
Working T10
Draft Project 1157-D

Revision 4
29 March 1998

Information technology -
SCSI Architecture Model - 2 (SAM-2)

This is an internal working document of T10, a Technical Committee of Accredited Standards Committee NCITS
(National Committee for Information Technology Standards). As such this is not a completed standard and has not
been approved. The contents may be modified by the T10 Technical Committee. The contents are actively being
modified by T10. This document is made available for review and comment only.

Permission is granted to members of NCITS, its technical committees, and their associated task groups to
reproduce this document for the purposes of NCITS standardization activities without further permission, provided
this notice is included. All other rights are reserved. Any duplication of this document for commercial or for-profit
use is strictly prohibited.

T10 Technical Editor: Ralph O. Weber
Symbios Logic
12377 Merit Drive, Suite 400
Dallas, TX 75251
USA

Telephone: 972-503-3205 x228
Facsimile: 972-503-2258
Email: ROWeber@ACM.org

Reference number
ISO/IEC ***** : 199x

ANSI NCITS.***-199x
Printed Sunday, March 29, 1998 11:56 AM

Points of Contact:

T10 Chair T10 Vice-Chair
John B. Lohmeyer Lawrence J. Lamers
Symbios Logic Adaptec
4420 Arrows West Drive 691 South Milpitas Blvd
Colorado Springs, CO 80907-3444 Milpitus, CA 95035
Tel: (719) 533-7560 Tel: (408) 975-7817
Fax: (719) 533-7036 Fax: (408) 957-7193
Email: john.lohmeyer@symbios.com Email: ljlamers@ix.netcom.com

NCITS Secretariat
NCITS Secretariat Telephone: 202-737-8888
1250 Eye Street, NW Suite 200 Facsimile: 202-638-4922
Washington, DC 20005 Email: ncits@itic.nw.dc.us

T10 Reflector Internet address for subscription of the T10 reflector: majordomo@symbios.com
Internet address for distribution via T10 reflector: T10@symbios.com

SCSI Bulletin Board 719-533-7950

Document Distribution
Global Engineering Telephone: 303-792-2181 or
15 Inverness Way East 800-854-7179
Englewood, CO 80112-5704 Facsimile: 303-792-2192

29 March 1998 T10/1157-D revision 4
Revision Information

1 Approved Documents Included

The following T10 approved proposals have been incorporated SAM-2 up to and including this revision:

94-236r3 Addressability of Logical Unit For Resets
95-229r2 Proposal for Persistent Reserve
96-169r0 Proposed Changes for SAM-2
97-122r4 Addressing Model for SAM -2

The following T10 approved proposals have not yet been included in this SAM-2 revision:

96-198r4 New Task Management Models for SAM-2

The list above may not be complete, suggested additions welcomed.

2 Revision History

2.1 Revision 1 (1 September 1996, Charles Monia)

Revision 1 incorporates the following T10 approved proposals:

95-229r2 Proposal for Persistent Reserve
96-169r0 Proposed Changes for SAM-2

In addition, modify the clauses below to clarify the wording as indicated.

Clause 5.6.1.1, seventh paragraph:

Previous wording:

“If the NACA bit was set to one in the CDB control byte of the faulting command, then a new task created
while the ACA condition is in effect shall be entered into the faulted task set provided:”

Revised wording:

“If the NACA bit was set to one in the CDB control byte of the faulting command, then a new task created
while the ACA condition is in effect shall not be entered into the faulted task set unless all of the following
conditions are true:”

Clause 5.6.1.1, paragraph following list

Previous wording:

“The auto contingent allegiance condition shall not be cleared. If the conditions listed above are not met,
the newly created task shall not be entered into the task set and shall be completed with a status of ACA
ACTIVE.”

Revised wording:
working draft SCSI Architecture Model - 2 (SAM-2) iii

T10/1157-D revision 4 29 March 1998
“In any of the conditions listed above are not met, the newly created task shall not be entered into the task
set and shall be completed with a status of ACA ACTIVE. The auto contingent allegiance condition shall
not be cleared.”

Clause 5.2, change the wording as noted below.

“CONDITION MET. This status shall be returned whenever the requested operation specified by an
unlinked command is satisfied (see the SEARCH DATA (SBC) and PRE-FETCH (SBC) commands).”

2.2 Revision 2 (28 March 1997, Charles Monia)

Modified clause 3.7.2 to simplify the notation for objects having a numerical value.

Modified clause 3.5 to fully describe typographical conventions.

As instructed by the September 11, 1996 working group, backed out rev 01 changes in service and remote
procedure call names.

Revised object definition 6 (logical unit), to include the following supplemental wording in the Task Set object
description:

“There shall be one task set per logical unit.”

2.3 Revision 3 (5 May 1997, Charles Monia)

Revision 3 incorporates the following T10 approved proposals:

94-236r3 Addressability of Logical Unit For Resets
97-122r0 Addressing Model for SAM -2 (not T10 approved)

It must be noted that 97-122r0 was further revised by T10 before being approved as 97-122r4.

2.4 Revision 4 (January 1998)

Revision 4 incorporates the following T10 approved proposals:

97-122r4 Addressing Model for SAM -2

The document has been converted to FrameMaker. The source for the conversion was the revision 3 PDF file, as
taken from the T10 web site.

To facilitate the conversion, some of the boiler-plate information was taken from SPC revision 1 and revised with
text from the SAM-2 PDF file to match the needs of the SAM-2 document. The Scope clause has been
restructured slightly so that the new format documents roadmap can be used.

The glossary definition for “mandatory” has been removed since “mandatory” is defined as a keyword. Definitions
for ‘sense data", ‘sense key", and ‘additional sense codes" have been added.

The acronyms “SDP (Service Delivery Port)” and “SDS (Service Delivery Subsystem)” have been removed, since
they are not used in the body of the working draft. Acronym definitions have been added for SCSI, SCSI-2,
SCSI-3, SPC-2, and SBC. The conventions clause “References to SCSI Standards”, containing similar acronym
information, has been removed. The newer SPC keyword definitions have been used as the basis for keyword
iv working draft SCSI Architecture Model - 2 (SAM-2)

29 March 1998 T10/1157-D revision 4
definitions here. A keyword definition for “invalid” has been added and edited slightly to accommodate the usage of
“invalid” in clause 5 (SCSI command model).

In the state diagram example, the “Ex:” labels have been removed and descriptions based on the transition labels
have been added after the figure. This makes the example more consistent with the one and only state diagram in
the working draft.

Graphical aids, such as shading, were added to several figures to make their content more clear. The SCC-2
convention of putting field names in small caps has been adopted. This presents some conflicts with the existing
usage of small caps to represent “undefined” names. Every effort has been made to follow the SCC-2 convention
rigorously, and several field names have been changed from nondescript lower case to small caps.

In revision 3, an attempt was made to incorporate a pre-approval draft of a proposal describing hierarchical
addressing in the logical unit number value (97-122r0). Four more revisions of the proposal were generated before
T10 approved 97-122r4 for inclusion in SAM-2. 97-122r0 lacked clarity in several areas, which motivated
substantial embellishment on the content of the proposal text in SAM-2 revision 3. After SAM-2 revision 3 was
distributed, T10 corrected the omissions and added the needed clarity. However, several of the T10 approved
changes conflict with the embellishments found in SAM-2 revision 3. In order to avoid replicating misleading work,
97-122r4 has been incorporated in revision 4. This violates the principle of a “conversion only” working draft
revision for this change of technical editors and document processing software. A “conversion only” revision would
have been much preferred, however the duplication of clearly incorrect information and the wasted work argued
against a pure conversion working draft. The technical editor makes his apologies here.

In response to a decision of the March 1998 SCSI General Working Group meeting (minutes in 98-126), the
definition of the ‘reserved’ keyword has been changed to match the definition found in SBC.

3 Plans for Future Revisions

This is a list of the work the technical editor considers required in future revisions of this working draft. The list is
not complete as of revision 4. Further review is required, but the meeting time has arrived.

3.1 Minor Changes

The terms “call”, “procedure”, and any related terms should have glossary definitions that clearly identify them as
architectural abstractions. All of these concepts are wording conveniences used as shorthand by the architecture
and model to express more complex concepts or concepts for which numerous implementations are possible. The
technical editor also should search on the terms “call” and “procedure” to locate any uses and edit text at each
usage point to clearly identify “call” and “procedure” as architectural model abstractions and not as indications of
implementation requirements. In a similar vein, “protocol” is an architectural abstraction, however this may be
better understood as an abstraction in the community of SCSI designers.

The term “service” appears to be an architectural abstraction too, it is defined totally on architectural abstractions
(“calls” and “objects”). However, careful study is required to determine if “service” has some non-abstract, concrete
meaning. If it does, the glossary definition should be changed.

Is it necessary to have definitions for “implementation option”, “logical unit option”, and “protocol option”? Surely,
an option is an option is an option and the context in which the word “option” appears is sufficient to identify whose
option is being discussed.

The technical editor wishes to remove the definition of “ended command”. Strictly speaking, the term “ended
command” is not used anywhere in the working draft, thus allowing removal of the definition as a strictly editorial
change. However, some consideration of the change appears prudent. The word “ended” is used frequently in the
working draft SCSI Architecture Model - 2 (SAM-2) v

T10/1157-D revision 4 29 March 1998
working draft, all uses appear to have the standard English meaning, but this thesis needs additional verification.
Also, there is an “ended (task state)” that lacks a glossary definition and perhaps should have one.

The glossary definition of “layer” in uninformative, owing in part to the vague usage of “rank”. A clearer, more
specific definition is needed.

Should the glossary definition for “pending task” really be for “pending (task state)”?

Is the term “protocol service request” really so general as to require its being defined in terms of “call” (an
architectural abstraction)? Also, the technical editor believes that “protocol service response” should be defined as
“A reply to the upper level protocol …”, not “A reply from the upper level protocol …” Finally, would it be possible to
cast both definitions in terms of specific entities from the SCSI roadmap, instead of “lower level protocol” and
“upper level protocol” (see 3.2)?

Although it is used in the Foreword, Scope, and one figure title, the term “reference model” is little more than
obfuscated wording for “model”. Could it be replaced?

Is “subsystem” really used as it is defined in the glossary? Many other SCSI standards use subsystem differently.

It certainly would be nice to avoid defining “task” in terms of architectural abstractions (e.g., “object”). Perhaps, the
word “entity” could be used in its English meaning?

The technical editor cannot help wondering if there is a way to eliminate the “task slot” definition. It seems to overly
restrict (or define) a target implementation.

In the definition of “third-party command”, “an SCSI command” should be replaced by the more nebulous “SCSI
commands”. There is not a one-to-one relationship between an SCSI command sent to a logical unit and the
number of third-party commands the logical unit issues to complete it.

It seems that task management function names sometimes appear in all capitals and bold, not capitalized and bold
as is stated in 3.4.

Are the requirements on protocols really contained only in 5.3 and 6.8, as is stated in 4.1?

Change all usage of “remote procedure call” to “procedure call”, since “remote procedure call” is not defined.

