback routine address #1
target1CCB.dataBufferPointerLength = length of data
target1CCB.dataBufferPointer = pointer to data buffer
tar ethCB.camFlags = data phase

- fill Target CCB #2 with required info
target2CCB.callbackPointer = NULL o
target2CCB.dataBufferPointerLength = length of inquiry data)
target2CCB.dataBufferPointer = pointer to inquiry data buffer, which

contains the necessary inquiry information

target2CCB.camFlags = data phase

- targetCCBList [0]

pointer to targetlCCB
- targetCCBList [1

pointer to target2CCB

NOTE: where targetCCBList is an array of pointers

- fill Enable CCB with the required information
enableCCB. functionCode = function code for emable lun
enableCCB.targetid = the id of the target

iHIBd¥ LN

S

Common Access Method XPT/SIM Support Rev 3.0 April 27, 1992 Page 61

enableCCB. targetLun = the lun to enable
enableCCB.groupbVULength = vendor unique length for Group 6 (IF required
enableCCB.group/VlLength = vendor unique length for Group 7 (IF required
enableCCB.targetCCBListLength = 2
enableCb. targetCCBPointer = &targetCCBList

- Eg?gle LUN (&enableCCB)

B.2.2 Initialization Sequence with Multiple Target CCBs Provided

- fill Target CCB #1 with required info
target1CCB.callbackPointer = callback routine address #1
target1CCB.dataBufferPointerLength = length of data
target1CCB.dataBufferPointer = pointer to data buffer

argetxCCB.camFlags = data phase

- fill Target CCB #2 with required info
target2CLB.callbackPointer = callback routine address #2
target2CCB.dataBufferPointerLength = length of data
target2CCB.dataBufferPointer = pointer to data buffer
target2CCB.camflags = data phase

- fill Target CCB #n with required info
targetnC(B.callbackPointer = NULL .
targetnCCB. functionCode = function code for execute target io
targetnCCB.dataBufferPointerLength = length of inquiry data
targetnCCB.dataBufferPointer = pointer to inquiry data buffer, which

contains the necessary inquiry information

targetnCCB.camFlags = data phase
- targetCCBList [0] = pointer to targetlCCB
- targetCCBList [1] = pointer to target2CCB
- targetCCBList [n] = pointer to targetnCCB

NOTE: where targetCCBList is an array of pointers

- fill enable CCB with the required information
enableCCB. functionCode = function code for enable lun
enableCCB.targetid = the id of the target
enableCCB. targetLun = the lun to enabie
enableCCB.groupbVULength = vendor unique length for Group 6 (IF required
enableCCB. group7VllLength = vendor unique length for Group 7 (IF required
enableCCB.targetCCBListlength = n, where n is the number of target CCBs
enableCb.targetCCBPointer = &targetCCBList

- Eg??le LUN (&enableCCB)

B.2.3 Application Sequence

- ioa? until targetxCCB.camFlags TargetCCB Available bit is reset, OR
callback routine called from XPT/SIM L

- any processing of targetxCCB necessary (i.e. failure, check conditions,
*CAH status, eEcé .] /

/* return targe 0 poo , '

- set targetxCCB.camFlags TargetCCB Available bit

Common Access Method XPT/SIM Support Rev 3.0 April 27, 1992 Page 62

Annex C: UNIVOS 0SD Data Structures (Informative)

{* This file contains the definitions and data structures for the CAM
Subsystem interface. The contents of this file should match the

data structures and constants that are specified in the CAM document,
X379.2/90-186 Rev 3.0. */

/* Defines for the XPT function codes, Table 8-2 in the CAM spec. */

/* Common function commands, 0x00 - 0xOF */

#define XPT_NOOP 0x00 /* Execute Nothing */

#define XPT_SCSI IO 0x01 /* Execute the requested SCSI [0 */
#define XPT_GDEV_TYPE 0x02 /* Get the device type information */
#define XPT PATH IN 0x03 /* Path Inquiry */

