BSR X3.***

Copies of this proposal may be purchased from:
X379.2/90-186

Global Engineering, 2805 McGaw St, Irvine, CA 92714
800-854-7179 714-261-1455

working draft proposed American National
Standard for Information Systems -

SCSI-2 Common Access Method
Transport
and
SCSI Interface Module
Rev 2.3 February 25, 1991

Secretariat
Computer and Business Equipment Manufacturers Association (CBEMA)

Abstract: This standard defines the software interface between device drivers
and the Host Bus Adapters or other means by which SCSI peripherals are
attached to a host processor. The software interface defined provides a common
interface specification for systems manufacturers, system integrators,
controller manufacturers, and suppliers of intelligent peripherals.

This is an internal working document of X379.2, a Task Group of Accredited
Standards Committee X3. As such this is not a completed standard. The

contents are actively being modified by the X379.2 Task Group. This document
is made available for review and comment only.

POINTS OF CONTACT:

John B. Lohmeyer
gggirman %3719.2

3718 N Rock Rd
Wichita KS 67226

316-636-8703

I. Dal Allan
Vice-Chairman X379.2
ENDL

N
14426 Black Walnut Court
Saratoga CA 95070

408-867-6630

An electronic copy of this document is available from the SCSI Bulletin Board
(316-636-8700).

This document has been prepared according to the style guide of the IS0
(International Organization of Standards?.

If this document was printed in a 2-up form directly from the printer, NOTEs
had to be adjusted to fit into a half-page, which may have resulted in an
imperfect representation of the format within the NOTE. This is most likely to
occur if a series of NOTEs are mixed in without any line separation.

This revision contains recommended changesngy derry Armstrogg
and the DOS 0SD working group. You will find that the DOS O
has been extensively revised.

John Gallant also submitted a list of change requests, most of
which are included. Please look them over carefullg, and be
sure to advise Dal by fax at 408-867-2115 of any objections.

IN1Ydy LAY

Fggew?rd (This Foreword is not part of American National Standard X3.***-
199x.

In this standard, the Transport (XPT) and SCSI Interface Module (SIM) for the
SCS1-2 Common Access Method is defined.

When the Small Computer System Interface (SCSI) was introduced, a large number
of systems integrators included support in their operating systems. However,
they were Earoc ial in implementation and a diverse set of strategies to
support SC3I devices were implemented in software.

Some_companies published their specifications and encouraged third-party
suppliers to add new peripherals. Others failed to add su?port for 3CSI or did
not publish the sgecificaﬁions. An increasing demand developed for some common
method to attach 5CSI peripherals to a number of operating systems and a Tarﬂe
range of computer systems. Much of this impetus stemmed from the growth in the
desktop computing environment.

In October 1988 a number of peripheral suppliers formed the Common Access
Method Committee to encourage an industry-wide effort to adopt a common
software interface to despatch input/output regquests to SCSI peripherals.

The primary objective was to define a set of software constructs and tables
that would permit the manufacturers of host adapters to provide software or
microcode to interpret requests in a common manner.

Qut of the proposals made by a large number of contributors, the CAM Committee
selected the best concepts and used them to develop the standard.

Some of the companies which contributed had designed their own methods to
support SCSI devices, and for the most part set aside individual business
considerations to foster the development and adoption of this standard.

Suggestions for improvement of this standard will be welcome. They should be
sent to the Computer and Business Equipment Manufacturers Association, 311
First Street N.W., Suite 500, Washington, DC 20001.

This standard was processed and ap?roued for submittal to ANSI by the
Accredited Standards Committee on Information Procsessing Systems, X3.
Committee approval of this standard does not necessarily imply that all
committee members voted for its approval. At the time it approved this
standard, the X3 Committee had the following members:

X3 Committee list goes here:
Subcommittee X3T9 on I1/0 interfaces, which reviewed this standard, had the
following members:

X379 Committee list goes here:

Task Group X379.2 on Lower-Level Interfaces, which completed the development
of this standard, had the following members:

X379.2 Committee list goes here:

The initial development work on this standard was done by the CAM Committee,
an industry group formed for this purpose. The membership of the CAM
Committee consisted of the following organizations:

Adaptec Data Technology NCR

AMD Eastman Kodak Olivetti

Apple Emulex uantum

A?EI Bell Labs Fujitsu uElectronics cientific Micro Systems
Caliper Future Domain Seagate

Cambrian Systems Hewlett Packard Sony . .
Cipher Data IBM Storage Dimensions
Cirrus Logic Imprimis Sun Microsystems
Columbia Data Interactive Systems Syquest Technology
CompuAdd JVC Sytron

Conner Peripherals LMS 0SD Trantor

Dell Computer Maxtor Western Digital
Di?ital quipment Micropolis

Dp Miniseribe

LHIHd? LA

S oiChChh L Lnoioniann
. . .

Common Access Method XPT/SIM Support

TABLE OF

Scope
Description of Clauses

. .
ot

References |

General Description
Environment

Peripheral Driver Func
XPT Functions

SIM Functions

.

- L M=

Definitions and Conven
Definitions
Conventions

b LOLO LU LI et
. . .
I -

Background

Software

CAM (Common Access Met
XPT Trans?urt)

SIM (SCSI Interface Mo
CCB (CAM Control Block
0SD (Operating System

')
..
£ LI P

LS PININIRI PO -

Principles of Operatio
Requirements

Transport

Accessing the XPT
Initialization
Callback on Completion
SCST_Request Queues
The Target/LUN and the
The SIM

SIM Queuing

SIM Queue Priority

Tag Recognition

Error conditions and

SIM Handling of SCSI R
Asynchronous Callback
Autosense

Loadable Hodules

0SD (Operating System
UNIX O?erating System
Initialization
Accessing the XPT

From the Peripheral Dr
From the SIM

[=3F=11= 7=,
RS = ks oe o
"

. .
LI

O~ bLoabdbseSBn—
P
A L S LA NS et
.

P
s s w
.

ST

Callback on Completion
Pointer Definition in
Re?uest Mapping Inform
XPT Interface
Functions for Periﬁher
Functions for SIM Modu

. .
. .

OBl PININ—

-

SRS SIS SIS SI D S OVOD
. . i . .

Pt bt ot et ot ok ot et o i i

N .

[a]

Rev 2.3 February 25, 1991

CONTENTS

tions
tions
hod)

dule)

%ependent)
n

Peripheral Driver

ueues within the Subsystem

esets

Dependent) Operation
iver

the UNIX Environment
ation

al Driver Support
le Support

TOC 1

LWL O NN DB SSWRIRNRN

Common Access Method XPT/SIM Support

.
—
.

~J

SIM Interface

Initialization
De-Registration
Accessing the XPT
Hardware Registration
Miscellaneous

.

e Bt B R BN] ~r
" s o oe a
s IR =

.

Initialization
Multiple XPTs
Device Table Handling

..
M-

Accessin? the XPT
Testing fo

Tl el et e e e e |

.
a1

-
.

Asynchronous Ca
Pointer Definitidn

.
d=in PRIMNN

.

. s - . .
4 W Lue Lol MIMRIMNIMRPIR
) .

CAM Control Blocks
CCB Header

XPT Function Code
CAM Status

Path ID

CAM Flags

Function Codes

Get Device Type
Path Inquiry
Release SIM Queue
Set Async Callback
Set Device Type

.
MM

O OO ~ ~~~

LD LY L POPIPATININD ot ot ot ek ot o
B
daloho—

Abort XPT Request
Reset SCSI Bus
Reset SCSI Device

P
..
B LOPI—

Execute SCSI [/0
Address of this CCB

CAM Flags

Byte 1 Bits
Byte 2 Bits
Byte 3 Bits
Byte 4 Bits

)
o e Lo

LOVLULVLOVLWWW oL Ok

P o e o ek o ok ok ot

.
.
2 LI b=

Novell Operating System

05/2 (Operating System 2)

CAM Control Block Length

SCSI Control Functions

Callback on Completion
CAM Control Block Length

Rev 2.3 February 25, 1991

DOS (Disk Operating System)

r the presence of the XPT/SIM
Sending a CCB to the XPT

Callback on Com?}gtign
acks

Terminate I/0 Process Request

CAM Control Block to Request 1/0

ToC 2

1NIHdY L2

£7

Common Access Method XPT/SIM Support Rev 2.3 February 25, 1991 T0OC 3 Common Access Method XPT/SIM Support Rev 2.3 February 25, 1991 TOC 4

9.1.5 CAM Status 40 TABLE 8-10 RESET SCSI BUS CCB 34
9.1.6 CDB 42 TABLE 8-11 RESET SCSI DEVICE CCB 35
9.1.7 CDB Length 42 TABLE 8-12 TERMINATE I/0 PROCESS REQUEST CCB 35
9.1.8 Data Transfer Length 42 TABLE 9-1 SCSI I/0 REQUEST CCB 36
9.1.9 Function Code 43 TABLE 9-2 CAM FLAGS (0SD) 38
9.1.10 LUN 43 TABLE 9-3 SCATTER GATHER LIST 39
9.1.11 Message Buffer Length sTarget—only} 43 TABLE 9-4 CAM STATUS ; a1
9.1.12 Message Buffer Pointer (Target-only 43 TABLE 10-1 ENABLE LUN CCB 46
9.1.13 Next [CB Pointer 43 TABLE 10-2 TARGET CCB LIST 46
9.1.14 Number of Scatter/Gather entries 43 .

9.1.15 Path 1D 43 TABLE 11-1 ENGINE INQUIRY CCB 52
9.1.16 Peripheral Driver Pointer 43 TABLE 11-1 EXECUTE ENGINE REQUEST CCB 53
9.1.17 Private Data 43

9.1.18 Request Mappinﬁ Information (0SD) 43

9.1.19 Residual Lengt 44

9.1.20 SCSI Status 44

9.1.21 Sense Info Buffer Length 44

9.1.22 Sense Info Buffer Pointer 44

9.1.23 SG List/Data Buffer Pointer 44

9.1.24 Tagged Queue Action 14

9.1.25 Target 1D 44

9.1.26 Timeout Value 44 |

9.1.27 VYU Flags 45

9.2 Command Linking 45

10. Target Mode (Optional) 45

10.1 Enable LUN 46

10.2 Phase Cognizant Mode 18

10.2.1 Target Operation of the HBA 48

10.2.2 Execute Target 1/0 49

10.3 Processor Hode 50

10.3.1 CCB Acceptance 50

10.3.2 Target Operation of the HBA 50

11. HBA Engines 51

11.1 Engine Inquiry 51

11.2 Execute Fngine Request (Optional) 52

FIGURES
FIGURE 3-1 CAM ENVIRONMENT MODEL 3
TABLES

TABLE 6-1 ASYNC CALLBACK OPCODE DATA REQUIREMENTS 13

TABLE 8-1 CAM CONTROL BLOCK HEADER 25

TABLE 8-2 SUPPORT OF SCSI MESSAGES 26

TABLE 8-3 XPT FUNCTION CODES 27

TABLE 8-4 GET DEVICE TYPE CCB 28

TABLE 8-5 PATH INQUIRY CCB - Part 1 of 2 29

TABLE 8-5 PATH INQUIRY CCB - Part 2 of 2 30

TABLE B-6 RELEASE SIM QUELE 31

TABLE 8-7 SET ASYNC CALLBACK CCB 32

TABLE 8-8 SET DEVICE TYPE CCB 33

TABLE 8-9 ABORT XPT REQUEST CCB i3

Anludy L1

€7

Common Access Method XPT/SIM Support Rev 2.3 February 25, 1991 Page 1

Information Processing Systems --
Common Access Method --
SCSI and Generic I/0

1. Scope

This standard defines the CAM (Common Access Method) for SCSI (Small Computer
Sﬁstems Interface).

The purpose of this standard is to define a methed whereby multiple
environments may adopt a common procedure for the support of SCSI devices.

The CAM provides a structured method for supporting peripherals with the
software (e.g. device driver) and hardware (e.g. host bus adapter) associated
with any computer.

SCSI has provided a diverse range of peripherals for attachment to a wide
range of computing equipment. Some system manufacturers have developed
approaches for SCSI attachment which are widely followed, increasing the
aﬁpllcat1ons available for the attachment of SCSI peripherals. In markets
where no standard method of attachment exists, however, variations between
third party sellers has made it near-impossible for end users to rely on being
able to attach more than one SCSI peripheral to one host bus adapter.

In an effort to broaden the application base for SCSI peripherals an ad hoc
industry ?roup of companies representing system integrators, controllers,
peripherals, and semiconductors decided to address the issues involved.

The CAM Committee was formed in October, 1988 and the first working document
of the XPT/SIM for SCSI I/0 was introduced in October, 1989.

1.1 Description of Clauses

Clause 1 contains the Scope and Purpose.

Clause 2 contains Referenced and Related International Standards.
Clause 3 contains the General Description.
Clause 4 contains the Glossary.

Clause

3
4
Clause 5 describes the services provided by the XPT and SIM.
6 describes the facilities that use the Transport and SIM.
7

Clause
the XPT.

Clgug?nﬂ contains the description of non-1/0 functions supported by the XPT
an .

describes the ways that the Operating Systems support CAM and access

g}ﬁuse 9 contains the description of 1/0 functions supported by the XPT and

Clause 10 contains the description of Target Mode functions supported by the

Common Access Method XPT/SIM Support Rev 2.3 February 25, 1991 Page 2

XPT and SIM.
2. References

IS0 DIS 10288 (ANSI X3.131-1990)
SCSI-2, Enhanced Small Computer Systems Interface

3. General Description

The aﬁp]ication environment for CAM is any cumEuter addressing a SCSI
ﬁerip eral through a protocol chip on a motherboard, an ATA interface, or a
ost Bus Adapter.

SCSI is a widely-used interface which provides common attachment for a variety
of peripherals. Unfortunately, there is no common way to provide access to
SCSI peripherals.

The purpose of the Common Access Method is to define a standard for the
support of Host Bus Adapters and the 1ike by device driver software.

Software in the Operating System dispatches I/0 (Input/ﬂutputg requests to the
SCSI peripherals in a number of different ways depending on the software
architecture, The 0SD (Operating System Dependencies) are defined in Clause 6
for named software and hardware platforms.

3.1 Environment

A model of the CAM usage environment is illustrated in Figure 3-1, where there
may be multiple application and several device drivers atfached to support the
peripherals on the system.

Re?uests for SCSI 1/0 are made through the CAM Transport %xpT interface. The
Xp m%y execute them directly or pass them on to a lower Tevel SIM for
execution.

The XPT (Transport) function is illustrated as a separate element. In many
aﬁp]icgtions. the XPT oBerations will be incorporated into a single module
wnich integrates both XPT and SIM functianality. The logical separation
between the two is maintained as there may be more than one SIM loaded.

A separate routing service may be Ernvided by the o eratin%.s stem or the
?ouglgg function can be achieved through chaining when mulfiple SIMs are
oaded.

ANlddy L1

717

Common Access Method XPT/SIM Support Rev 2.3 February 25, 1991 Page 3

Fommmmmnan + Fammmmm——— + Fommmmm o + App Level
Disk Tape Any Pass-Thru
Driver Driver Driver Driver
--------- Fommn i ——— Fomm——————t Fommm et
| | | I
Fommm - ——————— Fom e o e +
== XPT/SIM Interface (using CCBs) I
+ s ! ————
| XPT |
+. - - _-———t
B] + Fomm e —————— + Fomm————————— +
SIM HE SIM ABIOS
L et + tommmm e ——————— + P ———————— +
Uen&or Uenénr l
Specific Specific SCB
Fommm————— —-—--l ———————————— +
| HBA | | HBA | + | HBA |
e + | e + | s +

3.2 Peripheral Driver Functions

Peripheral drivers provide the following functionality:

a
b
c

d)

— U ~h (D

Interpretation of application or system level requests.

Mapping of application level requests to XPT/SIM Control Blocks.
ReEuestin of resources to initiate a_CAM request.

- CAM Confrol Blocks and supporting blocks that may be needed.

- Buffer requirements.

Handling of exception conditions not managed transparently by SCSI e.g.
Check Condition status, unexpected Bus Free, Resets etc).

Logging of exception conditions for maintenance analysis programs.
Format utility or services required by format utilities.

Establish parameters for HBA operation.

Set up routing of SCSI requests to the correct Path/Bus, target and LUN.

Initialization and configuration functions of a target not handled by a

Common Access Method XPT/SIM Support Rev 2.3 February 25, 1991 Page 4

utility at installation and formatting time.
j) Establish a timeout value for a task and pass this value in the CCB.

3.3 XPT Functions
XPT services provide the following functionality to process CCBs:

a) Routing of the target CCB to the proper SIM.

b} 0SD allocation of LCB resources e.g. Get_CCB, Free CCB.

c) Maintenance of the SCSI Device Table. This consistS of owning the table
and servicing requests to read and write the table,

d) Providing properly formatted control blocks and priming the fields needed
to accomplish a request.

e) Routing of asynchronous events back to peripheral driver.

3.4 SIM Functions
SIM services provide the following functionality to process CCBs:

a) Perform all interface functions to_the SCSI HBA.

b) Manage or delegate, as required, all the SCSI HBA protocol steps.

c) Distinguish abnormal behavior and perform error rgcuvegx. as required.

d) Management of data transfer path hardware, including DMA circuitry and
address mappin?._and establish DMA resource requests (if necessary).

e) Queueing of multiple operations for different LUNs as well as the same LUN
and assign tags for Tag Queueing (if supported).)

f} Freeze and unfreeze the queue as necessary to accomplish queue recovery.

g Assgring that the completed operation is posted back to the initiating
device driver.

h) Management of selection, disconnection, reconnection, and data pointers of
the 5CSI HBA protocol.

i) Hechanisgs to accept the selecting and sensing of the SCSI HBA functions

supported.

i) émp?ement a timer mechanism, using values provided by the peripheral
river.

4. Definitions and Conventions

4.1 Definitions

For the purpose of this standard the following definitions apply:
4,1.1 Block: This defines an action to prevent access e.g. Busy.

4.1.2 CCB (CAM Control Block): The data structure provided by ﬁeripheral
drivers to the XPT to control execution of a function by the SIM.

4.1.3 CDB (Command Descriptor Block): A block of information containing the
SCST opcode, parameters, and control bits for that operation.

4.1.4 DMA (Direct Memory Access): A means of data transfer between peripheral
and host memory without processor intervention.

4,1.5 Freeze: This defines a software action to quiesce activity e.g. freeze
the queue.

4,1.6 HBA (Host Bus Adapter): The hardware and microcode which provides the

FUATEL S Ve d]

59

Common Access Method XPT/SIM Support Rev 2.3 February 25, 1991 Page 5

interface between system memory and the SCSI bus.

4.1.7 Lock: This defines a hardware action e.g. data cartridge in a
removable media drive.

4.1.8 Nexus: A block of information containing the SCSI device, LUN, and
Queue Tag Number (if any, as used in command queuing).

