X3T9.2/87-156
Page 1 of 6§

Daates: August 30, 1987
Toz X3T9.2 Working Group
From: James McGrath

Quantum Corporation
1804 McCarthy Blvd
Milpitas, Cr 93035
(408) 432-1100
Subject: Reordering of Commands ia Command Queuing

This is an attempt to demonstrate the practicality of having the
Target reorder commands which have been queued for a specific LU
under its control with a minimum of explicit direction by the
Initiator. This topic has been the subject of great debate in the
past, and thus a clear and precise written explanation was deemed
appropriate. While this discussion is only directly applicable to
DASD, the same concepts can profitably be applied to any SCSI device.

This discussion is NOT intended to indicate how command queuing MUST
be implemented by the Target in order to insure correct execution,
Rather, it simply illustrates one possible implementation that does

insure correctness at a reasonable cost (in overhead and performance)
and is easy to analyze.

Pirst, unless otherwise stated, all terms used are as defined by the

3CS1-2 REV 2 document or the Command Queuing Proposal. The following
Lerms are new:

ixplicit Ordered Command - an ordered command, with an ordered tag,
as defined in the Command Queuing proposal.

[mplicit Ordered Command - an unordered command, with an unordered
tag, but one that the target has determined that it will
treat as an ordered command for the purposes of queuing.

drdered Comwand - either an explicit or implicit ordered command.

dead of Queue Queue - the queue for a specific LU containing the
Head of Queue commands for that LU.

rimary Queve - the queue for a specific LU containing the ordered
and unordered commands for that LU.

A 7RV o

Fage 2 of 6

[

(Primar;) Queue Segment - each Primary gqueue can be divided into a
series of one or more segments. Each segment normally
consists of a sequence of commands containing zero or more
unordered commands and one ordered command such that the
ordered command is the last in the sequence and the uncrdered
commands are those which arrived after the ordered command of
the previous segment in the queue and before the ordered
command in this segment. The last segment in the queue is a
special case which may not include an ordered command. For
example, a queue containing commands in the following order:

uuoou'ouooouuuuu

can be divided into segments as follows:
(U U 0) (@) (U 0)(U 0)(O)y(O)(U U uw u u}

where U represents an unordered command and O represents an
ordered command.

Reordering Rule - the algorithm used by a Target to reorder commands
in the Primary queue of a LU.

Regeneration Point - the point in time when no command is under
execution and the first command of a new segment in the
Primary queue is the next command to be executed.

State of the Media - at any particular moment, the state is defined
to be the complete mapping of Logical Block Addresses to the
data stored in those LBAs. Thus the state is a measure of
the contents of the device.

Correct Execution Sequence - any sequence of execution from the
command gueue(s) for a LU that both obeys the rules for
command queuing and which results in the state of the media,
and the data returned to the Initiator concerning the
contents of the media, to be identical to those of a FIFO
execution of the primary queue. (Note: the state of other
components of the target, such as the buffer, are NOT
gaurenteed to the be same under different reorderings that
result in correct execution.).

s

L,




Page 3 of 6

PHESI15: Lhe Target can implement Reordering Rules which result in a
Correct Execution Sequence at

1} low cost in command overhead,

2) high improvement in performance, and

3) without requiring the Initiator to explicitly order
commands (although such ordering shall be allowed).

Jnder any reordering rule, only the reordering done within a queue
segment can make the execution sequence incorrect.

rhis follows directly from the definitions given above and the entire
shilosophy of command queuing, under which the explicit ordering of a
rommand or the use of a head of queue command indicates that the
[nitiator is removing any control of order of execution from the
Farget. Doing so shifts any risk that the resulting execution
sequence may be "incorrect" from the Target to the Initiator.

A sequence of execution is correct if for each queue segment the
:xecutiun of commands in that segment, if considered to be the total
jueue Lur the LU, would be considered to be correct.

jince the order of execution of head of queue commands and the order
’f execution of gueue segments is restricted to a single ordering by
the rules of command queuing, only reordering within a segment can
‘reate a deviation from the FIFO primary queue execution sequence
vhich is always correct.

ve will assume all unordered commands other than READ, READ EXTENDED,
YRITE, and WRITE EXTENDED to be implicitly ordered by the target.

fote that this assumption does not significantly decrease the
rerformance gains to be realized by reordering (since the remaining
inordered commands still make up over 99.9% of the commands actually
:ncountered during normal execution), nor increase the overhead
\since a simple op code check is all that is required), but will
significantly simplify the analysis of reordering rules. Targets
night be able to insure correct execution sequence without this
restriction, but allowing such commands as MODE SELECT,
1ESERVE/RELEASE, and FORMAT to be reordered obvicusly leads to
sotential difficulties and much complexity for little gain.

lhe test for correct execution is made at regeneration points. Note
:hat commands cannot be reordered across regeneration points. This
implies that halting execution (e.g. for an error) in the middle of a
Jueue segment will leave the state of the media in an incorrect

state. As always, it is up to the Initiator to successfully perform
recovery operations.