#define XPT_REL SIM 0x04 /* Release the SIM queue that is frozen */
#define XPT_SASYNC CB 0x05 /* Set Async callback parameters */
#define XPT_SDEV_TYPE 0x06 /* Set the device type information */

/* XPT SCSI control functions, 0x10 - Ox1F */

#define XPT_ABORT 0x101 /* Abort the selected CCB */
#define XPTRESET BUS (Ox11 /* Reset the SCSI bus */

#define XPT RESET DEV 0x12 /* Reset the SCSI device, BOR */
#define XPT_TERM_TO 0x13 /* Terminate the [/0 process */

/* HBA enBine commands, 0x20 - 0x2F */
#define XPT ENG IHE 0x20 /* HBA engine inquiry */
#define XPT_ENGTEXEC 0xZ1 /* HBA execute engine request */

/* Target mode conmands.00§30 - 0x3F */

#define XPT EN LUN X /* Enable LUN, Target mode support */
#define XPT_TARGET_I0 0x31 /* Execute the target I0 request */

#define XPT FUNC Ox7F /* TEMPLATE */

#define XPT_VUNIQUE 0x80 /* A1l the rest are vendor unique commands */°
/* PO— R T) o S U e e e x/
/* General allocation length defines for the CCB structures. */

#define IOCDBLEN 12 /* Space for the CDB bytes/pointer */
#define VUHBA 14 /* Vendor Unique HBA length */

#define SIM ID 16 f/* ASCII string len for SIM ID */

#define HBATID 16 {* ASCII strin? len for HBA ID */

#define SIM_PRIV 50 /* Length of SIM private data area */

/* Structure definitions for the CAM control blocks, CCB's for the
subsystem. */

/* Common CCB header definition. */
%ypedef struct cch_header

struct cch_header *my _addr; /* The address of this CCB */
u_short cafi_cch _len; ~ /* Length of the entire CCB */
u_char cam Tunc”code; /* XPT function code */

u_char cam_status; /* Returned CAM subsystem status */

LHldar L1

2

Common Access Method XPT/SIM Support Rev 3.0 April 27, 1992 Page 63
u_char cam_hrsvd0; /* Reserved field */
u_char cam_path_id; /* Path ID for the request */
u_char cam_target_id; {* Target device ID *
u_char cam_target”lun; /* Target LUN number */
; ch_égn Eﬁaanlags: /* Flags for operation of the subsystem */

/* Common SCSI functions. */

/* Union definition for the CDB sﬁace in the SCSI 1/0 request CCB */
typedef union cdb_un

u_char *cam cdb ptr;
u_char cam €db Bytes[IOCDBLEN];
} CDBUN; - - .

/* Get device type CCB */
typedef struct ccb_getdev

/* Pointer to the CDB bytes to send */
/* Area for the CDB to send */

CCB HEADER cam ch; /* Header information fields */
char *cam_inq_data; /* Ptr to the inquiry data sEace *f
u_char cam_pd_type; /* Periph device type from the TLUN */

} CCBZGETDEV; ~

/* Path inquiry CCB */
%ypedef struct ccb_pathing

CCB_HEADER cam_ch;

u_char cam_version_num;

u_char cam_hba inguiry;

u_char cam_target_sprt;

u_char cam_hba misc;

u_short caﬁ_hbﬁ_en?_cnt;

u_char cam_vuhba_flags[VUHBA];
u_long cam_sim_pFiv;

ﬂ* Header information fields */
/
/
/
/
/
u_long cam_async_flags; ﬁ
/
/
/
/

* Version number for the SIM/HBA */
Mimic of INQ byte 7 for the HBA */
Flags for target mode support */
Misc HBA feature flags */

HBA engine count */

Vendor uniﬂue capabilities */

Size of SIM private data area */
Event cap. for Async Callback */
Highest path ID in the subsystem */

u_char cam hpath_id; *
B _ : ID of the HBA on the SCSI bus
*
*
*
*

u char cam initiator id;

