Ll

R X3, **=*

Copies of this proposal may be purchased from: BS
X3T9.2/90-186

Global Engineering, 2805 McGaw St, Irvine, CA 92714
800-854-7179 714-261-1455

working draft-proposed American National
Standard for Information Systems -

SCS5I-2 Common Access Methoed
Transport
and
SCS1 Interface Module
Rev 2.2 October 29, 1990

Secretariat
Computer and Business Equipment Manufacturers Association (CBEMA)

Abstract: This standard defines the software interface between device drivers
and the Host Bus Adapters or other means by which SCSI peripherals are
attached to a host processor. The software interface defined provides a
common jnterface specification for systems manufacturers, system integrators,
controller manufacturers, and suppliers of intelligent peripherals.

This is an internal working document of X379.2, a Task Group of Accredited
Standards Committee X3. As such, this is not a cgmgleted standard. The

contents are actively being modi fied by the X379.2 Task Group. This document
is made available for review and comment only.

POINTS OF CONTACT:

John B. Lohmeyer
gggirman X3719.2

3718 N Rock Rd
Wichita KS 67226

316-636-8703

I. Dal Allan
UiBE—Chairman X3719.2

EN
14426 Black Walnut Court
Saratoga CA 95070

408-867-6630

An electronic copy of this document is available from the SCSI Bulletin Board
(316-636-8700) .

This document has been prepared according to the style guide of the 150
(International Organization of Standards?.

If this document was printed in a 2-up form directly from the printer, NOTEs
had to be adjusted to fit into .a half-page, which may have resulted in an
imperfect representation of the format within the NOTE. This is most likely to
occur if a series of NOTEs are mixed in without any line separation.

ANEddY L2

hol

ngeu?rd (This Foreword is not part of American National Standard X3.***.
X,

In this stapdard, the Transport (XPT) and SCSI Interface Module (SIM) for
the SCSI-2 Common Access Method is defined.

Hhen the Small Computer System Interface (SCSI) was introduced, a large
number of systems integrators included supgnrt in their operating systems.
However, they were parochial in implementation and a diverse set of
strategies to support SCSI devices were implemented in software.

Some_companies published their specifications and encouraged third-party
suppliers to add new peripherals. Others failed to add support for SCSI or
did not publish the specifications, An increasing demand developed for some
common_method to attach SCSI peripherals to a number of operating systems
and a large range of computer systems. Much of this impetus stemmed from the
growth in the desktop computing environment.

In October 1988 a number of peripheral suppliers formed the Common Access
Method Committee to encoura%e an industry-wide effort to adopt a_common
software interface to despaich input/output regquests to SCSI peripherals.

The primary objective was to define a set of software constructs and tables
that would permit the manufacturers of host adapters to provide software or
microcode to interpret requests in a common manner.

Qut of the proposals made by a large number of contributors, the CAM
Committee selected the best concepts and used them to develop the standard.

Some of the companies which contributed had designed their own methods to
support SCSI devices, and for the most part set aside individual business
considerations to foster the development and adoption of this standard.

Suggestions for improvement of this standard will be welcome. They should be
sent to the Computer and Business Equipment Manufacturers Association, 311
First Street N.W., Suite 500, Washington, DC 20001.

This standard was processed and apgroued for submittal to ANSI by the
Accredited Standards Committee on Information Procsessing Systems, X3.
Committee approvail of this standard does not necessarily imply that all
committee members voted for its approval. At the time it approved this
standard, the X3 Committee had the following members:

X3 Conmitiee 1ist goes here:
Subcommittee X3T9 on I/0 interfaces, which reviewed this standard, had the
following members:

X319 Comitiee list goes here:

Task Group X3T9.2 on Lower-Level Interfaces, which completed the development
of this standard, had the following members:

X379.2 Committee Tist goes here:

The initial development work on this standard was done by the CAM Committee,
an industry group formed for this purpose. The membership of the CAM
Committee consisted of the following organizations:

Adaptec Data Technology NCR

AMD Eastman Kodak O0livetti

Aggle Emulex uantum

ATAT Bell Labs Fujitsu uElectronics cientific Micro Systems
Caliper Future Domain Seagate

Cambrian Systems

Hewlett Packard Sony
Cipher Data 18M

Storage Dimensions

Cirrus Logic Imprimis Sun Microsystems
Columbia Data Interactive Systems Syquest Technology
-CompuAdd JC Sytron

Conner Peripherals LHS 0SD Trantor

Dell Computer Maxtor Hestern Digital
Di?ita] quipment Hicropolis

DpP Hiniscribe

ANIHdY L)

Sui

Common Access Method XPT/SIM Support Rev 2.2 October 29, 1990 TOC 1 Common Access Method XPT/SIM Support Rev 2.2 October 29, 1990 TOC ?

TABLE OF CONTENTS 7.1.7 SIM Interface 18
1. Scope 1 7.2 Novell Operating System 18
1.1 Description of Clauses 1 7.2.1 Initialization 19
71.2.2 De-Registering 20
2: References 2 7.2.3 Accessing the XPT 20
3. General Description 2 7.2.4 Hardware Registration 20
3.1 Environment 2 7.2.5 Miscellaneous 21
3.2 PeriFheral Driver Functions 3
3.3 XPT Functions 4 7.3 DOS (Disk O erating System) 21
3.4 SIM Functions 4 7.3.1 Accessing the DOS XPT
e . 7.3.2 Callback on Completion under DOS 21
4, Definitions and Conventions 4 7.3.3 Pointer Definition Under DOS 22
4.1 Definitions 4
4.2 Conventiaons 5 7.4 05/2 (Operating System 2) 22
5+ Background 6 8. CAM Control Blocks 22
5.1 Software 6 8.1 CCB Header 23
5.2 CAM (Common Access Method) 6 8.1.1 CAM Control Block Length 23
5.2.1 XPT (Transport) 6 8.1.2 XPT Function Code 23
§5.2.2 SIM {SCSI Interface Module) 6 8.1.3 CAM Status 24
5.2.3 CCB (CAM Control Block 7 8.1.4 Path 1D |
5.2.4 0SD (Operating System Dependent) 7 8.1.5 CAM Flags 24
5.3 Principles of Operation 7 8.2 Function Codes 24
5.4 Requirements 8 8.2.1 Get Device Type 24
8.2.2 Path Inquiry 25
6. Transport 8 8.2.3 Release SIM Queue 27
6.1 Accessing the XPT 8 8.2.4 Set Async Callback 28
6.2 Initialization . 9 B.2.5 Set Device Type 28
6.3 Callback on Completion 9
6.4 SCSI_Request Queues 9 8.3 SCSI Control Functions 29
6.4.1 The Target/LUN and the Peripheral Driver 10 8.3.1 Abort XPT Request 29
6.4.2 The SIM 10 8.3.2 Reset SCSI Bus 30
6.4.3 SIM Queuing 10 8.3.3 Reset SCSI Device 30
6.4.3.1 SIM Queue Priority 10 8.3.4 Terminate I/0 Process Reguest 31
6.4.3.2 Tag Recognition 10
6.4.3.3 Error conditions and Queves within the Subsystem 10 9. Execute SCSI 1/0 31
9.1 CAM Control Block to Request 1/0 il
6.5 SIM Handling of SCSI Resets 11 9.1.1 Address of this CCB) 32
6.6 Asynchronous Callback 12 9.1.2 Callback on Compietion 32
6.7 Autosense 13 -9,1.3 CAM Control Block Length 32
6.8 Loadable Modules 13 9.1.4 CAM Flags 33
9.1.4.1 Byte 1 Bits i3
7. 0SD (Operating System Dependent) Operation 15 9.1.4.2 Byte 2 Bits 34
7.1 UN[X.O?grating System 15 9.1.4.3 Byte 3 Bits 35
7.1.1 Initialization 15 9.1.4.4 Byte 4 Bits 35
7.1.2 Accessing the XPT 16
7.1.2.1 From the Peripheral Driver 16 9.1.5 CAM Status 35
7.1.2.2 From the SIM 16 9.1.6 CDB
9.1.7 CDB Length 37
7.1.3 Callback on Completion 17 9.1.8 Data Transfer Length 37
7.1.4 Pointer Definition in the UNIX Environment 17 9.1.9 Function Code 38
7.1.6 XPT Interface 17 9.1.10 LUN
7.1.6.1 Functions for Periﬂhera] Driver Support 17 9.1.11 Message Buffer Pointer ETarget-only} 38
7.1.6.2 Functions for SIM Module Support 18 9.1.12 Message Buffer Length Target-only
9.1.13 Next CCB Pointer 38

Ydr L)

X

October 29, 1990

Common Access Method XPT/SIM Support Rev 2.2
9.1.14 Number of Scatter/Gather entries
9.1.15 Path ID
9.1.16 Peripheral Driver Pointer
9.1.17 Private Data
9.1.18 Residual Length
9.1.19 SCSI Status
9.1.20 Sense Info Buffer Length
9.1.21 Sense Info Buffer Pointer
9.1.22 SG List/Data Buffer Pointer
9.1.23 Tagged Queue Action
9.1.24 Target
9.1.25 Timeout Value
9.1.26 vu Flags
9.2 Command Linking
10. Target Mode (Optional)

10.1 Enag
10.2 Phase Cognizant Mode
10.2.1 Target Operation of the HBA
10.2.2 Execute Target 1/0
10.3 Processor Mode
10.3.1 CCB Acceptance
10.3.2 Target Operation of the HBA
11. HBA Engines
11.1 Engine Inquiry
11.2 Execute Engine Request (Optional)
FIGURES
FIGURE 3-1 CAM ENVIRONMENT MODEL
TABLES
TABLE 6-1 ASYNC CALLBACK OPCODE DATA REQUIREMENTS
TABLE 8-1 CAM CONTROL BLOCK HEADER
TABLE 8-1A SUPPORT OF SCSI MESSAGES
TABLE 8-2 XPT FUNCTION CODES
TABLE 8-3 GET DEVICE TYPE CCB
TABLE 8-4 PATH INQUIRY CCB
TABLE B8-5 RELEASE SIM QUEUE
TABLE 8-6 SET ASYNC CALLBACK CCB
TABLE 8-7 SET DEVICE TYPE CCB
TABLE 8-9 ABORT XPT REQUEST CCB
TABLE 8-10 RESET SCSI BUS ECB
TABLE 8-11 RESET SCSI DEVIC
TABLE 8-12 TERMINATE 1/0 PRDCESS REQUEST CCB
TABLE 9-1 SCSI [/0 REQUEST CCB
TABLE 9-2 CAM FLAGS (0SD)
TABLE 9-3 SCATTER GATHER LIST
TABLE 9-4 CAM STATUS
TABLE 10-1 ENABLE LUN CCB
TABLE 10-2 TARGET CCB LIST
TABLE 11-1 ENGINE INQUIRY CCB

T0C 3

Common Access Method XPT/SIM Support

Rev 2.2

TABLE 11-2 EXECUTE ENGINE REQUEST CCB

October 29,

1990

TOC 4

18

ANIYd¥ L1

LT

Common Access Method XPT/SIM Support Rev 2.2 Qctober 29, 1990 Page 1

Information Processing Systems --
Common Access Method --
SCSI and Generic 1/0

1. Scope

This standard defines the CAM (Common Access Method) for SCSI (Small Computer
Systems Interface).

The purpose of this standard is to define a method whereby mu]ti?le
environments may adopt a common procedure for the support of SCSI devices.

The CAM provides a structured method for supporting peripherals with the
software (e.g. device driver) and hardware (e.g. host bus adapter) associated
with any computer.

SCSI has provided a diverse range of peripherals for attachment to a wide
range of computlng equipment. Some system manufacturers have developed
approaches for SCSI attachment which are wide]g followed, increasing the
applications available for the attachment of SCSI peripherals. In markets
where no standard method of attachment exists, however, variations between
third party sellers has made it near-impossibie for end users to rely on being
able to attach more than one SCSI peripheral to one host bus adapter.

In an effort to broaden the application base for SCSI peripherals an ad hoc
industry ?mup of companies representing system integrators, controllers,
peripherals, and semiconductors decided to address the issues involved.

The CAH Committee was formed in October, 1988 and the first working document
of the XPT/SIM for SCSI 1/0 was introduced in October, 1989.

1.1 Description of Clauses

Clause 1 contains the Scope and Purpose.

Clause 2 contains Referenced and Related International Standards.
Clause 3 contains the General Description.
Clause 4 contains the Glossary.
Clause 6 describes the facilities that use the Transport and SIM.

Clause

the XPT

3
4
Clause 5 describes the services provided by the XPT and SIM.
6
7 describes the ways that the Operating Systems support CAM and access

Clgug?na contains the description of non-1/0 functions supported by the XPT
an A

g}ﬁuse 9 contains the description of 1/0 functions supported by the XPT and

Common Access Method XPT/SIM Support Rev 2.2 October 29, 1990 Page 2

Clause 10 contains the description of Target Mode functions supported by the
APT and SIM.

2. References

IS0 DIS 10288 (ANSI X3.131-1990)
SCSI-2, Enhanced Small Computer Systems Interface

3. General Description

The aﬁplication environment for CAM is any computer addressing a SCSI

ﬁerip eral through a protocol chip on a motherboard, an ATA interface, or a
ost Bus Adapter.

SCSI is a widely-used interface which provides common attachment for a variety
of peripherals. Unfortunately, there is no common way to provide access to
SCSI peripherals.

The purpose of the Common Access Method is to define a standard for the
support of Host Bus Adapters and the like by device driver software.

Software in the Operating Systeﬁ dispatches I/0 (Input/Output) requests to
the SCST peripherals in a number of different ways depending on the software
architecture. The 0SD (Operating System Dependencies) are defined in Clause
6 for named software and hardware platforms.

3.1 Environment

A model of the CAM usage enviromment is illustrated in Figure 3-1, where there
may be multiple application and several device drivers atfached to support the
peripherals on the system.

Requests for SCSI I/0 are made through the CAM Transport (XPT
The XET may execute them directly or pass them on to a Tower
execution,

interface.
evel SIM for

The_XPT (Transport% function is illustrated as a separate element. In many
aﬁpllcat10ns, the XPT operations will be incorporated into a single module
which integrates both XPT and SIM functionality. The logical separation
between the two is maintained as there may be more than one SIM loaded.

A separate routing service may be Rrovided by the oRerating s¥stem or the
?ouéigg function can be achieved through chaining when multiple SIMs are
oaded.

INTHE LA

27

Common Access Method XPT/SIM Support Rev 2.2 October 29, 1980 Page 3
Fommme e + B e + o ———————— +
| Application | | Application | : : : : : | Application |
Fomm + R e + Tocmmm e ——————— +

| | T
Operating System
| | '
Fomm i ——— +
R + S + + —— App Level
Disk Tape Any Pass-Thru
Driver Driver Driver Driver
__________________ toemmmmm——— - e
| | | |
o T i $a =)
== XPT/SIM Interface (using CCBs) |
N R 3
| XPT
B e et +
P ——— + Frmmm— e —————— + Fom e +
SIM LR SIM ABIOS
Frmm e —————— + Fommm e + tomn s an - - +
Vendor Venéor l
Specific Specific SCB
o ———-—!---+ Fommme et
| HBA | + | HBA | + | HBA |
N U + | T S I e
Fommme et tomm e ————— +

FIGURE 3-1 CAM ENVIRONMENT MODEL
3.2 Peripheral Driver Functions
Peripheral drivers provide the following functionality:

a) Interpretation of application or system level requests.
b) Mapping of application level requests to XPT/SIM Control Blocks.
c Reguesting of resources to initiate a CAM request.
- CAM Control Blocks and supporting blocks that may be needed.
- Buffer requirements. .
d) Handling of exception conditions not managed transparently by SCSI e.g.
Check Condition status, unexpected Bus Free, Resets etc).
Logging of exception conditions for maintenance analysis programs.
Format utility or services required by format utilities.
Establish parameters for HBA operation.
Set up routing of SCSI requests to the correct Path/Bus, target and LUN.
Initialization and configuration functions of a target not handled by a

=IO —h (D

Common Access Method XPT/SIM Support Rev 2.2 (QOctober 29, 1990 Page 4

utility at installation and formatting time.
Jj) Establish a timeout value for a task and pass this value in the CCB.

3.3 XPT Functions
XPT services provide the following functionality to process CCBs:

a Ruutin? of the target CCB to the proper SIM.

b) 03D allocation of CCB resources e.g. Get_CCB, Free CCB.

c) Maintenance of the SCSI Device Table. This consistS of owning the table
and servicing requests to read and write the table.

d) Providing properly formatted control blocks and priming the fields needed
to accomplish a request.

e) Routing of asynchronous events back to peripheral driver.

3.4 SIHM Functions
SIM services provide the following functionality to process CCBs:

a) Perform all interface functions to_the SCSI HBA.
Manage or delegate, as required, all the SCSI HBA protocol steps.
Distinguish abnormal behavior and perform error recovery, as required.
Management of data transfer! path hardware, including DMA circuitry and

address mappin?._and establjsh DMA resource reguests (if necessary).

e) Queueing of multiple operations for different LUNs as well as the same
LUN and assign tags for Tag Queueing (if supported).

f} Freeze and unfreeze the queue as necessary to accomﬁlish queue recovery.
Assuring that the completed operation is posted back to the initiating

r

device driver.

h) Hanagement of selection, disconnection, reconnection, and data pointers of

the SCSI HBA protocol.
i) Mechanlsgs to accept the selecting and sensing of the SCST HBA functions

supported.

J) Implement a timer mechanism, using values provided by the peripheral
driver.

4, Definitions and Conventions

4.1 Definitions

For the purpose of this standard the following definitions apply:

4.1.1 Block: This defines an action to prevent access e.g. Busy.

4.1.2 CCB (CAM Control Block): The data structure provided bg ﬁeripherai
drivers to the XPT to control execution of a function by the SIM.