4.1.9 Null: A value which indicates that the contents of a field have no
meanigng. This value is typically, though not necessarily, zero.

4.1.10 Optional: This term describes features which are not required by the
standard. However, if any feature defined by the standard is implemented, it
shall be done in the same way as defined by the standard. Describing a feature
as optional in the text is done to assist the reader. If there is a conflict
between text and tables on a feature described as optional, the table shall be
accepted as being correct.

4.1.11 Reserved: Where this term is used for bits, bytes, fields and code
values; the bits, bytes, fields and code values are set aside for future
standardization. The default value shall be zero. The originator is required
to define a Reserved field or bit as zero, but the receiver should not check
Reserved fields or bits for zero.

4.1.12 SCB (Subsystem Control Block): The term defined by IBM to refer to an
architecture to support SCSI Host Adapters.

4.1.13 SCSI (Small Computer Systems Interface): The 1/0 interface which this
standard is designed to support.

4.1.14 SIM (SCSI Interface Module): A module designed to accept the CAM
Control Blocks routed through the XPT in order to execute SCSI commands.

4.1.15 VU (Vendor Unique): This term is used to describe bits, bytes, fields,
code values and features which are not described in this standard, and may be
used in a way that varies between vendors.

4.1.16 XPT (Transport): A layer of software which peripheral drivers use to
originate the execution of CAM functions.

4.2 Conventions

Within the tables, there is a Direction bit which indicates In or Qut. The
presumption is from the view of the peripheral driver i.e. information is Qut
E?Mthe SIM from the peripheral driver and In to the peripheral driver from the

Certain terms used herein are the proper names of signals. These are printed
in uppercase to avoid possible confusion with other uses of the same words:
e.g., ATTENTION. Any lower-case uses of these words have the normal American-
English meaning.

A number of conditions, commands, sequence parameters, events, English text,
states or similar terms are printed with the first letter of each word in
uppercase and the rest lower-case; e.g., In, Out, Request Status. Any lower-
case uses of these words have the normal American-English meaning.

Common Access Method XPT/SIM Support Rev 2.3 February 25, 1991 Page 6

The American convention of numbering is used i.e., the thousands and higher
multiples are separated by a comma and a period is used as the decimal point.
This is equivalent to the IS0 convention of a space and comma.

American: 0.6 1S0: 0,6
1,000 1 000
1,323,462.9 i 1 323 462,9

5. Background

SCSI (Small Computer Systems Interface) is a peripheral interface designed_to
ermit a wide variety of devices to coexist. hese erigherals are tyE1ca]]y.
Agt got)necessari]y. attached to the host by a single SCSI HBA (Host Bus
apter).

5.1 Software

0S (Operating System) support for peripheral devices is normally achieved
through peripheral drivers or ut1l1t§ Erngrams. No single driver or program
can reasonably support all possible 5C3I peripherals, So separate drivers are
needed for each class of installed SCSI device. These drivers need to be able
to share the SCSI HBA hardware.

These drivers also have to work with a broad range of HBA hardware, from
highly intelligent coprocessors to the most primitive, including a SCSI chip
on a motherboard.

A standard SCSI progrmnnin? interface layer is essential to insulate SCSI
peripheral drivers and utilities from the HBA hardware jmg]ementation, and to
allow multiple drivers to share a single SCSI hardware interface.

5.2 CAM (Common Access Method)

This standard describes the general definition of the CAM (Common Access
Method). CAM functionality has been separated into a few major elements.

5.2.1 XPT (Transport)

The XPT (Transggrt) defines a protocol for SCSI peripheral drivers and
programs to submit 170 reguests to the HBA specific SIM module(s). Routing of
requests to the correct HBA and posting the results of a request back to the
driver are capabilities of the Transport.

5.2.2 SIM (SCSI Interface Module)

The SIM (SCSI Interface Module) manages HBA resources and provides a hardware-
independent interface for SCSI applications and drivers i.e. the SIM is
responsible to process and execute SCSI requests, and mamage the interface to
the HBA hardware.

There are no reguirements on how the SIM is implemented, in RAM (Random Access
Memory) or ROM (Read Oniy Memory), provided the XPT is properly supported. A
ROM-based SIM may need a transparent (to the userg software layer to match the
SéM-quuired services to the specific manner in which they are requested of
the 0S.

Lutgds L2

77

Common Access Method XPT/SIM Support Rev 2.3 February 25, 1991 Page 7

5.2.3 CCB (CAM Control Block)

The CAM Control Block is a data structure passed from the peripheral driver to
the XPT. The contents of the data structure describe the action required and
provides the fields necessary for successful processing of a request.

5.2.4 0SD (Operating System Dependent)

The system environment in which the CAM is operating is a function of the
hardware platform and the Operating S¥stem being executed e.g. the byte
ordering is different between an Intel-based and a Motorola-based machine, and
the calling structure differs greatly between Operating Systems.

Although the fields of a CCB may have a common meaning, the contents will vary
by ?ia form and 0S. These dependencies cause differences in operation and

iﬂﬁ ementation, but do not prevent intercperation on the same platform of two
CAM modules implemented by different manufacturers.

The 0SD issues are predominantly described in the XPT for each 0S environment.

5.3 Principles of Operation

Ideally, a single XPT model would suffice for all 0S environments for a single
HBA, but this is impractical in light of the wide architectural differences
between the various processor architectures.

Programming effort has been minimized by making the interfaces as similar as
possible across 05 platforms, and customizing the SIM for each HBA to maximize
performance under each 0S. HBAs vary widely in the capability and functions
they provide so there may be an internal (transparent) interface to isolate
hardware interface routines from routines which make use of 0S5 resources.

In order to prevent each peripheral driver from having to scan the SCSI bus
for devices at initialization, the XPT determines all installed SCSI devices
and constructs an internal table. A XPT function is used by drivers and
programs to access this table.

Peripheral drivers need to be developed with documentation provided by the
operating system vendor in addition to that supplied by this standard.

Under Unix, the XPT and SIM would typically be compiled with the kernel at
Sﬁstem Generation time, so that entry points would be resolved during 1inkage-
editing.

Third ?arty attachments may be supported without the need for a sysgen if
suitable routing facilities are provided by the system vendor.

Under Novell, the XPT is supplied by Novell, and the SIM is implemented
according to Novell documentation guidelines.

Under DOS, there is one logical XPT with one entry point, but it maﬁ consist
of a number of separate modules (perhaps supplied for each HBA in the system).

Routing is a mechanism to support concurrent SIM modules being co-resident so
that different HBAs can be mixed in the same system. This may be handled by

Common Access Method XPT/SIM Support Rev 2.3 February 25, 1991 Page 8

chaining the XPT entry points, defining additional character devices, or by a
specific routing entity.

Once the SIM is loaded, the Beriphera] drivers integrate each txpe of SCSI
device into the 0S5 through XPT, independent of the installed HBA hardware.

Under 0S/2 the equivalent to a XPT function is supplied by Microsoft, and the
SIM is implemented according to Microsoft LADDR documentation guidelines.

5.4 Requirements
System requirements addressed in defining the CAM include:

a) Device drivers and rugrams should be able to use any SCSI command, both
defined in SCSI-2 X3.131-1990 or Vendor Unique.

b} No_assumptions on the size and format of transferred data.

c) Allowing all the capabilities of high end host adapters to be fully:
utilized and accommodate HBAs which do most of the SCSI processing on
board (this precludes interfaces which expect to control SCSI phases),

d) Interpretation of sense data returned by SCSI devices shall be by the
calling driver or program.

e) Fully re-entrant code. 1. . . .

NOTE: This is an obvious requirement for multitasking environments such as
05{2 or Unix but even in gingle tasking DOS applications,
multithreaded I/0 is required to achieve maximum performance. SCSI

devices such as printers, communication ports and LAN interfaces are
often serviced in the background under DOS. If an HBA cannot support
multithreading, re?uests can be queued and serialized within the SIH
module transparently to the XPT.

f} Support of muitiple HBAs. . . .

g) If optional features are not supported in a minimum functionalltﬁ XPT and

SIM, peripheral drivers shall be provided a means to determine what
features are available.

h) Providing an initjalization service so that the process of identifying the
attached SCSI devices need not he repeated by each peripheral driver which
loads in the system.

i) 5r9u1d§ng a mechanism to abort I/0 threads (at request of peripheral

river).

j) Ability to issue multiple I/0 requests from one or more peripheral drivers
to a single Target/LUN.

k) Providing peripheral drivers with a mechanism for allocating a Sense data
area and for specifying the number of Sense bytes to be automatically
requested on a CHECK CONDITION.

6. Transport
6.1 Accessing the XPT

The 0S peripheral drivers access the XPT through a software call to a single
entry point. The method for obtaining and using the entry point differs
between operating systems.

The XPT is not involved in the reverse process to advise the peripheral driver
of the completion of a request, The completion callback permits a direct
return from the SIM to the peripheral driver (the exact method employed in
callback is Operating System dependent).

LHTHdYr L2

L7

Common Access Method XPT/SIM Support Rev 2.3 February 25, 1991 Page 9

The XPT is responsible to notify peripheral drivers of asynchronous events via
the Asynchronous Callback mechanism

6.2 Initialization

The XPT is responsible for determining the interface confi%uration at power u?
initialization for the SIM drivers. De?ending on the Operating System, the XP
may perform a scan of the attached SCSI peripherals automatically. See also
the 3CST-2 X3.131-1990 Annex on Power Up Considerations.

The scan by the XPT/SIM would follow a pattern such as the following:

for all SCSI buses
for all target IDs (excluding the initiator)
find the device
if device exists
for all LUN's
use Inquiry command and save returned information
end for
end if
end for
end for

6.3 Callback on Completion

Callback on Completion refers to the XPT/SIM making a call to the routine
addressed by the Callback on Completion pointer in the CCB. The callback is
used by a peripheral driver in much the same manner as a hardware interrupt.

Callback routines have the same privileges and restrictions as hardware
interrupt service routines.

The Callback on Completion routine is called to indicate that the Requested
I/?]gs Eomplite. The specific address of the CCB completed is passed to the
ca ackKk routine.

6.4 SCSI Request Queues

Queues are used in systems where there is a need to manage many outstanding
reqﬁests. There are various types of queues and each has different support
needs.

A SCST request queue can occur in the following places:
o in the SIM

o in the Target/LUN

o in the peripheral driver

The SIM keeps a queue of all the CCB requests from the various peripheral
drivers that access a LUN

A SCSI device may be able to keep a large queue using Tag Queues, or a simple
queue of one element.

A ﬁeripheral driver can also keep a queue e.g. a simple elevator sort, if the
LUN does not support tagged queuing.

Common Access Method XPT/SIM Support Rev 2.3 February 25, 1991 Page 10

6.4.1 The Target/LUN and the Peripheral Driver

The ?eriphera] driver is responsible for maintaining the queue(s) internal to
the Target/LUN.

The SIM, acting on behalf of the peripheral driver, sends the appropriate
commands or messages to manage the Target/LUN queue(s).

Hhen the Tarﬁet/LUN has cum?leted an operation, the peripheral driver is
advised by the SIM via a callback or by checking CAM status for completion.

The peripheral driver needs to be aware that there may be other peripheral
drivers and other systems working with the same Target/LUN.

6.4.2 The SIM

The SIM maintains a queue for each LUN which is logically shared by all:
peripheral drivers. The queue may support tagged commands. Queue priority
shall be supported.

6.4.3 SIM Queuing
6.4.3.1 SIM Queue Priority

Hhen SIM Queue Priority=1, the SIM places the CCB at the head of the queue for
the LUN, instead of at the end. One use of this CAM flag is during error
handling. If the queue is frozen and a CCB with SIM Queue Priority=1 is
received, the CCB shall be ﬁlaced at the_head of the Eueue and the queue
remains frozen. When the SIM queue is released, any CCBs with SIM Queue
Priority=1 are executed atomically, and in LIF0 sequence.

To force step-by-step execution, the peripheral driver can set SIM Queue
Freeze=1, so that when the queue is released and a CCB with SIM Queue
Priority=1 is executed, the queue is re-frozen by the SIM at completion.

6.4.3.2 Tag Recognition

To suggort tagged queuein reco?nition the SIM maintains a reference between
the CCB pointers and the Hueue ags for a LUN. By this means, the SIM can

handle both the gueue tag resource allocation and reconnection of the 1_T L
nexus (see SCSI-Z X3.131-1990) for the CCB from a peripheral driver. ~— — —

The peripheral driver is required to allow the SIM/XPT to handle the
assignment of the queue tag ID for the reguest. The SIM assigns unique TAG IDs
to the Target/LUN operation based on its internal reference fable.

When a LUN that supports tagEed ﬂueuin reconnects to the Initiator (SIM/HBA
pair), it will send the SIMPLE QUEUE TAG message with the ﬂueue tag value for
the I_T_L Q nexus. Usinﬁ the returned queue tag ID, the SIM restores what is
necessarﬁ to complete the 3CSI transaction. The queue tag ID is freed by the
SIM at the completion of the SCSI request.

6.4.3.3 Error conditions and Queues within the Subsystem
The SIM shall Rlace its internal queue for a LUN into the frozen state for any

status other than Request Completed Without Error and Request in Progress.
Hhen a LUN's queue is in the frozen state, the SIM shall not dispatch any CCBs

PUMELS Vol]

87

Common Access Method XPT/SIM Support Rev 2.3 February 25, 1991 Page 11

to that LUN. Peripheral drivers can still send CCBs to the SIH for the LUN, or
any other LUN. Any new CCBs received by the SIM shall be placed at the end of
the queue, unless SIM Queue Priority=1 forces them to the head,

Following a Check Condition or Command Terminated status, the target's LUN
queue is also frozen, and all other tagged commands stay in the queue until
the allegiance condition is cleared. The allegiance condition is either
cleared by an incoming command or following the return of sense data for the
same initiator.

Since the SIM is the initiator, the SIM's internal queue shall go into a
frozen state so that the pending sense information in the LUN will not be
discarded. The SIM holds it's internal LUN queue in the frozen state until a
Release SIM Queue CCB is received.

Using the Callback on Completion pointer contained in the CCB the SIM returns
control of the CCB to the peripheral driver along with CAM Status indicating
the frozen queue condition and other information.

The peripheral driver acts upon the information returned via the CCB. In the
event that there is not a valid pointer in the callback field, the Eeri heral
driver that originated the CCB shall retain resgonsibi]ity for the CCB by
watching the CAH Status field. The setting of the Autosense bit in the CAM
flags does not affect how the SIM handles freezing the SIM's internal queue
i.e. the Request Sense command issued by the SIM to recover status for
Autosense does not release the SIM queue.

If the periﬁheral driver has to perform recovery with the LUN, a CCB can be
placed at the head of the queue by sett1ng SIM ﬁueue Priority=1, and the SIM
queue released, If the peripheral driver has other pending CCBs in the queue
which it does not want to be sent to the LUN (depending on the cause of the
Check Conditiong, then it can use a CAM Flag to freeze the queue upon
completion of the CCB at the head of the queue. A SIM may reject a CCB with
SIM Queue Freeze=1 if the queue is not frozen at the time the CCB is received.

6.5 SIM Handling of SCSI Resets

The CAM shall not define support for the "Soft Reset” SCSI option, but
imp]emintors may use the services of the SIM to provide vendor-specific
support.

Following a SCSI Bus Reset, the SIM shall:

a) EA;CE Path IDs to the reset bus i.e. new CCBs are rejected with status of
usy.
b) Return all 0utstandin$ CCBs with status of SCSI Reset.
c) Unblock all Path IDs for the bus.
d) Call: xpt_async(opcode=reset,
path_id=bus that was reset,
targét_id=-1,
Tun=-1,
buffer_ptr=null,
data_cnt=0
e) Resume normal procesSing of CCBs.

Common Access Method XPT/SIM Support Rev 2.3 February 25, 1981 Page 12

6.6 Asynchronous Callback

In an event such as a SCSI Bus Reset or an Asynchronous Event Notification the
XPT has to be able to make a_callback to the ?eripheral driver(s), even though
there may be no CCBs active for the peripheral driver(s).

Callback routines have the same privileges and restrictions as hardware
interrupt service routines.

Durin% system startup and driver initialization, the peripheral driver should
register an Asynchronous Callback routine for al1 the SCST devices with which
it is working. In order for a peripheral driver to receive asynchronous
callbacks, it shall issue a Set Asynchronous Callback CCB with the
Asynchronous Event fields set to 1 for those events the peripheral driver
wishes to be notified of through an asynchronous callback. The peripheral
driver is required to explicitly register for the path iDs, targets, and LUNs.
The use of a wildcard is not supported for the Set Asynchronous Cal Iback CCB.

It is required that the Asynchronous Callback field be filled in with the
callback routine address if any of the Asynchronous Events Enabled bits are
set, The per1§heral.dr1ver_can de-register its Asynchronous Callback for a
articular SCS] device by issuing the Set Asynchronous Callback CCB with the
vents field cleared to zero and the Callback pointer containing the Callback
Routine address of the peripheral driver issuing the request. AIl XPTs must
provide the capability for any SIM to support asynchronous callback, but a
Eiug? glg.goes not have to support each (or any) of the Asynchronous Events
nabled bits.

Upon detection of a supported enabled event, the SIM shall do the following
once for each detected event:

a) Classify the event: determine the opcode which is the same as the encoded
bit number of the Asynchronous Events Enabled.

b) Format the associated data within an internal, to the SIM, local buffer,
e.?. the sense data received from an AEN.
NOTE: This is a multiple processor "lock" point.)

c) Perform the XPT reverse routing required by the event. The SIM will call
the Async Callback entry point in the XPT:

long xpt_async(opcode, path_id, target_id, lun, buffer_ptr, data_cnt)

All of the arguments, other than the pointer, are Tong values of 32 bits. The
value of -1 in Path, Target and LUN can be used as a wild card. A null buffer
pointer value and a count of O are valid for opcodes that do not require any
data transfer.

NOTE: This call to the XPT is a multiple processor "lock" point.

Using the Path ID, Target, and LUN information from the xpt_async() call, the
XPT scans its internal tables looking for "matches” with what the peripheral
drivers had registered for using the Set Async Callback CCB (see 8.2.4). Hhen
a match is found, either exactly or with a wild card of "-1," the XPT shall
copy the data for the opcode, if available, into the area reserved by the
per%pheral driver and then call the peripheral driver's Async Callback
routine.

The arguments to the peripheral driver's Async Callback routine are the same

ANEddy L2

69

Common Access Method XPT/SIM Support Rev 2.3 February 25, 1991 Page 13

as the xpt_async() routine though:

- the buffer_ptr value shall be the perigheral driver's buffer
- the data cTit shall either be what the XPT had to transfer from the SIM's
buffer oF the 1imit of the peripheral driver's buffer.