»
S~

Reserved field, for alignment */
Reserved field, for alignment */
Vendor ID of the SIM */
Vendor ID of the HBA */
Ptr for the 0SD specific area */

u_char cam_prsvd0;
u_char cam_prsvdl;
char caan1mmv1d[SIM_ID];
char cam_hba"vid[HBA_ID];
u_char *Cam_0sd_usage;

} CCB_PATHINQ;

/* Release SIM Queue CCB */
typedef struct ccb_relsim

CCB HEADER cam_ch; /* Header information fields */
} CCB_RELSIM;

/* SCSI 1/0 Request CCB */
typedef struct cch_scsiio

CCB_HEADER cam_ch; /* Header information fields */
u char *cam pdrv ptr; /* Ptr used by the Peripheral driver */
CCB_HEADER ¥cam_fiext_cch; /* Ptr to the next CCB for action */

Common Access Method XPT/SIM Support

u_char *cam_req_map;
void (*cam Ebfcnp)(i;
u_char *cam data_ptr;
u_long cam dxfer_len;
u_char *cam_sense ptr;
u_char cam Sense Ten;
u_char cam_cdb len;
u_short cam sglist_cnt;
u_long cam _osd rsvd0;
u_char cam_scsi_status;
u_char cam_sens& resid;
u char cam osd rsvdl[Z]:
long cam resid;
CDB UN cam cdb io;
u_long cam”timéout;
u_char *cam_msg_ptr;
u_short cam _msgb_len;
u_short cam vu_fTags;
u_char cam_fag_action;
u_char cam_iorSvd0[3];
u”char cam sim priv[SIM PRIV 1;
} CCBZSCSIIO; ~ I

/* Set Async Callback CCB =/
typedef struct ccb_setasync

CCB HEADER cam ch;
u_ldng cam_asyfic_flags;
void ?*cam:asgnc“func)():
u_char *pdrv_bufy
u_char drv_ﬁuf_ien;

} CCB_SETASYNC;

/* Set device type CCB */
typedef struct cch_setdev

CCB HEADER cam ch;
u_char cam dev_type;
} CCBTSETDEV; ~

/* SCSI Control Functions. */

/* Abort XPT Request CCB */
typedef struct ccb_abort

CCB_HEADER cam_ch;
CCB™HEADER *cam_abort_ch;
} CCB_ABORT; -

/* Reset SCSI Bus CCB */
typedef struct ccb_resetbus

CCB_HEADER cam_ch;
} CCB_RESETBUS;

/* Reset SCSI Device CCB */
typedef struct ccbh_resetdev

Rev 3.0 April 27, 1992 Page 64

Ptr for mapping info on the Req. */
Callback on completion function */
Pointer to the data buf/SG list */
Data xfer length */

Pointer to the sense data buffer */
Num of bytes in the Autosense buf */
Number of bytes for the CDB */

Num of scatter gather list entries */
05D Reserved field, for alignment */
Returned scsi device status */
Autosense resid length: 2's comp */
0SD Reserved field, fon alignment */
Transfer residual iength: 2%s comp */
Union for CDB bytes/pointer */
Timeout value */

Pointer to the message buffer */

Num of bytes in the message buf */
Vendor unique flags */

What to do for tag queuing */
Reserved field, for alignment */

SIM private data area *9

Header information fields */

Event enables for Callback resp */
Async Callback function address */
Buffer set aside by the Per. drv */
The size of the buffer */