4.1.3 CDB (Command Descriptor Block): A block of information containing the
SCSI opcode, parameters, and control bits for that operation.

4,1.4 DMA (Direct Memory Access): A means of data transfer between peripheral

and host memory without processor intervention.

4.1.5 Freeze: This defines a software action to quiesce activity e.g. freeze
the queue.

4.1.6 HBA (Host Bus Adapter): The hardware and microcode which provides the

ANIHdY L2

Lt

Common Access Method XPT/SIM Support Rev 2.2 October 29, 1990 Page 5

interface between system memory and the SCSI bus.

4.1.7 Lock: This defines a hardware action e.g. data cartridge in a
removable media drive.

4.1.8 HNexus: A block of information containing the SCSI device, LUN, and
Queve Tag Number (if any, as used in command queuing).

4.1.9 Null: A value which indicates that the contents of a field have no
meanigng. This value is typically, though not necessarily, zero.

4.1.10 Optional: This term describes features which are not required by the
standard. However, if any feature defined by the standard is implemented, it
shall be done in the same way as defined by the standard. Describing a feature
as optional in the text is done to assist the reader. If there is a conflict
between text and tables on a feature described as optional, the table shall be
accepted as being correct.

4.1.11 Reserved: Where this term is used for bits, bytes, fields and code
values; the bits, bytes, fields and code values are set aside for future
standardization. The default value shall be zero. The originator is required
to define a Reserved field or bit as zero, but the receiver should not check
Reserved fields or bits for zero.

4.1.12 SCB (Subsystem Control Block): The term defined by IBM to refer to an
architecture to support SC5I Host Adapters.

4.1.13 SCSI (Small Computer Systems Interface): The I/0 interface which this
standard is designed to support.

4.1.14 SIM (SCSI Interface Module): A module designed to accept the CAM
Control Blocks routed through the XPT in order to execute SCSI commands.

4.1.15 VU (Vendor Unique): This term is used to describe bits, bytes, fields,
code values and features which are not described in this standard, and may be
used in a way that varies between vendors.

4.1.16 XPT (Transport): A layer of software which peripheral drivers use to
originate the execution of CAM functions.

4.2 Conventions

Within the tables, there is a Direction bit which indicates In or Out. The
presumption is from the view of the peripheral driver i.e. information is Qut
g?nthe SIM from the peripheral driver and In to the peripheral driver from the

Certain terms used herein are the proper names of signals. These are printed
in uppercase to avoid possible confusion with other uses of the same words;
e.g., ATTENTION. Any lower-case uses of these words have the normal American-
English meaning.

A number of conditions, commands, sequence parameters, events, English text,
states or similar terms_are printed with the first letter of each word in
uppercase and the rest lower-case; e.g., In, Out, Request Status. Any lower-
case uses of these words have the normal American-English meaning.

Common Access Method XPT/SIM Support Rev 2.2 October 29, 1990 Page 6

The American convention of numbering is used i.e., the thousands and higher
multiples are separated by a comma and a period is used as the decimal point.
This is equivalent to the ISO convention of a space and comma.

American: 0.6 iS0: 0,6
1,000 1 000
1,323,462.9 1 323 462,9
5. Background

SCSI (Smal] Computer Systems Interface) is a ?eriphera] interface designed to

Eermlt a wide variety of devices to coexist. hese erlgherals are tyglcally.

Agt Eot)necessarily, attached to the host by a single SCSI HBA (Host Bus
apter).

5.1 Software

0S (Operating System) support for peripheral devices is normally achieved
through peri?heral drivers or.utilitg Erograms. No single driver or program
can reasonably su?port all possible SCSI peripherals, 5o separate drivers are
needed for each class of instal]ed SCSI device. These drivers need to be able
to share the SCSI HBA hardware.

These drivers also have to work with a broad range of HBA hardware, from .
highly intelligent coprocessors to the most primitive, including a SCSI chip
on a motherboard.

A stapdard SCSI progrmnnin? interface layer is essential to insulate SCSI
peripheral drivers and utilities from the HBA hardware implementation, and to
allow multiple drivers to share a single SCSI hardware interface.

5.2 CAM (Common Access Method)

This standard describes the general definition of the CAM (Common Access
Method). CAM functionality has been separated into a few major elements.

5.2.1 XPT (Transport)

The XPT (Transggrt) defines a protocol for SCSI peripheral drivers and
programs to submit 1/0 requests to the HBA specific SIM module(s). Routing of
requests to the correct HBA and posting the results of a request back to the
driver are capabilities of the Transport.

5.2.2 SIH (SCSI Interface Module)

The SIM (SCSI Interface Module) manages HBA resources and provides a hardware-
independent interface for SCSI applications and drivers i.e. the SIM is
responsible to process and execute SCSI requests, and manage the interface to
the HBA hardware.

There are no requirements on how_the SIM is implemented, in RAM (Random Access
Memory) or ROM ?Read Only Memory), provided the XPT is properly supported. A
ROM-based SIM may need a transparent (to the gserg software layer to match the
Sﬁﬂ-ggquired services to the specific manner in which they are requested of
the 0S.

1HIHdT LA

00§

Common Access Method XPT/SIM Support Rev 2.2 October 29, 1990 Page 7

5.2.3 CCB (CAM Control Block)

The CAM Control Block is a data structure passed from the device driver to the
XPT. The contents of the data structure describe the action required and
provides the fields necessary for successful processing of a request.

5.2.4 0SD (Operating System Dependent)

The system environment in which the CAM is operating is a function of the
hardware platform and the Operating S¥stem being executed e.qg. the byte
orderin? is different between an Intel-based and a Motorola-based machine, and
the calling structure differs greatly between Operating Systems.

Although the fields of a CCB may have a common meaning, the contents will vary
by platform and 0S. These dependencies cause differences in operation and

i?ﬁ ementation, but do not prevent interoperation on the same platform of two
CAM modules implemented by different manufacturers.

The 0SD issues are predominantly described in the XPT for each 0S environment.
5.3 Principles of Operation

Ideally, a single XPT model would suffice for all 0S environments for a single
HBA, but this is impractical in light of the wide architectural differences
between the various processor architectures.

Programming effort has been minimized by making the interfaces as similar as
possible across 0S platforms, and customizing the SIM for each HBA to maximize
performance under each 0S. HBAs vary widely in the capability and functions
they provide so there may be an internal (trgnsparentg interface to isolate
hardware interface routines from routines which make use of 0S resources.

In order to prevent each peripheral driver from having to scan the SCSI bus
for devices at initialization, the XPT determines all installed SCSI devices
and constructs an internal table. A XPT function is used by drivers and
programs to access this table.

Peripheral drivers need to be developed with documentation provided by the
operating system vendor in addition to that supplied by this standard.

Under Unix, the XPT and SIM would typically be compiled with the kernel at
S§§E¢m Generation time, so that entry points would be resolved during 1inkage-
editing.

Third ?arty attachments may be supported without the need for a sysgen if
suitable routing facilities are provided by the system vendor.

Under Novell, the XPT is supplied by Novell, and the SIM is implemented
according to Novell documentation guidelines.

Under DOS, there is one Icgica] XPT with one entry point, but it mag consist
of a number of separate modules (perhaps supplied for each HBA in the system).

Routing is a mechanism to support concurrent SIM modules being co-resident so
that different HBAs can be mixed in the same system. This may be handled by
chaining the XPT entry points, defining additional character devices, or by a
specific routing entity.

Common Access Method XPT/SIM Support Rev 2.2 October 29, 1990 Page 8

Once the SIM is loaded, the Beripheral drivers integrate each type of SCSI
device into the 0S through XPT, independent of the installed HBA hardware.

Under 0S/2 the equivalent to a XPT function is supplied by Microsoft, and the
SIM is implemented according to Microsoft LADDR documentation guidelines.

5.4 Requirements !
System requirements addressed in defining the CAM include:

a) Device drivers and grograms should be able to use any SCSI command, both
defined in SCSI-2 X3.131-1990 or Vendor Unigue.

b} No assumptions on the size and format of transferred data.

o Allow1ng all the capabilities of high end host adapters to be fully
utilized and accommodate HBAs which do most of the SCSI processing on
board (this precludes interfaces which expect to control SCSI phases).

d) Interpretation of sense data returned by SCSI devices shall be by the
calling driver or program.

e) Fully re-entrant code. .

NOTE: This is an obvious requirement for multitasking environments such as
0S/2 or Unix but even in gingle tasking DOS applications,
mul tithreaded 1/0 is fequired to achieve maximum performance. SCSI
devices such as printers, communication ports and LAN interfaces are
often serviced in the background under DOS. If an HBA cannot support
multithreading, re?uests can be queued and serialized within the SIM
module transparently to the XPT.

f; Support of multiple HBAs.

g) If optional features are not supported in a minimum functionality XPT and
SIM, peripheral drivers shall be provided a means to determine what
features are available.

h) Providing an initialization service so that the process of identifying the
attached SCSI devices need not be repeated by each peripheral driver which
loads in the system.

i) Srgvidgng a mechanism to abort 1/0 threads (at request of peripheral

river).

j) Ability to issue multiple I/0 requests from one or more peripheral drivers
to a single Target/LUN.

k) Providing peripheral drivers with a mechanism for allocating a Sense data
area and for specifying the number of Sense bytes to be automatically
requested on a CHECK CONDITION.

6; Transport
6.1 Accessing the XPT

The 0S peripheral drivers access the XPT through a software call to a single
entry point. The method for obtaining and using the entry point differs
between operating systems.

The XPT is not involved in the reverse process to advise the peripheral driver
of the completion of a request. The completion callback permits a direct
return from the SIM to the peripheral driver (the exact method employed in
callback is Operating System dependent).

The XPT is responsible to notify peripheral drivers of asynchronous events via
the Asynchronous Callback mechanism

ANlgdy L2l

Common Access Method XPT/SIM Support Rev 2.2 October 29, 1990 Page 9

6.2 Initialization

The XPT is responsible for determining the interface configuration at power u?
initialization for the SIM drivers. De?ending on the Operating System, the XP
may perform a scan of the attached SCS peripherals automatically. See also
the SCSI-2 X3.131-1990 Annex on Power Up Considerations.

The scan by the XPT/SIM would follow a pattern such as the following:

for all SCSI buses .
for all target IDs (excluding the initiator)
find the device
if device exists
for all LUN's
use Inquiry command and save returned information
end for
end if
end for
end for

6.3 Callback on Completion

Callback on Completion refers to the XPT/SIM making a call to the routine
addressed by the Callback on Completion pointer in the CCB. The callback is
used by a peripheral driver in much the same manner as a hardware interrupt.

Callback routines have the same privileges and restrictions as hardware
interrupt service routines.

The Callback on Completion routine is called to indicate that the Requested
1/0 is complete. The specific address of the CCB completed is passed to the
callback routine.

6.4 SCSI Request Queues

Queues are_used in systems where there is a need to manage many outstanding
rquests. There are various types of queues and each has different support
needs.

A SCSI reqguest queue can occur in the following places:
0 in the SIM

0 in the Target/LUN

o in the peripheral driver

The SIM keeps a queue of all the CCB requests from the various peripheral
drivers that access a LUN.

A SCSI device may be able to keep a large queue using Tag Queues, or a simple
queue of one element.

A Beripheral driver can also keep a queue e.g. a simple elevator sort, if the
LUN does not support tagged queuing.

6.4.1 The Target/LUN and the Peripheral Driver

Common Access Method XPT/SIM Support Rev 2.2 October 29, 1990 Page 10

The ?eripheral driver is responsible for maintaining the queue(s) internal to
the Target/LUN.

The SIM, acting on behalf of the peripheral driver, sends the appropriate
commands or messages to manage the Target/LUN queue(s).

When the Tarﬁet/LUH has compieted an operation, the peripheral driver is
advised by the SIM via a callbdck or by checking CAM status for completion.

The peripheral driver needs to,be aware that there may be other peripheral
drivers and other systems working with the same Target/LUN.

6.4.2 The SIH

The SIM maintains a ?ueue for each LUN which is logically shared by all
peripheral drivers. The queue may support tagged commands. Queue priority
shall be supported.

6.4.3 SIM Queuing
6.4.3.1 SIM Queue Priority

When SIM Queue Priority=1, the SIM places the CCB at the head of the queue for
the LUN, instead of at the end. One use of this CAM flag is during error
handling., If the queue is frozen and a CCB with SIM Quee Priority=1 is
received, the CCB shall be ﬂIaced at the head of the Eueue and the queue
remains frozen. When the SIM queue is released, any CCBs with SIM Queue
Priority=1 are executed atomically, and in LIFO seguence.

To force step-by-step execution, the peripheral driver can set SIM Queue
Freeze=1, so that when the queue is released and a CCB with SIM Queue
Priority=1 is executed, the queue is re-frozen by the SIM at completion.

6.4.3.2 Tag Recognition

To suggort tagged queueing recognition the SIM maintains a reference between
the CCB pointers and the Bueue ags for a LUN. By this means, the SIM can
handle both the gueue tag resource allocation and reconnectjon of the I T L Q
nexus (see SCSI-Z X3,131-1990) for the CCB from a peripheral driver.

The peripheral driver is required to allow the SIM/XPT to handle the .
assiﬁnment of the queue tag ID for the request. The SIM assi%ns unique TAG IDs
to the Target/LUN operation based on its internal reference table.

When a LUN that supports tagEed ﬂueuin reconnects to the Initiator (SIM/HBA
pair%, it will send the SIMPLE QUEUE TAG message with the queue tag value for
the I T_L Q nexus. Us1ng the returned queue tag ID, the SIM restores what is
necessarﬁ to complete the SCSI transaction. The queue tag ID is freed by the
SIM at the completion of the SCSI request.

6.4.3.3 Error conditions and Queues within the Subsystem

The SIM shall ﬁlace its internal queue for a LUN into the frozen state for any
status ather than Request Completed Without Error and Request in Progress.
When a LUN's queue is in the frozen state, the SIM shall not dispatch any CCBs
to that LUN. Any new CCBs received by the SIM shall be ﬁlaced at the end of
the queue, unless SIM Queue Priority=1 forces them to the head,

INTHd ¥ L)

294

Common Access Method XPT/SIM Support Rev 2.2 October 29, 1990 Page 11

Following a Check Condition or Command Terminated status, the target's LUN
queue is also frozen, and all other tagged commands stay in the queue until
the allegiance condition is cleared. The allegiance condition is either
cleared by an incoming command or following the return of sense data for the
same initiator.

Since the SIM is the initiator, the SIM's internal queue shall go into a
frozen state so that the pending sense information in the LUN will not be
discarded. The SIM holds it's iniernal LUN queue in the frozen state until a
Release SIM Queue CCB is received.

Using the Callback on Completion pointer contained in the CCB the SIM returns
control of the CCB to the peripheral driver along with CAM Status indicating
the frozen queue condition and other information.

The peripheral driver acts upon the information returned via the CCB. In the
event that there is not a valid pointer in the callback field, the Eerlgheral
driver that originated the CCB shall retain resRonsibility for the CCB by
watching the CAM Status field. The setting of the Autosense bit in the CAM
flags does not affect how the SIM handles freez1ng the SIM's internal queue
i.e. the Request Sense command issued by the SIM to recover status for
Autosense does not release the SIM queue.

If the periﬂheral driver has to perform recovery with the LUN, a CCB can be
placed at the head of the queue by setting SIM Queue Prioritg=1, and the SIM
queue released. If the peripheral driver has other pending CUBs in the queue
which it does not want to be sent to the LUN (depending on the cause of the
Check Conditiong, then it can use a CAM Flag to freeze the queue uwpon
completion of the CCB at the head of the queuwe. A SIM may reject a CCB with
SIM Queue Freeze=1 if the queue is not frozen at the time the CCB is received.

6.5 SIH Handling of SCSI Resets

The CAM shall not define support for the "Soft Reset" SCSI option, but
implemgntors may use the services of the SIM to provide vendor-specific
support.

Following a SCSI Bus Reset, the SIM shall:

a) Bloc% Path IDs to the reset bus i.e. new CCBs are rejected with status of
usy.
b) Return all outstandin$ CCBs with status of SCSI Reset.
c¢) Unblock all Path IDs for the bus,
d) Call: xpt async(opcode=reset,
- path id=bus that was reset,
target_id=-1,
lun=-1,
buffer_ptr=nuil,
data_cnt=0
e) Resume normal procesSing of CCBs.

6.6 Asynchronous Callback
In an event such as a SCSI Bus Reset or an Asynchronous Event Notification the

XPT has to be able to make a callback to the ?eripheral driver(s), even though
there may be no CCBs active for the peripheral driver(s).

Common Access Method XPT/SIM Support Rev 2.2 October 29, 1990 Page 12

Callback routines have the same privileges and restrictions as hardware
interrupt service routines.

During system startup and driver initialization, the peripheral driver should
register an Asynchronous Callback routine for all the SCSI devices with which
it is working. In order for a peripheral driver to receive asynchronous
callbacks, it shall issue a CCB:function "Set Asynchronous Callback" with the
"Asynchronous Event” fields set to 1 for those events the peripheral driver
wishes to be notified of through an asynchronous caliback.

It is required that the Asynchronous Callback field be filled in with the
callback routine address if any of the Asynchronous Events Enabled bits are
set. The periEhera]_driver_can_de—register its Asynchronous Callback for a
articular SC3I device by issuing the Set Asynchronous Callback CCB with the
vents field cleared to zero and the Callback pointer containing the Callback
Routine address of the peripheral driver issuing the request. AIl XPTs must
provide the capability for any SIM to support asynchronous callback, but a
Eiug? glﬂ.goes not have to support each (or any) of the Asynchronous Events
nabled bits.