Clause 5.3 is a mess. The data delivery services are given individual 5.3.x clauses but the command protocol
services are not. 5.3.1 fails to identify the party responsible for establishing the parameters for the transfer of a
buffer segment. The rule prohibiting input and output transfers by a single command is buried in a paragraph that
starts with a discussion of buffer segmentation. The title on figure 21 “Model for buffered data transfers” suggests
buffered data versus programed I/O data operation, which is not the intent. The technical editor was very tempted
to rewrite the whole clause during the revision 4 conversion, but wrote this reminder to himself instead.

5.6.4.1 seems to imply that other methods for controlling AER besides the Control mode page are acceptable. Is
this really the intent of T10?

The technical editor believes that persistent reservations should be excluded from the statement in 5.6.7 bullet c.
Comments from T10?

3.2 Substantial Changes

Is it really necessary for SAM-2 to place requirements on the contents of other standards? Would the SCSI
documents set be just as well served if SAM-2 acted as a guide to what readers might expect to find in other SCSI
vi working draft SCSI Architecture Model - 2 (SAM-2)

29 March 1998 T10/1157-D revision 4
standards? With these thoughts in mind, a few (but not necessarily all) specific instances of needed changes are
noted:

a) The Foreword and Introduction clauses need to be modified to remove the work “requirements”; at the time
of this writing, “capabilities” is the preferred replacement;

b) Most of 1.1 probably would be obsolete; and
c) A careful audit of the requirements statements will be needed to adjust those placing requirements on

other standards.

The use of “SCSI-3” might be seen as conflicting with the document’s title “SCSI Architecture Model -2”. One
solution would be to change to “SCSI” in the Foreword, Introduction, and Scope clauses. However, making such a
change also requires that the definition of SCSI be changed to exclude SCSI-2 and SCSI-1, a change that may not
conform with the wishes of T10.

The technical editor is considering a careful review of the working draft, with an eye toward overly abstract model
abstractions. Examples are:

a) Overly general layering terms and discussions; and
b) Discussion of a new application client for each new request or task management function.

The layering seems overly general and thus confusing. SCSI has two (or at most three) layers. The question of
two or three layers depends on whether the service delivery port is a layer. The two “main” layers are the
command and control layer (application client, device server, and task manager) and the service delivery
subsystem. The description appears amenable to substantial simplifications. LLP and ULP could disappear.
Generalized interfaces could be replaced with a small number of specific interfaces. Does T10 see value in this
kind of simplification?

The terms “SCSI application layer” and “SCSI protocol layer” appear to be redundant. Certainly, “SCSI application
layer” is little more than a generalization of “application client”. Perhaps, “SCSI application layer” and “SCSI
protocol layer” can be removed. As if this confusion were not enough, the definition of “Upper Layer Protocol”
clearly ties it to the application layer. This further suggests that SCSI has only two protocol layers.

The object definitions fail to communicate the fundamental concepts of SCSI as directly as the technical editor
would like. True, the almost mathematical rigor of the object definitions impose formalism and some level of
completeness. However, the formalism appears to do little more than rigorously detail the minutia, while the high
level concepts are unreadable, or worse, lost. Surely, the same information can be presented in a reasonable
number of prosaic paragraphs. Of course, T10 should approve such work before it is undertaken. It might be best
to devote a SAM-2 revision solely to this task.

The technical editor wonders how useful it is to say that the architectural model presumes the creation of a new
application client for each new request or task management function. It is difficult to see how this formalism serves
to produce a better understanding of the real-world usage of SCSI. In fact, other text in the working draft
acknowledges that this formalism may not relate to reality at all. If this change were made, it might also be possible
to simplify the following statements in 4.3:

“An application client represents a thread of execution whose functionality is independent of the
interconnect and SCSI-3 protocol. In an implementation, that thread could correspond to the device driver
and any other code within the operating system that is capable of managing I/O requests without requiring
knowledge of the interconnect or SCSI-3 protocol.”
working draft SCSI Architecture Model - 2 (SAM-2) vii

T10/1157-D revision 4 29 March 1998
It is almost impossible for the average reader to absorb and apply the following 4.1 statement:

“The reader not familiar with the concept of abstract modeling is cautioned that concepts introduced in the
description of an SCSI-3 I/O system constitute an abstraction despite a similar appearance to concepts
possibly found in real systems.”

This statement should go and the places where abstraction is not related to implementation should be clearly
identified at the sites where they occur. A revision of SAM-2 should be devoted solely to this change.

Is the following 4.2 statement rigorously true?

“All allusions to a pending command or task management function in this standard are in the application
client's frame of reference.”

The use of “conventional procedure call” in the following 4.2 statement is at odds with the SAM definitions of
procedure call as a modeling mechanism.

“From the client's standpoint, the behavior of a remote service invoked in this manner is indistinguishable
from a conventional procedure call.”

If the following two 4.2 statements are true, why are confirmed services defined?

“In this model, confirmation of successful request or response delivery by the sender is not required. The
model assumes that delivery failures will be detected by the client's service delivery port.”

The technical editor suspects that “confirmed service” has multiple definitions.
viii working draft SCSI Architecture Model - 2 (SAM-2)

ANSI (r)
NCITS.***-199x

American National Standards
for Information Systems -

SCSI Architecture Model - 2 (SAM-2)

Secretariat
National Committee for Information Technology Standards

Approved mm dd yy

American National Standards Institute, Inc.

Abstract

This standard specifies the SCSI Architecture Model. The purpose of the architecture is to provide a common basis
for the coordination of SCSI-3 standards and to specify those aspects of SCSI-3 I/O system behavior which are
independent of a particular technology and common to all implementations.

Draft

Draft

Published by
American National Standards Institute
11 West 42nd Street, New York, NY 10036

Copyright 199n by American National Standards Institute
All rights reserved.

Printed in the United States of America

American
National
Standard

Approval of an American National Standard requires verification by ANSI that the
requirements for due process, consensus, and other criteria for approval have been met
by the standards developer. Consensus is established when, in the judgment of the ANSI
Board of Standards Review, substantial agreement has been reached by directly and
materially affected interests. Substantial agreement means much more than a simple
majority, but not necessarily unanimity. Consensus requires that all views and objections
be considered and that effort be made toward their resolution.

The use of American National Standards is completely voluntary; their existence does not
in any respect preclude anyone, whether he or she has approved the standards or not,
from manufacturing, marketing, purchasing, or using products, processes, or procedures
not confirming to the standards.

The American National Standards Institute does not develop standards and will in no
circumstances give interpretation on any American National Standard in the name of the
American National Standards Institute. Requests for interpretations should be addressed
to the secretariat or sponsor whose name appears on the title page of this standard.

CAUTION NOTICE: This American National Standard may be revised or withdrawn at any
time. The procedures of the American National Standards Institute require that action be
taken periodically to reaffirm, revise, or withdraw this standard. Purchasers of American
National Standards may receive current information on all standards by calling or writing
the American National Standards Institute.

CAUTION: The developers of this standard have requested that holder's of patents that
may be required for the implementation of this standard disclose such patents to the
publisher. However, neither the developers nor the publisher have undertaken a patent
search in order to identify which, if any, patents may apply to this standard.

As of the date of publication of this standard and following, calls have been issued for the identification of
patents that may be required for implementation of the standard. No such claims have been made. No further
patent search is conducted by the developer or the publisher in respect to any standard it processes. No
representation is made or implied that licenses are not required to avoid infringement in the use of this
standard.

Draft

29 March 1998 T10/1157-D revision 4
Contents
Page

1 Scope... 1
1.1 Requirements precedence ... 1
1.2 SCSI-3 standards family... 2

2 Normative references... 4
2.1 Document and draft document availability information... 4
2.2 Normative approved references for mandatory features .. 4
2.3 Normative approved references for optional features .. 4

3 Definitions, symbols, abbreviations, and conventions ... 5
3.1 Definitions... 5
3.2 Acronyms.. 10
3.3 Keywords.. 10
3.4 Editorial Conventions.. 11
3.5 Numeric Conventions ... 12
3.6 Objects and object notation .. 12
3.6.1 Notation for objects.. 12
3.6.2 Objects containing addresses, identifiers and numeric parameters .. 13
3.6.3 Predefined objects... 13
3.6.4 Hierarchy diagrams ... 14
3.6.5 Notation for procedures and functions... 14
3.6.6 Notation for state diagrams ... 16

4 SCSI-3 Architecture Model .. 17
4.1 Introduction... 17
4.2 The SCSI-3 distributed service model .. 17
4.3 The SCSI-3 client-server model ... 18
4.4 The SCSI-3 structural model .. 19
4.5 SCSI domain .. 21
4.6 The service delivery subsystem ... 22
4.6.1 Synchronizing client and server states .. 23
4.6.2 Request/Response ordering.. 23
4.7 SCSI device models ... 24
4.7.1 SCSI initiator model... 25
4.7.2 SCSI target model ... 25
4.7.3 The Task Manager .. 26
4.7.4 Logical Unit.. 26
4.7.5 Hierarchical Logical Units .. 28
4.7.5.1 LUN 0 address.. 30
4.7.5.2 Eight byte LUN structure .. 30
4.7.5.3 Logical unit addressing method.. 32
4.7.5.4 Peripheral device addressing method .. 33
4.7.5.5 Virtual device addressing method .. 34
4.8 The SCSI-3 model for distributed communications .. 35

5 SCSI Command Model .. 39
5.1 Command Descriptor Block.. 40
5.1.1 OPERATION CODE byte... 41
5.1.2 CONTROL byte... 41
5.2 Status ... 42
5.2.1 Status precedence... 44
working draft SCSI Architecture Model - 2 (SAM-2) iii

T10/1157-D revision 4 29 March 1998
5.3 Protocol Services in Support of Execute Command... 44
5.3.1 Data Transfer Protocol Services.. 44
5.3.2 Data-In Delivery Service.. 46
5.3.3 Data-Out Delivery service.. 46
5.4 Task and command lifetimes.. 46
5.5 Command processing examples .. 47
5.5.1 Unlinked command example ... 48
5.5.2 Linked command example... 48
5.6 Command processing considerations and exception conditions.. 50
5.6.1 Auto Contingent Allegiance ... 50
5.6.1.1 Logical Unit response to Auto Contingent Allegiance... 50
5.6.1.2 Clearing an Auto Contingent Allegiance condition ... 51
5.6.2 Overlapped commands ... 51
5.6.3 Incorrect Logical Unit selection.. 52
5.6.4 Sense data .. 53
5.6.4.1 Asynchronous Event Reporting .. 53
5.6.4.2 Autosense... 54
5.6.5 Unit Attention condition.. 55
5.6.6 Target hard reset ... 55
5.6.7 Logical Unit reset... 56

6 Task Management Functions... 57
6.1 ABORT TASK... 58
6.2 ABORT TASK SET... 58
6.3 CLEAR ACA ... 59
6.4 CLEAR TASK SET ... 59
6.5 LOGICAL UNIT RESET.. 60
6.6 TARGET RESET .. 60
6.7 TERMINATE TASK .. 60
6.8 Task management protocol services.. 61
6.9 Task management function example.. 63