Almost all of the information relatinﬂ to the different opcodes can be
included in the Path ID, Target and LUN arguments. The on { opcodes that
require an additional buffer area are AEM, Load SIM and Unload SIM. Table 6-1
lists the opcodes and the expected data requirements for the number of bytes
to be transferred.

TABLE 6-1 ASYNC CALLBACK OPCODE DATA .REQUIREHENTS
+ +

+ ——— - —_———taa + L -+
| Event | Opcode | Path ID | Target | LUN | Data Cnt |
+ - tomcm - —— Fomm————— | - [T T pep—— T ———— +
Unsol. SCSI Bus Reset| 0x0001 Valid nfa n/a n/a
Unsol. Reselection 0x0002 Valid Valid Valid n/a
reserved 0x0004
SCSI AEN 0x0008 Valid Valid Valid | Min. 22

Sent BDR to Target 0x0010 Valid valid n/a nfa

SIM Module Loaded 0x0020 XPT ID n/a n/a Min, 1
SIM Module Unloaded 0x0040 XPT ID n/a n/a Min. 1
New Devices Found 0x0080 Valid n/a n/a n/a
+ - Frmmmae e +-= + + Fommmeee +

The AEN data requirements are a minimum of 22 bﬁtes of buffer space. This
space includes the 4 bytes required by the AEN Data Format and 18 bytes
defined by the Sense Data Format (see SCSI-2 X3.131-1990).

The Load SIM and Unload SIM data re?uirements are a minimum of 1 b%te. This
byte contains the Path ID for the SIM. This Path ID is different that the
path _id argument. The argument contains the unique XPT ID of OxFF. The XPT ID
is the ID used by the peripheral driver to register for async notification.

If there is valid data placed in the generic data buffer by the XPT/SIM, the
peripheral driver is required to save or discard that data before returning
control to the XPT/SIM.

6.7 Autosense

Autosense causes sense data to be retrieved automatically iT a Check Condition
is reported in the SCSI Status field. On a Check Condition, a SCSI Request
Sense command is constructed and sent to the same target. The location and
amount of the Sense data is specified in the Sense Info Buffer Pointer and
Length fields respectiyelﬁ af the SCSI I/0 Request CCB. If the length field is
0 or the buffer field is Null, the Request Sense command shall still be
issued, but with a data allocation length of 0 (this sheuld only be done by
the peripheral driver when it is not interested in the sense information).

After completing the Request Sense sequence the CAM Status and SCSI Status
Eie&@i_co?tain the status of the original command (which caused the Check
ondition).

The target can return fewer than the number of Sense bytes reguested. This is
not reported as an error, and Sense Status shall be flagged as valid.

Common Access Method XPT/SIM Support Rev 2.3 February 25, 1991 Page 14

6.8 Loadable Modules

Some operating system environments provide the ability to load or unload
software drivers, thus peripheral drivers or SIM modules can be loaded
dynamically. In such systems, the XPT module (ty?ically supplied by the 0S
vendor) is either part of the system or must be)oaded first.

The XPT, as part of a loadable 0S, exports it's "label,” which is to used as a
reference by the other loadable modules. The XPT manages the loading of SIMs
and provides the common access point for peripheral drivers to register a
loaded or unloaded SIM.

When a peripheral driver is loaded, it can ﬁo through it's initialization
process (see 0SD initialization), call the XPT ipitalization point and then
query the XPT for the HBAs that are present in the system and targets that
have been identified as being on the SCSI channels.

When a SIM is loaded, the SIM and XPT have to work to%ether to get the SIM
entered into the internal tables and have the SIM inifialized.

The SIM shall call the XPT once for each supported bus in order to obtain the
Path ID for that bus. 1

long xpt_bus_register(CAM_SIM ENTRY =)

The argument is the pointer for the data structure defining the entry points
for the SIM. The value returned is the assigned Path ID: a value of -1
indicates that registration was not successful.

The SIM shall call the XPT once to de-register the bus for a given Path ID:
long xpt_bus_deregister(path_id)
The argument is the Path ID for the bus being de-registered. A return value of

zero indicates the bus is no longer registered, any other value indicates the
call was unsuccessful.

When the XPT is called it will update it's internal tables and then call the
sim_init(path_id) function pointed to by the CAM SIM_ENTRY structure, The
initialization for the loaded SIM is no different than for a SIM statically
included in the kernel at boot time, After the SIM has gone through the
initialization process the XPT shall scan the SCSI bus in order to update its
internal tables containing Inquiry information.

Peripheral drivers can reguest to be informed when a SIM is registered or de-
registered via the Async Callback feature (see 6.6 and 8.2.4).

The CAM_SIM_ENTRY table is used to define the entry points for the SIMs.
%ypedef struct

long (*sim_ init)();

Iong f*sim‘actigégf):

} CAM_SIM_ENTRY;

/* pointer to the SIM init routine */
/* pointer to the SIM CCB go routine */

1H1ddy L2

7L

Common Access Method XPT/SIM Support Rev 2.3 February 25, 1991 Page 15

7. 0SD (Operating System Dependent) Operation
7.1 UNIX Operating System

ThedCAH subsystem is intended to provide a set of services for third-party
vendors.

There are several sets of modules for Unix:

peripheral drivers that are device class specific
a configuration_driver for initialization

the XPT

SIMs that are HBA-specific

Each member of these sets is treated as a UNIX driver and is linked into the
kernel. The XPT and configuration driver (which is responsible for
initialization) are 0S-vendor speCific; other drivers may come from any
source.

At kernel configuration and link time the cam conftb1[] is created and

contains entry points for the SIMs, which are"used by the XPT.

The cam conftb1[] is used by the XPT/configuration_driver to call routines and
Bass CAM parameters between them e.g, the Path ID contained in the CCB created
y the peripheral driver is used to index into the cam conftbi[]. The entry
point for the selected SIM, sim_action() is called with a pointer to the CCB
as an argument.

The cam_edt[] data structure is used and created during the initialization
process”to contain the necessary information of all the targets found on all
the HBAs during the init sequence.

The CAM Flags used are as described in Table 9-2.
7.1.1 [Initialization

The jnitialization of the XPT and SIMs is under the control of the
configuration_driver.

Due to_the different Unix-based systems (BSD and System V), there is no common
initialization process that can control the order of calls to the peripheral
driver's and configuration_driver's init(; routines. It is necessary to make
sure that the subsystem is"initialized before any requests can be serviced
from the peripheral drivers. Due to this constraint when the peripheral
driver's jnitialization routines are called the driver shall call the
xpt_init() routine. If the subsystem is not yet initialized, the XPT shall
calT the configuration_driver to formally initialize the subsystem. Once the
subsystem is set up, eTther from a previous xpt init call or the .
configuration_driver being called, all subsequelt xpt_init calls shall simply
return.

When the configuration _driver is called for initialization, it uses the

cam conftb]{] entry structures. The confiﬁurat1on_driver makes the init()
routine calls, to the XPT, and to each SIM in turf, allowing them to
initialize. The initialization routine for the SIM is called with its Path ID
as the argument. Interrupts shall be disabled or blocked by the

configuration_driver during the initialization process.

Common Access Method XPT/SIM Support Rev 2.3 February 25, 1991 Page 16

After the initialization process has been completed, the configuration_driver
obtains information about each SIM, HBA, and target device detected, and
maintains a table, the cam edt[], of these devices. The information is
obtained by using CCBs through the CAM interface.

Once the CAM suhsgstem is initialized and the cam_edt[] set, the peripheral
drivers can use the subsystem. This_allows them t0 determine what devices are
known and make appropriate memory allocations and resource requests of the

The SCSI-2 Inquiry command shall be_issued to all Target/LUNs on the attached
interfaces, and shall coptain an allocation length of 36 bytes, which is
sufficient to transfer_ the device information and the product information. The
EVPD and Page code fields in the Inquiry command shall be set to 0. [t is
assumed that the responding devices will return the Inquiry data, even though
the device may not be readﬁ for other commands. A limited number of retries
will be done for devices that return Busy Status following the Inguir

command. If the retry 1imit is reached, the status of the device in the XPT
will be set to "Not Found”. The Inquiry command shall be the only command
issued by the XPT to the devices during initialization.

7.1.2 Accessing the XPT :
7.1.2.1 From the Peripheral Driver

The XPT provides functions to obtain CAM system resources for the peripheral
driver. These functions are used to allocate and free CCB resources and to
allocate and free DMA resources.

There are two routines used in the handling the CCB resources. The two
routines are:

CCB *xpt_ccb a]]océg and
void xpt_cch free(CCB *):

- The xpt_cch alloc() routine returns a pointer to the allocated CCB. The
periﬁheral driver can now use this CCB for it's SCSI/XPT requests.

The xpt _ccb free() routine takes a pointer to the CCB that the
peripheral driver has finished with, and can now be returned to the CAM
subsystem CCB pool.

- The pointer to the CCB returned from the th ccb alloc() call shall be
large enough to contain any of the possible XPT/SIM function request CCBs.
- The CCB can only be used i.e. sent to the XPT, once. Once the CCB has

compieted it shall be returned using the xpt_ccb free() routine.

A1l returned status information is obtained at the callback point via the CAM
and SCSI status fields.

7.1.2.2 From the SIM

The SIMs obtain requests from the XPT as they are passed across from the
peripheral driver, via a routine included in the SIM's configuration
information, The field in the configuration table is declared as "void s*
sim_action) (CCB *)." The XPT does not modify CCBs or CDBs. The XPT shal
intércept those CCBs which must be redirected to the configuration_driver (Get
Device Type, and Set Device Type).

1HIddt L2

L

Common Access Method XPT/SIM Support Rev 2.3 February 25, 1991 Page 17

7.1.3 Callback on Completion

The Callback on Completion field in the CCB is a structure that is platform
sEec1f1c, but always contains at least a callback function pointer, named
cbfcnp, and declared as "void (*cbfcnp)(CCB *)." The argument to cbfcnp shall
be the address to the CCB.

The Disable Callback on Completion feature is not supported.
7.1.4 Pointer Definition in the UNIX Environment

Pointers in the CAM environment are treated as any other pointer in a given
UNIX implementation. For the B0386 platforms, pointers are 32-bit virtual
addresses into a flat address space.

7.1.5 Request Mapping Information

This field is expected to contain a pointer tc the buf structure that the SCSI
1/0 CCB was created for. This copy of the buf structure pointer, bp, is used
by the SIM to ¥Et to the 1/0 mapg ng information needed to access the data
buffers allocated by the application Erugram. A value of NULL s allowed if
there is no need for the SIH to map the data buffer addresses i.e. data count
is zero, the buffer is internal to the kernel, or the addresses are physical.

7.1.6 XPT Interface

The XPT interface provides functions that peripheral drivers and SIM modules
can access in order to transfer information and process user requests. The
fo%lowing]deflnes the entry points, and describes the required arguments and
return values.

7.1.6.1 Functions for Peripheral Driver Support
a) long xpt_init()

This routine is called by the peripheral driver to request that the XPT and
sub—}agers be initialized. Once the sub-layers are initialized any subsequent
calls by other peripheral drivers shall quickly return.

There are no arguments and the return code is either Success or Failure.
b) CCB *xpt_ccb alloc()

This routine is used whenever a peripheral driver needs a CCB (the common data
structure for processing SCSI requests). It returns a pointer to the allocated
CCB which the peripheral driver can now use as the CCB for it's SCSI/XPT
requests. The returned CCB shall be proper1¥ initialized for use as a SCSI 1/0
Request CCB. The SIM Private Data area shall have been already set up to be
used by the XPT and SIM, and shall not be modified by the peripheral driver,
It is reconmended that the CCB be returned to the XP following its use, and
that CCBs not be re-used.

Eggre dre no arguments and the return value is a pointer to an initialized

c) void xpt_ccb_free(CCB *)

Common Access Method XPT/SIM Support Rev 2.3 February 25, 1991 Page 18

This routine takes a pointer to the CCB that the geripheral driver has
finished with so it can be returned to the CAM subsystem CCB pool.

The argument is the pointer to the CCB to be freed, there is no return code.
d) long xpt_action(CCB *) -

AT1_CAM/SCSI CCB reguests to the XPT/SIM are placed through this function
call. All returned CAM status information is obtained at the callback point
via the CAM and SCSI status fields.

Ehglargument is a pointer to the CCB, and the return code is either Success or
ailure.

7.1.6.2 Functions for SIM Module Support
a) See 6.8 for loadable module support:
Tong xpt_bus_register (CAM_SIM ENTRY *)
long xpt_bus_deregister(path_id)
b) Tong xpt_async(opcode, path_id, target_id, lun, buffer_ptr, data_cnt)

The SIM calls this routine to inform the XPT that an asgnc event has occured
and that there may be peripheral drivers which need to be informed.

- Th? opcode, path_id, target_id, lun, and data_cnt arguments are long 32-bit
values.

- The path_id, target_id, and lun define a nexus for the Async Callback.

- The opcode contains™the value for what has happened.

- The buffer ptr and data_cnt are used to inform the XPT where and how much
data is asSociated with“the opcode.

The return code is either Success or Failure.

7.1.7 SIM Interface

The SIM interface provides functions to the XPT, and should never be accessed
direct]ly by the peripheral driver. Each vendor's SIM should provide a
publicly-defined entry structure such as CAM_SIM _ENTRY cse_vendorname.

The following defines the entry points, and describes the required arguments
and return values.

a) long sim_init(pathid)

This routine is called by the XPT to request that the SIM be initialized.
There are no arguments and the return code is either Success or Failure.

b) long sim action(CCB *)
Al1 CCB requests to the SIM are placed through this function call. All

returned CAM status information is obtained at the callback point via the CAM
and SCSI status fields.

ANlHd L2

el

Common Access Method XPT/SIM Support Rev 2.3 February 25, 1991 Page 19

Ehg1argument is a pointer to the CCB, and the return code is either Success or
ailure.

7.2 HNovell Operating System

Novell NetWare 386 drivers are called NLMs {Netuare Loadable Modules). These
modules are registered and linked dynamically with NetWare 386: they are
registered after the server is running and may be unloaded at any time.

The NetWare 386 CAM subsystem consists of 3 sets of NLMs:

- peripheral drivers (NLMs) that are device class specific
- the XPT router and SIM maintenance NLM
- SIM NLMs that are HBA-specific

The peripheral drivers and SIMs communicate with the XPT through labels
exported by the XPT when it is registered.

The CAM Flags used are as described in Table 9-2.
7.2.1 Initialization

As the Novell dynamic linker will not allow an NLM to register if it makes
references to a label it cannot reselve, the order in which the NLMs register
is important, The XPT module exports four entry points when it is registered,
and both peripheral drivers and SIM modules make references to them. The XPT
shall be registered first, after which either peripheral drivers or SIMs may
be registered.

[T —— +
Peripheral
Driver references labels exported by XPT

I

v
Fom e o

XPT xpt_action g);
xpt_async ();
(first) xpt_bus_register ();

-------- -------—+ xpt_bus_deregister 0;

l
Tormmmmmn . m————— +
| SIM | SIM - references label exported by XPT
R et +

For an overview of SIM registration with the XPT see 6.8. For an overview of
peripherail driver registration with the XPT see 6.6 and B.2.4.

When NetWare 386 loads a SIM, it shall call the initialization routine
specified in the Novell linker definition file. At this point the SIM can
perform its initialization functions.

As part of initialization the SIM shall call the xpt_bus_register function
once for each HBA it will supﬁﬂrt, to register the addreSs of its entrﬁ point
with the XPT and to get a path ID for each HBA from the XPT. The XPT then adds

Common Access Method XPT/SIM Support Rev 2.3 February 25, 1991 Page 20

this SIM to its internal tables so it can route requests to the new SIM. The
XPT also notifies all peripheral drivers that re?istergd an asgpchronuus
callback routine with the XPT (with the SIM Module Registered bit set), that a
new Eath ID exists. Upon rege1v1nﬁ this message the peripheral drivers can
check for new devices on this path.

When NetWare 386 loads a peripheral driver, the initialization routine
specified in the Tinker definition file shall be called. At this time,the
driver needs to determine which, if any, SIMs are registered.

The peripheral driver sends a Path Inquiry CCB to each path to determine if a
SIM is registered. If a valid response is returned the periphera] driver
checks for devices that it will support on_that path. If the peripheral driver
supports any devices on this path, it shall register an asynchronous callback
routine and specify the SIM registration in the ogcode field so that if the
SIM is de-regitered, the peripheral driver shall be notified. In additjon, a
peripheral driver should also register for SIM reg1stratlon to alert the
driver of the need to locate devices on a newly added SIM module.

7.2.2 De-Registration

When a SIM de-registers, it sha]l] call the xpt_bus deregister(% function once
for each path the SIM supports. The XPT then c3@llsTevery peripheral driver
that has registered an asynchronous callback routine with the SIM Module De-
Registered bit set on this ﬁath. Peripheral drivers then notify NetWare 386
that the drives on this path are in an inactive state. The XPT will then
remove the path from its internal tables and block further peripheral driver
requests on this path.

If a peripheral driver de-registers, it needs to notify the XPT module so that
the dependency tables can be updated. This is done by registering an
asynchronous cailback routine with the opcode set to zero. The XPT will then
remave this driver from its callback tables.

The XPT can only be unioaded after all peripheral drivers and SIM modules have
been de-registered. NetWare 386 will not allow an NLM to unload if it has
exported labels that other NLMs are using. As all SIM and peripheral drivers
refer to labels echrted by the XPT, NetHare 386 will not allow the XPT to
unload until all the SIMs and peripheral drivers have been unloaded, at which
poiqtttheae is nothing left for the XPT to support and it can be safely de-
registered.

7.2.3 Accessing the XPT

NetWare 386 allows an NLM to export functions which NLMs registered at a later
time can reference. An HLM calls an exggrted function in the same way it calls
any other function. The C Tanguage calling convention is assumed. In order for
communication between the peripheral drivers, XPT, and SIM modules to work
correctly the names of the XPT entry points have to be constant.

The entry points in the XPT module are:
- xpt_action () accepts CAM blocks from the peripheral driver and routes them
to The correct SIM .
- xpt_async () is used by the SIM module to notify the XPT when an
asynchronous event occurs.
- ;p%ﬁb?g_register () is used to register the SIM with the XPT and obtain a
a

Wlkdr LI

g/

Common Access Method XPT/SIM Support Rev 2.3 February 25, 1991 Page 21

- ¥Bt_bus_deregister {) is used to unload the SIM associated with the Path

7.2.4 Hardware Registration

The SIM module needs to do the actual registration of the host adapter with
NetWare. Since only one SIM may support a given host adapter this prevents any
hardware options from being registered twice. The SIM does not register any
devices with NetWare, only the hardware options used by the card e.qg.
interrupt line, base address, DMA etc.

Interrupts generated by the host adapter will be handled by the SIM module, so
the SIM must also regiSter its interrupt service routine with NetWare.