Upon detection of a supported enabled event, the SIM shall do the following
once for each detected event: 1

a) Classify the event: determine the opcode which is the same as the encoded
bit number of the Asynchronous Events Enabled.

b) Format the associated data within an internal, to the SIM, Tocal buffer,
e.?. the sense data received from an AEN.
NOTE: This is a multiple processor "lock™ point.

c) Perform the XPT reverse routing required by the event. The SIM will call
the Async Callback entry point in the XPT:

long xpt_async(opcode, path_id, target_id, Tun, buffer_ptr, data_cnt)

All of the arguments, other than the pointer, are long values of 32 bits. The
value of -1 in Path, Target and LUN can be used as a wild card. A null buffer
pointer value and a count of 0 are valid for opcodes that do not require any
data transfer.

NOTE: This call to the XPT is a multiple processor "lock” point.

Using the Path ID, Target, and LUN information from the xpt_async() call, the
XPT scans its internal tables looking for "matches" with wh@t the peripheral
drivers had registered for using the Set Async Callback CCB (see 8.2.4). When
a match is found, either exactly or with a wild card of "-1," the XPT shall
copy the data for the OEcode. if available, into the area reserved by the
peripheral driver and then call the peripheral driver's Async Callback
routine.

The arguments to the peripheral driver's Async Callback routine are the same
as the xpt_async() routine though:

- the buffer ptr value shall be the peripheral driver's buffer
- the data_cfit shal] either be what the XPT had to transfer from the SIM's
buffer ot the limit of the peripheral driver's buffer.

Almost all of the information relating to the different opcodes can be

1liTddy LI

Common Access Method XPT/SIM Support Rev 2.2 Octoher 29, 1990 Page 13

included in the Path ID, Target and LUN arguments. The onl opcedes that
require an additional buffer area are AEN, Load SIM and Unioad SIM. Table 6-1
lists the opcodes and the expected data requirements for the number of bytes
to be transferred.

TABLE 6-1 ASYNC CALLBACK OPCODE DATA REQUIREMENTS
+ + +

e - -t
n/a nfa
Ua{id n/a
reserved 0x0004

PR 3 - - L +
| Opcode | Path ID | Target | LUN | Data Cnt |
+ + +- + +
Unso]. SCSI Bus Reset| 0xQ001 | Valid n/a
Unsol. Reselection 0x0002 Valid Valid
SCST AEN 0x0008 Valid Valid Valid | Min. 22
Sent BDR to Target 0x0010 Valid Valid n/a nfa

SIM Module lLoaded 0x0020 XPT ID n/a n/fa Min. 1
SIM Module Unloaded | 0x0040 | XPT ID n/a nfa | Min. 1
New Devices Found 0x0080 Valid n/a n/a n/a
+ T + —_——— (R Frrmm—————— +

The AEN data requirements are a minimum of 22 bﬁtes of buffer space. This
space includes the 4 bytes required by the AEN Data Format and 18 bytes
defined by the Sense Data Format (see SCSI-2 %3.131-1990).

The Load SIM and Unload SIM data re?uirements are a minimum of 1 hyte. This
byte contains the Path ID for the SIM. This Path ID js different that the
path_id argument. The argument contains the unique XPT ID of OxFF. The XPT 1D
is the ID used by the peripheral driver to register for async notification.

I there is valid data placed in the generic data buffer by the XPT/SIM, the
peripheral driver is required to save or discard that data before returning
contral to the XPT/SIM.

6.7 Autosense

Autosense causes sense data to be retrieved automatically if a Check Condition
is reported in the SCSI Status field. On a Check Condition, a SCSI Request
Sense command is constructed and sent to the same target. The location and
amount of the Sense data is specified in the Sense Info Buffer Pointer and
Length fields respectively of the SCSI 1/0 Request CCB. If the length field is
0 or the buffer field is Null, the Request Sense command shall still be
issued, but with a data allocation length of 0 (this should only be done by
the peripheral driver when it is not interested in the sense information).

After completin% the Request Sense seguence the CAM Status and SCSI Status
gielqg_co?tain he status of the original command (which caused the Check
ondition).

The target can return fewer than the number of Sense bytes requested. This is
not reported as an error, and Sense Status shall be flagged as valid.

6.8 Loadable Modules

Some operating system environments provide the ability to load or unload
software drivers, thus peripheral drivers or SIM modules can be loaded
dynamically. In such systems, the XPT module (ty?lcally supplied by the 0S
vendor) is either part of the system or must be loaded first.

Common Access Method XPT/SIM Support Rev 2.2 October 29, 1990 Page 14

The XPT, as part of a loadable 0S, exports it's "label,” which is to used as a
reference by the other loadable modules. The XPT manages the loading of SIMs
and provides the common access point for peripheral drivers to register a
loaded or unloaded SIM.

When a peripheral driver is Joaded, it can ﬁo through it's initialization
process (see 0SD initialization), call the XPT initalization point and then
query the XPT for the HBAs that are present in the system and targets that
have been identified as being on the SCSI channels.

When a SIM is loaded, the SIM and XPT have to work together to get the SIM
entered into the internal tables and have the SIM initialized.

The SIM shall call the XPT once for each supported bus in order to obtain the
Path ID for that bus.

long xpt_bus_register(CAM_SIM ENTRY *)

The argument is the pointer for the data structure defining the entry points
for the SIM. The value returned is the assigned Path ID: a value of -1
indicates that registration was not successful.

The SIM shall call the XPT once'to de-register the bus for a given Path ID:
long xpt_bus_deregister(path_id)

The argument is the Path ID for the bus being de-registered. A return value of
zero indicates the bus is no longer registered, any other value indicates the
call was unsuccessful.

When the XPT is called it will update it's internal tables and then call the
sim_init(path_id) function pointed to by the CAM SIM ENTRY structure. The
initialization for the loaded SIM is no different than for a SIM statically
included in the kernel at boot time, After the SIM has gone through the .
initialjzation process the XPT shall scan the SCSI bus in order to update its
internal tables containing Inquiry information.

Peripheral drivers can reguest to be informed when a SIM is registered or de-
registered via the Async Callback feature (see 6.6 and 8.2.4).

The CAM_SIM ENTRY table is used to define the entry points for the SIMs.
fypedef struct

lang *sim_init)(;: /* pointer to the SIM init routine */
]ong *sim action)(); [* pointer to the SIM CCB go routine */
} CAM_SIM ENTRY;

11194y L)

ey 7

Common Access Method XPT/SIM Support Rev 2.2 October 29, 1990 Page 15

7. 0SD (Operating System Dependent) Operation
7.1 UHIX Operating System

ThedCAH subsystem is intended to provide a set of services for third-party
vendors.

There are several sets of modules for Unix:

peripheral drivers that are device class specific
a configuration_driver for initialization

the XPT

SIMs that are HBA-specific

Each member of these sets is treated as a UNIX driver and is linked into the
kernel. The XPT and configuration_driver (which is responsible for
initialization) are 05-vendor specific; other drivers may come from any
source.

At kernel configuration and 1ink time the cam_conftb1[] is created and
contains entry points for the S5IMs, which are used by the XPT.

The cam conftbl[] is used by the XPT/configuration_driver to call routines and
Eass CAR parameters between them e.g. the Path ID Tontained in the CCB created
y the periﬁheral driver is used to index into the cam conftbl[]. The entrg
point for the selected SIM, sim_action() is called witfi a pointer to the CCB
as an argument.

The cam_edt[] data structure is used and created during the initialization
process to contain the necessary information of all the targets found on all
the HBAs during the init sequence.

The CAM Flags used are as described in Table 9-2.
7.1.1 Initialization

The initialization of the XPT and SIMs is under the control of the
configuration_driver.

Due to the different Unix-based systems (BSD and System V), there is no common
initialization process that can control the order of calls to the peripheral
driver's and configuration_driver's 1nit(¥ routines. It is nmecessary to make
sure that the subsystem is initialized before any requests can be serviced
from the peripheral drivers. Due to this constraint when the peripheral
driver's initialization routines are called the driver shall call the
xpt_init() routine. I the subsystem is not yet initialized, the XPT shall
calT the configuration driver to formally initialize the subsystem. Once the
subsystem is set up, either from a previous xpt_init call or the)
cogflguration_driuer being called, all subsequent xpt_init calls shall simply
return.

When the configuration driver is_called for initialization, it uses the

cam conftbl{] entry stfuctures. The conflﬁurat1on_dr1ver makes the init()
routine calls, to the XPT, and to each SIM in turn, allowing them to
initialize. The initialization routine for the SIM is called with its Path ID
as the ar%ument._lnterrupts shall be disabled or blocked by the
configuration_driver during the initialization process.

Common Access Method XPT/SIM Support Rev 2.2 October 29, 1990 Page 16

After the initialization process_has been completed, the configuration _driver
obtains information about each SIM, HBA, and target device detected, and
maintains a table, the cam_edt[%. of these devices. The information is
obtained by using CCBs through the CAM interface.

Once the CAM subsystem is initialized and the cam edt[] set, the

peripheral drivers can use the subsystem. This alTows them to determine what
devices are known and make appropriate memory allocations and resource
requests of the XPT. .

The SCSI-2 Inquiry command shall be issued to al] Target/LUNs on the attached
interfaces, and shall contain an allocation length of 36 bytes, which is
sufficient to transfer the device information and the product information. The
EVPD and Pa%e code fields in the Inquiry command shall be set to 0. It is
assumed that the responding devices will return the Inquiry data, even though
the device may not be ready for other commands. A limited number of retries
will be done for devices that return Busy Status following the Inguir,

command. If the retry limit is reached, the status of the device in the XPT
will be set to "Not Found". The Inquiry command shall be the only command
issued by the XPT to the devices during initialization.

7.1.2 Accessing the XPT I
7.1.2.1 From the Peripheral Driver

The XPT ?rouides functions to obtain CAM system resources for the peripheral
driver. These functions are used to allocate and free CCB resources and to
allocate and free DMA resources.

There are two routines used in the handling the CCB resources. The two
routines are:

CCB *xpt ccb_a]]océ% and
void xpt_ccb_free(CCB *):

- The xpt_ccb_alloc() routine returns a pointer to the allocated CCB. The
periﬁheral driver can now use this CCB for it's SCSI/XPT requests.

The xpt_cch_free() routine takes a pointer to the CCB that the
peripheral driver has finished with, and can now be returned to the CAM
subsxstem CCB pool.

- The pointer to the CCB returned from the th ccb alloc() call shall be
large enough to contain any of the possible XPT7/SIM function request CCBs.

A1l returned status information is obtained at the callback point via the CAM
and SCSI status fields.

7.1.2.2 From the SIK

The SIMs obtain requests from the XPT as they are ?assed across from the
peripheral driver, via a routine inciuded in the SIM's configurat1un
information. The field in the configuration table is declared as

"yoid (* sim_action)(CCB *)." The XPT does not modify CCBs or CDBs. The XPT
shall intercépt those CCBs which must be redirected to_the

configuration driver (Get Device Type, and Set Device Type).

lHldd¥ L0

Common Access Method XPT/SIM Support Rev 2.2 October 29, 1990 Page 17

7.1.3 Callback on Completion

The Callback on Completion field in the CCB is a structure that is platform
sgecific. but always contains at least a callback function pointer, named
cbfcpp, and declared, as "void (*cbfcnp)(CCB *)." The argument to cbfcnp shall
be the address to the CCB.

The Disable Callback on Completion feature is not supported.

7.1.4 Pointer Definition in the UNIX Environment

Pointers in the CAM enviropment are treated as any other pointer in a given
UNIX implementation. For the 80386 platforms, pointers are 32-bit virtual
addresses into a flat address space.

7.1.6 XPT Interface

The XPT interface provides functjons that peripheral drivers and SIM modules
can access in order to transfer information and process user requests. The
following defines the entry points, and describes the required arguments and
return values.

7.1.6.1 Functions for Peripheral Driver Support

a) Tong xpt_init()

This routine is called by the peripheral driver to request that the XPT and
sub—lagers be initialized. Once the sub-layers are initialized any subseguent
calls by other peripheral drivers shall quickly return.

There are no arguments and the return code is either Success or Failure.

b) CCB *xpt_cch alloc()
This routine is used whenever a peripheral device driver needs a CCB (the
common data structure for processing SCSI requests). It returns a pointer to
the allocated CCB which the peripheral driver can now use as the CCB for it's
SCSI/XPT requests.
There are no arguments and the return value is a pointer to a usable CCB.

c) void xpt_ccb free(CCB *)

This routine takes a pointer to the CCB that the peripheral driver has
finished with so it can be returned to the CAM subsystem CCB pool.

The argument is the pointer to the CCB to be freed, there is no return code.
d) long xpt_action(CCB *)

A1l CAM/SCSI CCB reguests to the XPT/SIM are placed through this function
call. All returned CAM status information is obtained at the callback point
via the CAM and SCSI status fields.

;hg]argument is a pointer to the CCB, and the return code is either Success or
ailure.

Common Access Method XPT/SIM Support Rev 2.2 October 29, 1990 Page 18

7.1.6.2 Functions for SIM Module Support
a) See 6.8 for loadable module support:
long xpt_bus_register(CAM_SIM ENTRY *)
lTong xpt_bus_deregister(path_id)
b) long xpt_async(opcode, path_id, target_id, Tun, buffer_ptr, data cnt)

The SIM calls this routine to {nform the XPT that an async event has occured
and that there may be peripheral drivers which need to be informed.

- Thc]a opcode, path_id, target_id, lun, and data_cnt arguments are long 32-bit
values.

The path_id, target_id, and Tun define a nexus for the Async Callback.

The opcode contains™the value for what has happened.

The buffer ptr and data_cnt are used to inform the XPT where and how much
data is asSociated with™the opcode.

The return code is either Success or Failure.
7.1.7 SIM Interface i

The SIM interface provides functions to the XPT, and should never be accessed
directly by the peripheral driver. Each vendor's SIM should provide a
publicly-defined entry structure such as CAM_SIM ENTRY cse_vendorname.

The following defines the entry points, and describes the required arguments
and return values.

a) long sim_init(pathid)

This routine is called by the XPT to request that the SIM be initialized.
There are no arguments and the return code is either Success or Failure.

b) Tong sim action(CCB *)

A1l CCB requests to the SIM are placed through this function call. All
returned CAM status information is obtained at the callback point via the CAM
and SCSI status fields.

;ﬁglargument is a pointer to the CCB, and the return code is either Success or
ailure.

7.2 Novell Operating System

Novell NetWare 386 drivers are called NLMs fﬂetﬁare Loadable Modules). These
modules are registered and linked dynamically with NetWare 386: they are
registered aftér the server is running and may be de-registered at any time.
The NetWare 386 CAM subsystem consists of 3 sets of NLMs:

- peripheral drivers éNLMs) that are device class specific

- the XPT router and SIM maintenance NLM
- SIM NLMs that are HBA-specific

AHIHdE L2

20%,

Common Access Method XPT/SIM Support Rev 2.2 October 29, 1990 Page 19

The peripheral drivers and SIMs comﬁunicate with the XPT through labels
exported by the XPT when it is registered.

The CAM Flags used are as described in Table 9-2.
7.2.1 Initialization

As the Novell dynamic linker will not allow an NLM to register if it makes
references to a label it cannot resolve, the order in which the NLMs register
is important, The XPT module exports two entry points when it is registered,
and both peripheral drivers and SIM modules make references to them. The XPT
shall be registered first, after which either peripheral drivers or SIMs may
be registered.

[e +
Peripheral
Driver references labels exported by XPT
|
v
Fomm o ——————— +
XPT xpt_action ();
xpt_async ();
(first) xpt_bus_register ();
-------- -------=+ xpt_bus”deregister i);
|
[T +
| SIM | SIM - references label exported by XPT
Fomrmm e, ———— +

For an overview of SIM registration with the XPT see 6.8. For an overview of
peripheral driver registration with the XPT see 6.6 and 8.2.4.

When a SIM registers, NetWare 386 will call its initialization routine. At
this point the SIM can perform its initialization functions.

As part of initialization the SIM shall call the xpt bus register function
once for each HBA it will Supﬁort, to register the address of its entry point
with the XPT and to get a path ID for each HBA from the XPT. The XPT then adds
this SIM to its internal tables so it can route requests to the new SIM. The
XPT also notifies all perighera] drivers that re?1stered an asynchronous
callback routine with the XPT (with the SIM Module Registered bit set), that a
new path ID exists. Upon recelvinﬁ this message the peripheral drivers can
check for new devices on this path.

When a peripheral driver registers, NetWare 386 will call its initialjzation
routine and the driver needs to determine which, if any, SIMs are registered.

The peripheral driver sends a Path Inquiry CCB to each path to determine if a
SIM is registered. If a valid response is returned the Eeriphera] driver
checks for devices that it will support on_that path. If the EerlpheraT driver
supports any devices on this path, it shall register an asynchronous callback
routine and specify the SIM reﬁlstrat1on in the opcode field so that if the
SIM is de-regitered, the peripheral driver shall be notified. In addition, a
peripheral driver should also register for SIM registration to alert the

Common Access Method XPT/SIM Support Rev 2.2 October 29, 1990 Page 20

driver of the need to locate devices on a newly added SIM module.
7.2.2 De-Registering

When a SIM de-registers, it shall call the xpt_bus_deregister(% function once
for each path the SIM supports. The XPT then calls every peripheral driver
that has reglstered an asynchronous callback routine with the SIM Module De-
Registered bit set on this path. Peripheral drivers then notify NetWare 386
that the drives on this path are in an inactive state. The XPT will then
remove the path from its internal tables and block further peripheral driver
requests on this path. !

If a peripheral driver de-registers, it needs to notify the XPT module so that
the dependency tables can be updated. This is done by registering an
asynchronous callback routine with the opcode set to zero. The XPT will then
remove this driver from its callback tables.

The XPT can only be de-registered after all peripheral drivers and SIM modules
have been de-registered. RetWare 386 will not allow an HLM to de-register if
it has exported labels that other NLMs are using. As all SIM and peripheral
drivers refer to labels exported by the XPT, NetWare 386 will not allow the
XPT to de-register until all the SIMs and peripheral drivers have been de-
registered, at which point there is nothing left for the XPT to support and it
can be safely de-registered.