7 Task Set Management ... 65
7.1 Terminology.. 65
7.2 Task management events .. 65
7.3 Task Abort Events .. 66
7.4 Task states ... 66
7.4.1 Enabled ... 66
7.4.2 Blocked.. 67
7.4.3 Dormant... 67
7.4.4 Ended .. 67
7.4.5 Task states and task lifetimes ... 67
7.5 Task Attributes.. 68
7.5.1 SIMPLE Task... 68
7.5.2 ORDERED Task.. 68
7.5.3 HEAD OF QUEUE Task .. 68
7.5.4 ACA Task .. 68
7.6 Task state transitions.. 68
7.7 Task set management examples.. 69
7.7.1 Blocking boundaries .. 70
7.7.2 Head of Queue tasks... 70
7.7.3 Ordered tasks .. 72
7.7.4 ACA task.. 73
7.7.5 Deferred task completion... 73
iv working draft SCSI Architecture Model - 2 (SAM-2)

29 March 1998 T10/1157-D revision 4

working draft SCSI Architecture Model - 2 (SAM-2) v

Tables
Page

1 Eight byte LUN structure adjustments ... 30
2 Eight Byte LUN structure ... 31
3 Format of addressing fields.. 32
4 ADDRESS METHOD field values... 32
5 Logical unit addressing .. 33
6 Peripheral device addressing... 33
7 Virtual device addressing ... 35
8 Format of Command Descriptor Block ... 40
9 OPERATION CODE byte ... 41
10 Group Code values .. 41
11 CONTROL byte ... 41
12 Status codes .. 42

T10/1157-D revision 4 29 March 1998

vi working draft SCSI Architecture Model - 2 (SAM-2)

Figures
Page

1 Requirements precedence... 1
2 SCSI document roadmap... 2
3 Example hierarchy diagram ... 14
4 Example state diagram .. 16
5 Client-Server model ... 18
6 SCSI client-server model ... 19
7 SCSI I/O system and domain model .. 20
8 SCSI hierarchy... 21
9 Domain functional model ... 21
10 Domain hierarchy... 22
11 Service delivery subsystem hierarchy.. 22
12 SCSI device functional models .. 24
13 SCSI Device hierarchy diagram... 24
14 Target hierarchy diagram... 25
15 Logical Unit hierarchy diagram .. 26
16 Example of hierarchical system diagram ... 29
17 Eight Byte LUN structure adjustments ... 31
18 Protocol service reference model .. 35
19 Protocol service model... 37
20 Request-Response ULP transaction and related LLP services ... 37
21 Model for buffered data transfers ... 45
22 Command processing events .. 48
23 Linked command processing events.. 49
24 Task management processing events ... 63
25 Example of Dormant state task behavior ... 67
26 Task states... 68
27 Head of Queue tasks and blocking boundaries (example 1) ... 70
28 Head of Queue tasks and blocking boundaries (example 2) ... 71
29 Ordered tasks and blocking boundaries .. 72
30 ACA task example ... 73
31 Example of deferred task completion... 74

29 March 1998 T10/1157-D revision 4

working draft SCSI Architecture Model - 2 (SAM-2) vii

Object Definitions
Page

1 SCSI Domain ... 21
2 Service Delivery Subsystem .. 22
3 SCSI Device... 24
4 Initiator ... 25
5 Target... 25
6 Logical Unit .. 26
7 Task ... 27
8 Task Identifier .. 27
9 Initiator Identifier .. 27
10 Task Address ... 27

T10/1157-D revision 4 29 March 1998
Foreword

This foreword is not part of American National Standard NCITS.***-199x.

The purpose of this standard is to provide a basis for the coordination of SCSI-3 standards development and to
define requirements, common to all SCSI-3 technologies and implementations, which are essential for compatibility
with host SCSI-3 application software and device-resident firmware across all SCSI-3 protocols. These
requirements are defined through a reference model which specifies the behavior and abstract structure which is
generic to all SCSI-3 I/O system implementations.

With any technical document there may arise questions of interpretation as new products are implemented. NCITS
has established procedures to issue technical opinions concerning the standards developed by NCITS. These
procedures may result in SCSI Technical Information Bulletins being published by NCITS.

These Bulletins, while reflecting the opinion of the Technical Committee that developed the standard, are intended
solely as supplementary information to other users of the standard. This standard, ANSI NCITS.***-199x, as
approved through the publication and voting procedures of the American National Standards Institute, is not altered
by these bulletins. Any subsequent revision to this standard may or may not reflect the contents of these Technical
Information Bulletins.

Current NCITS practice is to make Technical Information Bulletins available through:

Global Engineering Telephone: 303-792-2181 or
15 Inverness Way East 800-854-7179
Englewood, CO 80112-5704 Facsimile: 303-792-2192

Requests for interpretation, suggestions for improvement and addenda, or defect reports are welcome. They
should be sent to the NCITS Secretariat, National Committee for Information Technology Standards, Information
Technology Institute, 1250 Eye Street, NW, Suite 200, Washington, DC 20005- 3922.

This standard was processed and approved for submittal to ANSI by the National Committee for Information
Technology Standards (NCITS). Committee approval of the standard does not necessarily imply that all committee
members voted for approval. At the time of it approved this standard, NCITS had the following members:

<<Insert NCITS member list>>

The NCITS Technical Committee T10 on Lower Level Interfaces, which reviewed this standard, had the following
members:

<<Insert T10 member list>>
viii working draft SCSI Architecture Model - 2 (SAM-2)

29 March 1998 T10/1157-D revision 4
Introduction

The SCSI Architecture Model (SAM-2) standard is divided into seven clauses:

Clause 1 is the scope.
Clause 2 enumerates the normative references that apply to this standard.
Clause 3 describes the definitions, symbols, and abbreviations used in this standard.
Clause 4 describes the overall SCSI architectural model
Clause 5 describes the SCSI command model element of the SCSI architecture
Clause 6 describes the task management functions common to SCSI devices
Clause 7 describes the task set management capabilities common to SCSI devices
working draft SCSI Architecture Model - 2 (SAM-2) ix

T10/1157-D revision 4 29 March 1998
x working draft SCSI Architecture Model - 2 (SAM-2)

29 March 1998 T10/1157-D revision 4
American National Standard for Information Systems -
Information Technology -
SCSI Architecture Model - 2 (SAM-2)

1 Scope

The set of SCSI-3 standards consists of the SCSI Architecture Model - 2 (this standard) and the SCSI-3
implementation standards described in 1.1. This standard defines a reference model that specifies common
behaviors for SCSI devices, and an abstract structure that is generic to all SCSI-3 I/O system implementations.

1.1 Requirements precedence

This standard defines generic requirements, which per tain to SCSI-3 implementation standards, and
implementation requirements. An implementation requirement specifies behavior in terms of measurable or
observable parameters which apply directly to an implementation. Examples of implementation requirements
defined in this document are the command descriptor block format and the status values to be returned upon
command completion.

Generic requirements are transformed to implementation requirements by an implementation standard. An
example of a generic requirement is the target hard reset behavior specified in 5.6.6.

As shown in figure 1, all SCSI-3 implementation standards shall reflect the generic requirements defined herein. In
addition, an implementation claiming SCSI-3 compliance shall conform to the applicable implementation
requirements defined in this standard and the appropriate SCSI-3 implementation standards. In the event of a
conflict between this document and other SCSI-3 standards under the jurisdiction of technical committee T10, the
requirements of this standard shall apply.

Figure 1 — Requirements precedence

American National Standard NCITS.***-199x

SCSI-3
Implementation

SCSI-3 Implementation
Standard

SCSI-3 Implementation
Standard

SCSI-3 Implementation
Standard

SCSI Architecture Model - 2

Key:
Generic
Requirements

Implementation
Requirements

● ● ●
working draft SCSI Architecture Model - 2 (SAM-2) 1

T10/1157-D revision 4 29 March 1998
1.2 SCSI-3 standards family

Figure 2 shows the relationship of this standard to the other standards and related projects in the SCSI-3 family
standards as of the publication of this standard.

The roadmap in figure 2 is intended to show the general applicability of the documents to one another. The figure
is not intended to imply a relationship such as a hierarchy, protocol stack, or system architecture. It indicates the
applicability of a standard to the implementation of a given transport.

The functional areas identified in figure 2 characterize the scope of standards within a group as follows:

Architecture Model: Defines the SCSI systems model, the functional partitioning of the SCSI-3 standard set and
requirements applicable to all SCSI-3 implementations and implementation standards.

Common Access Method: Implementation standard that defines a host architecture and set of services for device
access.

Device-Type Specific Command Sets: Implementation standards that define specific device types including a
device model for each device type. These standards specify the required commands and behavior that is specific
to a given device type and prescribe the rules to be followed by an initiator when sending commands to a device
having the specific device type. The commands and behaviors for a specific device type may include by reference
commands and behaviors that are shared by all SCSI devices.

Shared Command Set: An implementation standard that defines a model for all SCSI device types. This standard
specifies the required commands and behavior that is common to all devices, regardless of device type, and
prescribe the rules to be followed by an initiator when sending commands to any device.

Transport Protocols: Implementation standards that define the rules for exchanging information so that different
SCSI-3 devices can communicate.

Figure 2 — SCSI document roadmap

A
rc

hi
te

ct
ur

e
M

od
el

Physical Interconnects

Transport Protocols

Shared Command Set (for all device types)

Device-Type Specific Command Sets

Common Access Method
2 working draft SCSI Architecture Model - 2 (SAM-2)

29 March 1998 T10/1157-D revision 4
Physical Interconnects: Implementation standards that define the electrical and signaling rules essential for
devices to interoperate over a given physical interconnect.