A peripheral driver registers a logical card with NetWare 386 for each path id
it supparts. This logical card uses no hardware resources, but does have entry
points 10 and IOCTL requests from NetWare. The peripheral driver also reports
the devices that it will support to NetWare.

The XPT does not register any hardware or devices with NetWare 386. It loads
as a driver, but does not register any IOPOLL or IOCTL entry points.

7.2.5 Miscellaneous

It is the responsibility of the peripheral driver to allocate memory for its
CCB blocks. Normally the peripheral driver needs to keep one CCB structure for
each device it will support, so the memory can be allocated in the
DiskStructure provided by NetWare 386 when a device is added to the system.

Since fast disk channels are essential for a NetWare 386 server peripheral
drivers should never poll the CAM status field to wait for compietion. The
driver should send the CCB to the XPT module and then either do more work, or
exit immediately. The SIM module will call the function whose address is in
the callback field of the CCB block when the request is finished. The callback
function runs at interrupt level, so it cannot call any NetWare 386 routines
that are "blocking” or the file server will abend. See the Novell Disk Driver
manual for details on blocking and non-blocking levels.

7.3 DOS (Disk Operating System)

Under DOS, a software interrupt is used to access any of the XPT or SIM
functions, which are combined into a single module.

The routing functions of the XPT are performed by the DOS concept of i
"interrupt vector chainlng.' During execution, an XPT/SIM module determines if
a particular CCB is one that it should handle. If not, it routes the CCB to
the previous "owner” of the interrupt vector.

The CAM flags used by the DOS XPT/SIM are described in Table 9-2,

7.3.1 Initialization

During initialization, the XPT/SIM modules should be loaded as character
device drivers.

As character device drivers are required by DOS to have unique names, the 8-
character device name should be '%?CAHxxx'. where xxx is the ASCII decimal

Common Access Method XPT/SIM Support Rev 2.3 February 25, 1991 Page 22

numeric value of the lowest path ID supported by this XPT/SIN module.

The programming exampies in this clause are used to assist the reader's
understanding. Implementations do not need to use the same code, but they are
required to accomplish the same goals.

7.3.1.1 Multiple XPTs
The pseudocode for the XPT initialization sequence is as follows:

Get INT 4Fh interrupt vector;
Save this address for chaining;
IF there is a CAM XPT already installed (see 7.3.2.1)
Perform PATH INQUIRY (Path 1D=0FFh) to get Highest Path I1D:
g First Path ID = Highest Path ID + 1:

First Path ID = 0;
IF:

Count number of Path IDs needed:
IF no HBAs to su?port,(Coupt = 0) i
- nglt initialization rlthout installing driver;
Set INT 4Fh interrupt vector to point to CAM entry foint;
Save Highest Path ID used (First Path ID + Count - 1);
Set character device name to "$$CAMxxx®,
where xxx=First Path ID;
Perform all necessary HBA initialization:
FOR each SCSI Bus squort ‘" -
FOR each SCSI 1 sexciudlng initiator)
F device exists
FOR each LUN
Fgﬁrform INQUIRY to get PDT for table;
END IF;
END FOR;
EHD FOR:

7.3.1.2 Device Table Handling

The XPT/SIM is only required to keep the peripheral device ¢ of the devices
connected to the sﬂppggted SCSE bus?es). perie e

7.3.2 Accessing the XPT

There are varjous mechanisms used to access XPT or SIM functions from
peripheral drivers or application programs.

7.3.2.1 Testing for the presence of the XPT/SIM

Peripheral drivers and apﬂlications can check for the presence of an XPT/SIM
module by performing a "check install” function such as:

On entry:
AX = 8200h
CX = 8765h
DX = CBA9h

FUTEE S 4 Po Tl

frl

Common Access Method XPT/SIM Support Rev 2.3 February 25, 1991 Page 23

On reﬁarn:o f ful)
= 0 (if successfu
CX = QAéCh

DX = 5678h
ES:DI = address of character string "SCSI_CAM"
All other registers unaffected. -

The following routine checks for the presence of an XPT/SIM module. It returns
a value of 1 if a module is found and a value of 0 if not found.

CHK_FOR CAH PROC HEAR
MOV CX,8765H ; load 1.s.w. of signature
HOV DX,0CBA9H : load m.s.w. of signature
HOV AX,8200H ; load "check install® code
INT 4FH : perform "check install®
CHp AH,0 ; function supported?
JNE NOT THERE : if not, no xpt/sim
CHP DX,5678H : check m.s.w. of signature
JNE NOT THERE ; if invalid, no xpt/sim
CHP CX, 9ABCH ; check 1.s.w. of signature
JNE NOT_THERE ; if invalid; no xpt/sim
CLD : set direction fla
HOV CX,8 ; load string lengt
MOV SI,OFFSET SCSI_CAM ; get string address

REPE CHPSB ; Compare s rlngs

JNE NOT_THERE : if strings differ, no xpt/sim
MOV AX, T : load "found® status
RET ; return to caller

NOT_THERE: MOV AX,0 : load "not found® status
RET ; return to caller

CHK FOR CAM ENDP
SCST_CAR 0B 'SCSI_CAH' ; string to find
7.3.2.2 Sending a CCB to the XPT

Once it _is determined that an XPT/SIM module is present, the peripheral driver
ggTﬁg?llcation can access the XPT/SIM functions by sending a UCB to the

On entry:
ES:BX = address of the CCB
AX = 8100h

On return:
AH = 0 if successful
= 1 if invalid CCB address (segment=offset=0)
A1l other registers unaffected.

NOTE: The SIM may complete and return control to the location pointed to by
thg Callback on Completion field in the CCB before the software interrupt
returns.

The following routine sends a CCB to the XPT/SIM module. It returns a vaiue of
0 if successful and 1 if not.

Common Access Method XPT/SIM Support Rev 2.3 February 25, 1991 Page 24

SERD CCB PROC EAR
- MOV AX,8100H

MOV ES,SEGHENT CCB
MOV géﬁcﬁssr cCB

load "send cch® function
foad s nt of ccb
load offset of ccb

simamEme g e

INT call xpt/sim module

SHR AX,8 put return code in al

RET return to caller
SEND_CCB ENDP

7.3.3 Callback on Completion

When an 1/0 operation has completed, a XPT/SIM module shall make a FAR call to
the routine which had its address Eassed in the Callback on Completion field
of the CCB. The first 4 bytes of this field are used to indicate the routine’s
address in the Intel Se?ment:OFfset format. When the callback is made,
Eégdware interrupts shall be disabled and ES:BX shall point to the completed

7.3.4 Asynchronous Callbacks

There are some differences in the DOS XPT/SIH ilglementation of Asynchronous
Callbacks as compared with the dascription in 6.6.

The DOS XPT/SIM does not support the SIM Module Loaded and 5iM Module Unloaded
?pcnd$?eaeported by the XPT/SIM module when the Asynchronous Callback Routine
s called.

The Set Async Callback CCB is held by the XPT/SIM until it is "de-registered.”
This is accomplished by sending another Set Async Callback CCB to the XPT/SIH
with all of the Asynchronous Event Enables reset and the address of the
original Set Async Callback CCB in the Peripheral Driver Buffer Pointer field.
At that point the original CCB shail be dequeued and both CCBs shall be
returned to the peripheral driver or application.

NOTE: There is an implication here that a peripheral driver or application

which wishes to be notified when the sgscified asynchronous event occurs, has

to register separately with each path

The Peripheral Driver Buffer Pointer and Size of Allocated FeriBheral Buffer
fields in the Set Async Callback CCB are considered as Private Data by the
XPT/SIM, to be used for CCB queuing.

When an Asynchronous event occurs that is enabled by the bits in the
Asynchronous Event Enables field of the Set Async Callback CCB, the virtual
address specified by the Asynchrenous Callback Pointer field shall be called
with the foliowing registers: ;

On entry:
AH = opcode as specified in Table 6-1.
AL = path ID that geuerated the callback.
DH = target ID that caused event (if ag?licahle).
DL = LUN that caused event (if applicable).
CX = data byte count (if applicabie). |
ES:BX = address of data buffer (if applicable).

On return:
ARl registers shall be preserved.

AHiddy L2

s/

Common Access Method XPT/SIM Support Rev 2.3 February 25, 1991 Page 25

It is the responsibility of the peripheral driver or ap?Iicatiaﬂ to copy any
or all required data out of the data buffer into a local buffer before
returning from the Asynchronous Callback routine.

7.3.5 Pointer Definition

All pointers shall be passed to the XPT/SIM as segment:offset type virtual
addresses.

7.4 0S/2 (Operating System 2)

Microsoft has documented LADDR as a gemeric I1/0 interface which sugports many
device interfaces, not anly 5CSI. The control blocks and their method of
gperaﬁion ar?tdefined in 05/2 Technical Reference Manuals which are available
rom Microsoft.

The 05/2 equivalent to the SIM is a BID (Bus Interface Driver).
The 05/2 equivalent to the CCB is an SRB (SCSI Request Block).

The CCB and the SRB share many common fields. The fields in the CCB are
designated as 0SD if they vary between 05/2 and other operating systems.

For further information on how peripheral drivers use the CCB/SRB and other
SIM/BID capabilities of 05/2, it is necessary to use information available
from Hicrosoft.

The CAM Flags used are as described by LADDR documentation.
8. CAM Control Blocks

The CCBs used by drivers and aﬁp]ications to request functions of the XPT and
SIM have a common header, as shown in Table B-1.

TABLE B-1 CAM CONTROL BLOCK HEADER
———to—t

4
|Size|Dir|

e S o T T - +
- = = = = [0SD

0 | Address of this CCB

8 CAM Control Block Length
I

Function Code
CAM Status
reserved

0 | Path ID

0 | Target ID
0| LUN

0 | CAM Flags (0SD)

B et S

- Common - - - - -

o b ot — bt N

The sequence of the fields in the data structures will be consistent between
vendors, but not necessarily the binary contents. The size and definition of
the fields in the data structures can vary beween operating systems and
hardware platforms, but the vendors are expected to provide compiler

Common Access Method XPT/SIM Support Rev 2.3 February 25, 1991 Page 26

definitions which can be used by third-party attachments.

Several fields in the CCB are pointers, and their meaning is dependent on the
05 which is being supported. In general, these pointers are interpreted as
either virtual or physical addresses.

Additional bytes beyond the CCB Header are dependent on the Function Code.

Most SCSI messages are handled transparently by the SIM, but in some cases,
the peripheral driver has been ﬁiven the ability to force the SIN to issue a
e message support.

message. Table B-2 summarizes t
TABLE 8-2 SUPPORT OF SCSI MESSAGES

Fomt e r s ————— o e e e e m——— +
Abort Discretely supported by function codes
Abort Ta Discretely supported by function codes
Bus Device Reset Discretely supported by function codes
Clear Queue Not Supported
Command Complete Transparently supported by SIM
Disconnect Transparently supported by SIM *
Identify Transparently supported by SIM

Ignore Wide Residue I
Initiate Recovery
Initiator Detected Error
Linked Command Complete
Message Parity Error
Message Reject
Modify Data Pointer
No Operation
Queue Tag Messages
Head o gueue Tag
Ordered Queue Tag
Simple Queue Tag
Release Recovery
Restore Pointers
Save Data Pointers
Synch Data Transfer Request
Terminate 1/0 Process
Wide Data Transfer Request

Transparently supported by SIM
Not Supported

Transparently supported by SIM
Transparently supported by SIM
Transparently supported by SIM
Transparently supported by SIM
Transparently supported by SIM
Transparently supported by SIM

Discretely supported by function codes
Discretely supported by function codes
Discretely supported by function codes
Not Supported

Transparently supported by SIM
Transparently supported by SIM
Transparently supported by SIM *
Discretely supported by function codes
Transparently supported by SIM

* Issuing this message influenced by peripheral driver via CAM flags |

|
+ mm———

8.1 CCB Header

The_Function Codes used to identify the XPT service bei ng requested are listed
in Table 8-3.

8.1.1 CAM Control Block Length
See 0.1.1.
8.1.2 XPT Function Code

INIHd¥ L)

74

Common Access Method XPT/SIM Support Rev 2.3 February 25, 1991 Page 27

+
00-0F| Common Functions

NOP

0lh Execute SCSI I1/0 (see 9.x)
02h Get Device Type

03h Path Inquiry

04h Release SIM Queue

05h Set Async Callback

06h Set Device Type
07-0F reserved

10-1F| SCSI Control Functions

10h Abort SCSI command

11h Reset SCSI Bus

12h Reset SCSI Device

13h Terminate 1/0 Process
14-1F reserved
20h | Engine Inquiry (see 11.x)
21h | Execute Engine Request

22-2F reserved

30-3F| Target Mode (see 10.x)
30h Enable LUN

31h Execute Target I/0
32-3F reserved
40-7F reserved
80-FF| Vendor Unique

1f a Function Code which is not sugported is issued to the XPT, the XPT shall
complete the request and post CAM Status of Invalid Request.

8.1.3 CAM Status
See 9.1.3.

8.1.4 Path ID
See 9.1.4.

8.1.5 CAM Flags

ghe SAT Efags qualify the Function to be executed, and vary by Function Code.
ee 9.1.5.

8.2 Function Codes
8.2.1 Get Device Type
This function is executed at driver initialization in order to identify the

targets they are intended to sup?ort e.g. A CD ROM driver can scan eac
Target/LUN address on each installed HBA to look for the CD ROM device type.

Common Access Method XPT/SIM Support Rev 2.3 February 25, 1991 Page 28

TABLE 8-4 GET DEVICE TYPE CCB

+ +

|Size|Dir| Get Device Type
Fommrmtommt e e —n e o,
- = = - - 08D - - - - -
0 | Address of this CCB

g CAM Controi Block Length

I

Function Code
CAM Status
reserved
Path ID
Target ID
LUN
CAM Flags iOSD).
Inquiry Data Pointer
Peripheral Device Type of Target/LUN

- Common - - - - -

Yt N e e ok ol el et N B
ek — =] == == =]

The information on attached SCSI devices is gathered at power on by the XPT
gto eliminate the need for each driver to duplicate the effort of scanning the
CSI bus for devices). 1

The PeriEheral Device Type is a l-byte representation of Byte 0 of SCSI
Inquiry Data i.e. bits 7-5=000.

If the Inquiry Data Pointer contains a value other than Null, it is a pointer
to a buffer in the peripheral driver's data space large enocugh to hold the 36
bytes of Inquiry data associated with the Target/LUN. The data shall be

copied from the internal tables of the XPT to the peripheral driver's buffer.

This function shall return non-zero CAM Status.
- CAM Status of Request Comﬁleted,ﬂithout Error indicates that the specified
device is installed and the Peripheral Device Type field is valid.
- CAM Status of SCSI Device Not Installed indicates that the Peripheral
Device Type field is not valid. L .
- CAM Status of Invalid Path ID indicates that the Path ID is invalid.

Drivers are always able to use SCSI I/0 requests to check for devices which
may not have been found at power up.

8.2.2 Path Inquiry

This function is used to get information on the installed HBA hardware,
including number of HBAs installed. To obtain further information on any other
HBAs attached, this function can be issued for each HBA.

If the Path ID field of the CCB has a_value of FFh on a PATH INQUIRY request,
then the only field that shall be valid upon return to the caller is the
Highest Path ID Assigned field. In addition, this field shall not be valid if
the Path 1D field in the CCB contains a value other than FFh.

ANIHdY LY

Ll

Common Access Method XPT/SIM Support

|

TABLE

—-—t

Size|Dir
et m et e -

[l o R ey U

-—0ooo

| Path Inquiry
i

8-5 PATH INQUIRY CCB - Part 1 of 2

Rev 2.3 February 25, 1991 Page 29

= = - - - 0 - - - - -
Address of this CCB
CAM Control Block Length
Function Code
CAM Status
reserved
Path ID
Target 1D
LUN
CAM Flags (0SD)
Features Supported
Version Number
00-07h Prior to Rev 1.7
08h Implementation Version 1.7
09-FFh Rev No e.g. 23h = 2.3
SCSI Capabilities
7 Modify Data Pointers
6 Wide Bus 32
5 Wide Bus 16
4 Synchronous Transfers
3 Linked Commands
% . resgraed .
agged Queuein
0 So?g Reset d
Tar?et Mode Supﬁort
Processor Mode
6 Phase Cognizant Mode
5-0 reserved
Miscellaneous
7 0=Scanned Low to High
1=Scanned High to Low
6 O0=Removables included in scan
1=Removables not included
5 l=Inquiry data not kept by XPT
4-0 reserved

- Common - - - - -

Common Access Method XPT/SIM Support Rev 2.3 February 25, 1991 Page 30

TABLE 8-5 PATH INQUIRY CCB - Part 2 of 2
T ey - +
HBA capabilities

211 Engine count
14 | 1 Vendor Unique
4 | I | Size of Private Data Area
4 | T | Asynchronous Event capabilities
31-24 Vendor Unique
23- 8 reserved
New Devices fuund_during rescan

SIM module De-Registere
SIM module Regisiered
Sent Bus Device Reset to Target
SCSI AEN

reserved
Unsolicited Reselection
Unsolicited SCSI Bus Reset
Hiahest Path ID Assigned
SCSI Device ID {of Initiator)

reserved

reserved
Veridor ID of SIM-supplier
Vendor ID of HBA-supplier
0SD Usage

[I S —

D=MRIWRITO~

]

1
1

o TN et b ot ot
Ottt

_______ 4

In some- Operating System environments it may be possible to dynamically load
?Bdhun!oaddSIHs. so Path IDs may not be consecutive from 0 to the Highest Path
ssigned.

The Path ID value of FFh is assigned as the address of the XPT.

;he SESI Capabilities field is a duplicate of the Byte 7 field in Inquiry Data
ormat,

The 03D Usage Pointer field is provided for 0S-specific or platform-specific
functions to be executed by the SIM. The contents of this field are vendor-
specific and are not defined by this standard.

In some environments, the Private Data value returned may be zero because the
0SD has central allocation of private data requirements, or it is a fixed size
as defined by the 0SD vendor.

See the vendor specification for the definition of Vendor Unique HBA
capabilities peculiar to a particular HBA implementation.

The Asynchronous Event capabilities indicate what reasons cause the SIM to
generate an asynchronous event.

This function shall return non-zero CAM Status.

- CAM Status of Request Completed Without Error indicates that the other
returned fields are valid. . .

- QAHtS$?tgs of Invalid Path ID indicates that the specified Path ID is not
installed.

JLEL S P |

80

Common Access Method XPT/SIM Support Rev 2.3 February 25, 1991 Page 31
8.2.3 Release SIM (Queue

SIM queue for the selected LUN (see 6.
TABLE 8-6 RELEASE SIM QUEUE
+

This function is provided so that the Eegig?eral driver can release a frozen

Fommeet e
Size|Dir| Release SIM Queue

-!-————+———+ ————————————————— - +
- - - - - (s

0 | Address of this CCB

g CAM Control Block Length
1

Function Code
CAM Status
reserved

0 | path ID_
0 | Target ID
8 Lb

- Comon - - - - =

N
CAM Flags (0SD)

e Ay

This function shall return CAM status of Request Completed Without Error.
8.2.4 Set Async Callback

This function is provided so that a Eeriphera] driver can register a callback
routine for the selected Bus/Target/LUN nexus.