7.2.3 Accessing the XPT

NetWare 386 aliows an HLM to export functions which NLMs registered at a later
time can reference. An NLM calls an exported function in the same way it calls
any other function. In order for communication between the peripheral drivers,
%P 4 and S%H ﬁodules to work correctly the names of the XPT entry points have

o be constant.

The entry points in the XPT module are:

- xpt_action () accepts CAM blocks from the peripheral driver and routes them
to The correct SIH

- xpt_async () is used by the SIM module to notify the XPT when an
asynchronous event occurs. .

- ;p%ﬁb¥3_reg1ster () is used to register the SIM with the XPT and obtain a
a B

- gp%ﬁbgg_deregister () is used to de-register the SIM associated with the

- Pa .

7.2.4 Hardware Registration

The SIM module needs to do the actual registration of the host adapter with
NetWare: Since only one SIM may support a given host adapter this prevents any
hardware options from being registered twice. The SIM does not register any
devices with NetWare, only the hardware options used by the card e.g.
interrupt line, base address, DMA etc.

Interrupts generated by the host adapter will be handled by the SIM module, so
the SIM must also register its interrupt service routine with NetHWare.

A peripheral driver registers a logical card with NetWare 386 for each path_id
it supports. This Togical card uses no hardware resources, but does have an
entry point to accept IOCTL requests from NetWare. The peripheral driver also

1H1E¥ LI

Common Access Method XPT/SIM Support Rev 2.2 October 29, 1990 Page 21

reports the devices that it will support to NetHare.

The XPT does not register any hardware or devices with NetWare 386. It
registers as a driver, but does not register any IOPOLL or IOCTL entry points.

7.2.5 Hiscellaneous

It is the responsibility of the peripheral driver to allocate memory for its
CCB blocks. Normally the peripheral driver needs to keep one CCB structure for
each device it will supgort. so the memory can be allocated in the
DiskStructure provided by NetWare 386 wheh a device is added to the system.

Since fast disk channels are essential for a NetWare 386 server, peripheral
drivers should never poll the CAM status field to wait for compietion. The
driver should send the CCB to the XPT module and then either do more work, or
exit immediately. The SIM module will call the function whose address is in
the callback field of the CCB block when the request is finished. The ca] 1back
function runs at interrupt level, so it cannot call any NetWare 386 routines

that are "blocking" or the file server will abend. See the Novell Disk Driver -

manual for details on blocking and non-blocking levels.
7.3 DOS (Disk Operating System)

The CAM Flags used are as described in Table 9-2.

7.3.1 Accessing the DOS XPT

The mechanism for accessing the XPT by the defined CAM software interrupt is
as follows:

On return:

On entry:
MOV All registers preserved

ES = segment of CCB
MOV BX = offset of CCB
INT 4Fh

Harning: The SIM may complete and return control to the location pointed to by
Callback on Completion in the CCB before this software interrupt returns.

Drivers and application under DOS can check for the presence of the CAM
XPT/SIM by checking for the following ASCII string 8 bytes past the entry
point indicated by the INT 4Fh vector.

'SCSI_CAM'*
7.3.2 Callback on Completion under DOS

When an 1/0 operation has completed, a DOS SIM shall make a FAR call to the
routine whose address is passed in the Ca]lback on Completion field of the
CCB. For DOS, the first 4 bytes of this field are used to indicate the
routines address in a standard Intel Segment:0ffset format. When the callback
is made, hardware interrupts shall be disabled and ES:BX should point to the
completed CCB.

7.3.3 Pointer Definition Under DOS

In the DOS environment, al] pointers shall be passed to the XPT/SIM as
segment:offset type virtual addresses.

Common Access Method XPT/SIM Support Rev 2.2 October 29, 1990 Page 22

7.4 05/2 (Operating System 2)

Microsoft has documented LADDR as a generic I1/0 interface which suﬁports many
device interfaces, not only SCSI. The control blocks and their method of
operation are defined in 0%/2 Technical Reference Manuals which are available
from Microsoft.

The 0S/2 equivalent to the SIM.is a BID (Bus Interface Driver).

The 0S/2 equivalent to the CCB is an SRB (SCSI Request Block).

The CCB and the SRB share many common fields. The fields in the CCB are
designated as 0SD if they vary between 05/2 and other operating systems.

For further information on how peripheral drivers use the CCB/SRB and other
SIM/BID capabilities of 05/2, it is necessary to use information available
from Microsoft.

The CAM Flags used are as described by LADDR documentation.

8. CAH Control Blocks !

The CCBs used by drivers and aﬁp]ications to request functions of the XPT and
SIM have a common header, as shown in Table 8-1.

TABLE B-1 CAM CONTROL BLOCK HEADER
+

Fom et
|Size|Dir|
e e e +
- - - - - 0 - - - - -
4 | 0 | Address of this CCB
2 | 0| CAM Control Block Length
1| 0| Function Code
1] I | CAM Status
1 reserved
- - - - Common - - - - -
1|0 Path ID
1| 0| Target ID
1] 0| LUN
4 | 0 | CAM Flags (0SD)

The sequence of the fields in the data structures will be consistent between
vendors, but not necessarily the binary contents. The size and definition of
the fields in the data structures can vary beween operating systems and
hardware platforms, but the vendors are expected to provide compiler
definitions which can be used by third-party attachments.

Several fields in the CCB are pointers, and their meaning is dependent on the
05 which is being supported. In general, these pointers are interpreted as
either virtual or physical addresses.

Additional bytes beyond the CCB Header are dependent on the Function Code.

Most SCSI messages are handled transparently by the SIM, but in some cases,

ANIHdYy L2

goe

Common Access Method XPT/SIM Support Rev 2.2 October 29, 1990 Page 23

the peripheral driver has been given the ability to force the SIM to issue a
message. Table B-1A summarizes the message support.

TABLE 8-1A SUPPORT OF SCSI MESSAGES

o T e +
Abort Discretely supported by function codes
Abort Tag Discretely supported by function codes
Bus Device Reset Discretely supported by function codes
Clear Queue Not Supported

Command Complete
Disconnect
Identif .
Ignore Hide Residue
Initiate Recovery
Initiator Detected Error
Linked Command Complete
Message Parity Error
Message Reject
Modify Data Pointer
No Operation
Queue Tag Messages
Head o 8ueue Tag
Ordered Queue Tag
Simple Queue Tag
Release Recovery
Restore Pointers
Save Data Pointers
Synch Data Transfer Request
Terminate I/0 Process
HWide Data Transfer Request

Transparent]y supported by SIM
Transparently supported by SIM *
Transparently supported by SIM
Transparently supported by SIM
Not Supported

Transparently supported by SIM
Transparently supported by SIM
Transparently supported by SIM
Transparently supported by SIM
Transparent]ly supported by SIM
Transparently supported by SIM

Discretely supported by function codes
Discretely supported by function codes
Discretely supported by function codes
Not Supported

Transparently supported by SIM
Transparently supported by SIM
Transparently supported by SIM *
Discretely supported by function codes
Transparently supported by SIM

| * Issuing this messag; influenced by peripheral driver via CAM flags |
o e e

8.1 CCB Header

The Function Codes used to identify the XPT service being requested are listed
in Table 8-2.

8.1.1 CAM Control Block Length
See 9.1.1.
8.1.2 XPT Function Code

Common Access Method XPT/SIM Support Rev 2.2 October 29, 1990 Page 24

+ +
00-0F| Common Functions

01lh Execute SCSI I/0 (see 9.x)
02h Get' Device Type

03h Path Inquiry

04h Release SIM Queue

05h Set Async Callback

06h Set Device Type
07-0F reserved

10-1F] SCSI Control Functions

10h Abort SCSI command

11h Reset SCSI Bus

12h Reset SCSI Device

13h Terminate I/0 Process
14-1F reserved

20h | Engine Inguiry (see 11.x)
21h | Execute Engine Request
22-2F reserved
30-3F| Target Mode (see 10.x)
30h Enable LUN

31h Execute Target I/0
32-3F reserved
40-7F reserved
80-FF| Vendor Unique

If a Function Code which is not sugported is issued to the XPT, the XPT shall
complete the request and post CAM Status of Invalid Request.

8.1.3 CAM Status
See 9.1.3.

8.1.4 Path ID
See 9.1.4.

8.1.5 CAM Flags

ghe gA? g]ags qualify the Function to be executed, and vary by Function Code.
ee 9.1.0.

8.2 Function Codes
8.2.1 Get Device Type
This function is executed at driver initialization in order to identifﬁ the

targets they are intended to sup?ort e.g. A CD ROM driver can scan eac
Target/LUN address on each installed HBA to look for the CD ROM device type.

IHIEdY L2)

Common Access Method XPT/SIM Support Rev 2.2 October 29, 1990 Page 25 Common Access Method XPT/SIM Support Rev 2.2 October 29, 1990 Page 26

UN LUN
CAM Flags (0SD) CAM Flags (0SD)
Peripheral Device Type of Target/LUN Features Supported
reserved Version Number
Inquiry Data Pointer 00-07h Prior to Rev 1.7
= e e e e e + 08h Implementation Version 1.7

; ; : 09-FFh Rev No e.g. 21h = 2.1
The information on attached SCSI devices is gathered at power on by the XPT 1 SCSI Capabilities

—OoOooo

TABLE 8-3 GET DEVICE TYPE CCB TABLE 8-4 PATH INQUIRY CCB - Part 1 of 2
teeeetmmat Fommatoat
|Size|Dir| Get Device Type |Size|Dir| Path Inquiry
LT R - - -t e o o +
= = - - - 08D - - - - - - - - - - 0D - - - - -
4 | 0 | Address of this CCB 4 1 0 | Address of this CCB
2 | 0| CAM Control Black Length 2 | 0 | CAM.Control Block Length
1| 0| Function Code 1| 0| Function Code
1| I | CAM Status 111 Status
1 reserved 1 reserved
- - - - Common - - - - . - = - - Common - - - - -
1 Path ID 1 Path ID
1 Target ID 1 Target ID
1 Ll 1
4 4
1
1 1
4

Fommea +-

to eliminate the need for each driver to duplicate the effort of scanning the ¢/ Modify Data Pointers
CSI bus for devices). 6 Wide Bus 32
5 Hide Bus 16
The PeriBheral Device Type is a 1-byte representation of Byte 0 of SCSI 4 Synchronous Transfers
Inquiry Data i.e. bits 7-5=000. 3 Linked Commands
2 reserved
IT the Inquiry Data Pointer contains a value other than Wull, it is a pointer 1 Tagged Queueing
to a buffer in the peripheral driver's data space large enough to hold the 36 0 Soft Reset

bytes of Inquiry data associated with the Target/LUN. The data shall be 1 Target Mode Supﬂort

copied from the internal tables of the XPT to the peripheral driver's buffer. Processor Mode
6 Phase Cognizant Mode
This function shall return non-zero CAM Status. 5-0 reserved
- CAM Status of Request Completed Without Error indicates that the specified 1 Miscellaneous
device is installed and the peripheral device type field is valid. 7 0=Scanned Low to High
- CAM Status of SCSI Device Not Installed indicates that the peripheral 1=Scanned High to Low
device type field is not valid. 6 O=Removables included in scan
- CAM Status of Invalid Request indicates that the Path ID is invalid. 1=Removables not included
5 l=Inquiry data not kept by XPT
Drivers are always able to use SCSI I/0 requests to check for devices which 4-0 reserved

may not have been found at power up. Frmmm e e e i e S S R i i e +
8.2.2 Path Inquiry
This function is used to get information on the installed HBA hardware,

including number of HBAs installed. To obtain further information on any other
HBAs attached, this function can be issued for each HBA.

JUTEL SV]

¢)§

Common Access Method XPT/SIM Support Rev 2.2 October 29, 1990 Page 27 Common Access Method XPT/SIM Support Rev 2.2 October 29, 1990 Page 28

TABLE 8-4 PATH INQUIRY CCB - Part 2 of 2
+

Fommm s asmaan + TABLE 8-5 RELEASE SIM QUEUE
HBA capabilities N
2|1 Engine count |Size|Dir| Release SIM Queue
14 | 1 Vendor Unique e it e ———— +
4 | I | Size of Private Data Area - - - - - 08 - - - - -
4 | T | Asynchronous Event capabilities 4 | 0 | Address of this CCB
31-24 Vendor Unique 2 | 0| CAM Control Block Length
23- 8 reserved 1| 0| Function Code
7 New Devices found durina rescan 1| I | CAM Status
6 SIM module De-Registere 1 reserved
5 SIM module Registered - - - - Common - - - - -
4 Sent Bus Device Reset to Target 1| 0| Path ID
3 SCSI AEN 1| 0| Target ID
2 reserved 1|0 | LUN
1 Unsolicited Reselection 4 | 0 | CAM Flags (0SD)
0 Unsolicited SCSI Bus Reset L T L R e +
1 {1 Highest Path ID Assigned
1| 1 | SCSI Device ID (of Initiator) This function shall return CAM status of Request Completed Without Error,
16 | I | Vendor ID of SIM-supplier
16 | T | Vendor ID of HBA-supplier 8.2.4 Set Async Callback
4 [0| 0SD Usage

P B s ———t This function is provided so thdt a Eeripher‘al driver can register a callback
) . routine for the selected Bus/Target/LUN nexus.
In some Operating System environments it may be possible to dynamically load

?BdAunloaddSIHs. so Path IDs may not be consecutive from 0 to the Highest Path TABLE B8-6 SET ASYNC CALLBACK CCB
ssigned. tommmtoand
|Size|Dir| Set Async Callback
The Path ID value of FFh is assigned as the address of the XPT. R Y - - S +
The SCSI Capabilities field is a duplicate of the Byte 7 field in Inquiry Data 4 | 0 | Address of this CCB
Format. 2 | 0 | CAM Control Block Length
1| 0| Function Code
The 0SD Usage Pointer field is provided for 0S-specific or platform-specific 1 | T | CAM Status
functions to be executed by the SIM. The contents of this field are vendor- 1 reserved
specific and are not defined by this standard. o wl dsw - Common - - - - -
a
In some environments, the Private Data value returned may be zero because the 1| 0| Target ID
05D has central allocation of private data reguirements, or it is a fixed size 1 (0| LUN
as defined by the 0SD vendor. 41 0| CAM Flags (0SD) ,
4 | 1 | Asynchronous Event Enables
See the vendor specification for the definition of Vendor Unique HBA ; 31-24 Vendor Unique
capabilities peculiar to a particular HBA implementation. 23- 8 reserved)
7 New Devices found durlng rescan
The Asynchronous Event capabilities indicate what reasons cause the SIM to 6 SIM module De-Registere
generate an asynchronous event. 5 SIM module Registered
‘ 4 Sent Bus Device Reset to Target
This function shall return non-zero CAM Status. 3 SCSI AEN
- CAM Status of Request Completed Without Error indicates that the other 2 reserved
returned fields are valid. 1 Unsolicited Reselection
- CAM Status of Invalid Request indicates that the specified Path ID (HBA) is 0 Unsolicited SCSI Bus Reset
not installed. 4 | 1 | Asynchronous Callback Pointer
4 | T | Peripheral Driver Buffer Pointer
8.2.3 Release SIM Queue 1| I | Size of Allocated Peripheral Buffer

This function is provided so that the Regig?eral driver can release a frozen

SIM queue for the selected LUN (see 6. This function shall return:

1HlEdr L]

V%3

Common Access Method XPT/SIM Support Rev 2.2 October 29, 1990 Page 29

- CAM Status of Request Completed Without Error indicates that the
registration of the callback routine was accepted.

- CAH Status of Request Completed with Error indicates that the registration
was rejected (possibly due to invalid parameter settings).

8.2.5 Set Device Type

This function requires the XPT to add the Target ID, LUN and peripheral type
to the table of attached peripherals built during CAM initialization.

TABLE 8-7 SET DEVICE TYPE CCB

tommmtmmat
|Size|Dir| Set Device Type
Fom et e —— +
- = - - - 0D - - - - -
0 | Address of this CCB
0 | CAM Control Block Length
0 | Function Code
I | CAM Status

reserved
Path ID
Target ID
LUN
CAM Flags (0SD)
Peripheral Device Type of Target/LUN

Fomee R it T p—

- Comon - - - - -

Pt B ok ok ok ek ek D

The SIM does not check the vaIidit[\; of the information smplied by the
peripheral driver. This function shall return non-zero CAM Status.

NOTE: Blind insertion of device tﬁge information may corrupt the table, and
results would be unpredictable.

- CAM Status of Request Completed Without Error indicates that the specified
information was inserted into the table of SCSI devices.

- CAM Status of Request Completed with Errvor indicates a problem e.g. not
enough room in the table to add the device information.

8.3 SCSI Control Functions
8.3.1 Abort XPT Request

This function requests that an XPT reguest be aborted by identifying the CCB
associated with the request. It should be issued on any [/0 request that has
not completed that the driver wishes to abort. Success of the Abort function
is never assured. This request does not necessarily result in an Abort message
being issued over SCSI.

Common Access Hethod XPT/SIM Support Rev 2.2 October 29, 1990 Page 30

TABLE B-9 ABORT XPT REQUEST CCB
+ +
|Size|Dir| Abort XPT Request
+

e e mm vt
= = - - - 08D - - - - -

0 | Address of this CCB

8 CAM. Control Block Length

I

Function Code
CAM Status
reserved
Path ID
Target ID
LUN
CAM Flags (0SD)
reserved
CCB to be Aborted Pointer

- Common - - - - -

o S e e T e a2 T
o000 oo

1
1
1
1
1
1
]
1
i
1
1
]
]
]
1
1
1
1
1
1
1
1
1
)
]
]
1
1
1
]
]
]
]
]
1
f
1
1
1
1
1
+

This function shall return CAM Status of Request Completed Without Error or
Unable to Abort Request.