Header information fields */
Val for the dev type field in EDT */

/* Header information fields */
/* Pointer to the CCB to abort */

/* Header information fields */

14luay LYY

LE

Common Access Method XPT/SIM Support

CCB HEADER cam ch:
} CCB_RESETDEV; ~

/* Terminate I/0 Process Request CCB */

typedef struct ccb_termio

CCB HEADER cam ch; .
CCB"HEADER *cam termio ch;
} CCB_TERMIO; - -

/* Target mode structures. */
typedef struct ccb_en_lun

CCB_HEADER cam_ch;

u_sfort cam grp6_len;

u_short cam grp7 len;

u_char *cam_ccb_Tistptr;

u_short cam_cch”listcnt;
} CCBZEN_LUN; -

/* HBA engine structures. */
typedef struct ccb_eng_ing

CCB HEADER cam ch;

u_sfiort cam eng num;

u_char cam_gng_type;

u_char cam_eng_algo;

u_long cam_eng_memory;
} CCBENG_INQ;

Rev 3.0

April 27, 1992 Page 65

/* Header information fields */

[* Header information fields */
/* Pointer to the CCB to terminate */

/* Header information fields */
/* Group 6 VU CDB length */

/* Group 7 VU CDB length */

/* Pointer to the target CCB list */
/* Count of Target CC

/* Header information fields */
/* The number for this inguiry */
/* Returned engine type *?

/* Returned algorithm type */

/* Returned engine memory size */

}ypedef struct cch_eng_exec /* NOTE: must match SCSIIO size */

CCB_HEADER cam_ch;
u_char *cam pdrv_ptr;
u_lang cam_eéngrsvd0;
u_char *cafi req map;
void (*canchfcnp)(i;
u_char *cam data ptr;
u_long cam dxfer”len;
u_char *cam engdata_ptr;
u_char cam_engrsvdl;
u_char cam_engrsvd?;
u_short cam_sglist_cnt;
u_long cam_dmax_len;
u_long cam_dest”len;
]ung cam_src_resid;
u_char cam engrsvd3[12];
u_long cam_timeout;
u_long cam_engrsvdd;
u_short cam eng num;
u_short cam_vu Tlags;
u_char cam_engrsvdh;
u_char cam engrsv@ﬁ[3%:
u_char cam_sim_priv{ SIM PRIV];

Header information fields */

Ptr used by the Peripheral driver */
Reserved field, for alignment */

Ptr for mapping info on the Req. */
Callback on completion function */
Pointer to the data buf/SG list */
Data xfer length */

Pointer to the engine buffer data */
Reserved field, for alignment */
Reserved field, for alignment */
Hum of scatter gather list entries */
Destination data maximum length */
Destination data length */

Source residual length: 2's comp */
Reserved field, for alignment */
Timeout value */

Reserved field, for alignment */
Engine number for this request */-
Vendor unique flags */

Reserved field, for alignment */
Reserved field, for alignment */

SIM private data area *

s in the list */

Common Access Method XPT/SIM Support

} CCB_ENG_EXEC;

Rev 3.0

April 27, 1992 Page 66

/* The CAM_SIM_ENTRY definition is used to define the entry points for
the S5IMs contained in the SCSI CAM subs¥ ¥e

contain a declaration for it's entry.

stem.
he address for this entry will

Each SIM file will

be stored in the cam_conftbi[] array along will all the other SIM

entries, */
typedef struct cam sim entry
long (*sim_init)(

long (*sim action}i):
} CAM_SIM ENTRY;

/* Pointer to the SIM init routine */
/* Pointer to the SIM CCB go routine */

/* T - S *f
/* Defines for the CAM status field in the CCB header. */

#define CAM REQ INPROG 0x00 /* CCB request is in progress */
#define CAM REQCMP 0x01 /* CCB request completed w/out error */
#define CAM RE(ABORTED 0x02 /* CCB request aborted by the host */
#define CAM_UA ABORT 0x03 /* Unable to Abort CCB request */
#define CAH_REg CMP_ERR 0x04 /* CCB regquest completed with an err */
#define CAM_BUSY 0x05 /* CAM subsystem is busy */

