Io/30/%0 | X379.2/90-173

FROM: Mike Peper
Hewlett-Packard

To: ¥X3T79.2 Members

Re: Multiple I/O Processes in SCSI

The following is a note from a colleague expressing his view that the
SCSI-2 spec means to disallow multiple active I/0 Processes. I do not
necessarily share all of his views, but I do think he is quite correct
in stating that the spec is very vague and somewhat contradictory on

the subject.

Rather than go the full RFI route, I would appreciate it if you could
read this over, form an opinion (something I think we all are gquite
good at!), and let me know how you feel when my agenda item comes up.
I would hope that eventually we could clean up this wording at some
point to clarify exactly what the committee intends to support.

—————-———-—---———-————-——-—.-—----——-—-—---—_--——--——--———-———-————-—-—-

T believe the proposal to gain performance through multiple active
IOPs (on a LUN) has a fundamental flaw in that it violates the SCSI-2
spec. It is my interpetation that multiple active IOPs are not legal.
T believe the text of the SCSI-2 spec. supports this view. '

Tn the following I will attempt to justify my belief:
First some definitions from the SCSI-2 glossary

active I/0 process. An I/0 process that is presently in
execution (not gueued).

current I/O process. The I/0 process that is presently connected
on the SCSI bus. ¢

I/0 process. An 1/0 process consists of one initial connection and
zero or more reconnections, all pertaining to a single command
or a group of linked commands. More specifically, the connection(s)
pertain to a nexus as defined below in which zero or more command
descriptor blocks are transferred. An I/O process begins with the
establishment of a nexus. An I/O process normally ends with the BUS
FREE phase following sucessful transfer of a COMMAND COMPLETE or a
RELEASE KECOVERY message. An I/0 process also ends with the BUS
FREE phase following an ABORT, ABORT TAG, BUS DEVICE RESET, or
CLEAR QUEUE message or when a hard RESET condition or an unexpected

disconnect occurs.

queued I/O process. An I/0 process that is in the command queue and
has not begun execution.

In 5.6.1 on the ABORT message

"The abort message is send from the jnitiator to the target to clear
the active I/0 process plus any queued I/O process for the I_T_x
nexus. ... The pending data, status, and queued I/O processes
for any other I_T x nexus shall not be cleared."

155

Note the use of the definite article "the" in describing the(an)
active I/O process. Also note the explicit description to leave
things alone for other I_T x's. It mentions queued I/0 processes
bug makes no mention of what to do with another active IOP for
this I_T_X.

In 5.6.2 on ABORT TAG
npending status, data, and commands for other active or queued
I/0 processes shall not be affected. Execution of other I/O
processes queued for the I_T_Xx nexus shall not be aborted."
See 2nd half of comment above.

In 5.6.4 on CLEAR QUEUE

Here I find the 1st of 2 supporting references of multiple active
I/0 processes. -

wpall active I/O processes shall be terminated. The medium may have
been altered by partially executed commands."

pPlural "processes" and "commands" surely suggested multiple active
I/0 processes.

In 5.6.22 on TERMINATE I/0 PROCESS
The 2nd reference supporting multiple active IOP’s.

wThe TERMINATE I/O PROCESS message shall not affect pending status,
data, and commands for other gqueued or executing I/0 processes.

Another plural nprocesses". The reference to executing (which is
only indirectly defined) vs. active seems inappropriate.

IF the 2 preceding reference were the only references supporting
multiple active IOPs then I wonder if it is an English oversight?

In 6.6 on Contingent Allegiance Condition

ngxecution of gqueued commands for the logical unit or target
routine for which the contingent allegiance condition exists shall
be suspended until the contingent allegiance condition is cleared."”

Note there is no discussion of suspending other active IOP’s.
T believe an initiator must know that any outstanding IOPs are
queued and not active to be able to take corrective action.

In 6.7 on Extended contingent Allegiance Condition

wExecution of queued commands for the logical unit for which the
extended contingent allegiance condition exists shall be suspended

until the contingent allegiance condition is cleared."
| Same comment as on 6.6
In 6.8 on Queued I/0 Processes

wQueuing of I/0 proccesses allows a target to accept multiple I/0

(56

processes for execution at a later time."

This sentence might have said "immediate or deferred execution".

In 6.8.1 on Untagged Queuing

"gntagged queuing allows a target to accept a command from an
initiator for a logical unit or a target routine while a command
from another initiator is being executed."

nyhile a command" not "while commands™

nIf the disconnect privilege is not granted in the IDENTIFY message
of the new I/O process, the target may either suspend the active
I/0 process or it may return BUSY status to the new I/O process."

Another definite article "the active I/0 process"”

In 6.8.2 on Tagged Queuing

"When adding an I/O process, the initiator may specify fixed order
of execution, allow the target to define the order of exectuion,
or specify that the I/O process is the be executed next."

“"If only SIMPLE QUEUE TAG messages are used, the target may execute
the command in any order that is deemed desirable within the
constraints of the gqueue management algorithm specified in the
control mode page (see 7.3.3.1)"

wa command received with a HEAD OF QUEUE TAG message is placed
first in the queue, to be executed next." :

These are very strong statements against multiple active IOP’s.
It is at the very heart of the definition of tagged queuing.

Tt defines the degrees of freedoms the target has respect to
execution order. Notice the phrases neyxecuted next", "order of
execution®" and "in any order".

Some more from the section: .

nThe first post_recovery option is to continue execution of
commands in the queue after the contingent allegiance or
extended allegiance condition has cleared. ... During this time
all commands in the queue are suspended."

nThe second recovery option clears the queue after the contingent
allegiance or extended contingent allegiance condition has been
cleared."

What happens to any other active IOP’s?

Now in this section is the following interesting paragraph:

"If commands are combined by the queuing algorithm such that the
error affects more than more command, then a contingent allegiance
condition shall be generated for all affected commands."

The argument might be made that this statement supports multiple

active IOP’s and I considered this thought. But after looking at
this statement a while, I came to the conclusion that in fact it

187

supports a single active IOP (ordered execution) model. It in
effect states that you need to produce n sequential contingent
allegiance conditions, thus hiding any optimization the target may
have done.

Let me make a distinction here between multiple active IOP’s and
target optimization. I am not suggesting that a target can not do
some parallel processing on IOP’s. Just that any optimization it
chooses to do must not be visible to the host functionally.
Unfortunately multiple active IOP’s are visible.

In 7.3.1.1 on Control Mode Page

"A gueue error management (QErr) bit of zero specifies that those
commands still queued after the target has entered the contingent
allegiance or extended contingent allegiance conditions shall
continue execution in a normal manner when that condition has
terminated (see 6.8) A QErr bit of one specifies that those
commands still queued_after the target has entered the contingent
allegiance or extended contingent allegiance conditions
shalil be aborted when that condition has terminated."

If multiple active IOP are possible then these paragraphs leave
alot to be said about error recovery! ,

Appendix E. Data Integrity and I/0 Process Queuing

This appendix illustrates one possible implementation of command
queuing. It discusses legal SCSI-2 command ordering and re-ordering
algorithms. The concept of order is predominant throughout the
appendix.

These are the major areas of the spec that do not make sense with the
concept of multiple I/O Processes being active. I am very concerned
about initiators being capable of handling a target which might use
this methed.

158