Common Access Method XPT/SIM Support Rev 2.3 February 25, 1991 Page 32

TABLE 8-7 SET ASYNC CALLBACK CCB
R S
|

iy
Size|Dir] Set Async Callback

[T .]
- = - - - 0D -~ - - - -
4 | 0 | Address of this CCB
2 CAM Control Block Length
1 Function Code
1 CAM Status
1 reserved
1
1
1
4
4

—oo

- - - - Common - - - - -
Path 1D

Target ID

LUN

CAM Flags (0SD)
Asynchronous Event Enables
31-24 Vendor Unique
23- B reserved

7 New Devices found during rescan

6 SIM module De-Registere

5 SIM module Registered

4,Sent Bus Device Reset to Target

3 SCSI AEN

2 reserved

1 Unsolicited Reselection

0 Unsolicited SCSI Bus Reset
Asynchronous Callback Pointer
Periphera]l Driver Buffer Pointer
Size of Allocated Peripheral Buffer

SOoooo

=
j=1—1-]

______ S P

This function shall return:

- CAM Status of Request Completed Without Error indicates that the
registration of the callback routine was accepted, . .

- CAM Status of Request Completed with Error indicates that the registration
was rejected (possibly due to invalid parameter settings).

8.2.5 Set Device Type

This function requires the XPT to add the Target ID, LUN and peripheral type
to the table of attached peripherals built during CAM initialization.

ANIHd¥F L)

bl

Common Access Method XPT/SIM Support Rev 2.3 February 25, 1991 Page 33

TABLE 8-8 SET DEVICE TYPE CCB
IR .

+
|Size|Dir| Set Device Type
+ +

LUN
CAM Flags (0SD)
Peripheral Device Type of Target/LUN

mm et em et e e e e ——————— +

- = - - - 08 - - - - -

4 | 0 | Address of this CCB

2 | 0 | CAM Control Block Length

1] 0 | Function Code

1 | I | CAM Status

1 reserved
- - - - Comon - - - - -

1 Path 1D

1 Target ID

1]

4

1

oocco

The SIM does not check the va]iditﬁ of the information sxﬁplied by the
peripheral driver. This function shall return non-zero CAM Status.

NOTE: Blind insertion of device tl\ﬁ;e information may corrupt the table, and
results would be unpredictable.

- CAM Status of Request Completed Without Error indicates that the specified
information was inserted into the table of SCSI devices.

- CAM Status of Request Completed with Error indicates a problem e.g. not
enough room in the table to add the device information.

8.3 SCSI Control Functions
8.3.1 Abort XPT Request

This function requests that an XPT reguest_be aborted by identifying the CCB
associated with the request. It should be issued on any I/0 request that has
not completed that the driver wishes to abort. Success of the Abort function
1s never assured. This request does not necessarily result in an Abort message
being issued over SCSI.

TABLE 8-9 ABORT XPT REQUEST CCB
+

Fomeet—nm
[SizelDirl Abort XPT Request
B Ty, PSSO - -
- - - - - 08D - - - - -
0 | Address of this CCB
8 CAM Control Block Length
I

Function Code
CAM Status
reserved

Path ID
Target ID
LUN

CAM F]ags (0SD)

CCB to be Aborted Pointer
B e e e pp—— - —_ -

- Common - - - - -

| e e e et i ot N

Common Access Method XPT/SIM Support Rev 2.3 February 25, 1991 Page 34

This function shall return CAM Status of Request Completed Without Error or
Unable to Abort Request.

The actual failure or success of the Abort operation is indicated by the CAM
Status eventually returned in the CCB specified.

8.3.2 Reset SCSI Bus !

This function is used to reset the specified SCSI bus. This function should
not be used in normal operation, This request shall always result in the SCSI
RST signal being asserted (see 6.4.3.3 and 6.5).

TABLE 8-10 RESET SCSI BUS CCB

+ +
|Size|Dir| Reset SCSI Bus
B S S +
- = = - - 08D - - - - -
0 | Address of this CCB
0 | CAM Control Block Length
0 | Function Code
I | CAM Status
served

Path iD
Target ID
LUN
CAM Flags (0SD)

- Common - - - - -

oooo

[e e T Y -

This function shall return CAM Status of Request Completed Without Error.

The actual failure or success of the Reset SCSI Bus is indicated by the
Asynchronous Callback information.

8.3.3 Reset SCSI Device

This function is used to reset the specified SCSI target. This function should
not be used in normal operation, but if I/0 to a particular device hangs up
for some reason, drivers can abort the 1/0 and Reset the device before trying
again. This reguest shall always result in a Bus Device Reset message being
issued over SCSI (see 6.4.3.3 and 6.5).

ANldd L2

08

Common Access Method XPT/SIM Support Rev 2.3 February 25, 1991 Page 35

TABLE 8-11 RESET SCSI DEVICE CCB

+ +
|Size|Dir| Reset SCSI Device
L e e e T - +

- - - - -0 - - - - -
4 | 0 | Address of this CCB
2 | 0| CAM Control Block Length
1 | 0| Function Code
1 | I | CAM Status
1 reserved
- = = = Common - - - - -
1 Path ID
% Target ID
4

cooo

LUN
CAM Flags (0SD)

This function shall return CAM Status of Request Completed Without Error.

The actual failure or success of the Reset SCSI Device is indicated by the
Asynchronous Callback information.

8.3.4 Terminate 1/0 Process Request

This function requests that am XPT 1/0 request be terminated by identifyin
the CCB associated with the request. It should be issued on any 1/0 reques
that has not completed that the driver wishes to terminate. Success of the
Terminate 1/0 Process is never assured. This request does not necessarily

result in a Terminate I/0 Process message being issued over SCSI.

TABLE 8-12 TERMINATE 1/0 PROCESS REQUEST CCB

tommmmt——mat

|Size|Dir| Terminate I/0 Process Request

Fommmtamat - e et e +
- - - - - 050 - - - - -

0 | Address of this CCB

8 CAM Control Block Length

I

Function Code

CAM Status
reserved

Path ID

Target ID

LUN

CAM Flags (0SD)

CCB to be Aborted Pointer

- Common - - - - -

o e e N e e e

This function shall return CAM Status of Request Completed Without Error.

The actual failure or success of the Terminate I/0 Process operation is
indicated by the CAM Status eventually returned in the CCB specified.

Common Access Method XPT/SIM Support Rev 2.3 February 25, 1991 Page 36

9. Execute SCSI I/0

The most commonly executed request of the SIM is an I1/0 command, as defined in
the CCB with a Function Code of Execute SCSI I/0.

9.1 CAM Control Block to Request I1/0

Peripheral drivers should make all of their 5CSI I{O requests using this
function, which is designed to take advantage of all features of SCSI which
%ag]begpgovided by virtually any HBA/SIM combination. The CCB is as defined in
able 9-1.

This function will iypically return with CAM Status of zero indicating that

the request was queued successfully. Function completion can be determined by

gql};ng for non-zero status or through use of the Callback on Completion
ield.

+
|Size|Dir|

Fommet et s s s s s ——————— +
- ¢ - - = 08D - - - - -

0 | Address of this CCB

8 CAM Controi Block Length

I

Function Code

CAM Status
reserved

Path ID

Target 1D

LUN

CAM Flags (0SD) .

Peripheral Driver Pointer

Hext CgﬂugoiqterI : tion (0SD)

eques pping Information

Callback on Completion

SG List/Data Buffer Pointer

Data Transfer Length,

Sense Info Buffer Pointer

Sense Info Buffer Length

CDB Length

Number of Scatter/Gather entries
reserved

SCSI Status
reserved (0SD)

Residual Length

CDB

- = = - - 0D - - - - -
Timeout Value
Message Buffer Pointer Target-oniy}
Message Buffer Length Target-only
VU Flags
Tag Queue Action

reserved

Private Data

[ErpEyE— -9

- Common - - - - -

ooOooooCOoOooOooOO

el

—
=L = DRSS b [- STTSRN KRN - - S g N

o ooocoo O

S

Atilgdy 21

¥

Common Access Method XPT/SIM Support Rev 2.3 February 25, 1991 Page 37 Common Access Method XPT/SIM Support Rev 2.3 February 25, 1991 Page 38

9.1.1 Address of this CCB TABLE 9-2 CAM FLAGS (0SD)

teme—F o=t
Pointer containing the Physical address of this CCB. |Size|Bits| CAM Flags (0SD)

Fom e e e e +
9.1.2 Callback on Completion 1 | 7-6| Direction

00=_reserved

This is an 0SD field which contains the method by which the SIM is to return "01=In
to the caller. In some applications it is a pointer, but in others the 10=0ut
location of the Callback on Completion routine may be a fixed location and the .11=No Data Transfer

1=Disable Autosense
1=Scatter/Gather
1=Disable Cgllback on Comp

CCB would contain an ar?ument. ee the 0SD-specific considerations in Clause 6.
The address of the Comﬁ eted CCB shall be passed on the stack to inform the
peripheral driver which CCB has completed.

1=Linked C

9.1.3 CAM Control Block Length 1=Tagged Queue Action Enable
1=CDB"is a Pointer

This field contains the length in bytes of the CCB, including this field and 1 1=Disable Disconnect

the Address of this CCB in the total. * 1=Initiate Synchronous Transfers

1=Disable Synchronous Transfers
9.1.4 CAM Flags SIM Queue Priority

. 1=Head insertion
This field contains bit settings as described in Table 9-2 to indicate special O=Normal (tail insertion)
handling of the requested function. SIM Queue Freeze
Engine Synchronize

reserved
SG List/Data 0=Host 1=Engine
CDB Pointer 0=VA 1=PA
SG List/Data 0=VA 1=PA
Sense Buffer 0=VA 1=PA
Message Buffer 0Q=VA 1=PA
Next CCB 0=VA 1=PA
Callback on Comp 0=VA 1=PA
reserved
Target Mode-Specific CAM Flags
Data Buffer valid
Status Buffer Valid
Message Buffer Valid
reserved

1=Phase-Cognizant_Mode
1=Target C(B Available
1=Disable AutoDisconnect
1=Disable AutoSave/Restore

SN O NI LI S L

—

(=T TA WL -4, B B OD—‘NLU-PU‘G'!"-J!QI\JLU

* These bits are mutually exclusive
9.1.4.1 Byte 1 Bits

7-6 Direction - These encoded bits identify the direction of data movement
during the data transfer phase, though when used in conjunction with
Engine prucessin?, they have a little diffferent meaning (see 11).

-a sgtting)of 01 indicates a Read operation (data transfer from target to
initiator).
- @ setting of 10 indicates a Write operation (data transfer from
initiator to target).
- a setting of 11 indicates there is to be no data transfer.
5 Disable Autosense - When set to 1 this bit disables autosense.
4 Scatter/Gather - when set to 1 this bit indicates that data is not to be
transferred to/from a single location in memory but to/from several. In

LINCTER 3 Vol

Q)

Common Access Method XPT/SIM Support Rev 2.3 February 25, 1991 Page 39

this case the Data Buffer Pointer refers to a list of addresses and length
in bytes at each address to which the data is to be transferred. The
format of the SG List is defined in Table 9-3.

TABLE 9-3 SCATTER GATHER LIST
Fomamd
|Size|
Fe———* =

4 | Data Address 1
4 | Data Length 1
4 | Data Address 2

4 | Data Length 2

4

4

+

Data Address n
Data Length n

——m et +

+

3 Disable Callback on Com?]etion - When set to 1 the peripheral driver does
not want the SIM to callback automatically when the request is completed.
This implies that the caller will be polling for a non-zero CAM Status
(which indicates successful completion or termination of the request).

2 Linked CDB - When set to 1 this CDB is a linked command. If this bit is
set, then the Control field in the CDB shall have bit 0=1. If not, the
results are unpredictable. See 9.2.

1 Tag Queue Actions are to be enabled. .

0 If the CDB is identified as a Pointer, the first four bytes of the CDB
field contain a pointer to the location of the CDB.

9.1.4.2 Byte 2 Bits

7 Hhen Disable Disconnect=1 the Disconnect capability of SCSI is disabled.
The default of O sets bit 6=1 in the SCSI Identify MSG (which indicates
that the initiator has the ability to disconnect and reconnect.

6 When Initiate Synchronous Transfers=1 the SIM shall negotiate Synchronous
transfers, and wherever possible execute s¥nchr0n0us transfers.

5 When Disable Synchronous Transfers=1 the SIM shall negotiate Asynchronous
transfers (if previously negntiated Synchronous). If unable to negotiate
Synchronous or pegotiation has not yet been attempted, the SIM shall not
initiate negotiation.

4 When SINM aueue Prigrity=1 the SIM shall place this CCB at the head of the
Eargﬁtlggn internal queue to be the next operation sent to the Target/LUN

the)

3 Hﬁen SIM ?ueue Freeze=1 the SIM shall place its internal Target/LUN queue
into the frozen state. Upon_ callback, the CAM Status for this CCB shall
have the SIM Queue Freeze flag set. This bit should only be set for SIM
error recovery and should be used in conjuntion with the SIM Queue
Priority bit and the Release SIM Queue command.

2 The Engine Synchronize=1 is used in conjunction with the In or Out setting
to flush any residual bits before terminating engine processing (see 11}.

9.1.4.3 Byte 3 Bits

The Pointer fields are set up to have one characteristic. If a bit is set to 1
it means the pointer contains a Physical Address. If set to 0 it means the
pointer contains a Virtual Address. If the SIM needs an address in a different
form to that provided, it should be converted by the SIM (using 0SD
facilities) and stored in Private Data.

Common Access Method XPT/SIM Support Rev 2.3 February 25, 1991 Page 40

9.1.4.4 Byte 4 Bits

The TaEget Mode Only Flags are only active on Enable LUN or Execute Target I/0

commands.

7-5 The Buffer Valid bits identify which buffers have contents. In the event
that more than one bit is set, they shall be transferred in the sequence
of Data Buffer, Status, Message Buffer.

3 Phase-Cognizant Mode - if target operations are supported, when set to I,
the SIM shall operate in Phase-Cognizant Mode, otherwise it shall operate
in Processor Mode. . .

2 Target CCB Available - when set to 1 this bit indicates that the XPT/SIM
can use this CCB to process this request. A value of 0 indicates that this
CCB is not available to the XPT/SIM.

1 AutoDisconnect - when set to 1 this bit disables AutoDisconnect. The
default of 0 causes the XPT/SIM to automatically disconnect, if the
Identify message indicates DiscPriv is set. :

0 AutoSave - when set to 1 this bit disables AutoSave. The default of 0
causes the XPT/SIM to automatically to send a Save Data Pointer message on
an AutoDisconnect.

9.1.5 CAM Status 1

This field is returned by the SIM after the function is completed. A zero
status indicates that the request is still in progress or queued. CAW Status
is defined in Table 9-4.

If Autosense information is available, the code returned shall be incremented
by 80h e.g. 04h indicates an error occurred, and 84h indicates that an error
occurred and Autosense information is available for analysis.

Mlddr L)

&5

Common Access Method XPT/SIM Support Rev 2.3 February 25, 1991 Page 41

- 00h
01h Request completed without error: the request has completed and no error

0zh

TABLE 9-4 CAM STATUS
Fomeee F o e e e m e —————— +
00h | Request in progress
01h | Request completed without error
02h | Request aborted by host
03h | Unable to Abort Request
04h Reﬂuest completed with error
CAH Busy
06h | Invalid Request
07h | Invalid Path ID
08h | SCSI device not installed
08h | Unable to Terminate I/0 Process
0Ah | Target Selection Timeout
0Bh | Command Timeout
0Ch reserved .
0Dh | Message Reject received
OEh | SCSI Bus Reset Sent/Received
OFh | Uncorrectable Parity Error Detected
10h | Autosense Request Sense Cmd Failed
11h | No HBA detected
12h | Data OverRun/UnderRun
13h | Unexpected Bus Free
14h | Target bus ?hase sequence failure
15h | CCB Length Inadequate .
16h | Cannot Provide Requested Capability
17h | Bus Device Reset Sent
18h | Terminate I/0 Process
19-37h reserved
Target Mode Only Status
38h | Invalid LUN

39h | Invalid Target ID

3Ah | Function not Implemented
3Bh | Nexus not Established
3Ch | Invalid Initiator ID

30h | SCSI CDB Received

3Eh | LUN Already Enabled

3Fh | SCSI bus Busy

+40H | to indicate that SIM Queue is frozen
+80h | to indicate that Autosense is valid

Request in progress: the request is still in process.

condition was encountered.

geguest aborted by host: the request was aborted by the peripheral
river.

Unable to Abort Request: the SIM was unable to abort the request as
instructed b{ the peripheral driver.

Request completed with error: the request has completed and an error

condition was encountered.

CAM Busy: CAM unable to accept request at this time. . .
Invalid Request: the request has been re}ected because it is invalid.
Invalid Path ID indicates that the Path ID is_invalid.

SCST device not installed: Peripheral Device Type field is not valid.

Unable to Terminate I/0 Process: the SIM was unable to terminate the

request as instructed by the peripheral driver.

Common Access Method XPT/SIM Support Rev 2.3 February 25, 1991 Page 42

- 0Ah Target Selection Timeout: The target failed to respond to selection.
0Bh Command Timeout: the specified command did not complete within the
timer value specified in the CCB.
- 0Dh Message Reject recejved: The SIM received a Message Reject MSG.
- OEh SCSI Bus Reset Sent/Received: The SCSI operation was terminated at some
ﬁoint because the SCSI bus was reset.
~ OFh Uncorrectable Parity Error Detected: An uncorrectable SCSI bus parity
error was detected. When this occurs, the SIM sends the ABORT message
to the target. .
- 10h Autosense Request Sense Command Failed: The SIM attempted to obtain
sense data and failed.
- 11h No HBA detected: HBA no longer responding to SIM (assumed to be a
hardware problem).
- 12h Data OverRun: tarEet transferred more data bytes than peripheral driver
indicated in the CCB.
- 13h Unexpected Bus Free: an unexpected Bus Free condition occurred.
- 14h Target Bus Phase Sequence Failure: the target failed to operate ‘in a
proper manner accor in% to X3.131-1990 e.g. it went to the Message Out
Ehase after the initiator asserted ATN.
- 15h CCB Length Inadequate: More private data area is required in the CCB.
- 16h Cannot Provide Requested Capability: Resources are not available to
Brovide the capability kequested (in the CAM Flags).
- 17h Bus Device Reset Sent: this CCB was terminated because a Bus Device
Reset was sent to the target.
- 18h Terminate I/0 Process: this CCB was terminated because a Terminate 1/0
Process was sent to the target.
- 38h Invalid LUN indicates that the LUN specified is outside the supported
range of the SCSI bus,
- 39 Invalid Target ID indicates that the Target ID does not match that used
by the HBA specified by the Path ID field. .
- 3Ah Function Not Im?]emented indicates that Target Mode is not supported.
- 3Bh Nexus not Established: There is currently no connection established
hetween the specified Target ID and Target LUN and any initiator.,
- 3Ch Invalid Initiator ID: The initiator ID specified is outside the valid
range that is supported.
NOTE: This status can also be returned if the target tries to reselect an
initiator other than the one to which it was previously connected.
- 3Dh SCSI COB Received: Indicates that the target has been selected and that
the SCSI CDB is present in the CCB.
- g%hdLUN Already Enabled: The LUN identified in Enable LUN was previously
enabled.
- JFh SCSI bus Busy: The SIM failed to win arbitration for the SCSI Bus
during several different bus free phases.