#define CAM REQ INVALID 0x06 /* CCB request is invalid */

#define CAM PATH INVALID 0x07 /* Path ID supplied is invalid */
#define CAM _DEV ROT THERE 0x08 /* SCSI device not installed/there */
#define CAM_UA TERMTO 0x09 /* Unable to Terminate I/0 CCB reg */
#define CAM_SET_TIMEOUT 0x0A /* Target selection timeout */

#define CAM CMD TIMEOUT 0x0B /* Command timeout */

#define CAM MSG"REJECT REC 0x0D /* Hessage reject received */

#define CAM_SCST BUS RESET 0x0E /* SCSI bus reset sent/received */
#define CAM_UNCOR PARITY 0x0F /* Uncorrectable parity err occurred */
#define CAM_AUTOSENSE_FAIL 0x10 /* Autosense: Reguest sense cmd fail */
#define CAM NO HBA 0x11l /* No HBA detected Error */

#define CAM DATA RUN ERR 0x12 /* Data overrun/underrun error */
#define CAM_UNEXP BUSFREE 0x13 /* Unexpected BUS free */

#define CAM_ SEQUERCE FAIL 0x14 /* Target bus phase sequence failure */
#define CAM_CCB LEN ERR 0x15 /* CCB 1en%th supplied is inadequate */
#define CAM PROVIDE FAIL 0x16 /* Unable to provide requ. capability */
#define CAM BDR SENT 0x17 /* A SCSI BDR msg was sent to target */
#define CAM_REQ_TERMIO 0x18 /* CCB request terminated by the host */
#define CAM LUN_INVALID 0x38 /* LUN supglied is invalid */

#define CAM_TID INVALID 0x39 /* Target ID supplied is invalid */
#define CAM_FUNT NOTAVAIL 0x3A /* The requ. func is not available */
#define CAM_NO NEXUS 0x3B /* Nexus is not established */

#define CAM_IID INVALID 0x3C /* The initiator ID is invalid */
#define CAM CDB RECVD 0x3E /* The SCSI CDB has been received */
#define CAM_SCST BUSY 0x3F /* SCSI bus busy */

#define CAM SIM QFRZN 0x40 /* The SIM queue is frozen w/this err */
#define CAM_AUTUSNS_VALID 0x80 /* Autosense data valid for target */
#define CAM_STATUS_MASK 0x3F /* Mask bits for just the status # */
/* __ :\-f

iHiar LA

BE

Common Access Method XPT/SIM Support

Rev 3.0

April 27, 1992 Page 67

/* Defines for the CAM flags field in the CCB header. */

#define CAM DIR RESV
#define CAM DIRIN
#define CAM"DIRTOUT
#define CAM_DIRTNONE
#define CAM DIS AUTOSENSE
#define CAM_SCATTER VALID
#define CAM DIS CALTBACK
#define CAM_CDB”LINKED
#define CAM_QUEUE ENABLE
#define CAM'CDB_PDINTER

#define CAM DIS DISCONNECT
#define CAM_INITIATE SYNC
#define CAMDIS SYNC™
#define CAM_SIM QHEAD
#define CAM_SIM (FREEZE
#define CAM_SIM_QFRIDIS
#define CAM_ENG”SYNC

#define CAM ENG_SGLIST
#define CAM_CDB PHYS
#define CAM DATA PHYS
#define CAM_SNS BUF PHYS
#define CAM_MSG™BUF_PHYS
#define CAM_NXT_CCB™PHYS
#define CAM_CALLBCK”PHYS

#define CAM_DATAB VALID
#define CAM_STATUS VALID
#define CAM_MSGB VALID
#define CAM_TGT PHASE MODE

. #define CAM_TGT_CCB AVAIL

#define CAMDIS”AUTTDISC
#define CAHDIS AUTOSRP

/* Defines for the SIM/HBA queue actions.