At the time this standard was generated, examples of the SCSI general structure included:

Physical Interconnects:
Fibre Channel Arbitrated Loop FC-AL [T11/960-D]
Fibre Channel - Physical Signalling Interface FC-0 [ANSI X3.230-1994]
High Performance Serial Bus [IEEE 1394-1995]
SCSI-3 Parallel Interface - 2 SPI-2 [T10/1142-D]
SCSI-3 Fast-20 Parallel Interface [ANSI X3.277-1996]
Serial Storage Architecture Physical Layer 1 SSA-PH [ANSI X3.293-1996]
Serial Storage Architecture Physical Layer 2 SSA-PH-2 [ANSI NCITS.307-199x]

Transport Protocols:
Serial Storage Architecture Transport Layer 1 SSA-TL-1 [ANSI X3.295-1996]
Serial Storage Architecture Transport Layer 2 SSA-TL-2 [ANSI NCITS.308-199x]
SCSI-3 Interlocked Protocol SIP [ANSI X3.292-1997]
SCSI-3 Fibre Channel Protocol FCP [ANSI X3.269-1996]
SCSI-3 Fibre Channel Protocol - 2 FCP-2 [T10/1144-D]
Serial Bus Protocol - 2 SBP-2 [T10/1155-D]
Serial Storage Architecture SCSI-2 Protocol SSA-S2P [ANSI X3.294-1996]
Serial Storage Architecture SCSI-3 Protocol SSA-S3P [ANSI NCITS.309-199x]

Shared Command Sets:
SCSI-3 Primary Commands SPC [ANSI X3.301-1997]
SCSI Primary Commands - 2 SPC-2 [T10/1236-D]

Device-Type Specific Command Sets:
SCSI-3 Block Commands SBC [ANSI NCITS.306-199x]
SCSI-3 Stream Commands SSC [T10/997-D]
SCSI-3 Medium Changer Commands SMC [T10/999-D]
SCSI-3 Multimedia Command Set MMC [ANSI X3.304-199x]
SCSI Multimedia Command Set - 2 MMC-2 [T10/1228-D]
SCSI-3 Controller Commands SCC [ANSI X3.276-1997]
SCSI Controller Commands - 2 SCC-2 [T10/1225-D]
SCSI Reduced Block Commands RBC [T10/1240-D]

Architecture Model:
SCSI-3 Architecture Model SAM [ANSI X3.270-1996]
SCSI Architecture Model - 2 SAM-2 [this standard]

Common Access Method:
SCSI Common Access Method CAM [ANSI X3.232-1996]
SCSI Common Access Method - 3 CAM-3 [T10/990-D]

The term SCSI is used wherever it is not necessary to distinguish between the versions of SCSI. The Small
Computer System Interface - 2 standard (ANSI X3.131-1994) and the architecture that it describes are referred to
herein as SCSI-2.
working draft SCSI Architecture Model - 2 (SAM-2) 3

T10/1157-D revision 4 29 March 1998
2 Normative references

2.1 Document and draft document availability information

Copies of the following documents can be obtained from ANSI: Approved ANSI standards, approved and draft
international standards (ISO, IEC, CEN/CENELEC) and approved foreign standards (including BSI, JIS, and DIN).
For further information, contact ANSI Customer Service Department at 212-642-4900 (phone), 212-302-1286 (fax)
or via the World Wide Wed at http://www.ansi.org.

At the time of publication, X3 practice was to make working draft standards and draft proposed American National
Standards available through Global Engineering at 800-854-7179 (toll free phone), 303-792-2181 (phone) or
303-792-2192 (fax).

2.2 Normative approved references for mandatory features

The following standards contain provisions which, through reference in the text, constitute mandatory provisions of
this standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and
parties to agreements based on this standard are encouraged to investigate the possibility of applying the most
recent editions of the standards listed below.

- SCSI-2 Small Computer System Interface SCSI-2 ANSI X3.131 - 1994

2.3 Normative approved references for optional features

The following standards contain provisions which, through reference in the text, constitute optional provisions of
this standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and
parties to agreements based on this standard are encouraged to investigate the possibility of applying the most
recent editions of the standards listed below.

- SCSI-2 Small Computer System Interface SCSI-2 ANSI X3.131 - 1994
4 working draft SCSI Architecture Model - 2 (SAM-2)

29 March 1998 T10/1157-D revision 4
3 Definitions, symbols, abbreviations, and conventions

3.1 Definitions

3.1.1 aborted command: An SCSI command that has been ended by aborting the task created to execute it.

3.1.2 ACA command: A command performed by a task with the ACA attribute (see 3.3, 3.1.5 and object definition
7).

3.1.3 additional sense code: A field in the sense data. See SPC-2.

3.1.4 application client: An object that is the source of SCSI commands.

3.1.5 auto contingent allegiance: The condition of a task set following the return of a CHECK CONDITION or
COMMAND TERMINATED status.

3.1.6 blocked (task state): The state of a task that is prevented from completing due to an ACA condition.

3.1.7 blocking boundary: A task set boundary denoting a set of conditions that inhibit tasks outside the boundary
from entering the Enabled state.

3.1.8 byte: An 8-bit construct.

3.1.9 call: The act of invoking a procedure.

3.1.10 client-server: A relationship established between a pair of distributed objects where one (the client)
requests the other (the server) to perform some operation or unit of work on the client's behalf.

3.1.11 client: An object that requests a service from a server.

3.1.12 command: A request describing a unit of work to be performed by a device server.

3.1.13 command descriptor block: A structure up to 16 bytes in length used to communicate a command from
an application client to a device server.

3.1.14 completed command: A command that has ended by returning a status and service response of TASK

COMPLETE, LINKED COMMAND COMPLETE, or LINKED COMMAND COMPLETE (WITH FLAG).

3.1.15 completed task: A task that has ended by returning a status and service response of TASK COMPLETE.
The actual events comprising the TASK COMPLETE response are protocol specific.

3.1.16 confirmation: A response returned to an object, which signals the completion of a service request.

3.1.17 confirmed protocol service: A service available at the protocol service interface, which requires
confirmation of completion.

3.1.18 current task: A task that is in the process of sending status or transferring command data to or from the
initiator.

3.1.19 destination device: The SCSI device to which a service delivery transaction is addressed. See source
device (3.1.84).
working draft SCSI Architecture Model - 2 (SAM-2) 5

T10/1157-D revision 4 29 March 1998
3.1.20 device server: An object within the logical unit which executes SCSI tasks according to the rules for task
management described in clause 7.

3.1.21 device service request: A request, submitted by an application client, conveying an SCSI command to a
device server.

3.1.22 device service response: The response returned to an application client by a device server on completion
of an SCSI command.

3.1.23 domain: An I/O system consisting of a set of SCSI devices that interact with one another by means of a
service delivery subsystem.

3.1.24 dormant (task state): The state of a task that is prevented from starting execution due to the presence of
certain other tasks in the task set.

3.1.25 enabled (task state): The state of a task that may complete at any time. Alternatively, the state of a task
that is waiting to receive the next command in a series of linked commands.

3.1.26 ended command: A command that has completed or aborted.

3.1.27 faulted initiator: The initiator to which a COMMAND TERMINATED or CHECK CONDITION status was
returned. The faulted initiator condition disappears when the ACA or CA condition resulting from the COMMAND
TERMINATED or CHECK CONDITION status is cleared.

3.1.28 faulted task set: A task set that contains a faulting task. The faulted task set condition disappears when
the ACA or CA condition resulting from the COMMAND TERMINATED or CHECK CONDITION status is cleared.

3.1.29 faulting command: A command that completed with a status of CHECK CONDITION or COMMAND
TERMINATED.

3.1.30 faulting task: A task that has completed with a status of CHECK CONDITION or COMMAND
TERMINATED.

3.1.31 function complete: A logical unit response indicating that a task management function has finished. The
actual events comprising this response are protocol specific.

3.1.32 hard reset: A target response to a reset event or a TARGET RESET task management function in which
the target performs the operations described in 5.6.6.

3.1.33 I/O operation: An operation defined by an unlinked SCSI command, a series of linked SCSI commands or
a task management function.

3.1.34 implementation: The physical realization of an object.

3.1.35 implementation-specific: A requirement or feature that is defined in an SCSI-3 standard but whose
implementation may be specified by the system integrator or vendor.

3.1.36 implementation option: An option whose actualization within an implementation is at the discretion of the
implementor.

3.1.37 initiator: An SCSI device containing application clients which originate device service and task
management requests to be processed by a target SCSI device.
6 working draft SCSI Architecture Model - 2 (SAM-2)

29 March 1998 T10/1157-D revision 4
3.1.38 interconnect subsystem: One or more physical interconnects which appear as a single path for the
transfer of information between SCSI devices in a domain.

3.1.39 in transit: Information that has been sent to a remote object but not yet received.

3.1.40 layer: A subdivision of the architecture constituted by subsystems of the same rank.

3.1.41 linked CDB: A CDB with the LINK bit in the CONTROL byte set to one.

3.1.42 linked command: One in a series of SCSI commands executed by a single task, which collectively make
up a discrete I/O operation. In such a series, each command has the same task identifier, and all, except the last,
have the LINK bit in the CDB CONTROL byte set to one.

3.1.43 logical unit: A target-resident entity which implements a device model and executes SCSI commands sent
by an application client.

3.1.44 logical unit number: A 64-bit identifier for a logical unit.

3.1.45 logical unit option: An option pertaining to a logical unit, whose actualization is at the discretion of the
logical unit implementor.

3.1.46 lower level protocol: A protocol used to carry the information representing upper level protocol
transactions.

3.1.47 media information: Information stored within an SCSI device, which is non-volatile (retained through a
power cycle) and accessible to an initiator through the execution of SCSI commands.

3.1.48 object: An architectural abstraction or "container" that encapsulates data types, services, or other objects
that are related in some way.

3.1.49 peer-to-peer protocol service: A service used by an upper level protocol implementation to exchange
information with its peer.

3.1.50 peer entities: Entities within the same layer.

3.1.51 pending task: A task that is not a current task.

3.1.52 physical interconnect: A single physical pathway for the transfer of information between SCSI devices in a
domain.

3.1.53 port: Synonymous with "service delivery port" (see 3.1.80).

3.1.54 procedure: An operation that can be invoked through an external calling interface.

3.1.55 protocol: The rules governing the content and exchange of information passed between distributed objects
through the service delivery subsystem.

3.1.56 protocol option: An option whose definition within an SCSI-3 protocol standard is discretionary.

3.1.57 protocol service confirmation: A signal from the lower level protocol service layer notifying the upper
layer that a protocol service request has completed.

3.1.58 protocol service indication: A signal from the lower level protocol service layer notifying the upper level
that a protocol transaction has occurred.
working draft SCSI Architecture Model - 2 (SAM-2) 7

T10/1157-D revision 4 29 March 1998
3.1.59 protocol service request: A call to the lower level protocol service layer to begin a protocol service
transaction.

3.1.60 protocol service response: A reply from the upper level protocol layer in response to a protocol service
indication.

3.1.61 queue: The arrangement of tasks within a task set, usually according to the temporal order in which they
were created. See "task set" (3.1.96).

3.1.62 receiver: A client or server that is the recipient of a service delivery transaction.

3.1.63 reference model: A standard model used to specify system requirements in an implementation-
independent manner.

3.1.64 request: A transaction invoking a service.

3.1.65 request-response transaction: An interaction between a pair of distributed, cooperating objects,
consisting of a request for service submitted to an object followed by a response conveying the result.

3.1.66 request-confirmation transaction: An interaction between a pair of cooperating objects, consisting of a
request for service submitted to an object followed by a response from the object confirming request completion.

3.1.67 reset event: A protocol-specific event which may trigger a hard reset response from an SCSI device as
described in 5.6.6.

3.1.68 response: A transaction conveying the result of a request.

3.1.69 SCSI application layer: The protocols and procedures that implement or invoke SCSI commands and task
management functions by using services provided by an SCSI protocol layer.

3.1.70 SCSI device: A device that is connected to a service delivery subsystem and supports an SCSI application
protocol.

3.1.71 SCSI device identifier: An address by which an SCSI device is referenced within a domain.

3.1.72 SCSI I/O system: An I/O system, consisting of two or more SCSI devices, an SCSI interconnect and an
SCSI protocol, which collectively interact to perform SCSI I/O operations.