9.1.6 CDB

This field either contains the SCSI CDB (Command Descriptor Block), or a
pointer to the CDB, to be dispatched.

9.1.7 CDB Length

This field contains the length in bytes of the CDB.

9.1.8 Data Transfer Length

This field contains the length in bytes of the data to be transferred.

Wlddr L2

&

Common Access Method XPT/SIM Support Rev 2.3 February 25, 1991 Page 43

9.1.9 Function Code

See 8.1.2.

9.1.10 LUN

This field identifies the SCSI LUN to which this CCB is being directed.
9.1.11 Message Buffer Length (Target-only)

This field contains the length in bytes of the field which is to be used to
hold Message information in the event that the Peripheral Drivers needs to
issue any MSGs. This field is exclusive to Target Mode operation.

9.1.12 Message Buffer Pointer (Target-only)

This field contains a ?ointer to buffer containing Messages. This pointer is
only valid for use in Target Mode.

9.1.13 Next CCB Pointer

This field contains a pointer to the next command block in a chain of command
blocks. A value of 0 indicates the last command block on the chain. This field
is used for the Tinking of commands.

9.1.14 Number of Scatter/Gather entries

This field contains the number of entries in the SG List.

9.1.15 Path ID

The Path ID specifies the SCSI port on the installed HBA to which the request
is addressed. Path IDs are assiEned by the XPT, begin with zero, and need not
be consecutive. The Path ID of FFh is assigned for the XPT. An HBA may have
more than one SCSI port. A SIM may support more than one HBA.

9.1.16 Peripheral Driver Pointer

This field contains a pointer which is for the exclusive use of the Peripheral
Driver, which use is not defined by this standard.

9.1.17 Private Data

This field is used to contain whatever fields the CAM Module needs to execute
the reﬂuest. As such it constitutes a scratchpad of working space needed by
the SIM and/or the XPT. The size of this area is an 05D as it may differ
between SIMs and XPTs by environment or by vendor implementation. The device
driver is responsible to guery the XPT and ensure that enough Private Data
area is available to the SIM and/or XPT.

0.1.18 Request Mapping Information (0SD)

This field is a ?ointer to an 05D dependent data structure which is associated
with the original 1/0 request.

Common Access Method XPT/SIM Support Rev 2.3 February 25, 1991 Page 44

9.1.19 Residual Length

This field contains the difference in twos complement form of the number of
data bytes transferred by the HBA compared with the number of bytes requested
by the CCB.

9.1.20 SCSI Status i

This field contains the status byte returned by the SCSI target after the
command is completed.)

9.1.21 Sense Info Buffer Length

This field contains the length in bytes of the field which is to be used to
hold Sense data in the event that a Request Sense is issued.

9.1.22 Sense Info Buffer Pointer

This field contains a pointer to the data buffer for Request Sense data. This
pointer will only be used if a Check Condition occurs while performing the
specified command.

I
9.1.23 SG List/Data Buffer Pointer

This field contains a pointer to either the data buffer to which data is to be
transferred, or to the SG List which contains the 1ist of scatter/gather
addresses to be used for the transfer.

9.1.24 Tagged Queue Action

SCSI provides the capability of tagging commands to force execution in a
specific sequence, or of letting the target optimize the sequence of execution
to improve performance. This function provides a similar caEability. For a
description of the tagged command queueing philosophy see SCSI-2 %3.131-1990.

When the Queue Action Enable bit in the CAM Flags is set, the CDB issued by
the SIM shall be associated with the Queue Action specified as:

20h = Simple Tag Reguest
21h = Head of 8ueue Tag Request
22h = Ordered (ueue Tag Request

9.1.25 Target ID

This field identifies the SCSI target which is to be selected for execution of
the CCB request.

9,1.26 Timeout Value

This field contains the maximum period in seconds that a request can remain
outstanding. If this value is exceeded then the CAM Status shall report the
timeout condition. A value of 00h in the CCB means the ﬁeriEhera] driver
accepts the SIM default timeout. A value of F...Fh in the CCB specifies an
infinite period.

1iTdd L1

5§

Common Access Method XPT/SIM Support Rev 2.3 February 25, 1991 Page 45

9.1.27 VU Flags
The uses for this field are defined in the vendor specification.
9.2 Command Linking

The SIM supports SCSI's ability to link commands in order to guarantee the
sequential execution of several requests. This function requires that both the
HBA and the involved target(s) support the SCSI Link capability.

To utilize Iinking, a chain of CCBs is built with the Next CCB Pointer being

used to link the CCBs together. The CAM Flag Link bit shall be set in all CCBs

but the last in the chain. When a SCSI target returns the Linked Command

gc)mplitﬁ lé\essage. the next CCB is processed, and its associated CDB is
ispatched.

Agy_Check Condition returned by the target on a linked command shall break the
chain.

10. Target Mode (Optional)

If a Target Mode function is specified by a CCB and this functionality is not
rovided by a particular SIM implementation, then a CAM Status of Function Not
mplemented shall be returned in the CCB.

The Target Mode functionality causes the HBA associated with the specified
SCSI link to be set up so that it may be selected as a target i.e. when an HBA
isb?perating in Target mode, it is responding to other HBAS on the same SCSI
cable.

There are two different modes of target operation, either or both of which may
be su?ported bz the XPT/SIM as defined by the Target Mode Support flags in the
Path Inquiry CCB.

- Processor mode
- Phase-Cognizant mode

Processor mode permits an application to register itself as a LUN and provide
a set of one or more CCBs that the XPT/SIM can use for rece1v1nﬁ and sending
data. In this mode, when the adapter is selected and the XPT/SIH receives an
Identify message for a LUN that has registered as a Processor LUN, the XPT/SIM
will accept any processor device commands (Inquiry, Request Sense, Send,
Receive) and, using one of the available CCB's, process the SCSI command
through completion.

Upon disconnection, the SIM calls back on completion to let the application
know that the CCB has been processed. From the time that the application
registers itself until the time a command has completed, there is no callabck
to the application.

In summary, Processor applications ?et called back only after the SCSI command
has been completely processed, and leaves all phase hand}ing and SCSI command
processing nuances to the XPT/SIM and the previously registered CCB's.

Phase-Cognizant mode permits an application tighter control over what takes
place when a SCSI command is received by the SIM. When a Phase-Cognizant
application registers itself and a command is received, the XPT/SIM does an

Common Access Method XPT/SIM Support Rev 2.3 February 25, 1991 Page 46

immediate Callback on Completion after placing the SCSI command in an
available CCB. The Phase-Cognizant application is responsible to set up data,
message, status fields and CAM-Flags in the CCB and re-issue the CCE with an
Execute Target I/0 function code so that the XPT/SIM knows which phases it
should execute. The "callback-reissue CCB" cycle may happen multiple times
before a command completes execution.

In summary, Phase Cognizant applications get a callback immediately after the
SCST command block is received and is expected to instruct the XPT/SIM as to
which phases to go through to perform the command.

10.1 Enable LUN

The 5ﬁecified Target ID shall match that returned by the HBA Inquiry Function
for the HBA. The specified LUN is the one enabled for selection, and if the
HBA is to respond as an additional LUN, another Enable LUN is required.

In addition to providing a hook into the agﬁ]icatinn. this function is
iiiggerjded %u grg\nde an area that the XPT/SIM can use as working space when the
15 selected.

TABLE 10-1 ENABLE LUN CCB

tommatonnt

|Size|Dir| Enable LUN CCB
B s . -

- - = - - 05D
0 | Address of this CCB
8 CAM Control Block Length
I

Function Code

CAM Status
reserved

Path 1D

Target 1D

LUN

CAM Flags (0SD)

Group 6 Vendor Unique CDB Length

Group 7 Vendor Unigge CDB Length

Pointer to Target CCB List
Number of Target CCBs

- Common - - - - -

L~ B e e = 1S -
| coooocooo

1
+

If the Number of Target CCBs is zero, then Target Mode is disabled, otherwise
the Pointer to Target CCB List refers to a list of addresses of CCBs to which
the data is to be transferred (see Table 10-2).

TABLE 10-2 TARGET CCB LIST

Fomet

|Size| Target CCB List
T D O I +

4 | CCB Address 1
4 | CCB Address 2

4 | CCB Address n
Fomm et rrresde e e e ———e +

The XPT/SIM shall place the pointer to the CCB, or the pointer to the list of

ANTHdE L2

75

Common Access Method XPT/SIM Support Rev 2.3 February 25, 1991 Page 47

CCBs, in a list until the s?ecified Target ID and LUN is selected on the SCSI
link specified by the Path ID field. While the request is being held,_the CAM
Status field of the Target CCB, shall be set to Re$uest in Progress. The
application is_required to poll on the CAM status field of the Target CCB or
provide a Completion Callback routine through the Target CCB.

The XPT/SIM shall keep an indication of whether a single CCB or list of CCBs
was provided on the Enable LUN service.

The XPT/SIM shall set the following in each Target CCB when they are first
provided:

- CAH Status to Request In Progress
- CAM Flags shall be the same as those in_the Enable LUN CCB
- CAM Flags shall set the Target CCB Available as needed

Hi%han the Target CCB provided, the following information shall be present and
valid,

- CAM Flag information including AutoDisconnect and AutoSave.

- CDB field is valid for the Command Blocks that may be received. That is
either CDBs are embedded in the CCB, or a pointer to a CDB area is provided
in the CDB field.

- The Group 6 and 7 Vendor Unique CDB Length fields contain the number of
bytes a target application expects to receive for it's vendor unique
command set. The previous item shall go hand-in-hand with this requirement.
The Group 6 and 7 Vendor Unique CDB Length fields shall be retained for
each LUN enabled.

If the target aEplication supports Vendor Unique Command Blocks, then the CDB
field of the CCB shall reflect the nature and size of those Vendor Unique
Command Blocks. Ample space shall be provided to contain the CDBs that may be
received. If a CDB greater than the size of the CDB field is desired, then the
CDB field shall contain a pointer to a CDB.

To disable the selection of a specific LUN, the application performs an Enable
LUN with a zero value for the Number of Target CCBs.

If a LUN is disabled, after havin? been enabled, then the Inquiry data and the
Vendor Unique CDB Length data shall be cleared.

The XPT/SIM shall prevent a nexus bein? established between an initiator and a
specified LUN that has been disabled. 1f there is a pre-existing nexus, then
Invalid Request shall be returned.

This function shall return non-zero CAM Status.

- CAM Status of Request Completed Without Error indicates that the Enable LUN
was completed successfully.)

- CAM Status of Invalid Request indicates that there is currently a nexus
established with an initiator that shall be terminated, first.

- CAM Status of Invalid Path ID indicates that the Path ID is invalid.

- CAM Status of Invalid Target ID indicates that the Target ID does not match
that used by the HBA specified by the Path ID field. | .

- CAM Status of Invalid LUN indicates that the LUN specified is outside the
supported range of the SCSI bus. Lo .

- CAM Status of Function Not Implemented indicates that Target Mode is not

Common Access Method XPT/SIM Support Rev 2.3 February 25, 1991 Page 48

supported by this implementation of CAM.
10.2 Phase Cognizant Mode
10.2.1 Target Operation of the HBA

When the HBA is selected, the XPT/SIM automatically sets the HBA to the
Message Out phase to receive the Identify, S¥nchronuus Data, and other
messages that may be sent by the Initiator. The XPT/SIM response to these
messages shall be as defined in-X3.131-1990.

The LUN shall be extracted from the Identify Hessage and the apgropriate CCB
shall be extracted from the list of CCBs being held by the XPT/SIN.

If the LUNTAR bit }or anz of the reserved bits) of the Identify Message is set
;0_%, %hen the XPT/SIM shall send a MESSAGE REJECT message back to the
initiator. :

If no CCBs are being held by the XPT/SIM for a Tar?et ID, then the XPT/SIM
shall not respond to the selection of that Target ID.

If CCBs are being held by the XAT/SIM, and the LUN indicated bg the Identify
Message does not have a CCB provided by an application, then the XPT/SIM shall
provide the following support:

a) If an Inquiry command is sent to this LUN, then the XPT/SIM shall respond
with Inquiry Data that indicates "Logical Unit Not Supported.”

b) If_any other command (except Request Sense) is sent to this LUN, then the
XPT/SIM shall respond with a Check Condition.

c) If a Request Sense command is sent to this LUN after a Check Condition
status is sent, then the XPT/SIM shall respond with sense data that
indicates "Logical Unit Not Supported®.

The XPT/SIM shall scan the CAM Flags in the CCB(s) provided with Enable LUN.
If none of them have the Target CCB Available bit set, the XPT/SIM shall
reguest the SCSI CDB and post BSY status. The XPT/SIM shall not modify the
SCSI CDB(s) in the CCB(s).

After processing the CDB from a Target CCB, the target application shall set
CCB Available in the CAM Flags, which allows the application to pass the same
CCB back to the XPT/SIM ugun Callback on Completion %th15 prevents the
possibility that the XPT/SIM could use the CCB on selection). The setting of
the Target Available bit could be done at the Callback on Completion after the
Exectute Target 1/0 which trasnmits SCSI Status.

If a target application sets Target Available upon recognizing that a CDB has
been received and uses a different CCB to perform the data transfer, there is
a 19¥egllikelih00d of a BSY response to the initiator when a CCB is not
available.

The Disable Disconnect bit in the CAM Flags field shall be updated to indicate
the state of the DiscPriv bit in the Identify message that was received from
the initiator. If the DiscPriv bit was set in the Identify Message, then_the
Disable Disconnect bit shall be cleared, and vice-versa. NOTE: The default
state of the Disable Disconnect bit in the CAM Flags is cleared, implying that
disconnect is enabled.

ANIHar L)

L8

Common Access Method XPT/SIM Suppoft Rev 2.3 February 25, 1991 Page 49

The Target ID field shall be set to the ID of the initiator that performed the
selection. This field can then be used hﬁ subsequent functions, such as
reselect, to determine the Initiator's ID.

Once the initial Message Out Phase is complete, the XPT/SIM automatically sets
the HBA to the Command Out Phase to request the SCSI CDB, After receiving the
SCSI CDB bytes, the XPT/SIM shall set the CAM status field to CAM Status of
SCST CDB received, and clear the CCB Available bit in the CAM Flags.

Upon completion of the data phase, the XPT/SIM shall send the aﬁprogriate SCSI
status and Command Complete and then disconnect from the bus. The XPT/SIM
shall then post the required CAM Status in the CCB, or Callback on Completion.

I the Group Code of the Oﬁeratiun Code of the Command Block is Vendor Unique
the XPT/SIM shall ensure that only the indicated number of command bytes are
received. If the required number of bytes are exceeded or not transferred,
then the XPT/SIM shall return a status of Check Condition, the Sense Key in
the Sense Buffer shall be set to Illegal Request, and the Additional Sense Key
and Qualifier shall be set to Command Phase Error.

If the DiscPriv bit in the Ident1f¥ message was_set, which results in the
Disable Disconnect bit of the CAM Flags being cleared, and the Disable
AutoDisconnect bit of the CAM Flags field is cleared, the XPT‘SIM shall
automatically disconnect upon recipt of the command block. The subsequent
invocation of the Execute Target I/0 function shall perform an automatic
reselect when it is invoked.

If a BUS DEVICE RESET messa?e is received at any time, the XPT/SIM shall set
the CAM Status field to SCSI Bus Reset Sent/Received for any CCB being held
(through Enable LUN), or that is active in the XPT/SIM.

If a SCSI Bus Reset occurs the asgnchronous callback and bus reset mechanism
defined for initiator mode shall be followed.

The SIM shall reject any CCB which has a Timeout Value of other than infinity.

10.2.2 Execute Target I/0

If the Data Valid bit is set, the XPT/SIM shall enter the data phase indicated
bﬁ the direction bit in the CAM Flags field Sig. DATA IN or DATA QUT). It
shall send/receive data to/from the buffer(s) indicated in the CCBs Scatter
Gather List or Data Pointer.

If the Status Valid bit is set, the XPT shall send the status byte specified
in the SCSI Status field to the current initiator and then send the Command
Complete Message.

If the Message Valid bit is set, the XPT shall enter the Message phase and
transfer the contents of the Message buffer.

The XPT/SIM shall receive and respond to any messages resulting from ATN being
gsgﬁrtgd by the initiator, in addition to any messages it sends to the
initiator.

The XPT/SIM shall be able to execute all the phases indicated by the Buffer

Common Access Method XPT/SIM Support Rev 2.3 February 25, 1991 Page 50

Valid bits of the CAM Flags, within a single invocation of the Execute Target
0 i.e. if more than one bit is set, the order of execution of the phases
shall be data, status, and message.

If the Data Buffer Valid and Status Buffer Valid bits of the CAM Flags are
both set for an invocation of Execute Target 1/0, the AutoDisconnect and
AutoSave features shall be disabled.

If the Disable AutoDisconnect bit of the CAM Flags is cleared, and the Disable
Disconnect of the CAM F1ags bit is cleared, then the XPT/SIM shall disconnect
on the completion of the data transfer.

If the Disable AutoSave bit of the CAM Flags is cleared, then the XPT/SIM
shall send a Save Data Pointers message to the initiator prior to disconnect.

The XPT/SIM shall perform an automatic reselect if the XPT/SIM had)
disconnected after the receipt of the CDB, or had disconnected upon completion
of a previous Execute Target I/0 (within the same 1/0 process).

Upon the last Execute Target 1/0, the tarﬁet application should consider
Segtigg_tge Disable AutoSave bit, which shall disable the sending of the Save
ata Pointers. |

This function typically returns with CAM Status of zero indicating that the

request was executed successfullﬁ. Fupction comﬁletwn can be determined by
gl}éng for non-zero status or through use of the Callback on Completion
ield.