I
The actual failure or success of the Abort operation is indicated hy the CAM
Status eventually returned in the CCB specified.

8.3.2 Reset SCSI Bus

This function is used to reset the specified SCSI bus, This function should
not be used in normal operation. This request shall always result in the SCSI
RST signal being asserted (see 6.4.3.3 and 6.5).

TABLE 8-10 RESET SCSI BUS CCB
+

+ +
lSize|Dir] Reset SCSI Bus
mmm et e e e m s G MG r— e —— e ———— +
- - - - = 0D - - - - -
0 | Address of this CCB
0 | CAM Control Block Length
0 | Function Code
I | CAM Status
reserved
Path ID
Target ID
LUN
CAM Flags (0SD)

Common - - - - -

o et e et Ll ol ol % -

oocoo

This function shall return CAM Status of Request Completed Without Error.

The actual failure or success of the Reset SCSI Bus is indicated by the
Asynchronous Callback information.

8.3.3 Reset SCSI Device

This function is used to reset the specified SCSI target. This function should
not be used in normal operation, but if I/0 to a particular device hangs up

ANIUdr L]

2. /%

Common Access Method XPT/SIM Support Rev 2.2 October 29, 1990 Page 31

for some reason, drivers can abort the I/0 and Reset the device before trying
again. This reguest shall always result in a Bus Device Reset message being
issued over SCSI (see 6.4.3.3 and 6.5).

TABLE 8-11 RESET SCSI DEVICE CCB

- = - - -0 - - - - -
0 | Address of this CCB
0 | CAM Control Block Length
0 | Function Code
I | CAM Status
reserved
- - - - Common - - - - =~
Path ID
Target ID

LUN
CAM Flags (0SD)

e +

e D

+

———ta

This function shall return CAM Status of Request Completed Without Error.

The actual failure or success of the Reset SCSI Device is indicated by the
Asynchronous Callback information.

8.3.4 Terminate 1/0 Process Request

This function requests that an XPT 1/0 request be terminated by identifying
the CCB associated with the request. It should be issued on any 1/0 requesi
that has not completed that the driver wishes to terminate. Success of the
Terminate /0 Process is never assured. This request does not necessarily
result in a Terminate I/0 Process message being issued over SCSI.

TABLE 8-12 TERMINATE I/0 PROCESS REQUEST CCB
ot et

|Size|Dir| Terminate I/0 Process Request
[TR e T -

i o s ' DR o= o
0 | Address of this CCB
8 CAM Control Block Length

I

Function Code
CAM Status
reserved

Path 1D
Target ID
LUN

CAM Flags (0SD)

reserve
CCB to be Aborted Pointer

nnnnnn Famm T o e e et e

- Common - - - - -

o VD S et e Pt et it PN
ocooooo

This function shall return CAM Status of Request Completed Without Errer.

The actual failure or success of the Terminate I/0 Process operation is
indicated by the CAM Status eventually returned in the CCB specified.

Common Access Method XPT/SIM Support Rev 2.2 October 29, 1990 Page 32

9. Execute SCSI 1/0

The most commonly executed request of the SIM is an I/0 command, as defined in
the CCB with a Function Code of Execute SCSI I/0.

9.1 CAH Control Block to Request 1/0

Peripheral drivers should make all of their SCSI I/0 requests using this
function, which is designed to take advantage of all features of SCSI which
%ag]begpgov1ded by virtually any HBA/SIM combination. The CCB is as defined in
able 9-1,

This function will typically return with CAM Status of zero indicating that

the request was queued successfully. Function completion can be determined by

gc_:l}:lng for non-zero status or through use of the Callback on Completion
ield.

TABLE 9-1 SCSI I/0 REQUEST CCB

Fommeteat

|Size|Dir| SCSI I/0 Request

Fommet et s, ————— +
o kb wr o m HBD e ow o ow e
Address of this C(B

0
g CAM Control Block Length
I

[AS B

Function Code
CAM Status
reserved
Path ID
Target ID
LUN
CAM Flags (0SD)
Peripheral Driver Pointer
Next CCB Pointer
reserved (03D)
Callback on Completion
S6 List/Data Buffer Pointer
Data Transfer Length
Sense Info Buffer Pointer
Sense Info Buffer Length
CDB Length
Number of Scatter/Gather entries
reserved (0SD)
SCSI Status
reserved (0SD)
Residual Length
CDB

- = - - - 00D - - - - -
Timeout Value
Message Buffer Pointer [Target—on]y
Message Buffer Length Target-only
VU Flags
Tag Queue Action

reserved (0SD)
Private Data

[JEPEEE S tommmm——— —_————

- Common - - - - -

COoOOoOoOOoCO Do OooO

SWHRNNSDE RS W SN D DS P Pk et
—

o ooocoo O

AN1Yde L2

24

Common Access Method XPT/SIM Support Rev 2.2 October 29, 1990 Page 33 Common Access Method XPT/SIM Support Rev 2.2 October 29, 1990 Page 34

TABLE 9-2 CAM FLAGS (0SD)
+ +
|Size|Bits| CAM Flags (0SD)
+ +

D iats R T T PP, - -+
1 | 7-6] Direction

[Text descriptions need to be made alphabetic.]
9.1.1 Address of this CCB

Pointer containing the Physical address of this CCB. 8?=1 reserved
=In
9.1.2 Callback on Completion 10=Qut

11=No Data Transfer

This is an_0SD field which contains the method by which the SIM is to return 5 | 1=Disable Autosense
to the caller. In some applications it is a pointer, but in others the 4 | 1=Scatter/Gather
location of the Callback on Comg]etion routine may be a fixed location and the 3 | 1=Disable Callback on Comp
CCB would contain an argument. See the 0SD-specific considerations in 2 | 1=Linked CDB
Clause 6. The address of the Completed CCB shall be passed on the stack to 1 1=Tagggd Queue Action Enable
inform the peripheral driver which CCB has completed. 0 | 1=CDB is a Pointer
1 7 | 1=Disable Disconnect
9.1.3 CAM Control Block Length * 6 | l=Initiate Synchronous Transfers
. * 5 | 1=Disable Synchronous Transfers
This field contains the length in bytes of the CCB, including this field and 4 | SIM Queue Priority

the Address of this CCB in the total. 1=Head insertion
: O=Normal (tail insertion)
9.1.4 CAM Flags

SIM,Queue Freeze
) . . , Engfne Synchronize
This field contains bit settings as described in Table 9-2 to indicate special
handling of the requested function. 1

—

QMR WE I~ Qv—-‘l\iw-hmc'l'--.llol\im

reserved .
SG List/Data 0=Host 1=Engine
CDB Pointer 0=VA 1=PA
SG List/Data 0=VA 1=PA
Sense Buffer 0=VA 1=PA
Message Buffer 0=VA 1=PA
Next CCB 0=VA 1=PA
Callback on Comp 0=VA 1=PA

reserved

Target Mode-Specific CAM Flags
Data Buffer Valid
Status Buffer Valid
Message Buffer Valid

reserved
1=Phase-Cognizant Mode
1=Target CCB Available
1=Disable AutoDiscaonnect
1=Disable AutoSave/Restore

9.1.4.1 Byte 1 Bits

7-6 Direction - These encoded bits identify the direction of data movement
during the data transfer phase, though when used in conjunction with
Engine proce551n?. they have a little diffferent meaning (see 11).

-a ggttlng)of 01 indicates a Read operation (data transfer from target to
initiator).
- a setting of 10 indicates a Write operation (data transfer from
initiator to target).
-a settin% of 11 indicates there is to be no data transfer.
5 Disable Autosense - When set to 1 this bit disables autosense.
4 Scatter/Gather - when set to 1 this bit indicates that data is not to be
transferred to/from a single location in memory but to/from several. In

BUELY Pl

A/

Common Access Method XPT/SIM Support Rev 2.2 October 29, 1990 Page 35

this case the Data Buffer Pointer refers to a list of addresses and length
in bytes at each address to which the data is to be transferred. The
format of the SG List is defined in Table 9-3.

TABLE 9-3 SCATTER GATHER LIST

+
4 | Data Address 1
4 | Data Length 1

4 | Data Address 2
4 | Data Length 2
4
4

Data Address n
Data Length n

Fomeet e +

3 Disable Callback on Completion - When set to 1 the peripheral driver does
not want the SIM to callback automatically when the request is completed.
This implies that the caller will be polling for a_non-zero CAM Status
(which indicates successful completion or termination of the request),

2 Linked CDB - When set to 1 this CDB is a linked command. If this bit is
set, then the Control field in the CDB shall have bit 0=1. If not, the
results are unpredictable. See 9.2.

1 Queue Actions are to be enabled.

0 If the CDB is identified as a Pointer, the first four bytes of the CDB
field contain a pointer to the location of the CDB.

9.1.4.2 Byte 2 Bits

7 When Disable Disconnect=1 the Disconnect capability of SCSI is disabled.
The default of 0 sets bit 6=] in the SCSI Identify MSG (which indicates
that the initiator has the ability to disconnect and reconnect.

6 When Initiate Synchronous Transfers=1 the SIM shall negotiate Synchronous
transfers, and wherever possible execute synchronous transfers.

5 When Disable Synchronous Transfers=1 the SIM shall negotiate Asynchronous
transfers (if previously neﬁotiated Synchronous). If upable to negotiate
Synchronous or negotiation has not yet been attempted, the SIM shall not
initiate negotiation.

4 When SIM ﬂueue Priority=1 the SIM shall place this CCB at the head of the
Earggt/%?n internal queue to be the next operation sent to the Target/LUN

the :

3 Hﬁen SIM Queue Freeze=1 the SIM shall place its internal Target/LUN queue
into the frozen state. Upon callback, the CAM Status for this CCB shall
have the SIM Queue Freeze flag set. This bit should only be set for SIM
error recovery and should be used in conjuntion with the SIM Queue
Priority bit and the Release SIM Queue command.

2 The Engine Synchronize=1 is used in conjunction with the In or Out setting
to flush any residual bits before terminating engine processing (see 11).

9.1.4.3 Byte 3 Bits

The Pointer fields are set up to have one characteristic. If a bit is set to 1
it means the pointer contains a Physical Address. If set to 0 it means the
pointer contains a Virtual Address. If the SIM needs an address in a different
form to that provided, it should be converted by the SIM (using 0SD
facilities) and stored in Private Data.

Common Access Method XPT/SIM Support Rev 2.2 October 29, 1990 Page 36

9.1.4.4 Byte 4 Bits

The Tagget Mode Only Flags are only active on Enable LUN or Execute Target 1/0

commands.

7-5 The Buffer Valid bits identify which buffers have contents. In the event
that more than one bit is set, they shall be transferred in the sequence
of Data Buffer, Status, Message Buffer.

3 Phase-Cognizant Mode - if target operations are supported, when set to 1,
the SIM shall operate in Phase-Cognizant Mode, otherwise it shall operate
in Processor Mode,

2 Target CCB Available - when set to 1 this bit indicates that the XPT/SIN
can use this CCB to process this request. A value of 0 indicates that this
CCB is not available to the XPT/SIM.

1 AutoDisconnect - when set to 1 this bit disables AutoDisconnect. The
default of 0 causes the XPT/SIM to automatically disconnect, if the
Identify message indicates DiscPriv is set.

0 AutoSave - when set to 1 this bit disables AutoSave. The default of 0
causes the XPT/SIM to automatically to send a Save Data Pointer message on
an AutoDisconnect.

9.1.5 CAM Status i

This field is returned by the SIM after the function is completed. A zero
status indicates that the request is still in progress or queued. CAM Status
is defined in Table 9-4.

If Autosense information is available, the code returned shall be incremented
by 80h e.g. 04h indicates an error occurred, and 84h indicates that an error
occurred and Autosense information is available for analysis.

NNy L2

L%

Common Access Method XPT/SIM Support Rev 2.2 (October 29, 1990 Page 37

LI R B B |

00h
0lh

02h
03h
04h
05h
06h
07h

0Sh

TABLE 9-4 CAM STATUS
| L — " B . +
00h | Request in progress
01lh | Request completed without error
02h | Request aborted by host
03h | Unable to Abort Request
04h Reﬂuest completed with error
CAM Busy
06h | Invalid Request
07h | Invalid Path ID
08h | SCSI device not installed
09h | Unable to_ Terminiate I/0 Process
0Ah | Target Selection Timeout
0Bh | Command Timeout
0Ch reserved
00h | Message Reject received
OEh | SCSI Bus Reset Sent/Received
0Fh | Uncorrectable Parity Error Detected
10h | Request Sense Command Failed
11h | No HBA detected
12h | Data OverRun/UnderRun
13h | Unexpected Bus Free
14h | Target bus ?hase sequence failure
15h | CCB Length nadequate
16h | Cannot Provide Requested Capability
17h | Bus Device Reset
18h | Terminate I1/0 Process
19-37h reserved

38h | Invalid LUN

39h | Invalid Target ID

3Ah | Function not Implemented
3Bh | Nexus not Established
3Ch | Invalid Initiator ID

3JDh | SCSI CDB Received

3Eh | LUN Already Enabled

3Fh | SCSI bus Busy

. S = e - i
+40H | to indicate that SIM Queue is frozen
+80h | to indicate that Autosense is valid

Target Mode Only Status

Request in progress: the request is still in process,

Request completed without error: the request has completed and no error
condition was encountered.

gequest aborted by host: the request was aborted by the peripheral
river.

Unable to Abort Request: the SIM was unable to abort the request as
instructed b{ the peripheral driver.

Request completed with error: the request has completed and an error
condition was encountered.

CAM Busy: CAM unable to accept request at this time,

Invalid Request: the request has been reiected because it is invalid.
Invalid Path ID indicates that the Path ID is invalid.

SC51 device not installed: peripheral device type field is not valid.
Unable to Terminate I/0 Process: the SIM was unable to terminate the
request as instructed by the peripheral driver.

Conmon Access Method XPT/SIM Support Rev 2.2 October 29, 1990 Page 38

- 0Ah Target Selection Timeout: The target failed to respond to selection.
0Bh Command Timeout: the specified command did not complete within the
timer value specified in the CCB.
- 0Dh Hessage Reject received: The SIM received a Message Reject MSG.
- OEh SCSI Bus Reset Sent/Received: The SCSI operation was terminated at some
Bo1nt because the SCSI bus was reset. ,
- OFh Uncorrectable Parity Error Detected: An uncorrectable SCSI bus parity
%rrgg w%s de%ected. When this occurs, the SIM sends the ABORT message
o the target.
- 10h Regu$stISgnse Command Failed: The SIM attempted to obtain sense data
and failed.
- 11h No HBA detected: HBA no longer responding to SIM (assumed to be a
hardware problem).
- 12h Data QverRun: target transferred more data bytes than peripheral driver
indicated in the CCB.
- 13h Unexpected Bus Free: an unexpected Bus Free condition occurred.
- 14h Target Bus Phase Sequence Failure: the target failed to operate in a
proper manner accor ing to X3.131-1990 e.g. it went to the Message Out
Ehase after the initiator asserted ATN.
- 150 CCB LenBth Inadequate: More private data area is required in the CCB.
- 16h Cannot Provide Requested Capability: Resources are not available to
Erovide_the capability rgguested (in the CAM Flags).)
- 17h Bus Device Reset: this CCE was terminated becausé a Bus Device Reset
was sent to the target. .
- 18h Terminate I/0 Process: this CCB was terminated because a Terminate I1/0
Process was sent to the target.
- 38h Invalid LUN indicates that the LUN specified is outside the supported
range of_the SCSI bus.
- 39h Invalid Target ID indicates that the Target ID dees not match that used
by the HBA specified by the Path ID field. .
- 3Ah Function Not Im?!emented indicates that Target Mode is not su?ported.
- 3Bh Nexus not Established: There is currently ne connection established
between the specified Target ID and Target LUN and any initiator.
- 3Ch Invalid Initiator ID: The initiator ID specified is outside the valid
range that is supported.
NOTE: This status can also be returned if the target tries to reselect an
initiator other than the one to which it was previously connected.
- 3Dh SCSI CDB Received: Indicates that the target has been selected and that
the SCSI CDB is present in the CCB.
- g%hdLUN Already Enabled: The LUN identified in Enahle LUN was previously
enabled.
- 3Fh SCSI bus Busy: The SIM failed to win arbitration for the SCSI Bus
during several different bus free phases.

9.1.6 CDB

This field either contains the SCSI CDB (Command Descriptor Block), or a
pointer .to the CDB, to be dispatched.

9.1.7 CDB Length
This field contains the length in bytes of the CDB.
9.1.8 Data Transfer Length

This field contains the length in bytes of the data to be transferred.

1nlddy L2

7

Common Access Method XPT/SIM Support Rev 2.2 October 29, 1990 Page 39

9.1.9 Function Code

See 8.1.2.

9.1.10 LUN

This field ideﬂtifies the SCSI LUN to which this CCB is being directed.
9.1.11 HMessage Buffer Length
This field contains the length in bytes of the field which is to be used to

hold Message information in the event that the Peripheral Drivers needs to
jssue any MSGs. This field is exclusive to Target Mode operation.

(Target-only)

9.1.12 Message Buffer Pointer (Target-only)

This field contains a gointer to buffer containing Messages. This pointer is
only valid for use in Target Mode.

9,1.13 Next CCB Pointer

This field contains a pointer to the next command block in a chain of command
blocks. A value of 0 indicates the last command block on the chain. This field
is used for the linking of commands.

9.1.14 Humber of Scatter/Gather entries
This field contains the number of entries in the SG List.
9.1.15 Path ID

The Path ID specifies the SCSI port on the installed HBA to which the request
js addressed. Path IDs are ass1gned by the XPT, begin with zero, and need not
be consecutive. The Path ID of FFh is assigned for the XPT. An HBA may have
more than one SCSI port. A SIM may support more than aone HBA.