J

H

Paéa 4 of 6

All segmknts (except for the last, which we treat as a special case)
are finite, and any reordering algorithm will eventually result in
reaching a regeneration point. For the last segment, simply must
insure that all commands are executed in a finite period of time
(iL.e. starvation does not occur). Many popular reordering algorithms

(such as CSCAN) will prevent starvation, and we assume one such is
implemented.

Thus we have finally be rediced to requiring that the reordering of
commands within a segment does not result in the return of data which
differs from that of a FIFO execution nor leaves the media in a
different state. Note that under any reordering the ordered command
is always constrained to be executed last. Thus as long as the data
returned and the state of the media for the sequence of unordered
commands meets the correctness criteria, then the commande in the
segment as a whole will be correctly executed.

All unordered commands in a segments are either a variety of READ or
WRITE. Consider the N unordered commands in a segment to be numbered
1..N. Then any reordering is uniquely defined by the NI ordered
pairs of commands (x,y), where the each pair implies that command x

comes before command y in the reordering. We will concentrate on
these pairs.

If all the pairs were {(READ,READ) pairs (i.e. all unordered commands
were READs), then any reordering could not affect the state of the
media (since it is never changed) nor the returned data. Similarly,
if a pair was a (READ,WRITE), a (WRITE,READ), or a (WRITE,WRITE) then
the reordering of these two commands could not affect correctness as

long as the range of the specified LBAs for each command did not
intersect.

Thus the above is both a necessary and sufficient condition for
generating a correct execution sequence. However, the Target need
not generate the N! pairs and perform the check required by theory.

A more practical implementation of the above test would be the
following.

First, any reordering of commands implies that a sorting operation
(usually with respect to the LBA of the command) be performed. The
sort may result in an explicit data structure (i.e. a binary tree of
pointers) or an implicit strucdture (i.e. the CDBs are reordered in
an array, or an array of pointers to CDBs are recrdered), In any
event, we will denote T as the time required to perform such sorting,
and the resulting sequence of execution is denoted as A.

This list is now sorted so that the LBA+TL of the immediately
preceeding command is <= the LBA of the next command. Note that
LBA+TL is one more than the last LBA in the command, and this sort
can be performed at a cost no greater than T (note that LBA+TL must
be computed for each command anyway in order to perform a range check
against the LU’s maximum LBA, and that a more sophisticated data
structure can reduce the incremental effort to perform this second
Bort considerably). This ordering is denoted as B.

£ PRS-



PAGE 5 of 6

For «ach segment, a command has a position in both queues denoted by
Lhe pair (a,b). The execution Bequence is then determined as
tollows:

1} Attempt to execute command in the ordering determined by A.
2) 1f a = b, then execute the command.

3J) If a < b, then scan A until you find a command equaling b. For

all commands in A between a and this b, search B and keep track of

the command that appears last in B (denote this c). Now scan A

again, but use c as your search target instead of b. Continue the

search process, alternating between A and B, until you run out of

commands to search for. The result is a subsequence of commands in A

and B such that each command in the subsequence in A appears in the
subsequence in B and vica versa, but the orders differ between the
subsequences. These commands should be executed in the original FIFQO order
(i.e. both reordering should be ignored).

4) when done, goto step 1) again until the queue is empty.
As an example, considering the following pairs of ordered LBA ranges:

(0.3) (6,8) (7,12) (8,15) (20,23) (28,32) (31,35) {36,39) (37,38)
(0.3) (7.12) (6,8) (8,15) (20,23) (31,35) (28,32) (37,38) (36,39)

Thus the execution order is:

(0,3
(6,8) (7,12) in FIFO order
(8,15)
(20,23)

(28,32) (31,35) in FIFO order
(36,39) (37,38) in FIFO order

Note that other execution sequences may be defined that provide
greater performance (i.e. (READ,READ) sequences can be freely
reordered) at a cost of greater command overhead. But in the normal
case of few intersections, the total overhead is 2*T plus a check per
command (this can grow to N*N checks in the worse case).

Finally, command overhead should not be an issue in command queuing.
Since overhead grows as the queue lengthens, but since the
opportunity to overlap queuing tasks with seek time and rotational
latency grows with the queue length, most if not all of the queuing
overhead can be effectively hidden from the user.

¢J
o
S

T T—

Page 6 of 6
v

{
Explicit ordering of commands by the Initiator can shift the the
implementation burden from Target to Initiator, and this may have
many practical benefits. Error recovery might prove easier to
implement, and Target resources might be more profitably used.

A note of personal preference: the more I have examined this topic,
the more I have reluctantly come to the conclusion that it may be
best to allow targets to.insure correct execution, but not require
them to do so. It should be made easy for the Initiator to determine
if correctness is maintained by the target (i.e. another mode bit
and/or information in inquiry).

In any event, I hope that the central thesis - that the Target can

maintain proper order under command queuing - is clear, and that
debate can now shift as to whether it is desirable to do so or not.

P