10.3 Processor Mode
10.3.1 CCB Acceptance

In Processor mode, the Tarﬁet CCB List shall contain at least one pre-built
CCB that the SIM can use whep it responds to selection. The Target CCBs that
are supported by the SIM include CDBs for the following commands:

- Inquiry

- Receive

- Request Sense
- Send

The SIM shall verify that the CCBs in the Target CCB List contain supported
commands, valid data buffers etc.

Any invalid CCB in the list shall be rejected and the LUN shall not be
enabled.

10.3.2 Target Operation of the HBA
When the target HBA is selected, it shall automatically request the CDB.

The SIM shall search the Target CCB List to find a matching CDB. If a matching
CDB is found, it shall verify that Target CCB Available=1, and use the
contents of the data buffers to process the command received, The SIM shall
clear Target CCB Available, and if the peripheral driver wants the CCB to be
re-used it is responsible to set Target CCB Available=l,

1HIdd s L2

75

Common Access Method XPT/SIM Support Rev 2.3 February 25, 1991 Page 51

Ugcn completion of the CDB received, the SIM shall report CAM Status in the
CCB and call back the peripheral driver.

If the Target CCB List has no CCBs with Target CCB Available=1, but matches
were found, the SIM shall send Busy Status to the Initiator.

If the Target CCB List contained no matching CCBs, then the SIM shall return
Check Condition to the Initiator. Upon rece1gt of a Request Sense command, the
SIM shall return a Sense code of "Invalid CDB" to the Initiator.

If an Inquiry CDB is received but there is no Inquiry CDB in one of the CCBs
in the Target CCB List then the SIM shall return Inquiry Data of "LUN Not
Supported™ to the Initiator. NOTE: A CCB to respond to an Inquiry CDB should
be provided in every Target CCB List.

If an InEuiry CDB is and there is an Inquirﬁ CDB in one of the CCBs in the
Target CCB List then the SIM shall return the Inquiry information ?rovided by
the data buffer pointer, The SIM does not clear Target CCB Available or call
back as it is a placeholder of consistent information.

11. HBA Engines

An engine is a hardware device implemented in an HBA to perform time-intensive
functions not available on target devices. Generally, these engines are
required to process data prior to huildigg a CDB and submitting to the device.
There may be more than one engine in a HBA.

One use of engines is to comEress data. In this mode, a device driver first
submits data to the engine. Once the engine has completed processing the data,
an Execute SCSI CCB can be buiit for the SCSI transter.

The enﬂine model allows for the addressing of buffer memory located on the
HBA. The buffer addressing appears to the host as contiguous space. Using this
model, it is possible to submit multiple requests until the engine buffer is
full. Once the full condition is met, an Execute SCSI CCB can be built.

When_the full condition occurs ﬁas_defined bﬁ the Destination Data Length
equailing the Destination Data Maximum Lengt }, the amount of unprocessed
source data is reported in_the Source Residual Length. The residual data may
then be re-submitted at a later time.

11.1 Engine Inquiry

This function is used to learn information on the engines installed in the HBA
hardware. This function is issued for each engine.

Common Access Method XPT/SIM Support Rev 2.3 February 25, 1991 Page 52

TABLE 11-1 ENGINE INQUIRY CCB

Fommmt et
|Size|Dir| Engine Ingquiry
+ +

o
- = - - -0 - - - - -
0 | Address of this CCB
8 CAM .Control Block Length
I

Function Code
CAM Status
reserved
Path 1D
Target 1D
LUN
CAM Flaﬁs (0SD)
Engine Number
Englne Type
=Buffer Memory
1=Lossless Compression
2=Lossy Compression
3=Encryption
4-FF reserved
1 I Engine Algoritm ID
=Vendor Unique
1=L71 Variation 1 §STAC

- Common - - - - -

e T e Ll A -

—D3
00000

2=L72 Variation 1 (HP DEZL)
3=L72 Variation 2 (Infochip)
4-FF reserved

4 I | Engine Memory Size

The Engine Type reports the generic function the addressed engine number is
capable of supporting.

The Engine Algorithm ID reports the specific capability the addressed engine
supports.

The amount of buffer memory provided for an engine is reported in the Engine
Memory Size.

This function shall return nop-zero CAM Status. =
- CAM Status of Request Completed Without Error indicates that the other
returned fields are valid.
- CAM Status_of Invalid Request indicates that the specified Engine Number is
not installed.

11.2 Execute Engine Request (Optional)

To accomodate buffering associated with the engine, the CAM F]ag SG List/Data
set to l=Engine is used to specify that the normal Data Buffer Pointer is
actually a physical address in the buffer space of the engine.

}?ere are four modes associated with engine processing established by CAM
ags:

- A Direction setting of Out is used to Encrypt or Compress the data
- A Direction setting of Out is used to Decrypt or Decompress the data

Litddr L1

b3

Common Access Method XPT/SIM Support Rev 2.3 February 25, 1991 Page 53

- Synchronize is used in conjunction with In or Out to flush any residual
bits prior to terminating engine processing.

Certain types of engines change the size of data as part of their operation
e.g. the purpose of compression engines is to reduce the size of data prior to
transmission over SCSI. As such, the Execute Engine Request CCB allows the

engine to report the size of the resultant data.
TABLE 11-1 EXECUTE ENGINE REQUEST CCB
+

Fommat e
|Size|Dir| Execute Engine Request
§ SN S - +
- - - - - Q0D - - - - -
4 | 0 | Address of this CCB
2 | 0 | CAM Control Block Length
1 | 0| Function Code
1| I | CAM Status
1 reserved
- - - - Comon - - - - -
1| 0| Path ID
1| 0| Target ID
1] 0] LUN
4| 0| CAM Flags (0SD))
4 | 0| Peripheral Driver Pointer
410 reserved (0SD
410 Re?uest Mapping” Information (0SD)
4 | 0 | Callback on Completion
4 |1 0| SG List/Data Buffer Pointer
4 | 0 | Data Transfer Length
4 | 0 | Engine Buffer Data Pointer
1 reserved (0SD
1 reserved (0SD .
2 | 0 | Number of Scatter/Gather entries
4 1 0 | Destination Data Maximum Length
4 | T | Destination Data Length
4 | T | Source Residual Length
12 reserved (0SD)
4 Timeout Value
4 reserved
2 | 0 | Engine Number
2| 0| VO Flags
1 reserved
3 reserved
n | 0| Private Data

This function will typically return with CAM status of zero indicating that

the request was queued successfully. Function completion can be determined by

gg]}éng for non-zero status or through use of the Callback on Completion
ield.

Common Access Method XPT/SIM Support Rev 2.3 February 25, 1991 Page 54

ANNEX
Annex A. Physical/Logical Translation in 80x86 Environment
A.1 0SD Formatting of Disk Drives

The DOS physical address to/from logical block address conversion al?orithms
to map SCSI disks into int 13h Head-Cylinder-Sector format vary widely between
suppliers of software to support third party disks.

The fo]]owin? "C" routines have been adopted by CAM as reRresentin the most
efficient utlization of capacity. The following code is ANSI "C" that can be

compiled using the Microsoft C compiler, version 5.1.

a) SETSIZE converts a Read Capacity value to int 13h Head-Cylinder-Sector
requirements, It minimizes the value for number of heads and maximizes the
number of cylinders. This will supggrt rather large disks before the
number of heads will not fit in 4 1ts.{or 6 bits). This algorithm also
minimizes the number of sectors that will be unused at the end of the disk
while allowing for very large disks to be accomodated. This algorithm does
not use physical geometry.

b) LTOP does logical to physiLaI conversion

c) PTOL does physical to logical conversion

d) MAIN is a test routine for a, b and c.
A.1.1 SETSIZE

*

typedef unsigned int UINT:
t¥pedef unsigned long ULNG;

:/ Convert from logical block count to Cylinder, Sector and Head (int 13)

int setsize(ULNG capacity,UINT *cyls,UINT *hds,UINT *secs)

{
UINT rv = 0;

ULNG heads, sectors, cylinders, temp:

cylinders = 1024L; /* Set number of cylinders to max value */

sectors = 62L; /* Max out number of sectors per track */
temp = cylinders * sectors; {* Compute divisor for heads */
heads = capacity / temp; /* Compute value for number of heads */
if (capacity % temp) { /* If no remainder, done! */
heads++; /* Else, increment number of heads */
temp = cylinders * heads: /* Compute divisor for sectors */
sectors = capacity (temp; /* Compute value for sectors per track */
if (capacity % temp) { /* 1f no remainder, donel *
sectors++; /* Else, increment number of sectors */
temp = heads * sectors; f* Compute divisor for cylinders */
cylinders = capacity / temp; /* Compute number of cylinders */

1Niud L3I

9

Common Access Method XPT/SIM Support Rev 2.3 February 25, 1991 Page 55

}
if (eylinders == 0) rv=1;
{UINTE cylinders;

/* Give error if 0 cylinders */

cyls / Stuff return values */

*5acs UINT) sectors;
*hds UINT) heads;
: return{rv);

A.1.2 LTOP

*
:/ logical to physical conversion

Bonon

zoid)]top(ULNG block,UINT hd_count,UINT sec_count,UINT *cyl,UINT *hd,UINT
sec

{
UINT 5ﬁc:
spc = hd count * sec_count;
*cyl = bTock / spc; ~
*hd = (block % spc) / sec_count;
*sec = (block % spc) % sec_count;

}
A.1.3 PTOL

*
:/ Physical to logical conversion

ULNG ptol%UIHT cyl,UINT hd,UINT sec,UINT cyl_count,UINT hd_count,UINT
sec_count

{
ULNG cylsize;
cylsize = sec_count * hd count;
return((cyl * cylsize) + (hd * sec_count) + sec);

A.2 Backwards Compatibility

The selection of a new algorithm for CAM solves the problem of future
compatibility, but it does not solve the problem of the installed base. The
fol lowi n? technique will permit a supplier to update the installed base to
CAM-compliant operation but not require users to reforamt their drives.

A.2.1 ROM-based

The one sector that is independent of the algorithm is sector 00. Under DOS
and many other Operatin? S¥stems this sector is used for the boot sector and
contains the Partition Table for a fixed disk.

If the Partition Table is structured according to MS DDS and IBM DOS
standards, partitions end on cylinder boundaries e.g.

Common Access Method XPT/SIM Support Rev 2.3 February 25, 1991 Page 56

Offset from start of Partition Table entry

00h Boot Indicator 80h
01h Beginning or start head 01h
02h beginning or start sector 01h
03h Beginning or start cylinder 00h
04h System indicator 04h
05h Ending head 07h
06h Ending sector ' 91h
07h Endln? cylinder 7Ch
08h Starting sector (relative to beginning of disk)

0Ch Numb

The endinﬁ head 07h indicates a device with 8 heads (0 to 7). The ending
sector 91h contains 2 bits of high cylinder so it has to be masked to obtain
ending sector = 11h (17 decimal).

er of sectors in partition

To verify these values calculate:

Logical Ending sector (from Beginning Head, Cylinder, and Sector)

; 1
and compare it to:

(Starting Sector + Number of Sectors in Partition)

This leaves Number of Cylinders as the one unresolved parameter. This is
obtained by:

Read Capacity divided by (Heads * Sectors).

Al1 of this can be done by the BIOS in ROM or RAM. To be capable of booting
from any drive or cartridge regardless of the algorithm used to partition and
format the media, the BIOS would need to respond to int 13 function 8 with the
head, sector, and cylinder values obtained from this information. In addition,
the BIOS would need to use those values in its calculation from physical to
logical sectors.

Example of Pseudocode:
For each Drive

Read Boot Sector (LBA 0)

Validate The Signature at end of Sector éSSAA)

Find Partion with largest Logical Start Cyl

If No Partitions found
Use Defaults
Exit

SECS = Ending Sector (from partition table]
Heads = Ending Head+l (from partition table)

Logical End = End cyl * (End_head+l * End sector) +
- (End_head * End_sector) + End_sector

Cnm?are Logical End to Starfing_sec + Number_sec
f not equal

AN1Ydy L2

16

Common Access

Method XPT/SIM Support Rev 2.3 February 25, 1991 Page 57

Use Defaults
Exit

Cyls
A.2.2 RAM-bas

= Capacity / (End_head+l * End_sector)
ed

Under DOS it is possible to modify the code of the boot sector to accomplish
bootability. Access to other partitions is dependent on the device driver to

do a translati

This method is
segment 00 off

an.

a patch just prior to jumping to code loaded in memory at
set 7C00h.

gﬁgﬂ B§ : Save registers used in patch
MOV AH, 08 ; set function code = 8 get drive parameters
INT 13 ; do INT 13 call
INC DH i inc head number to convert from zero based
MOV E?CIA].DH i Tix value of heads in BPB table
AND L,3F ; Mask off non-sector information
ggg B;CIB],CL ; fix value of sectors in BPB table
POP AX ; Restore registers used in patch
JMP 7C00 ; jump to partition boot loader
0180 00 00 00 00 00 GO OO0 00-00 00 00 00 00 Q0 80 01
01C0 01 00 06 07 91 7C 11 00-00 00 57 52 01 00 00 00
01D0 00 00 00 Q0 00 0O 00 00-00 00 00 00 00 00 OO 00
01EO 00 00 00 00 00 0O GO 00-00 00 00 00 00 00 00 00
01FO 00 00 00 00 00 00 00 00-00 00 00 00 00 00 55 AA
Fomm e o m——————— + + ———t +
| 7C00 | 7C03 | 7CoB | 7C0D | 7COE |
Fomm e Fommmma e e —_—t [T e et +
Name Bgtes/ Sectors/ |Reserved
jump nop I ector | Cluster | Sectors
____________ o e e e e e e e i e o o e - e e S e e e e
| EB3C 90 | 49 42 4D 20 20-34 2E 30 [00 02 | 04 | 01 00
o e o ——— e — e B e e LT — o ————— +
L e + + e T Sy T T
| 7c10 | 7c11 | €13 | 7€15 | 7C16 | 7C18 | 7C1A |
Frmmm—m——— Fomm - o ——— Fommmn———— L e o e +
DIR # Log'l | Media # FAT i
FATs entries | Sectors | Descrip | Sectors | Sectors Heads
02 00 02 00 00 F8 550 11 00 08 00
Fomma e [T — Frmm—————— Fommmr e e el b T p— T T — +

Common Access Method XPT/SIM Support

Annex B: Target Application Examples

The following are examples of how a Tar

[Hike Roche to prepare an update which is consistent with Section 10.]

Mode capabilities defined in Section 9

B.

1

Initialization Sequence with Single Target CCB provided

fill Taraet CCB with required info
targetCCB.callbackPointer = callback routine address
fill Enable CCB with the required information
enableCCB. functionCode = function code for enable lun
enableCCB.targetid = the id of the target
enableCCB.targetLun = the lun to enable

enableCCB.group6Vlilength = vendor unique length for Group 6 E}E requireg
require

enableCCB.group/VULength = vendor unique length for Group 7
enableCCB. targetCCBListLength = 0
enableCb.targetCCBPointer = &targetCCB

E;?$le LUN (&enableCCB)

I
Initialization Sequence with Multiple Target CCBs provided

fill Target CCB #1 with required info
target1CUB.callbackPointer = callback routine address #1

fil Target CCB #2 with reguired info
target2CCB.callbackPointer = callback routine address #2
target2CCB.camStatus = request completed by target application
fil Target CCB #n with required info
targetnCCB.callbackPointer = callback routine address #n
targetnCCB, camStatus = request compleied by target application

targetCCBList [0] = pointer to target1CCB
targetCCBList [1] = pointer to target2CCB
targetCCBList [n] = pointer to targetnCCB

NOTE: where targetCCBList is an array of pointers

fill enable CCB with the required information
enab]eCCB. functionCode = function code for enable Tun
enableCCB.targetid = the id of the target
enableCCB.targetLun = the lun to enable
enableCCB.group6VULength
enableCCB.group7VULength = vendor unique length for Group 7
enableCCB. targetCCBLiStLength = 4 * number of target CCBs
enableCb. targetCCBPointer = &targetCCBList

Eg?$le LUN (&enableCCB)

Application Sequence with single Execute Target 1/0

IF_ targetCCB.camStatus != SCSI CDB Received THEN EXIT, OR
callback from XPT/SIM

- process SCSI CDB field in targetCCB
- fill targetCCB with required information

targetCCB. functionCode = function code for execute target io
targetCCB.camFlags = data phase and status phase

Rev 2.3 February 25, 1991 Page 58

get Application can operate the Target

vendor unique length for Group 6 (%E requireg
require

nlddr Lt

~0
LN

Common Access Method XPT/SIM Support Rev 2.3 February 25, 1991 Page 59

targetCCB.dataBufferPointerLength = length of data
targetCCB.dataBufferPointer = pointer to data buffer
targetCCB.SCSIStatus = whatever status is appropriate
- Execute Target I0 (&targeiCCB)
return target 0 poo
/* ret t CCB t 1 *f
- Egg?etCCB.camStatus = request in progress

B.4 Application Sequence with multiple Execute Target I/0

IF targetCCB.camStatus != SCSI CDB Received THEN EXIT, OR
callback from XPT/SIM
rocess SCSI CDB field in targetCCB
oog.untii all data transferred .
il targetCCB with required information
targetCCB. functionCode = function code for execute target io
targetCCB.camFlags = data phase
targetCCB.dataBufferPointerlength = length of data
targetCCB.dataBufferPointer = pointer to data buffer

IF (last data block)
targetCCB.camfFlags = data phase AND status phase
targetCCB.SCSIStatus = whatever status is appropriate

Execute Target I0 (&targetCCB)
- end loop
/* return target CCB to pool
- Egg?etCCB.camStatus = request in progress

¥*

Annex C: Unix 0SD Data Structures

/* cam.h Version 1.05 Nov. 07, 1990 */

/* This file contains the definitions and data structures for the CAM
Subsystem interface. The contents of this file should match the
data structures and constants that were specified in the CAM document,
CAM/89-003 Rev 2.2.