9.1.16 Peripheral Driver Pointer

This field contains a pointer which is for the exclusive use of the Peripheral
Driver, which use is not defined by this standard.

9.1.17 Private Data

This field is used to contain whatever fields the CAM Module needs to execute
the reﬁuest. As such it constitutes a scratchpad of working space needed by
the SIM and/or the XPT. The size of this area is an 0SD as it may differ
between SIMs and XPTs by environment or by vendor implementation. The device
driver is responsible to guery the XPT and ensure that enough Private Data
area is available to the SIM and/or XPT.

9.1.18 Residual Length
This field contains the difference in twos compiement form of the number of

data bytes transferred by the HBA compared with the number of bytes requested
by the CCB.

Common Access Method XPT/SIM Support Rev 2.2 October 29, 1990 Page 40

9.1.19 SCSI Status

This field contains the status byte returned by the SCSI target after the
command is completed.

9,1.20 Sense Info Buffer Length

This field contains the Iength'in bytes of the field which is to be used to
hold Sense data in the event that a Reguest Sense is issued.

9.1.21 Sense Info Buffer Pointer

This field contains a pointer to the data buffer for Request Sense data. This
pointer will only be used if a Check Condition occurs while performing the
specified command.

9.1.22 SG List/Data Buffer Pointer

This field contains a pointer to either the data buffer to which data is to be
transferred, or to the SG List which contains the list of scatter/gather
addresses to be used for the transfer.

9.1.23 Tagged Queue Action !

SCSI provides the capability of taﬁging commands to force execution in a
specific sequence, or of_letting the target optimize the sequence of execution
to improve performance. This function provides a similar caEab1]1t . For a
description of the tagged command queueing philosophy see SCSI-2 X3.131-1990.

When the Queue Action Enable bit in the CAM Flags is set, the CDB issued by
the SIM shall be associated with the Queue Action specified as:

20h = Simple Tag Request
21h = Head of Hueue Tag Request
22h = Ordered Queue Tag Request

9.1.24 Target ID

This field identifies the SCSI target which is to be selected for execution of
the CCB.request.

9.1.25 Timeout Value

This field contains the maximum period in seconds that a request can remain
outstanding. If this value is exceeded then the CAM Status shall report the
timeout condition. A value of 00h in the CCB means the ﬁeri heral driver
accepts the SIM default timeout. A value of F...Fh in the CCB specifies an
infinite period.

9.1.26 VU Flags

The uses for this field are defined in the vendor specification.

AHIHdY L)

23

Common Access Method XPT/SIM Support Rev 2.2 October 29, 1990 Page 41

9.2 Command Linking

The SIM supports SCSI's abi]itY to link commands in order to guarantee the
sequential execution of several requests. This function requires that both the

HBA and the involved target(s) support the SCSI Link capability.

To utilize Iinking, a chain of CCBs is built with the Next CCB Pointer bein

used to link the CCBs together. The CAM Flag Link bit shall be set in all CEBS

but the last in the chain. When a SCSI target returns the Linked Command

gpmplgtﬁ Qessage. the next CCB is processed, and its associated COB is
ispatched.

Any Check Condition returned by the target on a linked command shall break the-

chain.
10. Target Mode (Optional)

If a Target Mode function is specified by a CCB and this functionality is not
?rov1ded by a particular SIM implementation, then a CAM Status of Function Not
mplemented shall be returned in the CCB.

The Target Mode functionality causes the HBA associated with the specified
SCST link to be set up so that it may be selected as a target i.e. when an HBA
isb?perating in Target mode, it is responding to other HBAS on the same SCSI
cable.

There are two different modes of target operation, either or both of which may
be su?ported b{ the XPT/SIM as defined by the Target Mode Support flags in the
Path Inquiry CCB.

- Processor mode
- Phase-Cognizant mode

Processor mode permits an aﬁplicatinn to register itself as a LUN and provide
a set of one or more CCBs that the XPT/SIM can use for receivinﬁ and sending
data. In this mode, when the adaﬁter is selected and the XPT/SIM receives an
Identify message for a LUN that has registered as a Processor LUN, the XPT/SIM
will accept any processor device commands (Inquiry, Request Sense, Send,
Receive) and, using one of the available CCB's, process the SCSI command
through completion’

Upon disconnection, the SIM calls back an completion to let the application
know that the CCB has been processed. From the time that the application
registers itself until the time a command has completed, there is no callabck
to the application.

In summary, Processor applications ?et called back only after the SCSI command
has been completely processed, and Teaves all phase handling and SCSI command

processing nuances to the XPT/SIM and the previously registered CCB's.

Phase-Cognizant mode permits an application tighter control over what takes
place when a SCSI command is received by the SIM. When a Phase-Cognizant
application registers itself and a command is received, the XPT/SIM does an
immediate Callback on ComE]etion after placing the SCSI command in an
available CCB. The Phase- ognizant application is responsible to set up data,
message, status fields and CAM-Flags in the CCB and re-issue the CCB with an
Execute Target I/0 function code so that the XPT/SIM knows which phases it

Common Access Method XPT/SIM Support Rev 2.2 October 29, 1990 Page 42

should execute. The "callback-reissue CCB" cycle may happen multiple times
before a command completes execution.

In summary, Phase Cognizant applications get a callback immediately after the
SCSI command block is received and is expected to instruct the XPT/SIM as to
which phases to go through to perform the command.

10.1 Enable LUN '

The SEecified Target ID shall match that returned by the HBA Inquiry Function
for the HBA. The specified LUN is the one enabled for selection, and if the
HBA is to respond as an additional LUN, another Enable LUN is required.

In addition to providing a hook into the a?ﬂlication, this function is
;ggeqded %0 grgvide an area that the XPT/SIM can use as working space when the
is selected.

TABLE 10-1 ENABLE LUN CCB

E S ——

|Size|Dir| Enable LUN CCB
Fommmtmm=t

- = - - - 05 - - - - -
0 | Addrkss of this CCB
0 | CAM Control Block Length
0 | Function Code
I | CAM Status
reserved
0 | Path ID
0 | Target ID
0 | LUN
g CAM Flags (0SD)
0
0
0

Common - - - - -

Group 6 Vendor Unique DB Length
Group 7 Vendor Unigue CDB Length
Number of Target CCBs

Pointer to Target CCB List

SR POPO NI o et et e e e PN

I the Number of Target CCBs is zero, then Target Mode is disabled, otherwise
the Pointer to Tar%et CCB List refers to a 1ist of addresses of CCBs to which
the data is to be transferred (see Table 10-2).

TABLE 10-2 TARGET CCB LIST
tommnd

|Size| Target CCB List
Fom et e +

4 | CCB Address 1
4 | CCB Address 2

4 | CCB ﬁddress n

Fe—mat

The XPT/SIM shall place the pointer to the CCB, or the pointer to the list of
CCBs, in a list until the sgecified Target ID and LUN is selected on the SCSI
link specified by the Path ID field., While the request is being heid, the CAM
Status field of the Target CCB, shall be set to Re?uest in Progress. The

application is required to poli on the CAM status field of the Target CCB or

1NTUd¥ L2

/¢

Common Access Method XPT/SIM Support Rev 2.2 (October 29, 1990 Page 43

provide a Completion Callback routine through the Target CCB.

The XPT/SIM shall keep an indication of whether a single CCB or list of CCBs
was provided on the Enabie LUN service.

The XPT/SIM shall set the following in each Target CCB when they are first
provided:

- CAM Status to Request In Progress
- CAM Flags shall be the same as those in_the Enable LUN CCB
- CAM Flags shall set the Target CCB Available as needed

Hi’icf_lcil n the Target CCB provided, the following information shall be present and
valid,

- CAH F]a? information including AutoDisconnect and AutoSave.

- CDB field is valid for the Command Blocks that may be received. That is
either CDBs are embedded in the CCB, or a pointer to a CDB area is provided
in the CDB field.

- The Group 6 and 7 Vendor Unique CDB Length fields contain the number of
bytes a target application expects to receive for it's vendor unique
command set. The previous item shall go hand-in-hand with this requirement.
The Group 6 and 7 Vendor Unique CDB Length fields shall be retained for
each LUN enabled.

If the target agplication supgorts Vendor Unique Command Blocks, then the CDB
field of the CCB shall reflect the nature and size of those Vendor Unique
Command Blocks. Ample space shall be provided to contain the CDBs that may be
received. If a CDB greater than the size of the (DB field is desired, then the
CDB field shall contain a pointer to a CDB.

To disable the selection of a specific LUN, the application performs an Enable
LUN with a zero value for the Number of Target CCBs.

If a LUN is disabled, after havin? been enabled, then the Inquiry data and the
Vendor Unique CDB Length data shall be cleared.

The XPT/SIM shall prevent a nexus bein? established between an initiator and a
specified LUN that has been disabled. If there is a pre-existing nexus, then
Invalid Request shall be returned.

This function shall return non-zero CAM Status.

- CAM Status of Request Completed Without Error indicates that the Enable LUN
was completed successfully.

- CAM Status of Invalid Request indicates that there is currently a nexus
established with an initiator that shall be terminated, first.

- CAM Status of [nvalid Path ID indicates that the Path ID is invalid.

- CAM Status of Invalid Target ID indicates that the Target ID does not match
that used by the HBA specified by the Path ID field. = .

- CAM Status of Invalid LUN indicates that the LUN specified is outside the
sgﬁported range of the SCSI bus. L .

- CAM Status of Function Not Implemented indicates that Target Mode is not
supported by this implementation of CAM.

" to 1, then the XPT

Common Access Method XPT/SIM Support Rev 2.2 October 29, 1990 Page 44

10.2 Phase Cognizant Mode
10.2.1 Target Operation of the HBA

When the HBA is selected, the XPT/SIM automatically sets the HBA to the
Message Qut phase to receive the Identify, S¥nchronous Data, and other
messages that may be sent by the Initiator. The XPT/SIM response to these
messages shall be as defined in X3.131-1990.

The LUN shall be extracted from the Identify Hessage and the apgrcpriate CCB
shall be extracted from the 1ist of CCBs being held by the XPT/SIM.

If the LUNTAR bit Sor anﬁ ?f the reserved bits) of the Identif
a

Message is set
SIM shall send a MESSAGE REJECT message bac

to, to the
initiator.

If no CCBs are being held b{ the XPT/SIM for a Tar?et ID, then the XPT/SIM
shall not respond to the selection of that Target ID.

If CCBs are being held by the XPT/SIM, and the LUN indicated by the Identify
Message does not have a CCB provided by an application, then the XPT/SIM shall
provide the following support:

a) If an_Inquiry command is sent to this LUN, then the XPT/SIM shall respond
with Inquiry Data that indicates "Logical Unit Not Supported.”

b) If an¥ other command (except Request Sense) is sent to this LUN, then the
XPT/SIM shall respond with a Check Condition.

c) If a Request Sense command is sent to this LUN after a Check Condition
status is sent, then the XPT/SIM shall respond with sense data that
indicates "Logical Unit Not Supported”.

The XPT/SIM shall scan the CAM Flags in the CCB(s) provided with Enable LUN.
If none of them have the Target CCB Available bit set, the XPT/SIM shall
reguest the SCSI CDB and post BSY status. The XPT/SIM shall not modify the
SCST CDB(s) in the CCB(s).

After processing the CDB from a Target CCB, the target application shall set
CCB Available in the CAM Flags, which allows the application to pass the same
CCB back to the XPT/SIM ugon Callback on Completion (this prevents the
possibility that the XPT/SIM could use the CCB on selection). The setting of
the Target Available bit could be done at the Callback on Completion after the
Exectute Target I/0 which trasnmits SCSI Status.

If a target application sets Target Available upon recognizing that a CDB has
been received and uses a different CCB to perform the data transfer, there is
a 1g¥eg]1ikelihuud of a BSY response to the initiator when a CCB is not
avatlable.

The Disable Disconnect bit in the CAM Flags field shall be updated to indicate
the state of the DiscPriv bit in the Identify message that was received from
the initiator. If the DiscPriv bit was set in the Identify Message, then the
Disable Disconnect bit shall be cleared, and vice-versa. NOTE: The default
state of the Disable Disconnect bit in the CAM Flags is cleared, implying that
disconnect is enabled.

The Target ID field shall be set to the ID of the initiator that performed the
selection. This field can then be used by subsequent functions, such as

INIHd¥ LD

73

Common Access Method XPT/SIM Support Rev 2.2 October 29, 1990 Page 45

reselect, to determine the Initiator's ID.

Once the initial Message Out Phase is complete, the XPT/SIM automatically sets
the HBA to the Command Qut Phase to request the SCSI CDB. After receiving the
SCSI CDB bytes, the XPT/SIM shall set the CAM status field to CAM Status of
SCSI CDB received, and clear the CCB Available bit in the CAM Flags.

Upon completion of the data phase, the XPT/SIM shall send the a progriate SCSI
status and Command Complete and then disconnect from the bus. The XPT/SIM
shall then post the reguired CAM Status in the CCB, or Callback on Completion.

If the Group Code of the Uﬁeration Code of the Command Block is Vendor Unique
the XPT/SIM shall ensure that only the indicated mumber of command bytes are
recejved. If the required number of bytes are exceeded or not transferred,
then the XPT/SIM shall return a status of Check Condition, the Sense Key in
the Sense Buffer shall be set to Illegal Request, and the Additional Sense Key
and Qualifier shall be set to Command Phase Error.

If the DiscPriv bit in the Identify message was set, which results in the
Disable Disconnect bit of the CAM Flags being cleared, and the Disable
AutoDisconnect bit of the CAM Flags field is cleared, the XPT/SIM shall
automatically disconnect upon receiBt of the command block. The subsequent
invocation of the Execute Target I/0 function shall perform an automatic
reselect when it is invoked.

If a BUS DEVICE RESET messa?e is received at any time, the XPT/SIM shall set
the CAM Status field to SCSI Bus Reset Sent/Received for any CCB being held
(through Enable LUN), or that is active in the XPT/SIM.

If a SCSI Bus Reset occurs the asynchronous callback and bus reset mechanism
defined for initiator mode shall be followed.

The SIM shall reject any CCB which has a Timeout Value of other than infinity.
10.2.2 Execute Target I/0

If the Data Valid bit is set, the XPT/SIM shall enter the data phase indicated
bﬁ the direction bit in the CAM Flags field (ie. DATA IN or DATA DUT%. It
shall send/receive data to/from the buffer(s) indicated in the CCBs Scatter
Gather List or Data Pointer.

If the Status Valid bit is set, the XPT shall send the status byte sEecified
in the SCSI Status field to the current initiator and then send the Command
Complete Message.

IT the Message Valid bit is set, the XPT shall enter the Message phase and
transfer the contents of the Message buffer.

The XPT/SIM shall receive and respond to any messages resulting from ATN being
@sggrt%d by the initiator, in addition to any messages it sends to the
initiator.

The XPT/SIH shall be able to execute all the phases indicated by the Buffer
Valid bits of the CAM Flags, within a single invocation of the Execute Target
1/0 i.e. if more than one bit is set, the order of execution of the phases
shall be data, status, and message.

Common Access Method XPT/SIM Support Rev 2.2 October 29, 1990 Page 46

If the Data Buffer Valid and Status Buffer Valid bits of the CAM Flags are
both set for an invocation of Execute Target 1/0, the AutoDisconnect and
AutoSave features shall be disabled.

If the Disable AutoDisconnect bit of the CAM Flags is cleared, and the Disable
Disconnect of the CAM Flags bit is cleared, then the XPT/SIM shall disconnect
on the completion of the data transfer.

If the Disable AutoSave bit of the CAM Flags is cleared, then the
ﬁPT/SIM sEa]] send a Save Data-Pointers meSsage to the initiator prior to
isconnect.

The XPT/SIM shall perform an automatic reselect if the XPT/SIM had
disconnected after the receipt of the (DB, or had disconnected upon completion
of a previous Execute Target I/0 (within the same I/0 process).

Upon the last Execute Target 1/0, the target application should consider
Se%tigg_tge Disable AutaSave bit, which shall disable the sending of the Save
ata Pointers.

This function will typically return with CAM Status of zero indicating that

the request was executed successfully. Function completjon can be determined

?y ?glllng for non-zero status or through use of the Callback on Completion
ield.

10.3 Processor Mode
10.3.1 CCB Acceptance

In Processor mode, the Tarﬁet CCB List shall contain at least one pre-built
CCB that the SIM can use when it responds to selection. The Target CCBs that
are supported by the SIM include CDBs for the following commands:

- Inquiry

- Receive

- Request Sense
- Send

The SIM shall verify that the CCBs in the Target CCB List contain supported
commands, valid data buffers etc.

Any invalid CCB in the 1ist shall be rejected and the LUN shall not be
enabled.

10.3.2 Target Operation of the HBA
Hhen the target HBA is selected, it shall automatically request the CDB.

The SIM shall search the Target CCB_List to find a matching CDB. If a matching
CDB is found, it shall verify that Target CCB Available=1, and use the
contents of the data buffers to process the command received. The SIM shall
clear Target CCB Available, and if the periphera) driver wants the CCB to be
re-used it is responsible to set Target CCB Available=1,

Ugon completion of the CDB received, the SIM shall report CAM Status in the
CCB and call back the peripheral driver.

1Nfddy LA

az$

Common Access Method XPT/SIM Support Rev 2.2 October 29, 1990 Page 47

If the Target CCB List has no CCBs with Target [fCB Available=1, but matches
were found, the SIM shall send Busy Status to the Initiator.

If the Target CCB List contained no matching CCBs, then the 3IM shall return
Check Condition to the Initiator. Upon rece1Bt of a Request Sense command, the
SIM shall return a Sense code of "Invalid CDB" to the Initiator.

If an Inquiry CDB is received but there is no Inquiry CDB in one of the CCBs
in the Target CCB List then the SIM shall return Inquiry Data of "LUN HNot
Supported” to the Initiator. NOTE: A CCB to respond to an Inquiry CDB should
be provided in every Target CCB List.