0x00000000 /*
0x00000040 /*
0x00000080 /*
0x000000C0 /*
0x00000020 /*
0x00000010 /*
0x00000008 /*
0x00000004 /*
0x00000002 /*
0x00000001 /*

0x00008000 /*
0x00004000 /*
0x00002000 /*
0x00001000 /*
0x00000800 /*
0x00000400 /*
0x00000200 /*

0x00800000 /*
0x00400000 /*
0x00200000 /*
0x00100000 /*
0x00080000 /*
0x00040000 /*
0x00020000 /*

0x80000000 />
0x40000000 /*
0x20000000 /*
0x08000000 /*
0x04000000 /~*
0x02000000 /*
0x01000000 /*

SCSI 1/0 CCB, for the queue action field
defines from some other include file for

not need these definitions

#define CAM_SIMPLE QTAG
#define CAM HEAD QTAG
#define CAM_ORDERED QTAG

/* Defines for the timeout field in the SCST I/0 CCB.
A value of 0x0-0 indicates that the

here.] */

0x20
0x21
0x22

of OxF-F indicates a infinite timeout.
SIM's default timeout can take effect. */

#define CAM TIME DEFAULT
#define CAM_TIME_INFINITY

0x00000000

OxFFFFFF

Data direction (00: reserved) */
Data direction (01: DATA Iﬂ} *f
Data direction (10: DATA OUT) */
Data direction (11: no data) */
Disable autosense feature */
Scatter/gather list is valid */
Disable callback feature */

The CCB contains a linked CDB */
SIM Eueue actions are enabled */
The CDB field contains a pointer */

Disable disconnect */

Attem?t Sync data xfer, and SDTR */
Disable sync, go to async */

Place CCB at the head of SIM Q */
Return the SIM Q to frozen state */
Disable the SIM Q frozen state */
Flush resid bytes before cmplt */

The 5G list is for the HBA engine */
CDB pointer is physical *

5G/Buffer data ptrs are physical */
Autosense data ptr is physical */
Message buffer ptr is physical */
Next CCB pointer is phﬁsigai */
Callback func ptr is physical */

Data buffer valid */

Status buffer valid */

Messa?e buffer valid */

The SIM will run in phase mode */
Target CCB available */

Disable autodisconnect */ :
Disable autosave/restore ptrs */

oy . *

These value are used in the
‘ EThese values should match the
the SCSI message phases. We may

/* Tag for a simple gqueue */
/* Tag for headmgf qﬂeue xf
/* Tag for ordered queue */

At this time a value

/* Use SIM default value */
FF /* Infinite timeout for /0 */

Common Access Method XPT/SIM Support

Rev 3.0

April 27, 1992 Page 68

/* Defines for the Path Inquiry CCB fields. */

#define CAM_VERSION 0x25 /* Binary value for the current ver */
#define PI_MOP ABLE 0x80 /* Supports MDP message */

#define PI"WIDE 32 0x40 /* Supports 32 bit wide SCSI */
#define PI_WIDE_16 0x20 /* Supports 16 bit wide SCSI */
#define PI_SDTR_ABLE 0x10 /* Supports SDTR message */

#define PI_LINKED CDB - 0x08 /* Supports linked CDBs */

#define PI_TAG ABLE 0x02 /* Supports tag queue message */
#define PI_SOFT_RST 0x01 /* Supports soft reset */

#define PIT PROCESSOR 0x80 /* Target mode processor mode */
#define PIT_PHASE 0x40 /* Target mode phase cog. mode */
#define PIM SCANHILO 0x80 /* Bus scans from ID 7 to ID O */
#define PIM NOREMOVE 0x40 /* Removable dev not included in scan */
#define PIM_NOINQUIRY ; 0x20 /* Inquiry data not kept by XPT */

/* __ */
/* Defines for Asynchronous Callback CCB fields. */

#define AC_FOUND DEVICES 0x80 /* During a rescan new device found */
#define AC_SIM DEREGISTER 0x40 /* A loaded SIM has de-registered */
#define AC_SIM REGISTER 0x20 /* A loaded SIM has registered */
#define AC_SENT BDR 0x10 /* A BDR message was sent to target */
#define ACTSCSI”AEN 0x08 /* A SCSI AEN has been received */
#define ACTUNSOL RESEL 0x02 /* A unsolicited reselection occurred */
#define ACTBUS_RESET 0x01 /* A SCSI bus RESET occurred */