*

/* Defines for the XPT function codes, Table 8-2 in the CAM spec. */

/* Common function commands, UxOD*— 0x0F */

Common Access Method XPT/SIM Support Rev 2.3 February 25, 1991 Page 60

#define XPT ABORT 0x10 /* Abort the selected CCB */
#define XPT_RESET BUS Oxll /* Reset the SCSI bus */

#define XPTRESET DEV 0Ox12 /* Reset the SCSI devies, BDR */
#define XPT_TERM TO 0x13 /* Terminate the 1/0 process */

/* Target mode commands, 0x30 - 0x3F */
#define XPT EN LUN x30 . /* Enable LUN, Target mode support */
#define XPT_TARGET_IO 0x31 /* Execute the target 10 request */

#define XPT FUNC 0x7F ' /* TEMPLATE */
#define XPT_VUNIQUE 0x80 /* A1l the rest are vendor unique commands */

/* __ */
/* General allocation length defines for the CCB structures. */

#define IOCDBLEN 12 /* Space for the CDB bytes/pointer */
#define YUHBA 16 /* Vendor Unique_ HBA length */

#define SIM_ID 16 /* ASCII string len for SIM ID */

#define HBATID 16 /% ASCII strin? len for HBA ID */

#define SIM_PRIV 50 /* Length of SIM private data area */

1
/* Structure definitions for the CAM control blocks, CCB's for the
subsystem. */

/* Common CCB header definition. */
%ypedef struct ccb_header

struct cch_header *my addr; /* The address of this CCB */
u_short cam ccbh len; Length of the entire CCB */

L3

u_char cam_func_code; /* XPT function code */

u_char cam_status; /* Returned CAM subsystem status */

u_char cam_path_id; /* Path ID for the request */

u_char cam_target _jd; /* Target device ID *

u_char cam_target_lun; /* Target LUN number */

u_long cam flags; /* Flags for operation of the subsystem */
} CCB HEADER;

/* Common SCSI functions. */

/* Union definition for the CDB space in the SCSI I/0 request CCB */
%ypedef struct

u_char *cam cdb _ptr; /* Pointer to the CDB bytes to send */
} CDg_ﬁgar cam_cdb_Bytes[IOCDBLEN]; /* Area for the CDB to send *

[* Get device type CCB */
typedef struct

#define XPT NOOP 0x00 /* Execute Nothing */

#define XPT_SCSI [0 0x01 /* Execute the requested SCSI 10 */
#define XPT_GDEV_TYPE 0x02 /* Get the device type information */
#define XPT PATH EN3 0x03 /* Path Inguiry */ .

#define XPT REL SIM 0x04 /* Release the SIM queue that is frozen */
#define XPT SASYNC CB 0x05 /* Set Async callback parameters */
#define XPT_SDEV_TVPE Ox06 /* Set the device type information */

/* XPT SCSI control functions, 0x10 - Ox1F */

CCB_HEADER cam ch; Vi

u_char cam pd Type; /*

chiar *cam_Tnq”data; *
} CCB_GETDEV;

/* Path inguiry CCB */
typedef struct

Header information fields */
Periph device type from the TLUN */
Ptr to the inquiry data space */

Jniuds L1

£

Common Access Method XPT/SIM Support

{
CCB_HEADER cam ch;
u_Tong cam_feature flags;
u_char cam_version_num;
u_char cam_hba_ingliry;
u_char cam_target sprt;
u_char cam_hba misc;
u_char cam“vuhba_flags[VUHBA];
u_long cam”sim_pFiv;
u_long cam_async_flags;
u_char cam_hpath~id;
u_char cam_initiator id;
char caanTm_vid[SIR_ID];
char cam_hba”vid[HBATID
u_char *cam osd_usage}

} CCB_PATHINQ;

/* Release SIH Queue CCB */
typedef struct

CCB HEADER cam ch;
} CCB_RELSIM; -

/* SCSI 1/0 Request CCB */
%ypedef struct

CCB_HEADER cam_ch;
u char *cam pdrv ptr;
CTB_HEADER ¥cam_next_cch;
void (*cam_chfcnp) ()]
u_char *cam data ptr;
u_long cam dxfer_len;
u_char *cam sensg ptr:
u_short cam_sense” len;
u_char cam_cdb_len;
u_short cam sgTist_cnt;
u_char cam_Sc5i_status;
long cam résid;
CDB_UN cam_cdb_io;
u_long cam_timeout;
u_char *cam_msg ptr;
u_short cam_msgb_len;
u_short cam vu_fTags;
u_char cam_Tag_action;
u_char cam_sim_priv[SIM PRIV];
} CCBZSCSIIO; -

/* Set Async Callback CCB */
%ypedef struct

CCB_HEADER cam_ch;
u_long cam_async_flags;
void *cam:asgnc func)();
u_char *pdrv bufy
u_char drv_ﬁuf_ien;

} CCB”SETASYNC;

I

Rev 2.3 February 25, 1991 Page 61

/*

Header information fields */
Supported features flags field */

* Version number for the SIM/HBA */

Wimic of INQ byte 7 for the HBA */

* Flags for target mode support */

Misc HBA feature flags */

Vendor uniﬂue capabilities */

Size of SIM private data area */
Event cap. for Async Callback */
Highest path ID in the subsystem */
ID of the HBA on the SCSI bus */
Vendor ID of the SIM */

Vendor ID of the HBA */

Ptr for the 0SD specific area */

Header information fields */

Header information fields */

Ptr used by the Peripheral driver */
Ptr to the mext CCB for action */
Callback on completion function */
Pointer to the data buf/SG list */
Data xfer length */

Pointer to the sense data buffer */
Num of bytes in the Autosense buf */
Number of bytes for the CDB */

* Num of scatter gather list entries */

Returned scsi device status */
Transfer residual length: 2's comp */
Union for CDB bytes/pointer */
Timeout value */

Pointer to the message buffer */

Num of bytes in_the message buf */
Vendor unique flags */

What to do for tag queuing */

SIM private data area */

Header information fields */

Event enables for Callback resp */
Async Callback function address */
Butfer set aside by the Per. drv */
The size of the buffer #*/

Common Access Method XPT/SIM Support

/* Set device type CCB */
typedef struct

CCB_HEADER cam ch;
u_cfiar cam dev”type;
} CCB_SETDEV; = ~

/* SCSI Control Functions. */

/* Abort XPT Request CCB */
typedef struct

CCB_HEADER cam ch;
CCB”HEADER *cam abort ch;
} CCB_AHORT; - =

/* Reset SCSI Bus CCB */
typedef struct

CCB HEADER cam ch;
} CCB_RESETBUS;

/* Reset SCSI Device CCB */
fypedef struct

CCB _HEADER cam ch;
} CCB_RESETDEY; ~

/* Terminate I/0 Process Request CCB

typedef struct

CCB_HEADER cam ch;
CCB”HEADER =*cam_termio_ch;
} CCB_TERMIO; -

/* Target mode structures. */
%ypedef struct

CCB_HEADER cam ch;

u_short cam_grﬁﬁ_ien;

u_short cam_grp7”len;

u_short cam_ccb Tistcnt;

u_char *cam_ccb”_listptr;
} CCBTEN_LUN;

Rev 2.3 February 25, 1991 Page 62

/* Header information fields */
Val for the dev type field in EDT */

-~
+

/* Header information fields */
/* Pointer to the CCB to abort */

/* Header information fields */

/* Header information fields */
*f

/* Header information fields */
/* Pointer to the CCB to terminate */

{* Group 6 VU CDB length */

/* Group 7 VU CDB length */

/* Count of Tarﬁet CCBs in the 1ist */
/* Pointer to the target CCB list */

i */
/* Defines for the CAM status field in the CCB header. *f

#define CAM REQ INPROG
#define CAM_REQ”CMP
#define CAM_REQ_ABORTED
#define CAM"UA ABORT
rdefine CAM_REQ CMP_ERR
#define CAM_BUSY
#define CAM_REQ_INVALID

/* CCB request is in progress */

/* CCB request completed w/out error */
* CCB request aborted by the host */
/* Unable to Abort CCB request */

/* CCB request completed with an err */
/* CAM subsystem is busy */

/* CCB request is invalid */

Uilddr L3

#b

Common Access Method XPT/SIM Support

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
fidefine
#define
#define

#define
#define
#define
#define
#define
#define
#define

#define
#define

/*

CAM_PATH_INVALID
CAMDEV NOT_THERE
CAM_UA_TERMTO

CAM SEL_TIMEOUT
CAM CMD_TIMEOUT
CAM MSG_REJECT REC
CAMSCST BUS RESET
CAMUNCOR_PARITY
CAMAUTOSENSE_FAIL
CAMTNO HBA —
CAMDATA RUN ERR
CAMUNEXP BUSFREE
CAMSEQUENCE FAIL
CAMCCB LEN ERR
CAM_PROVIDE FAIL
CAMBOR SENT

CAM REQ_TERMIO

CAM_LUN_INVALID
CAMTID INVALID
CAMTFUNC_NOTAVAIL
CAM_NO_NEXUS
CAMTIID_INVALID
CAM_CDB_RECVD
CAM_SCST_BUSY

CAM_SIM QFRIN
CAM_AUTUSNS_VALID

Rev 2.3 February 25, 1991

Page 63

Path ID supplied is invalid */

SCSI device not installed/there */
Unabel to Terminate 1/0 CCB req */
Target selection timeout */

Command timeout */

Message reject received */

SCSI bus reset sent/received */
Uncorrectable parity error occured */
Autosense: Request sense cmd fail */
No HBA detected Error */

Data overrun/underrun error */
Unexpected BUS free * .

Target bus phase sequence failure */
CCB length supplied is inadaquate */
Unable fo provide requ. capability */
A SCSI BDR msg was sent to target */
CCB request terminated by the host */

LUN sup?lied is invalid */

Target ID supplied is invalid */
The requ. func is not available */
Nexus is not established */

The initiator 1D is invalid */

The SCSI CDB has been received */
SCSI bus busy */

The SIM queue is frozen w/this err */
Autosense data valid for targit */

/* Defines for the CAM flags field in the CCB header. */

#define
#define
#define
#define
#idefine
#define
#define
#define
#define
#define

#define
#define
#define
#define
#define

#define
#define
#define
gdefine
#define
fidefine

CAM DIR_RESV
CAMDIRTIN
CAMDIROUT
CAMDIRNONE

CAM DIS AUTOSENSE
CAM™SCATTER VALID
CAMDIS CALLBACK
CAMCDBLINKED
CAM_QUEUE_ENABLE
CAM_CDB_POINTER

CAM DIS_DISCONNECT
CAMINITIATE_SYNC
CAMTDIS_SYNC
CAM“SIM‘BHEAD

CAM SIM_QFREEZE

CAM CDB_PHYS
CAMDATA PHYS
CAM_SNS BUF_PHYS
CAM MSG BUF_PHYS
CAM_NXT_CCBPHYS
CAM_CALTBCK_PHYS

0x00000000 /*
0x00000040 /*
0x00000080 /*
0x000000C0 /*
0x00000020 /*
0x00000010 /*
0x00000008 /*
0x00000004 /*
0x00000002 /*
0x00000001 /*

0x00008000 /*
0x00004000 /*
0x00002000 /*
0x00001000 /*
0x00000800 /*

0x00400000 /*
0x00200000 /*
0x00100000 /*
0x00080000 /*
0x00040000 /*
0x00020000 /*

Data direction (00: reserved) */
Data direction (01: DATA IN) */
Data direction (10: DATA OUT) */
Data directino (11: no data) */
Disable auto sence feature */
Scatter/gather list is valie */
Disable callback feature */

The CCB contains a linked CDB */
SIM gueue actions are enabled */
The CDB field contains a pointer */

Disable disconnect */

Attempt Sync data xfer, and SDTR */
Disable sync, go to async */

Place CCB at the head of SIM Q */
Return the SIM (to frozen state */

CDB pointer is physical */
SG/Buffer data ptrs are physical */
Autosense data ptr is physical */
Message buffer ptr is physical */
Next CCB pointer is phﬁSlga] =/
Callback func ptr is physical */

Common Access Method XPT/SIM Support

#define CAM DATAB VALID
#define CAM_STATUS VALID
#define CAM_MSGB VALID

0x80000000 /*
0x40000000 /*
0x20000000 /*

#define CAM_TGT PHASE MODE 0x08000000 /*

#define CAM_TGT

#define CAMN DIS AUTUDISC
fdefine CAMDIS_AUTOSRP

o

CCB AVAIL 0x04000000 /*
002000000 /*
0x01000000 /*

Rev 2.3

February 25, 1991 Page 64

Data buffer valid */

Status buffer valid */

Messa?e buffer valid */

The SIM will run in phase mode */
Target CCB available */

Disable autodisconnect */

Disable autosave/restore ptrs */

/* Defines for the SIM/HBA queue actions.
SCSI 1/0 CCB, for the queue action field.

defines from some other include file for

not need these definitions here.
#define CAM SIMPLE QTAG
TAG

#define CAM_HEAD

#define CAM_ORDERED_QTAG
[* e e m e e e e mmem

1*
0x20
0x21
0x22

These value are used in the
These values should match the
the SCSI message phases. We may

/* Tag for a simple queue */
/* Tag for head of queue */
/* Tag for ordered queue */

_____ x/

/* Defines for the timeout field in the SCSI I/0 CCB. At this time a value
of OxF-F indicates a infinite timeout.
SIM's default timeout can take effect. */

#define CAM TIME_DEFAULT
#define CAM TIMEINFINITY

SR

0x00000000
OxFFFFFFFF

A value of 0x0-0 indicates that the

J* Use SIM default value */
/* Infinite timout for I/0 */

e x/

/* Defines for the Path Inquiry

#define CAM_VERSION

#define PI MDP ABLE
#define PI"WIDE 32
#define PI"WIDE_16
#define PI_SDTRABLE

#define PI_LINKED CDB

#define PI_TAG ABLE
#define PI"SOFT RST

#define PIT PROCESSOR

#define PIT_PHASE

#define PIM SCANHILO
#define PIM_NOREMOVE

8 e -

CCB fields. */

0x22 /=

0x80 /*
0x40 [/~
0x20 /*
0x10 /*

0x08 /* S

0x02 /*
0x01 /*

0x80 /*
0x40 /*

0x80 /*
0x40 /*

Binary value for the current ver */

Supports MDP message */
Supports 32 bit wide SCSI */
Supports 16 bit wide SCSI */
Supports SDTR message */
upports linked CDBs */
Supports tag gueue message */
Supports soit reset */

Target mode processor mode */
Target mode phase cog. mode */

Bus scans from ID 7 to ID 0 */
Removable dev not included in scan */

S — */

/* Defines for Asynchronous Caliback CCB

#define AC_FOUND DEVICES
#define AC”SIM DEREGISTER
#define AC_SIM REGISTER

sdefine AC_SENT BOR
#define AC_SCSIZAEN

0x80 /*
0x40 /*
0x20 /*
0x10 /*
0x08 /*

fields. */

During a rescan new devies found */
A loaded SIM has de-registered */
A Toaded SIM has registered */

A BDR messaﬁe was sent to target =/
A SCSI1 AEN has been received */

BUHEERS Ped)

55

Common Access Method XPT/SIM Support Rev 2.3 February 25, 1991 Page 65

#define AC UNSOL RESEL 0x02 /* A unsolicited reselection occured */
#define AC_BUS RESET 0x01 /* A SCSI bus RESET occured */
/* ________________________________ e ————————— */

/* Typedef for a scatter/gather list element. */
Eypedef struct

/* Scatter/Gather address */

u_long cam sq_address;
/* Scatter/Gather count */

u_long cam_sg count;
} SG_ELEM; -

/* Unix 0SD defines and data structures. */
#define INQLEN 36
/* General Union for Kernal Space allocation. Contains all the possible CCB

structures. This union should never be used for manipulating CCB's its only
use is for the allocation and deallocation of raw CCB space. */

/* Inquiry string length to store. */

Eypedef union

by CCB_SCSIIO csio;
CCB_GETDEV cqd;
CCB”PATHINQ cpi;
CCB_RELSIM crs;
CCB”SETASYNC csa;
CCB_SETDEV csd;
CCB”ABORT cab;
CCBTRESETBUS crb;
CCB™RESETDEV crd;
CCBTTERMIO ctio;
} CCB_STZE_UNION;

/* The typedef for the Async callback information. This structure is used to
store the supplied info from the Set Async Callback CCB, in the EDT table. */

/* Please keep this first, for debug/print

typedef struct
u_short cam event enable; /* Event enables for Callback resp */
void (*cam async Func)(); /* Async Callback function address */
u_long cam”async_hlen; /* Length of “"information" buffer */
u char *cam_asynt ptr; /* Address for the “information */

} ASYRC_INFO;

/* The CAM_SIM_ENTRY definition is used to define the entr: points for
the SIMs contained in the SCSI CAM subsystem. Each SIM file will .
contain a declaration for it's entry. The address for this entry will
be stured*}n the cam_conftbi[] array along will all the other 51
entries. -

Eypedef struct

Common Access Method XPT/SIM Support Rev 2.3 February 25, 1991 Page 66

/* Pointer to the SIM init routine */

void {*sinLinit)(
[* Pointer to the SIM CCB go routine */

void (*sim action}i):
} CAM_SIM ENTRY;

/* The CAM EDT table, this structure contains the device information for
all the devices, SCSI ID and LUN, for all the SCSI busses in the system. */

Eypedef struct

lonﬁ cam tlun_found; /* Flag for the existence of the target/LUN */

ASYAC_INFO cam_ainfo; /* Async callback info for this B/T/L */
u_long cam_owner_ta?; * Tag for the peripheral driver's ownership */
char cam ing_datd[INQLEN]:/* Storage for the inquiry data */

} CAM_EDT_ENTRY;

Annex D: Operating System Vendor Documentation

D.1 Documentation i

The following lists those operating system vendors which have agreed to supply
information to third ?arty vendors on the suEport of 5CSI devices. This is not
a complete list of all vendors that support CAM.

[This is a_EartiaI list and as it is the addresses of the CAM members
it is unlikely to be the right address to contact for information
and documentation. Hould those Jisted please advise correct addresses
and department and advise the ?hnne number and fax number? Also, any
that I should have included, B ease_add yourselves to the list by

sending Dal a fax at 408-867-2115.]
AT&T BELL LABS HICROSOFT
1100 E Warrenville Rd POB 97017
Naperville Redmond
IL 60566 WA 98073

INTERACTIVE SYSTEMS NOVELL

2401 Colorado Ave 122 E 1700 S
Santa Monica Provo

CA 90404 UT 84606

DIGITAL EQUIPMENT
110 Spit Brook Rd

SUN MICROSYSTEMS
0 Garcia Ave Bdg 15

ZK03-3/T79 Mountain View
Nashua CA 94043

NH 03062

I1BM

MS 5226
PO Box 1328

AHTES LI

9%

Common Access Method XPT/SIM Support Rev 2.3 February 25, 1991 Page 67

Boca Raton
FL 33429

D.2 DOS Background

During the development of XPT/SIM by the CAM Committee, several approaches to
support SCSI under DOS were implemented by vendors. Some were proprietary and
required licensing agreements while others were parochial. Of the latter, some
provided documentation upon request in order to encourage their adoption.

Subsequent to the XPT/SIM being defined across multipie operating systems, IBM
made information available on the attachment of SCSI devices us1ng the_4Bh/80h
interrupt, which assumes that there is an SCB (Subsystem Control Block) data
structure. SCBs are unlike CCBs.

The IBM introduction created a de facto implementation, and IBM has provided a
software license at no charge to those companies which write peripheral
drivers to support SCBs. The SCBs and their method of oﬁeration are defined in
Technical Reference Manuals which are available from IBM.

The CAM approach is oriented towards using the CCB data structure to provide a
common_approach across multiple operating sysiems. Althouﬁh_lt may have been
possible to use SCBs to provide this capability, full technical information
was not provided early enough in the development cycle.

1n1ddy L2