3.1.73 SCSI protocol layer: The protocol and services used by an SCSI application layer to transport data
representing an SCSI application protocol transaction.

3.1.74 sender: A client or server that originates a service delivery transaction.

3.1.75 sense data: Data returned to an application client as a result of an autonsense operation, asynchronous
event report, or REQUEST SENSE command (see 5.6.4 and SPC-2).

3.1.76 sense key: A field in the sense data. See SPC-2.

3.1.77 server: An SCSI object that performs a service on behalf of a client.

3.1.78 service: Any operation or function performed by an SCSI-3 object, which can be invoked by other SCSI-3
objects.
8 working draft SCSI Architecture Model - 2 (SAM-2)

29 March 1998 T10/1157-D revision 4
3.1.79 service delivery failure: Any non-recoverable error causing the corruption or loss of one or more service
delivery transactions while in transit.

3.1.80 service delivery port: A device-resident interface used by the application client, device server or task
manager to enter and retrieve requests and responses from the service delivery subsystem. Synonymous with
"port" (3.1.53).

3.1.81 service delivery subsystem: That part of an SCSI I/O system which transmits service requests to a
logical unit or target and returns logical unit or target responses to an initiator.

3.1.82 service delivery transaction: A request or response sent through the service delivery subsystem.

3.1.83 signal: (n) A detectable asynchronous event possibly accompanied by descriptive data and parameters.
(v) The act of generating such an event.

3.1.84 source device: The SCSI device from which a service delivery transaction originates. See destination
device (see 3.1.19).

3.1.85 subsystem: An element in a hierarchically partitioned system which interacts directly only with elements in
the next higher division or the next lower division of that system.

3.1.86 suspended information: Information stored within a logical unit that is not available to any pending tasks.

3.1.87 target: An SCSI device which receives SCSI commands and directs such commands to one or more
logical units for execution.

3.1.88 task: An object within the logical unit representing the work associated with a command or group of linked
commands.

3.1.89 task abort event: An event or condition indicating that the task has been aborted by means of a task
management function.

3.1.90 task completion event: An event or condition indicating that the task has ended with a service response of
TASK COMPLETE.

3.1.91 task ended event: An event or condition indicating that the task has completed or aborted.

3.1.92 task management function: A task manager service which can be invoked by an application client to
affect the execution of one or more tasks.

3.1.93 task management request: A request submitted by an application client, invoking a task management
function to be executed by a task manager.

3.1.94 task management response: The response returned to an application client by a task manager on
completion of a task management request.

3.1.95 task manager: A server within the target which executes task management functions.

3.1.96 task set: A group of tasks within a target device, whose interaction is dependent on the queuing and auto
contingent allegiance rules of clause 7.

3.1.97 task slot: Resources within the logical unit that may be used to contain a task.
working draft SCSI Architecture Model - 2 (SAM-2) 9

T10/1157-D revision 4 29 March 1998
3.1.98 third-party command: An SCSI command which requires a logical unit within the target device to assume
the initiator role and send an SCSI command to a target device.

3.1.99 transaction: A cooperative interaction between two objects, involving the exchange of information or the
execution of some service by one object on behalf of the other.

3.1.100 unconfirmed protocol service: A service available at the protocol service interface, which does not
result in a completion confirmation.

3.1.101 unlinked command: An SCSI-3 command having the LINK bit set to zero in the CDB CONTROL byte.

3.1.102 upper level protocol: An application-specific protocol executed through services provided by a lower
level protocol.

3.2 Acronyms

ACA Auto Contingent Allegiance (see 3.1.5)
AER Asynchronous Event Reporting
CAM Common Access Method (see 1.2)
CDB Command Descriptor Block (see 3.1.13)
LLP Lower Level Protocol (see 3.1.46)
LUN Logical Unit Number (see 3.1.44)
SBC SCSI-3 Block Commands (see 1.2)
SCSI Either SCSI-2 or SCSI-3.
SCSI-2 The architecture defined by the Small Computer System Interface - 2 standard (ANSI X3.131-1994)
SCSI-3 The architecture defined by the family of standards described in 1.2
SIM SCSI Interface Module (a component of CAM software, see CAM)
SPC-2 SCSI Primary Commands -2 (see 1.2)
ULP Upper Level Protocol (see 3.1.102)

3.3 Keywords

3.3.1 expected: A keyword used to describe the behavior of the hardware or software in the design models
assumed by this standard. Other hardware and software design models may also be implemented.

Editors Note 1 - ROW: The second sentence in the definition of invalid should be moved to clause 5.

3.3.2 invalid: A keyword used to describe an illegal or unsupported bit, byte, word, field or code value. Receipt by
a device server of an invalid bit, byte, word, field or code value shall be reported as error.

3.3.3 mandatory: A keyword indicating an item that is required to be implemented as defined in this standard.

3.3.4 may: A keyword that indicated flexibility of choice with no implied preference.

3.3.5 obsolete: A keyword indicating that an item was defined in prior SCSI standards but has been removed from
this standard.
10 working draft SCSI Architecture Model - 2 (SAM-2)

29 March 1998 T10/1157-D revision 4
3.3.6 option, optional: Keywords that describe features that are not required to be implemented by this standard.
However, if any optional feature defined by this standard is implemented, then it shall be implemented as defined in
this standard.

3.3.7 protocol-specific: Implementation of the referenced item is defined by a transport protocol standard (see
1.2).

3.3.8 reserved: A keyword referring to bits, bytes, words, fields and code values that are set aside for future
standardization. A reserved bit, byte, word or field shall be set to zero, or in accordance with a future extension to
this standard. Recipients may check reserved bits, bytes, words or fields for zero values. Receipt of reserved code
values in defined fields shall be reported as error.

3.3.9 shall: A keyword indicating a mandatory requirement. Designers are required to implement all such
mandatory requirements to ensure interoperability with other products that conform to this standard.

3.3.10 should: A keyword indicating flexibility of choice with a strongly preferred alternative; equivalent to the
phrase "it is strongly recommended".

3.3.11 vendor-specific: Specification of the referenced item is determined by the device vendor.

3.4 Editorial Conventions

Certain words and terms used in this standard have a specific meaning beyond the normal English meaning.
These words and terms are defined either in the glossary or in the text where they first appear.

Upper case is used when referring to the name of a numeric value defined in this specification or a formal attribute
possessed by an object. When necessary for clarity, names of objects, procedures, parameters or discrete states
are capitalized or set in bold type. Names of fields are identified using small capital letters (e.g., LINK bit).

Callable procedures are identified by a name in bold type, such as Execute Command (see clause 5). Names of
procedural arguments are denoted by capitalizing each word in the name. For instance, Task Identifier is the name
of an argument in the Execute Command procedure call.

Quantities having a defined numeric value are identified by large capital letters. CHECK CONDITION, for example,
refers to the numeric quantity defined in table 12. Quantities having a discrete but unspecified value are identified
using small capital letters. As an example, LINKED COMMAND COMPLETE (WITH FLAG), indicates a quantity returned
by the Execute Command procedure call (see clause 5). Such quantities are usually associated with an event or
indication whose observable behavior or value is specific to a given implementation standard.

Lists sequenced by letters (e.g., a-red, b-blue, c-green) show no priority relationship between the listed items.
Numbered lists (e.g., 1-red, 2-blue, 3-green) show a priority ordering between the listed items.

If a conflict arises between text, tables, or figures, the order of precedence to resolve the conflicts is text; then
tables; and finally figures. Not all tables or figures are fully described in the text. Tables show data format and
values.

Notes do not constitute any requirements for implementors.
working draft SCSI Architecture Model - 2 (SAM-2) 11

T10/1157-D revision 4 29 March 1998
3.5 Numeric Conventions

Digits 0-9 in the text of this standard that are not immediately followed by lower-case "b" or "h" are decimal values.
Digits 0 and 1 immediately followed by lower case "b" are binary values. Digits 0-9 and the upper case letters
"A"-"F" immediately followed by lower-case "h" are hexadecimal values.

Large numbers are not separated by commas or spaces (e.g., 12345; not 12,345 or 12 345).

3.6 Objects and object notation

The SCSI architecture is defined in terms of objects. As specified in this standard, objects are abstractions
encapsulating a set of related functions, data types and other objects. Certain objects, such as an interconnect,
may correspond to a physical entity while others, such as a task, may only exist conceptually. That is, although
such objects exhibit a well-defined, observable set of behaviors, they do not exist as separate physical elements.

An object is a container that may enclose single entities and other objects. For example, an SCSI device may
contain logical units. A logical unit may have tasks, a task set and so forth. The following clauses describe
notational and graphical conventions for specifying objects.

3.6.1 Notation for objects

The following symbols are used to define the composition of an object.

= “is composed of” This symbol indicates that the object named on the left is composed of the objects
named of the right.

+ “together with” This symbol collects objects into a group. No ordering is implied. In the expression:
A = B + C

object A is composed of B together with C.

[|] “select one of” This is equivalent to an "exclusive or" operation. In the expression:
A = [B|C|D]

object A is composed of one object selected from B, C or D.

() “optional” The objects enclosed in parenthesis are optional. In the expression:
A = B + (C)

object A includes B and, optionally, C.

{ } “instances of” A set of objects enclosed within curly brackets may occur any number of times in a
given instance. No physical ordering is implied. The brackets may be indexed. For
example, M{…}N indicates any number of instances from M to N. Thus:

{…}3 denotes 0, 1, 2 or 3 instances.
3{…} denotes 3 or more instances. The upper limit is implementation or protocol

specific.
3{…}3 denotes exactly 3 instances.
3{…}5 denotes from 3 to 5 instances.

“xxx” ASCII character
string

Object consists of the ASCII encodings for the characters string enclosed in quotation
marks.
12 working draft SCSI Architecture Model - 2 (SAM-2)

29 March 1998 T10/1157-D revision 4
There is no physical ordering implied by the sequence in which objects are specified in a grouping. Thus, the term
"8{byte}8" or the expression "A + B + C " in an object definition says nothing about the physical ordering of these
objects. A physically contiguous vector of items is denoted by means of the array notation specified above.

3.6.2 Objects containing addresses, identifiers and numeric parameters

This standard defines certain externally referenced numeric objects, such as addresses. By convention, such an
object is made up of two components: a storage object specifying the maximum size of the numeric field and a set
of allowable values. The following is an example of an identifier object definition.

Ident_a = byte ← [0 | … | 243]

The object "Ident_a" is an identifier composed of an 8-bit "container" (the 'byte' object) and the binary encoding of
a single value from 0 to 243. Values not in the range are reserved. The left arrow operator ("←") indicates that the
storage object physically contains the encoding for one of the allowed values. Unless specified otherwise in the
object definition, the range of permissible values is implicitly all those that can be held by the container. For
example, the definition

Ident_a = byte is equivalent to Ident_a = byte ← [0 | … | 255]

3.6.3 Predefined objects

The following predefined objects are used throughout this standard:

Constant: Object containing a fixed value. The container size and contents are
implementation-specific.