/* __ n/

/* Typedef for a scatter/gather list element. */

}ypedef struct sg_elem

u_char *cam_sg_address;
u_long cam Sg_count;

/* Scatter/Gather address */
/* Scatter/Gather count */

} SG_ELEM;

l* ___________ o e e e e ——— x/
/* Defines for the HBA engine inquiry CCB fields. */

#define EIT BUFFER 0x00 /* Engine type: Buffer memory */
#define EIT_LOSSLESS 0x01 /* Engine type: Lossless compression =/
#define EIT_LOSSLY 0x02 /* Engine type: Lossly compressian */
#define EIT_ENCRYPT 0x03 /* Engine type: Encryption */

#define EAD VUNIQUE 0x00 /* Eng algorithm ID: vendor unique */
#define EAD”LZ1V1 0x00 /* Eng algorithm ID: LZ1 var. 1%/
#define EAD LZ2V1 0x00 /* Eng algorithm ID: LZ2 var. 1%/
#define EAD”LZ2v2 0x00 /* Eng algorithm ID: LZ2 var. 2%/

1H1udr LAY

b2

b€

* /* The typedef for the Async callback information.

Common Access Method XPT/SIM Support Rev 3.0 April 27, 1992 Page 69

L O Y
e R S S R "/
/* UNIVOS 0SD defines and data structures. */

#define INQLEN 36 /* Inquiry string length to store. */

#define CAM SUCCESS 0 /* For signaling general success */
#define CAM_FAILURE 1 /* For signaling general failure */
0
1

#define CAM FALSE
#define CAM_TRUE

#define XPT_CCB_INVALID -1 /* for signaling a bad CCB to free */
/* General Unjon for Kernel Space allocation. Contains all the possible CCB

structures. This union should never be used for manipulating CCB's its only
use is for the allocation and deailocation of raw CCB space. */

/* General purpose flag value */
/* General purggse flag value */

}yPEGEf union ccb_size_union

CCB_SCSIIO csio;
CCB”GETDEV cqd;
CCB_PATHING cpi;
CCB™RELSIM crs;
CCB”SETASYNC csa;
CCB”SETDEV csd;
CCB_ABORT cab;
CCB™RESETBUS crb;
CCB™RESETDEV crd;
CCB™TERMIO ctio;
CCBTEN LUN cel;
CCBTENG INE cei;
CCBTENGTEXEC cee;
} CCB_STZE_UNION;

/* Please keep this first, for debug/print */

This structure is used to
store the su?plied info from the Set Async Callback CCB, in the EDT table
in a linked list structure. */

%ypedef struct async_info

*

struct async_info *cam async_next; /* pointer to the next structure */
u_long cam_event_enab]g; /* Event enables for Callback resp */
void (*cam async func)(i: /* Async Callback function address */
u_long cam_async_blen; Length of "information™ buffer */
u char *cam_asynt_ptr; /* Address for the "information */

} ASYRC_INFO; =

/* The CAM EDT table contains the device information for all the
devices, SCSI ID and LUN, for all the SCSI busses in the system. The
table contains a CAM_EDT_ENTRY structure for each device on the bus.
*

"
*

fypedef struct cam_edt_entry

Common Access Method XPT/SIM Support Rev 3.0 April 27, 1992 Page 70

long cam tlun_found; {* Flag for_the existence of the target/LUN */
ASYNC_INFO *cam_ainfo; /* Async callback list info for this B/T/L */
u_long cam_owner_ta?: /* Tag for peripheral driver's ownership */
char cam ifiq_dat3[INQLEN J;/* storage for the inquiry data */

} CAM_EDT ENTRY;

AHlddy LI