If an Inguiry CDB is and there is an Inquirﬁ CDB in one of the CCBs in the
Target CCB List then the SIM shall return the Inguiry information ?ruvided by
the data buffer pointer. The SIM does not clear Target CCB Availab

back as it is a placeholder of consistent information.

e or call

11. HBA Engines

An engine is a hardware device implemented in an HBA to perform time-intensive
functions not available on target devices. Generally, these engines are
required to process data prior to bui]dinﬂ a CDB and submitting to the device.
There may be more than one engine in a HBA.

One use of engines is to compress data. In this mode, a device driver first
submits data to the engine. Once the engine has comp1eted processing the data,
an Execute SCSI CCB can be built for the SCSI transfer.

The enﬁine model allows for the addressing of buffer memory located on the
HBA. The buffer addressing appears to the host as contiguous space. Using this
model, it is possible to submit multiple requests unti] the engine buffer is
full. Once the full condition is met, an Execute SC3I CCB can be built.

When the full condition occurs (as defined by the Destination Data Length
equalling the Destination Data Maximum Lengt {. the amount of unprocessed
source data is reported in the Source Residual Length. The residual data may
then be re-submitted at a later time.

11.1 Engine Inquiry

This function is used to learn information on the engines installed in the HBA
hardware. This function is issued for each engine.

Common Access Method XPT/SIM Support Rev 2.2 October 29, 1990 Page 48

TABLE 11-1 ENGINE INQUIRY CCB
_______ +

+ +
|Size|Dir| Engine Inquiry
+

- = - - - 08D - - - - -
0 | Address of this CCB
8 CAM Control Block Length
I

Function Code

CAM Status
reserved

Path ID

Target ID

LUN

CAM Flags (0SD)

Engine Rumber
Enﬂlne Type
1

- Comon - - - - -

N] e o= -

=P
—O00ooCo

Buffer Memory .
=Lossless Compression
2=Lossy Compression
3=Encryption
4-FF reserved
En81ﬂe Algoritm ID
1

—
—

=\lendor Unique
=LZ1 Variation 1 STAC%

HP DCZL)
Infochip)

2=L72 Variation |
3=L72 Variation 2
4-FF reserved

4 1 | Engine Memory Size

----- R - —-———t

4

The Engine Type reports the generic function the addressed engine number is
capable of supporting.

The Engine Algorithm ID reports the specific capability the addressed engine
supports.

The amount of buffer memory provided for an engine is reported in the Engine

Memory Size.

This function shall return non-zero CAM Status.

~ CAM Status of Request Completed Without Error indicates that the other
returned fields are valid.

- CAM Status_of Invalid Request indicates that the specified Engine Number is
not installed.

11.2 Execute Engine Request (Optional)

To accomeodate buffering associated with the engine, the CAM Flag SG List/Data
set to 1=Engine is used to specify that the normal Data Buffer Pointer is
actually a physical address in the buffer space of the engine.

E?ere are four modes associated with engine processing established by CAM
ags:

- A Dijrection setting of Qut is used to Encrypt or Compress the data
- A Direction setting of Out is used to Decrypt or Decompress the data

Intude L2

Common Access Method XPT/SIM Support Rev 2.2 October 29, 1990 Page 49

- Synchronize is used in conjunction with In or Qut to flush any residual
bits prior to terminating engine processing.
Certain types of engines change the size of data as part of their operation
e.g. the purpose of compression enﬁ1nes is to reduce the size of data prior to

transmission over SCSI, As such, the Execute Engine Request CCB allows the
engine to report the size of the resultant data,

- = = - - 0D - - - - -
0 | Address of this CCB
0 | CAM Control Block Length
0 | Function Code
I | CAM Status

reserved
Path 1D
Target ID
LUN
CAM Flags (0SD)
SG/Data Pointer

0

0

Q

8

0 | Engine Buffer Data Pointer
8 Transfer Length
I

I

0

0

0

- Common - - - - -

Destination Data Maximum Length
Destination Data Length
Source Residual Length
Engine Number
VU Flags
reserved (0SD)
Private Data

b et o 3 —

= L e N i el el et A

This function will typically return with CAM status of zero ipdicating that
the request was queued successfully. Function completion can be determined by

\J\) gpl{;ng for non-zero status or through use of the Callback on Completion
ield.

Common Access Method XPT/SIM Support Rev 2.2 October 29, 1990 Page 50

ANNEX
Annex A. Physical/Logical Translation in 80x86 Enviromment
A.1 0SD Formatting of Disk Drives

The DOS Ehysica] address to/from logical block address conversion al?orithms
to map SCSI disks into int 13h Head-Cylinder-Sector format vary widely between
suppliers of software to support third party disks.

The fgl]owin? "C" routines have been ado?ted by CAM as reEresentin the most
efficient utlization of capacity. The following code is ANSI "C" that can be
compiled using the Microsoft C compiler, version 5.1.

a) SETSIZE converts a Read Capacity value to int 13h Head-Cylinder-Sector
requirements. It minimizes the value for number of heads and maximizes the
number of cylinders. This will supgort rather large disks before the
number of heads will not fit in 4 bits (or 6 bitsj. This algorithm also
minimizes the number of sectors that will be unused at the end of the disk
while allowing for very large disks to be accomodated. This algorithm does
not use physical geometry.

b) LTOP does logical to physic%l conversion

c) PTOL does physical to logical conversion

d) MAIN is a test routine for a, b and c.

A.1.1 SETSIZE

*

typedef unsigned int UINT;
t¥pedef unsigned Tong ULNG:

: Convert from logical block count to Cylinder, Sector and Head (int 13)

int setsize(ULNG capacity,UINT *cyls,UINT *hds,UINT *secs)
{

UINT rv = 0;)
- ULNG heads, sectors, cylinders, temp;
cylinders = 1024L: /* Set number of cylinders to max value */
sectors = 62L; /* Max out number of sectors per track */
temp = cylinders * sectors: /* Compute divisor for heads */
heads = capacity / temp: /* Compute value for number of heads */
if (capacity % temp) { {* If no remainder, done! */
heads++; * Flse, increment number of heads */
temp = cylinders * heads; /* Compute divisor for sectors */
sectors = capacity ‘ temp; /* Compute value for sectors per track */
if (capacity % temp) { /* If no remainder, done! */
sectors++; /* Else, increment number of sectors */
temp = heads * sectors; /* Compute divisor for cylinders */

?y1inder5 = capacity / temp; /* Compute number of cylinders */

IHIHd¥ L2

7Z£

Common Access Method XPT/SIM Support Rev 2.2 October 29, 1990 Page 51
I
if (cylinders == 0) rv=1;

*cyls {UINTE cylinders;

/* Give error if 0 cylinders */

/* Stuff return values */
*secs UINT) sectors;

*hds UINT) heads;

return(rv);

}
A.1.2 LTOP

*
*/ logical to physical conversion
o

nonou

!oid)]top(ULNG block,UINT hd_count,UINT sec_count,UINT *cyl,UINT *hd,UINT
sec

{

UINT spc;

Spc = ﬁd count * sec_count;

*cyl = bTock / spc;

*hd = (block % spc} [sec_count;
*sec = (block % spc) % sec_count;

}
A.1.3 PTOL

*

* Physical to Togical conversion

*i

ULNG ptol (UINT cyl,UINT hd,UINT sec,UINT cyl_count,UINT hd_count,UINT
sec_count)

{
ULNG cylsize;
cylsize = sec count * hd count;
return{(cyl * cylsize) + (hd * sec_count) + sec);

A.2 Backwards Compatibility

The selection of a new algorithm for CAM solves the problem of future
compatibility, but it does not solve the problem of the installed base. The
fol owin?_technique will permit a supplier to update the installed base to
CAM-compTiant operation but not require users to reforamt their drives.

A.2.1 ROM-based

The one sector that is independent of the algorithm is sector 00. Under DOS
and many other Operatin? S¥stem5 this sector is used for the boot sector and
contains the Partition Table for a fixed disk.

If the Partition Table is structured according to M5 DOS and IBM DOS
standards, partitions end on cylinder boundaries e.qg.

Common Access Method XPT/SIM Support Rev 2.2 Qctober 29, 1990 Page 52
Offset from start of Partition Table entry
00h Boot Indicator 80h
0lh Beginning or start head 01h
02h beginning or start sector 01h
03h Beginning or start cylinder 00h
04h System indicator 04h
05h Ending head ! 07h
06h Ending sector 91h

07h Ending cylinder ;
08h Starting sector (relative to beginning of disk)
0Ch Number of sectars in partition

The endinﬁ head 07h indicates a device with B heads (0 to 7). The ending
sector 91R contains 2 bits of high cylinder so it has to be masked to obtain
ending sector = 11h (17 decimal).

To verify these values calculate:
Logical Ending sector (from Beginning Head, Cylinder, and Sector)

and compare it to: i

(Starting Sector + Mumber of Sectors in Partition)

This leaves Number of Cylinders as the one unresolved parameter. This is
obtained by:

Read Capacity divided by (Heads * Sectors).

A1l of this can be done by the BIOS in ROM or RAM. To be capable of booting
from any drive or cartridge regardless of the algorithm used to partition and
format the media, the BIOS would need to respond to int 13 function 8 with the
head, sector, and cylinder values obtained from this information. In addition,
the BIOS would need to use those values in its calculation from physical to
logical sectors.

Example of Pseudocode:

For each Drive ‘
Read Boot Sector (LBA 0)
Validate The Signature at end of Sector éSSAA)
Find Partion with largest Logical Start Cyl

If No Partitions found
Esgtnefau]ts
xi

SECS = Ending Sector (from partition tab]e%
Heads = Ending Head+l (from partition table)

Logical End = End cyl * (End head+l * End sector) +
- (End_head * End_sector) + End_sector

Com?are Logical_End to Starting_sec + Number_sec
f not equal
Use Defaults

ANTUdy LI

Common Access Method XPT/SIM Support Rev 2.2 QOctober 29, 1990 Page 53 Common Access Method XPT/SIM Support Rev 2.2 October 29, 1990 Page 54

Exit Annex B: Target Application Examples
Cyls = Capacity / (End_head+l * End_sector) [Mike Roche to prepare an update which is consistent with Section 10.]
A.2.2 RAH-based The following are examples of how a Target Application can operate the Target

L Mode capabilities defined in Section 9.
Under DOS it is possible to modify the code of the boot sector to accomplish

gootagi1it .tAccess to other partitions is dependent on the device driver to B.1 Initialization Sequence with Single Target CCB provided
o a translation.

- fill Target CCB with reguired info

This method is a patch just prior to Jjumping to code loaded in memory at targetCCB,callbackPointer = callback routine address
segment 00 offset 7C00h. - fill Enable CCB with the required information
enableCCB. functionCode = function code for enable lun
PUSH AX ; Save registers used in patch enableCCB.targetid = the id of the target
PUSH DX : enableCCB.targetLun = the lun to enable
MOV AH,08 i set function code = 8 get drive parameters enableCCB.groupbVilength = vendor unique]ength for Group 6 (IF required
INT 13 ; do INT 13 call enableCCB. group7VULength = vendor unique length for Group 7 (IF required
INC DH i inc head number to convert from zero based enableCCB. targetCCBListlength = 0
MoV E?CIA].DH ; Tix value of heads in BPB table enableCb.targetCCBPointer = &target(CB
AND L,3F ; Mask off non-sector infarmation) - Enable LUN (&enableCCB)
ggg g;CIB].CL ; fix value of sectors in BPB table - EXIT
Pop AX ; Restore registers used in patch B.2 Initialization Sequence with Multiple Target CCBs provided
JMP - 7C00 ; jump to partition boot loader . .
- fill Target CCB #1 with required info
0180 00 00 00 Q0 GO0 00 00 00-00 00 00 00 00 00 80 01 targetl1CCB.callbackPointer = callback routine address #1
0I1CO 01 00 06 07 91 7C 11 00-00 00 57 52 01 00 00 00 - fill Target CCB #2 with required info
0100 00 00 00 00 00 00 0D DO-00 00 Q0 00 00 00 00 00 targetZC(B.callbackPointer = callback routine address #2
01E0 00 0O 00 00 00 00 00 00-00 00 0O 00 00 00 00 00 target2CCB. camStatus = request completed by target application
01F0 00 00 00 00 0O 00 00 00-00 OO Q0 00 00 0D 55 AA - fill Target CCB #n with required info]
targetnC(B.callbackPointer = callback routine address #n
e e e T Hemm Foem + targetnCCB,camStatus = request completed by target application
| 7C00 | 7C03 | 7€0B | 7C0D | 7COE | - targetCCBList [0] = pointer to target1CCB
Fomm e T o Fommmmmee Fommmameee + - targetCCBList [1] = pointer to target2CCB
Name Bgtes/ Sectors/ |Reserved - targetCCBList [n] = pointer to targetnCCB
jump nop I B M 4 . 0 ector | Cluster | Sectors . .
Fommmmm————— P s P Fommmeen + NOTE: where targetCCBList is an array of pointers
| EB3C90 |49424D2020-342£30 | 0002 | 04 | 0100 |) o)
m——ta — +ome + -+ -+ - fill enable CCB with the required information
enableCCB. functionCode = function code for enable lun
------------------- B et S LT T S + + enableCCB.targetid = the id of the target
| 7€10 | 7c11 | 7€13 | 7C15 | 7C16 | 7C18 | 7C1A | - enableCCB.targetlun = the Tun to enable)
+a + -——t -+ Fommmam et Femee + enableCCB.group6VlLength = vendor unique length for Group 6 {IF requ1red}
DIR # Log'l | Media # FAT # enableCCB.group?VULength = vendor unigue]en$th for Group 7 (IF required
FATs entries | Sectors | Descrip | Sectors | Sectors Heads enableCCB.argetCCBLiStLength = 4 * number of target CCBs
02 00 02 00 00 F8 55 00 11 00 08 oo enableCb. targetCCBPointer = &targetCCBList
S J— + R B T T . Fammn + - EQ??IE LUN (&enablelCB)

B.3 Application Sequence with single Execute Target 1/0

- IF_targetCCB.camStatus 1= SCSI CDB Received THEN EXIT, OR
callback from XPT/SIM

- process SCSI CDB field in targetCCB

- fill targetCCB with required information
targetCCB. functionCode = function code for execute target io
targetCCB.camFlags = data phase and status phase

INIHdF L

52

Common Access Method XPT/SIM Support Rev 2.2 October 29, 1990 Page 55

targetCCB.dataBufferPointerLength = length of data
targetCCB.dataBufferPointer = pointer to data buffer
targetCCB.SCSIStatus = whatever status is appropriate

- Execute Target 10 (&targetCCB)

/* return target CCB to pool *f

- EgggetCCB.camStatus = request in progress

B.4 Application Sequence with multiple Execute Target 1/0

- IF targetCCB.camStatus != SCSI CDB Received THEN EXIT, OR
cal lback from XPT/SIM

- process SCSI CDB field in targetCCB

- loop until all data transferred .
fill targetCCB with required information
targetCCB. functionCode = function code for execute target io
targetCCB.camF]ags = data phase
targetCCB.dataBuiferPointerLength = length of data
targetCCB.dataBufferPointer = pointer to data buffer

IF (last data block)
targetCCB.camFlags = data phase AND status phase
targetCCB.SCSIStatus = whatever status is appropriate

Execute Target 10 (&targetCCB)
- end loop
/* return target CCB to pool */
- Egg?etccs.camStatus = request in progress

Annex C: Unix 0SD Data Structures

e e B e e e S e e e L R n
/* cam.h Version 1.04

/* This file contains the definitions and data structures for the CAM
Subsystem interface. The contents of this file should match what
data structures and constants that are specified in the CAM document,
CAM/89-003 Rev 2.2 that is produced by the CAM committee.