Buffer = Byte<nn>: Byte array of size nn.

Value: Numeric quantity.

nn binary encoded
value

Object consists of the binary encoding representing the specified value. For example:
A = 54

defines object A as the binary encoding of the decimal value 54.

… range Denotes a sequential set of discrete values. Thus:
[1|…|100] denotes one out of a set of binary encoded integers between 1 and

100.
["A"|…|"Z"] denotes one out of a set of ASCII-encoded alphabetic characters

between "A" and "Z".
Unless stated otherwise, literals outside the range of specified values are reserved for
future standardization.

← “physically
contains”

As in A ← B. Object A physically contains object B.
Use of this notation is restricted to the specification of object addresses and identifiers
as described below.

<nn> vector of objects Denotes "nn" physically contiguous instances of the object. Thus, for example:
byte<10>

defines a physically contiguous vector of ten bytes.

/* …*/ remark Encloses a comment.
working draft SCSI Architecture Model - 2 (SAM-2) 13

T10/1157-D revision 4 29 March 1998
Flag = bit ← [0|1]: A two-valued quantity as shown.

3.6.4 Hierarchy diagrams

Hierarchy diagrams show how objects are related to each other. The hierarchy diagram of figure 3, for example,
shows the relationships among the objects comprising the "Book" object described in the following definition.

Book = 1{Chapter} + (Index) + Table of Contents + (Preface)
Chapter = 1{Section} + 0{Figure}
Preface = 1{Introductory Text} + 0{Figure}

As given in the object definition, a Book object consists of one or more Chapters, a Table of Contents, an optional
Preface and an optional Index. In the corresponding hierarchy diagram, labeled boxes denote the above objects.
The composition and relation of one object to others is shown by the connecting lines. In this case, the connecting
lines indicate the relationship between "Book" and its constituent objects "Chapter", "Index", "Table of Contents"
and “Preface”. Similarly, connecting lines show that "Chapter" contains objects "Section" and "Figure". Note that
the Figure object may also be a component of Preface.

The hierarchy diagram does not show multiple instances of an object or the fact that certain objects are optional. In
this example, the Figure object is shown only once, even though a chapter or preface may have several (or no)
instances of this object. Similarly, the Index object is shown even though it too is optional.

3.6.5 Notation for procedures and functions

In this standard, the model for functional interfaces between objects is the callable procedure. Such interfaces are
specified using the following notation:

[Result =] Procedure Name ([input-1] [,input-2] …] || [output-1] [,output-2] …)

Where:

Result: A single value representing the outcome of the procedure or function.

Procedure Name: A descriptive name for the function to be performed.

"(…)": Parentheses enclosing the lists of input and output arguments.

Figure 3 — Example hierarchy diagram

Section

Book

Chapter Preface Table of
Contents

Index

Figure Introductory
Text
14 working draft SCSI Architecture Model - 2 (SAM-2)

29 March 1998 T10/1157-D revision 4
Input-1, Input-2, …: A comma-separated list of names identifying caller-supplied input data objects.

Output-1, Output-2, …: A comma-separated list of names identifying output data objects to be returned by
the procedure.

"||": A separator providing the demarcation between inputs and outputs. Inputs are listed
to the left of the separator; outputs are listed to the right.

"[…]": Brackets enclosing optional or conditional parameters and arguments.

The data objects are specified using the notation of 3.6.1. This notation allows any data objects to be specified as
inputs and outputs. The following is an example of a procedure specification:

Found = Search (Pattern, Item List || [Item Found])

Where:

Found = Flag
Flag , which, if set, indicates that a matching item was located.

Input Arguments:

Pattern = … /* Definition of Pattern object */
Object containing the search pattern.

Item List = Item<NN> /* Definition of Item List as an array of NN Item objects*/
Contains the items to be searched for a match.

Output Arguments:

Item Found = Item … /* Item located by the search procedure */
This object is only returned if the search succeeds.

Predefined objects commonly used as arguments are defined in 3.6.3.
working draft SCSI Architecture Model - 2 (SAM-2) 15

T10/1157-D revision 4 29 March 1998
3.6.6 Notation for state diagrams

All state diagrams use the notation shown in figure 4.

The state diagram is followed by a list of the state transitions, using the transition labels. Each transition is
described in the list with particular attention to the conditions that cause the transition to occur and special
conditions related to the transition. Using figure 4 as an example, the transition list might read as follows:

Transition S0:S1: This transition occurs when state S0 is exited and state S1 is entered.

Transition S1:S0: This transition occurs when state S1 is exited and state S0 is entered.

Transition S0:S0: This transition occurs when state S0 transitions to itself. It is particularly important to note that
the actions taken whenever state S0 is entered are repeated every time this transition occurs.

A system specified in this manner has the following properties:

a) Time elapses only within discrete states;
b) State transitions are logically instantaneous; and
c) Every time a state is entered, the actions of that state are started. Note that this means that a transition

that points back to the same state will restart the actions from the beginning.

Figure 4 — Example state diagram

S1:S0

S1: State 1
Actions taken on entry to S1

S0: State 0
Actions taken on entry to S0

S0:S1

S0:S0

Transition labels
16 working draft SCSI Architecture Model - 2 (SAM-2)

29 March 1998 T10/1157-D revision 4
4 SCSI-3 Architecture Model

4.1 Introduction

The purpose of the SCSI-3 architecture model is to:

a) Provide a basis for the coordination of SCSI-3 standards development which allows each standard to be
placed into perspective within the overall SCSI-3 Architecture model;

b) Identify areas for developing standards and provide a common reference for maintaining consistency
among related standards so that independent teams of experts may work productively and independently
on the development of standards within each functional area; and

c) Provide the foundation for application compatibility across all SCSI-3 interconnect and protocol
environments by specifying generic requirements that apply uniformly to all implementation standards
within each functional area.

The development of this standard is assisted by the use of an abstract model. To specify the external behavior of a
real SCSI-3 system, elements in a real system are replaced by functionally equivalent components within this
model. Only externally observable behavior is retained as the standard of behavior. The description of internal
behavior in this standard is provided only to support the definition of the observable aspects of the model. Those
aspects are limited to the generic properties and characteristics needed for host applications to interoperate with
SCSI-3 devices in any SCSI-3 interconnect and protocol environment. As such, the model does not address other
requirements which may be essential to some I/O system implementations such as the mapping from SCSI device
addresses to network addresses, the procedure for discovering SCSI-3 devices on a network and the definition of
network authentication policies for SCSI initiators or targets. These considerations are outside the scope of the
architecture model.

The reader not familiar with the concept of abstract modeling is cautioned that concepts introduced in the
description of an SCSI-3 I/O system constitute an abstraction despite a similar appearance to concepts possibly
found in real systems. Therefore, a real SCSI-3 I/O system need not be implemented as described by the model.
Such a system, regardless of how it is implemented, shall, however, comply with the requirements of this and all
other applicable standards.

The SCSI-3 architecture model is described in terms of objects, protocol layers and service interfaces between
objects. As discussed in 3.6, an object may be a single numeric parameter, such as a logical unit number, or a
complex entity that performs a set of operations or services on behalf of another object.

Service interfaces are defined between distributed objects and protocol layers. The template for a distributed
service interface is the client-server model described in 4.2. Clause 4.4 specifies the structure of an SCSI I/O
system by defining the relationship among objects. The set of distributed services to be provided are specified in
clauses 5 and 6.

Requirements that apply to each SCSI-3 protocol standard are specified in the protocol service model described in
5.3 and 6.8. The model describes required behavior in terms of layers, objects within layers and protocol service
transactions between layers.

4.2 The SCSI-3 distributed service model

Service interfaces between distributed objects are represented by the client-server model shown in figure 5.
Dashed horizontal lines with arrowheads denote a single request-response transaction as it appears to the client
and server. The solid lines with arrowheads indicate the actual transaction path through the service delivery
working draft SCSI Architecture Model - 2 (SAM-2) 17

T10/1157-D revision 4 29 March 1998
subsystem. In such a model, each client or server is a single thread of execution which runs concurrently with all
other clients or servers.

A client-server transaction is represented as a remote procedure call with inputs supplied by the caller (the client).
The procedure executed by the server returns outputs and a procedure status. A client directs requests to a
remote server, via the client's service delivery subsystem, and receives a completion response or a failure
notification. The request, which identifies the server and the service to be performed, includes the input data. The
response conveys the output data and request status. The function of the service delivery subsystem is to
transport an error-free copy of the request or response between sender and receiver. A failure notification
indicates that a condition has been detected, such as a reset, or service delivery failure, that precludes request
completion.

As seen by the client, a request becomes pending when it is passed to the service delivery subsystem for
transmission. The request is complete when the server response is received or when a failure notification is sent.
As seen by the server, the request becomes pending upon receipt and completes when the response is passed to
its service delivery subsystem for return to the client. As a result there will usually be a time skew between the
server and client's perception of request status and logical unit state. All allusions to a pending command or task
management function in this standard are in the application client's frame of reference.

Client-server relationships are not symmetrical. A client may only originate requests for service. A server may only
respond to such requests. The client calls the server-resident procedure and waits for completion. From the client's
standpoint, the behavior of a remote service invoked in this manner is indistinguishable from a conventional
procedure call. In this model, confirmation of successful request or response delivery by the sender is not
required. The model assumes that delivery failures will be detected by the client's service delivery port.

4.3 The SCSI-3 client-server model

As shown in figure 6, each SCSI-3 target device provides two classes of service, device services executed by the
logical units under the control of the target and task management functions performed by the task manager. A
logical unit is an object that implements one of the device functional models described in the SCSI-3 command
standards and executes SCSI-3 commands such as reading from or writing to the media. Each pending SCSI
command or series of linked commands defines a unit of work to be performed by the logical unit. As described

Figure 5 — Client-Server model

Service Delivery Subsystem

Client

Client-Server Transaction

Server Response

Server Request

Protocol Service
Interface

Server
18 working draft SCSI Architecture Model - 2 (SAM-2)

29 March 1998 T10/1157-D revision 4
below, each unit of work is represented within the target by a task which can be externally referenced and
controlled through requests issued to the task manager.

All requests originate from application clients residing within an initiator device. An application client represents a
thread of execution whose functionality is independent of the interconnect and SCSI-3 protocol. In an
implementation, that thread could correspond to the device driver and any other code within the operating system
that is capable of managing I/O requests without requiring knowledge of the interconnect or SCSI-3 protocol. In
the architecture model, an application client is created to issue a single SCSI-3 command or task management
function; it ceases to exist once the command or task management function ends. Consequently, there is one
application client for each pending command or task management request. Within the initiator, one or more
controlling entities, whose definition is outside the scope of the architecture model, oversee the creation of and
interaction among application clients.

As described in 4.2, each request takes the form of a procedure call with arguments and a status to be returned.
An SCSI-3 command is issued as a request for device service directed to a device server within a logical unit.
Each device service request contains a command descriptor block, defining the operation to be performed, along
with a list of command-specific inputs and other parameters specifying how the command is to be processed. If
supported by a logical unit, a sequence of linked commands may be used to define an extended I/O operation.

A task is an object within the logical unit representing the work associated with a command or series of linked
commands. A new command or the first in a series of linked commands causes the creation of a task. The task
persists until a command completion response is sent or until the task is ended by a task management function or
exception condition. Clause 5.5.1 gives an example of the processing for a single command. Clause 5.5.2 gives
an example of linked command processing.

An application client may request execution of a task management function through a request directed to the task
manager. Clause 6.9 shows the interactions between the task manager and application client when a task
management request is processed.

4.4 The SCSI-3 structural model

This clause uses the notation for hierarchy diagrams of 3.6.4 and the object notation specified in 3.6.1 to formally
define the structure of an SCSI-3 I/O system as seen by an application client. Certain object definitions may
include one or more numeric parameters defining an allowable range for addresses or identifiers. The range of

Figure 6 — SCSI client-server model

Logical
Unit

Device
Server

Task
ManagerTask Management Response

TargetInitiator

Application
Client

Device Service Request

Device Service Response

Task Management Request
working draft SCSI Architecture Model - 2 (SAM-2) 19

T10/1157-D revision 4 29 March 1998
addresses or identifiers that shall be supported by an SCSI-3 protocol implementation shall be defined in the
SCSI-3 protocol standard that applies to that implementation. Such objects, however, shall not exceed the values
specified in this standard. In addition, unless specified otherwise in this standard, an address or identifier
supported by an SCSI-3 protocol may be less than the maximum defined herein. To ensure compatibility with any
SCSI-3 protocol, the protocol-independent portions of a system implementation should be designed to use the
address or identifier specifications as they appear in this standard.

The SCSI-3 structural model represents a view of the elements comprising an SCSI-3 I/O system as seen by the
application clients interacting with the system through the service delivery port. In an implementation, this view is
similar to that seen by a CAM device driver interacting with the system through the CAM SIM layer. This model is
defined as a hierarchy of objects. As shown in figure 7, the fundamental object is the SCSI domain, which
represents an I/O system. A domain is made up of SCSI devices and a service delivery subsystem, which
transports commands and data. An SCSI device, in turn, may consist of logical units and so forth.

Figure 7 — SCSI I/O system and domain model

I/O System

Domain

SCSI DeviceSCSI DeviceSCSI DeviceSCSI Device

Service Delivery Subsystem
20 working draft SCSI Architecture Model - 2 (SAM-2)

29 March 1998 T10/1157-D revision 4
Figure 8 shows the main functional components of the SCSI hierarchy. The following clauses define these
components in greater detail using the conventions of 3.6.

4.5 SCSI domain

Object Definition 1: SCSI Domain

SCSI Domain = 2{SCSI Device} + Service Delivery Subsystem

Figure 8 — SCSI hierarchy

Figure 9 — Domain functional model

Initiator

Domain

SCSI
Device

Service
Delivery

Subsystem

Service
Delivery Port

Interconnect
Subsystem

Task
Manager

Logical
Unit

Application
Client

Device
Server

Task Set
(Queue)

Target

SCSI DeviceSCSI DeviceSCSI DeviceSCSI Device

Service Delivery Subsystem

Service
Delivery

Port

Service
Delivery

Port

Service
Delivery

Port

Service
Delivery

Port
working draft SCSI Architecture Model - 2 (SAM-2) 21

T10/1157-D revision 4 29 March 1998
Object Descriptions:

The domain boundaries are established by the system implementor, within the constraints of a specific SCSI-3
protocol and interconnect standard.

4.6 The service delivery subsystem

Object Definition 2: Service Delivery Subsystem

Service Delivery Subsystem = 2{Service Delivery Port} + Interconnect Subsystem

Object Descriptions:

The service delivery subsystem is assumed to provide error-free transmission of requests and responses between
client and server. Although a device driver in an SCSI-3 implementation may perform these transfers through
several interactions with its SCSI-3 protocol layer, the architecture model portrays each operation, from the
viewpoint of the application client, as occurring in one discrete step. In this model, the data comprising an outgoing

Figure 10 — Domain hierarchy

SCSI Device: A device that originates or services SCSI-3 commands. As described in
4.7, an SCSI-3 device originating a command is called an initiator; a device
containing logical units that service commands is called a target.

Service Delivery Subsystem: Subsystem through which clients and servers communicate (see 4.6).

Figure 11 — Service delivery subsystem hierarchy

Service Delivery Port: Device-resident component of the service delivery subsystem (see object
definition 3). This object may contain hardware and software that
implements the protocols and interface to the interconnect subsystem.

Interconnect
Subsystem:

A set of one or more physical interconnects that appear to a client or server
as a single path for the transfer of data between SCSI devices.

SCSI
Device

Service
Delivery

Subsystem

SCSI
Domain

Service
Delivery Port

Service
Delivery

Subsystem

Interconnect
Subsystem
22 working draft SCSI Architecture Model - 2 (SAM-2)

29 March 1998 T10/1157-D revision 4
request is sent in a single "package" containing all the information required to execute the remote procedure call.
Similarly, an incoming server response is returned in a package enclosing the output data and status. The request
or response package is "sent" when it is passed to the service delivery port for transmission; it is "in transit" until
delivered and "received" when it has been forwarded to the receiver via the destination device's service delivery
port.

4.6.1 Synchronizing client and server states

The client is usually informed of changes in server state through the arrival of server responses. In the architecture
model such state changes occur after the server has sent the associated response and possibly before the
response has been received by the initiator. Some SCSI-3 protocols, however, may require the target to verify that
the response has been received successfully before completing a state change. State changes controlled in this
manner are said to be synchronized. Since synchronized state changes are not assumed or required by the
architecture model, there may be a time lag between the occurrence of a state change within the target and the
initiator’s awareness of that change.

The model assumes that state synchronization, if required by an SCSI-3 protocol standard, is enforced by the
service delivery subsystem transparently to the server. That is, whenever the server invokes a protocol service to
return a response as described in 6.8 and 5.3, it is assumed that the service delivery port for such a protocol will
not return control to the server until the response has been successfully delivered to the initiator.

4.6.2 Request/Response ordering

In this standard, request or response transactions are said to be in order if, relative to a given pair of sending and
receiving devices, transactions are delivered in the order they were sent.

A sender may occasionally require control over the order in which its requests or responses are presented to the
receiver. For example, the sequence in which requests are received is often important whenever an initiator issues
a series of SCSI-3 commands with the ORDERED attribute to a logical unit as described in clause 7. In this case,
the order in which these commands are completed, and hence the final state of the logical unit, may depend on the
order in which these commands are received. Similarly, the initiator acquires knowledge about the state of pending
commands and task management functions and may subsequently take action based on the nature and sequence
of target responses. For example, if the initiator aborts a command whose completion response is in transit and
the abort response is received out of order, the initiator could incorrectly conclude that no further responses are
expected from that command.

The manner in which ordering constraints are established is implementation-specific. An implementation may
choose to delegate this responsibility to the application client (e.g., the device driver) or the service delivery port.
In some cases, in-order delivery may be an intrinsic property of the transport subsystem or a requirement
established by the SCSI-3 protocol standard.

For convenience, the SCSI-3 architecture model assumes in-order delivery to be a property of the service delivery
subsystem. This assumption is made to simplify the description of behavior and does not constitute a requirement.
In addition, this specification makes no assumption about, or places any requirement on the ordering of requests or
responses between one sending device and several receiving devices.
working draft SCSI Architecture Model - 2 (SAM-2) 23

T10/1157-D revision 4 29 March 1998
4.7 SCSI device models

Figure 12 shows the functional models for SCSI devices that can perform only target or initiator functions or are
capable of supporting both functions. The definition and hierarchy are shown in object definition 3 and figure 13.

Object Definition 3: SCSI Device

SCSI Device = [Initiator | Target | Target + Initiator] + 1{Service Delivery Port}
Service Delivery Port = Implementation-specific hardware and software

Figure 12 — SCSI device functional models

Figure 13 — SCSI Device hierarchy diagram

Appli-
cation
Client

Logical
Unit

Service
Delivery

Port

Service
Delivery

Subsystem

Service
Delivery

Port

Service
Delivery

Subsystem

SCSI Device

Service
Delivery

Port

Service
Delivery

Subsystem

Combined ModelInitiator Model Target Model

SCSI Device SCSI Device

Logical
Unit

Target

Appli-
cation
Client

Initiator

Service
Delivery Port

TargetInitiator

SCSI
Device
24 working draft SCSI Architecture Model - 2 (SAM-2)

29 March 1998 T10/1157-D revision 4
Object Descriptions:

A device is referred to by its role when it participates in an I/O operation. That is, such a device is called a target
when it executes an SCSI-3 command or task management function and an initiator when it issues an SCSI-3
command or task management request.

The following sections formally define the target and initiator device models.

4.7.1 SCSI initiator model

Object Definition 4: Initiator

Initiator = 0{Application Client}

Object Descriptions:

4.7.2 SCSI target model

Object Definition 5: Target

Target = 0{Logical Unit} + Logical Unit 0 + 1{Target Identifier} + Task Manager
Target Identifier = bit<64> ← [0|...|264-1]

Object Descriptions:

Initiator An SCSI-3 device which is capable of originating SCSI-3 commands and
task management requests (see 4.7.1).

Target An SCSI-3 device which is capable of executing SCSI-3 commands and
task management requests (see 4.7.2).

Service Delivery Port Device-resident component of the Service Delivery Subsystem containing
the hardware and software needed to implement an SCSI-3 protocol and
an interface to the interconnect subsystem (see object definition 2).

Initiator Source of commands and task management functions. There is one
application client for each pending command or task management function.

Figure 14 — Target hierarchy diagram

Target Identifier: 64 bits identifying the target device.
As object definition 5 shows, a target device may respond to more than one
target identifier. Each target identifier shall be unique within the scope of
the domain. The set of identifiers by which a target device is referenced
shall be the same for every initiator in the domain.

Task
Manager

Logical
Unit

Target
Identifier

Target
working draft SCSI Architecture Model - 2 (SAM-2) 25

T10/1157-D revision 4 29 March 1998
4.7.3 The Task Manager

The task manager controls the execution of one or more tasks by servicing the task management functions
specified in clause 6. Its external address is equal to the target identifier. As specified in object definition 5, there is
one task manager per target device.

The order in which task management requests are executed is not specified by this standard. In particular, this
standard does not require in-order delivery of such requests, as defined in 4.6.2, or execution by the task manager
in the order received. To guarantee the execution order of task management requests referencing a specific logical
unit, an initiator should, therefore, not have more than one such request pending to that logical unit.

4.7.4 Logical Unit

Object Definition 6: Logical Unit

Logical Unit = Device server + Logical Unit Number + (Logical Unit) + Task Set
Logical Unit Number = bit<64> ← [0|...|264-1]
Logical Unit Identifier = Target Identifier + Logical Unit Number
Task Set = [0{Tagged Task} + 0{Untagged Task} | 0{Untagged Task}]

Object Descriptions:

Task Manager: Server that controls one or more tasks in response to task management
requests.