*
/*: ___ - */
/* Defines for the XPT function codes, Table B-2 in the CAM spec. */

/* Common function commands, 0x00 - OxOF */)

#define XPT NOQOP 0x00 Execute Nothing */

#define XPT_SCSI IO 0x01 /* Execute the requested SCSI I0 */
#define XPT_GDEV_TYPE 0x02 {* Get the device type information */
#define XPT_PATH INQ 0x03 /* Path Inquiry */)

#define XPT_REL SIHQ 0x04 /* Release the SIM queue that is frozen */
#define XPT SASYNC CB 0x05 /* Set Async callback parameters */
#define XPT_SDEV_TYPE 0x06 /* Set the device type information */

/* XPT SCSI control functions, 0x10 - Ox1F */

#define XPT_ABORT 0x10 {* Abort the selected CCB */
#define XPT_RESET BUS 0x11 /* Reset the SCSI bus */
#define XPT_RESET DEV 0x12 /* Reset the SCSI devies, BOR */

S
#*

Common Access Method XPT/SIM Support Rev 2.2 October 29, 1990 Page 56

#define XPT_TERM_I0 0x13

/* Target mode commands, 0x30 - 0x3F */

/* Terminate the I/0 process */

#define XPT EN LUN 0x30 /* Enable LUN, Target mode support */
#define XPT_TARGET_ID 0x31 /* Execute the target 10 reguest */
#define XPT FUNC 0x7F /* TEMPLATE */
#define XPT_VUNIQUE 0x80 /* A1l the rest are vendor unique commands */
/* __________________________ */
/* General allocation length defines for the CCB structures. */
#define IOCDBLEN 12 /* Space for the CDB bytes/pointer */
#define VUHBA 16 /* Vendor Unique HBA length */
#define SIM_ID 16 /* ASCII string len for SIM ID */
#define HBATID 16 /* ASCII strin? len for HBA ID */
#define SIM_PRIV 50 /* Length of SIM private data area */
/* Structure definitions for the CAM control blocks, CCB's for the
subsystem. */
/* Common CCB header definition. k/
%ypedef struct ccb_header
struct ccb_header *my addr; /* The address of this CCB */
ushort cam ccb len; /* Length of the entire CCB */
uchar cam Func_code; /* XPT function code */
uchar cam_status; /* Returned CAM subsystem status */
uchar cam_path_id; [* Path ID for the request */
uchar cam_target_id; /* Target device ID *
uchar cam target lun; /* Target LUN number */
ulong cam_flags;™ /* Flags for operation of the subsystem */
} CCB_HEADER;™
/* Common SCSI functions. */
/* Union definition for the CDB space in the SCSI 1/0 request CCB */
typedef struct
uchar *cam cdb_ptr; [* Pointer to the CDB bytes to send */
- uchar cam cdb Bytes[I0CDBLEN]; /* Area for the CDB to send */
} CDB_UN; - T
/* Get device type CCB */
typedef struct
CCB_HEADER cam_ch; /* Header information fields */
uchar cam_pd_t¥pe; /* Periph device type from the TLUN */
char *cam_ing_data; /* Ptr to the inquiry data space */

} CCB_GETDEV;~

/* Path inquiry CCB */
typedef struct

CCB_HEADER cam_ch; [* Header information fields */
ulong cam_featlire_flags; {* Supported features flags field */

1NTddr L1

s25

Common Access Method XPT/SIM Support Rev 2.2 October 29, 1990 Page 57 Common Access Method XPT/SIM Support Rev 2.2 October 29, 1990 Page 58

uchar cam_version_num; /* Version number for the SIM/HBA */ CCB_HEADER cam_ch; /* Header information fields */
uchar cam_hba_inquiry; /* Mimic of INQ byte 7 for the HBA */ uchar cam_dev Type; /* Val for the dev type field in EDT */
uchar cam_target_sprt; /* Flags for target mode support */ } CCB_SETDEV;™ ~
uchar cam_hba_misc; /* Misc HBA feature flags */
uchar cam_vuhba_ flags[VUHBA]; /* Vendor uniﬁue capabilities */ /* SCSI Control Functions. */
ulong cam_sim priv; /* Size of SIM private data area */
ulong cam_async_flags; /* Event cap. for Async Callback */ /* Abort XPT Request CCB */
uchar cam_hpath”id; " [* Highest path ID in the subsystem */ typedef struct
uchar cam_initiator id; /* 1D of the HBA on the SCSI bus */ {
char cam_Sim_vid[STM_ID]; /* Vendor ID of the SIM */ CCB_HEADER cam ch; . /* Header information fields */
char cam_hba_vid[HBATID]; /* Vendor ID of the HBA */ CCB_HEADER *cam_abort_ch; /* Pointer to the CCB to abort */
uchar *cam_oSd_usage; /* Ptr for the 05D specific area */ } CCB_ABORT; -
} CCB_PATHING;
/* Reset SCSI Bus CCB */
/* Release SIM Queue CCB */ typedef struct
typedef struct {
CCB HEADER cam_ch; /* Header information fields */
CCB_HEADER cam_ch; /* Header information fields */ } CCB_RESETBUS;
} CCB_RELSIM; =
/* Reset SCSI Device CCB */
/* SCSI I/0 Request CCB */ typedef struct
typedef struct |
{ CCB_HEADER cam_ch; /* Header information fields */
CCB_HEADER cam_ch; /* Header information fields */ } CCB_RESETDEV;
uchar *cam pdrv_ptr; /* Ptr used by the Peripheral driver */ -
CCB_HEADER *cam_next cch; /* Ptr to the next CCB for action */ [* Terminate 1/0 Process Request CCB */
void (*cam cbhfchp) ()7 /* Callback on completion function */ typedef struct
uchar *cam data ptr; /* Pointer to the data buf/SG list */
ulong cam_dxfer”len; [* Data xfer length */ CCB_HEADER cam_ch; /* Header information fields */
uchar *cai_sense_ptr; /* Pointer to the sense data buffer */ CCB"HEADER *cam_termio_ch; /* Pointer to the CCB to terminate */
ushort cam sense_len; [* Num of bytes in the Autosense buf */ } CCB_TERMIO; - -
uchar cam_cdb_len; {* Number of bytes for the CDB */
ushort cam sgTist_cnt; /* Num of scatter gather list entries */ /* Target mode structures. */
uchar cam Scsi_status; /* Returned scsi device status */
long cam Tesidy /* Transfer residual length: 2's comp */ typedef struct
CDB_UN cam cdb_io; /* Union for CDB bytes/pointer */ {
ulofig cam Timedut; /* Timeout value */ CCB_HEADER cam_ch;
uchar *cam msg_ptr; /* Pointer to the message buffer */ ushort cam_grp6_len; /* Group 6 VU CDB length */
ushort cam msgb len; /* Num of bytes in the message buf */ ushort cam grp7 len; /* Group 7 VU CDB length */
ushort cam_vu_fTags; /* Vendor unique flags */ ushort cam ccb Tistcnt; /* Count of Target CCBs in the list */
uchar cam_Tag_action; /* What to do for tag queuing */ uchar *cam_cch”listptr; /* Pointer to the target CCB list */
uchar cam_sim_priv[SIM PRIV 1; /* SIM private data area */ } CCB_EN _LUN; -
} CCB_SCSIIO; Jx - o
/* Set Async Callback CCB */
Eypedef struct /* Defines for the CAM status field in the CCB header. */
CCB_HEADER cam ch; /* Header information fields */ #define CAM REQ INPROG 0x00 /* CCB request is in progress */
ulong cam_asynt_flags; {* Event enables for Callback resp */ #define CAM_REQ”CMP 0x01 /* CCB request completed w/out error */
void (*cam asynt funci(); /* Async Callback function address */ #define CAM RE(ABORTED 0x02 /* CCB request aborted by the host */
uchar *pdrv buf;~ /* Buffer set aside by the Per. drv */ #define CAM_UA ABORT 0x03 [* Unable to Abort CCB request */
uchar pdrv buf len; /* The size of the buffer */ #define CAM‘REEYCMP ERR 0x04 /* CCB request completed with an err */
} CCB_SETASYNCS #define CAM BU - 0x05 /* CAM subsystem is busy */
#define CAM REQ INVALID 0x06 /* CCB request is invalid *{.
/* Set device type CCB */ #define CAM_PATH INVALID 0x07 /* Path ID supplied is invalid */
typedef struct #define CAM DEV ROT THERE 0x08 /* SCSI device not installed/there */
{ #define CAM_UA_TERMTO 0x09 /* Unabel to Terminate 1/0 CCB req */

1HIYdY L)

97%

Common Access Method XPT/SIM Support

#idefine
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#define
#define
#define
#define
#define
fidefine
#define

#define
#define

CAM_SEL_TIMEOUT
CAM_CHD TIMEQUT
CAM MSG REJECT REC
CAMSCST BUS RESET
CAMUNCOR_PARITY
CAM_AUTOSENSE_FAIL
CAMNO HBA ~
CAM DATA RUN_ERR
CAMUNEXP_BUSFREE
CAM_SEQUERCE_FAIL
CAMCCB LEN_ERR
CAM_PROVIDE FAIL
CAMBDR SENT
CAMTERRIO

CAM_LUN_INVALID
CAMTID TNVALID
CAMFUNC_NOTAVAIL
CAMNO_KEXUS
CAMIID_INVALID
CAM_CDB RECUD
CAMSCST_BUSY

CAM SIM QFRZN
CAM_AUTUSNS_VALID

0x0A
0x0B
0x0D
0x0E
0x0F
0x10
0x11
0x12
0x13
0x14

Rev

/*

2.2 Octcber 29, 1990 Page 59
Target selection timeout */
Command timeout */

Hessage reject received */

SCST bus reset sent/received */
Uncorrectable parity error occured */
Autosense: Request sense cmd fail */
No HBA detected Error */

Data overrun/underrun error */
Unexpected BUS free */

Target bus phase sequence failure */
ccB]en%th supplied is inadaquate */
Unable to provide requ. capability */
A SCSI BDR msg was sent to target */
CCB request terminated by the host */

LUN sup?lied is_invalid */
Target ID supplied is invalid */
The requ. func is not available */
Nexus is not established */

The initiator ID is invalid */

The SCSI CDB has been received */
SCSI bus busy */

The SIM queue is frozen w/this err */
Autosense data valid for targit */

/* Defines for the CAM flags field in the CCB header. */

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#define
#define
#define
#define
#define

#define
#define
fidefine
#define
#define
#define

#define
#define
#define

CAM DIR_RESV
CAMDIRTIN

CAM DIR-OUT

CAM DIR_NONE
CAMDIS_AUTOSENSE
CAM_SCATTER VALID
CAMDIS_CALTBACK
CAM CDB L INKED
CAN_QUEUE_ENABLE
CAM_CDB_PUINTER

CAM DIS DISCONNECT
CAM_INITIATE SYNC
CAMTDIS SYNC™
CAM™SIM QHEAD

CAM SIM_QFREEZE

CAM CDB _PHYS

CAM DATA_PHYS
CAMSNS BUF_PHYS
CAM HSG BUF PHYS
CAMNXTCCB_PHYS
CAM_CALTBCK_PHYS

CAM_DATAB VALID
CAM_STATUS VALID
CAMHMSGB_VALID

0x00000000
0x00000040
0x00000080
0x000000C0
0x00000020
0x00000010
000000008
0x00000004
0x00000002
0x00000001

0x00008000
0x00004000
0x00002000
0x00001000
0x00000800

0x00400000
0x00200000
0x00100000
0x00080000
0x00040000
0x00020000

0x80000000
0x40000000
0x20000000

Data direction (00: reserved) */
Data direction (01: DATA IH% *f
Data direction (10: DATA QUT) */
Data directino (11: no data) */
Disable auto sence feature */
Scatter/gather list is valie */
Disable callback feature */

The CCB contains a linked CDB */
SIM gueue actions are enabled */
The CDB field contains a pointer */

Disable disconnect */

Attem?t Sync data xfer, and SDTR */
Disable sync, go to async */

Place CCB at the head of SIM Q */
Return the SIM Q to frozen state */

* CDB pointer is physical *

SG/Buffer data ptrs are p‘ysical xf
Autosense data ptr is physical */
Message buffer ptr is physical */
Next UCB pointer is phﬁsical */
Callback func ptr is physical */

Data buffer valid */
Status buffer valid */
Message buffer valid */

Common Access Method XPT/SIM Support

#define CAM TGT PHASE MODE 0x08000000
#define CAM_TGT_CCB AVAIL (x04000000
#define CAMDIS_AUTUDISC 0x02000000
#define CAM_DIS_AUTOSRP 0x01000000

Rev

é* Defines for the SIM/HBA queue actions.
CSI I/0 CCB, for the queue action field. [These values should match the

defines from some other include file for the SCSI message phases.

not need these definitions here.] *

#define CAM SIMPLE QTAG 0x20
#define CAMHEAD QTAG 0x21
#define CAM ORDERED QTAG 0x22

/% e

2.2 October 29, 1990 Page 60

The SIM will run in phase mode */
Target CCB available */

Disable autodisconnect */

Disable autosave/restore ptrs */

These value are used in the

He may
/* Tag for a simple queue */
/* Tag for head of queue */
/* Tag for ordered queue */

*/

/* Defines for the timeout field in the SCSI 1/0 CCB.

of OxF-F indicates a infinite timeout

SIM's default timeout can take effect. */
#define CAM TIME DEFAULT 0x00000000
#define CAM_TIME_INFINITY OxFFFFFFFF
l*

/* Defines for the Path Inquiry CCB fields.
#define CAM_VERSION 0x22 1*
#idefine PI MDP ABLE 0x80 kd
#define PI"WIDE 32 0x40 I*
#define PI_WIDE"16 0x20 I*
#define PI_SDTRTABLE 0x10 I
#define PI"LINKED CDB 0x08 /*
#define PI_TAG ABLE 0x02 /*
#define PI_SOFT_RST 0x01 i
#define PIT PROCESSOR 0x80 /*
#define PIT_PHASE 0x40 /*
#define PIM SCANHILO 0x80 /*
#define PIM_NOREMOVE 0x40 /*
T o st S S NS

/* Defines for Asynchronous Callback
#define AC FOUND DEVICES 0x80 [*
#define ACTSIM DEREGISTER 0x40 /*
#define AC_SIM REGISTER 0x20 /*
#define AC_SENT_BDR 0x10 /*
#define ACTSCSI AEN 0x08 /*
#define ACTUNSOL RESEL 0x02 1*
#define ACTBUS RESET 0x01 /*

At this time a value

. A value of 0x0-0 indicates that the

/* Use SIM default value */
[* Infinite timout for I/0 */

Binary value for the current ver */

Supports HDP message */
Supports 32 bit wide SCSI */
16 bit wide SCSI */
SDTR message */
linked CDBs */

ta$ queue message */
soft reset */

Supports
Supports
Supports
Supports
Supports

Target mode processor mode */
Target mode phase cog. mode */

Bus scans from ID 7 to ID 0 */
Removable dev not included in scan */

CCB fields. */

During a rescan new devies found */
A loaded SIM has de-registered */

A loaded SIM has registered */

A BDR message was sent to target */
A SCSI AEN has been received */

A unsolicited reselection occured */
A SCSI bus RESET occured */

INIdY L)

LT%

Common Access Method XPT/SIM Support Rev 2.2 October 29, 1990 Page 61
P e e S S R T S SR S B e e ———— */
/* Typedef for a scatter/gather list element. */
Eypedef struct

ulong cam sg_address; /* Scatter/Gather address */

ulonﬂ cam_sg_count; /* Scatter/Gather count */
} SG_ELERM; -
!* o e e e e 8 e e */

/* Unix 0SD defines and data structures. */

i#define INQLEN 36 /* Inquiry string length to store. */

/* General Union for Kernal Space allocation. Contains all the possible CCB
structures. This union should never be used for manipulating CCB's its only
use is for the allocation and deallocation of raw CCB space. *

%ypedef union

CCB_SCSIID csio;
CCBGETDEV cgd;
CCB”PATHINQ cpi;
CCB™RELSIM crs;
CCB”SETASYNC csa;
CCBSETDEV csd;
CCB”ABORT cab;
CCB”RESETBUS crb;
CCB"RESETDEV crd;
CCB"TERMIO ctio;
} CCB_STZE_UNION;

{* The typedef for the Async callback information. This structure is used to
store the supplied info from the Set Async Callback CCB, in the EDT table. */

%ypedef struct

ushort cam_event_enable; /* Event enables for Callback resp */
void (*canLasync‘func)(j; /* Async Callback function address */
ulong cam @sync Blen; {* Length of "information" buffer */
uchar *cafi_asynt_ptr; /* Address for the "information */

} ASYNC_INFO;

/* The CAM_SIM ENTRY definition is used to define the entry points for
the SIMs contained in the SCSI CAM subsystem. Each SIM file will
contain a declaration for it's entry. The address for this entry will
betsﬁnred*}n the cam_conftbl[] array along will all the other SI
entries.

fypedef struct
void (*sim init)(g' /* Pointer to the SIM init routine */

void (*sim-action)({): f* Pointer to the SIM CCB go routine */
} CAM_SIM ENTRY;

Common Access Method XPT/SIM Support Rev 2.2 October 29, 1990 Page 62

/* The CAM EDT table, this structure contains the device information for
all the devices, SCSI ID and LUN, for ali the SCSI busses in the system. */

Eypedef struct
int cam_tlun_found; /* Flag for the existence of the target/LUN
ASYNC_INFO cam_ainfo; " [* Async callback info for this B/T/L */
int cam_owner_tag: [* Tag
char cam 1nq_ﬁatat INQLEN J;/* storage for the inquiry data =/
} CAM_EDT_ENTRY;

P —-

Annex D: Operating System Vendor Documentation
D.1 Documentation

The following 1ists those operating system vendors which have agreed to supply
information to third ?arty vendors on the suEport of SCSI devices. This is not
a complete 1ist of all vendors that support CAM.

This is a partial list and as it is the addresses of the CAM members
it 15 unlike e T address to contact for information

¥ 0 De g
dan ocumentation. Wou o0se liste g ease advise correct addresses

an epartment and advise e one number an ax n ers 50, an

that I should have included, please add yourselves to the 1is
sending Ual a fax at 308—857—BII5. |

AT&T BELL LABS MICROSOFT
1100 E Harrenville Rd P08 97017
Naperville Redmond

L 60566 WA 98073

INTERACTIVE SYSTEMS
2401 Colorado Ave
Santa Monica

CA 90404

NOVELL

122 E 1700 S
Provo

UT 84606

DIGITAL EQUIPMENT
110 Spit Brook Rd
ZK03-3/179

Nashua

NH 03062

SUN MICROSYSTEMS

2550 Garcia Ave Bdg 15
Mountain View

CA 94043

IBH

HS 5226

PO Box 1328
Boca Raton
FL 33429

D.2 DOS Background

for the peripheral driver's ownership */

1NTHd¥ LS

g2 %

Common Access Method XPT/SIM Support Rev 2.2 October 29, 1990 Page 63

During the development of XPT/SIM by the CAM Committee, several approaches to

support SCSI under DOS were implemented by vendors. Some were proprietary and

required licensing agreements while others were parochial. Of the latter, some
provided documentation upon request in order to encourage their adoption.

Subsequent to the XPT/SIM bein% defined across multiple operating systems, [BM
made information available on the attachment of SCSI devices using the 4Bh/80h
interrupt, which assumes that there is an SCB (Subsystem Controil Block) data
structure. SCBs are unlike CCBs.

The IBM introduction created a de facto implementation, and IBM has provided a
software license at no charge to those companies which write peripheral .
drivers to support SCBs. The SCBs and their method of oneration are defined in
Technical Reference Manuals which are available from IBM.

The CAM approach is oriented towards using the CCB data structure to provide a
common_approach across multiple oEgrating systems. Althouﬁh it may have been
possible to use SCBs to provide this capability, full technical information
was not provided early enough in the development cycle.

ANEUd¥ L1