Logical Unit: Object to which SCSI-3 device commands are directed.

Logical Unit 0: A logical unit whose logical unit number is zero (see 4.7.4).

Figure 15 — Logical Unit hierarchy diagram

Logical Unit: A nested logical unit as specified in 4.7.5.

Device Server: Object that executes SCSI commands and manages the task set according
to the rules defined in clause 7.

Task Set: A set of tasks whose interaction is determined by the rules for task set
management specified in clause 7 and the auto contingent allegiance rules
specified in 5.6.1. As defined in object definition 6, there shall be one task
set per logical unit.

Logical Unit
Number

Task
Set

Device
Server

Logical
Unit

Tagged
Task

Untagged
Task
26 working draft SCSI Architecture Model - 2 (SAM-2)

29 March 1998 T10/1157-D revision 4
Object Definition 7: Task

Task = [Tagged Task | Untagged Task]
Tagged Task = Tagged Task Identifier + Task Attribute
Untagged Task = Untagged Task Identifier + SIMPLE
Tag = bit<64> ← [0|...|264-1]
Task Attribute = [SIMPLE | ORDERED | HEAD OF QUEUE | ACA]

Object Definition 8: Task Identifier

Task Identifier = [Untagged Task Identifier | Tagged Task Identifier]
Tagged Task Identifier = Initiator Identifier + Logical Unit Identifier + Tag
Untagged Task Identifier = Initiator Identifier + Logical Unit Identifier

Object Definition 9: Initiator Identifier

Initiator Identifier = bit<64> ← [0|...|264-1]

Object Definition 10: Task Address

Task Address = [Untagged Task Address | Tagged Task Address]
Tagged Task Address = Logical Unit Identifier + Tag
Untagged Task Address = Logical Unit Identifier

Object Descriptions:

Tagged Task: A task whose identifier includes an initiator-specified component (tag) and
one of the task attributes specified in object definition 7.

Untagged task: A task whose identifier does not include a tag component (see object
definition 7).

Logical Unit Number: An encoded identifier for the logical unit. If the logical unit is nested, the
logical unit number shall have the format described in 4.7.5.

Logical Unit Identifier: External identifier used by an initiator to reference the logical unit.

Tag: 64-bit identifier assigned by the initiator.

Initiator Identifier: Protocol-specific identifier of the initiator from which the command
originated (see 4.7.1).

Logical Unit Identifier: Logical unit identifier as defined in object definition 6.

Task Attribute: One of the attributes described in 7.5.

Task Address: The address used by an application client to reference a task.

Tagged Task Address: The address used by an application client to reference a tagged task.
When used as an argument in a device server or task manager request, the
service delivery subsystem will convert this parameter to a tagged task
identifier before passing it to the server.

Untagged Task Address: The address used by an application client to reference an untagged task.
When used as an argument in a device server or task manager request, the
service delivery subsystem will convert this parameter to an untagged task
identifier before passing it to the server.
working draft SCSI Architecture Model - 2 (SAM-2) 27

T10/1157-D revision 4 29 March 1998
Every SCSI-3 protocol shall support tagged and untagged tasks. Support for the creation of tagged tasks by a
logical unit, however, is a logical unit implementation option.

A task identifier that is in use shall be unique as seen by the initiator originating the command and the target to
which the command was addressed. (A task identifier is in use over the interval bounded by the events specified in
5.4). A task identifier is unique if one or more of its components is unique within the scope specified above. By
implication, therefore, an initiator shall not cause the creation of more than one untagged task having identical
values for the target and logical unit identifiers. Conversely, an initiator may create more than one task with the
same tag value, provided at least one of the remaining identifier components is unique.

4.7.5 Hierarchical Logical Units

Implementation of a hierarchical structure for logical units is optional, however the hierarchical logical unit structure
defined here should be used whenever capabilities equivalent to those provided here are needed. A device server
that implements the hierarchical structure for logical units described here shall set the HISUPPORT bit in the
standard inquiry data returned by logical unit 0 (see SPC-2).

Depending on the device type, a logical unit may be a single, monolithic device, referenced by an unstructured
binary value or it may contain additional nested logical units (see, for example, the SCSI controller device model
described in the SCC standard). This subclause defines the structure of such logical units and the methods by
which their component logical units are addressed.
28 working draft SCSI Architecture Model - 2 (SAM-2)

29 March 1998 T10/1157-D revision 4
As shown in figure 16, the hierarchical logical unit structure is an inverted tree containing up to four addressable
levels. The example in figure 16 is a three-level system that consists of:

a) One initiator that has three SCSI devices attached on a single SCSI bus that is not expandable. One of the
SCSI devices is a dual ported SCSI bridge controller.

b) One initiator has two SCSI devices attached on a single SCSI bus that is expandable. One of the SCSI
devices contains a dual ported SCSI bridge controller.

c) The SCSI bridge controller has three SCSI buses with SCSI devices attached and is capable of driving
more SCSI buses.
a) Two of the SCSI buses contain two SCSI devices each and these SCSI buses are not expandable. One

of the SCSI devices contains a SCSI bridge controller.
b) One of the SCSI buses contains two SCSI devices and is expandable.
c) The SCSI bridge controller has three SCSI buses with SCSI devices attached and is capable of driving

more SCSI buses.
a) Two of the SCSI buses contain two SCSI devices each and these SCSI buses are not expandable.
b) One of the SCSI buses contains two SCSI devices and is expandable.

Devices at each level in the tree are referenced by one of the following address methods:

a) Logical unit address method (see 4.7.5.3);
b) Peripheral device address method (see 4.7.5.4); and
c) Virtual device address method (see 4.7.5.5).

Editors Note 2 - ROW: I have changed the wording of the following paragraph: 1) to use “entities”

Figure 16 — Example of hierarchical system diagram

SCSI bridge
controller

● ● ●

SCSI
device

(LUN 0)

SCSI
device

(LUN 0)

SCSI
device

(LUN 0)

SCSI
device

(LUN 0)

SCSI
device

(LUN 0)

SCSI
device

(LUN 0)

SCSI
device

(LUN 0)

Level 3

SCSI
device

(LUN 0)

SCSI
device

(LUN 0)

SCSI
device

(LUN 0)

Bus 2

Bus 1
● ● ●

SCSI bridge
controller

● ● ●

Bus 3
Bus n

SCSI
device

(LUN 0)

● ● ●

SCSI
device

(LUN 0)

SCSI
device

(LUN 0)

Level 2

● ● ●

SCSI
device

(LUN 0)

SCSI
device

(LUN 0)

Bus 1

Bus 2
Bus 3

Bus n

Initiator Initiator

Level 1
working draft SCSI Architecture Model - 2 (SAM-2) 29

T10/1157-D revision 4 29 March 1998
instead of “objects”, and 2) to clarify how an application client might alter addresses via configuration.

All peripheral device addresses, except LUN 0 (see 4.7.5.1), default to vendor specific values. All addressable
entities may default to vendor specific values or may be defined by an application client by use of configuration
commands.

Within the hierarchical system there may be target devices that have multiple logical units connected to them
through separate physical interconnects. These physical interconnects are referred to as buses. A target device
that has SCSI devices attached to these buses shall assign numbers, other than zero, to those buses. The bus
numbers shall be used when assigning Logical Unit Numbers to the logical units attached to those buses.

Target devices shall assign a bus number of zero to all the logical units under control by the target that are not
connected through a separate physical interconnect.

4.7.5.1 LUN 0 address

All SCSI devices shall accept LUN 0 as a valid address. For SCSI devices that support the hierarchical addressing
model the LUN 0 shall be the logical unit that an application client addresses to determine information about the
target and the logical units contained within the target.

To address the LUN 0 of an SCSI device the peripheral device address method shall be used.

4.7.5.2 Eight byte LUN structure

The eight byte LUN structure (see table 2) allows up to four levels of devices to be addressed under a single target.
Each level shall use bytes 0-1 to define the address and/or location of the SCSI device to be addressed on that
level.

If the LUN indicates that the command is to be relayed to the next layer then the current layer shall use bytes 0-1 of
the eight byte LUN structure to determine the address of the device to which the command is to be sent. When the
command is sent to the target the eight byte LUN structure that was received shall be adjusted to create a new
eight byte LUN structure (see table 1 and figure 17).

Editors Note 3 - ROW: I have changed the wording in the following paragraph to remove references to
actions in the service delivery subsystem that are specific to the SCSI Parallel bus.

Devices shall keep track of the necessary addressing information to maintain communications with the correct task
throughout all the events and activities that may occur in the service delivery subsystem.

Table 1 — Eight byte LUN structure adjustments

Byte position

Old New

0 - 1 Moves to Not Used

2 - 3 Moves to 0 - 1

4 - 5 Moves to 2 - 3

6 - 7 Moves to 4 - 5

N/A zero fill 6 - 7
30 working draft SCSI Architecture Model - 2 (SAM-2)

29 March 1998 T10/1157-D revision 4
The eight byte LUN structure requirements as viewed from the application client are shown in table 2.

The FIRST LEVEL ADDRESSING field indicates the first level address of a device. See table 3 for a definition of the
FIRST LEVEL ADDRESSING field.

The SECOND LEVEL ADDRESSING field indicates the second level address of a device. See table 3 for a definition of
the SECOND LEVEL ADDRESSING field.

The THIRD LEVEL ADDRESSING field indicates the third level address of a device. See table 3 for a definition of the
THIRD LEVEL ADDRESSING field.

The FOURTH LEVEL ADDRESSING field indicates the fourth level address of a device. See table 3 for a definition of the
FOURTH LEVEL ADDRESSING field.

The device pointed to in the FIRST LEVEL ADDRESSING, SECOND LEVEL ADDRESSING, THIRD LEVEL ADDRESSING, and
FOURTH LEVEL ADDRESSING fields may be any physical or logical device addressable by an application client.

Figure 17 — Eight Byte LUN structure adjustments

Table 2 — Eight Byte LUN structure

Bit
Byte

7 6 5 4 3 2 1 0

0 (MSB)
FIRST LEVEL ADDRESSING

1 (LSB)

2 (MSB)
SECOND LEVEL ADDRESSING

3 (LSB)

4 (MSB)
THIRD LEVEL ADDRESSING

5 (LSB)

6 (MSB)
FORTH LEVEL ADDRESSING

7 (LSB)

Bytes 0 1 2 3 4 5 6 7

Level 1A B C D E F G H

Level 2C D E F G H 0 0

Level 3E F G H 0 0 0 0

Level 4G H 0 0 0 0 0 0
working draft SCSI Architecture Model - 2 (SAM-2) 31

T10/1157-D revision 4 29 March 1998
Editors Note 4 - ROW: I have changed the wording of the following paragraph to use “entities” instead of
“objects”.

The ADDRESS METHOD field defines the contents of the ADDRESS METHOD SPECIFIC field. See table 4 for the address
methods defined for the ADDRESS METHOD field. The ADDRESS METHOD field only defines address methods for
entities that are directly addressable by an application client.

A command that must be forwarded to a device at a lower level in the hierarchy is called a “pass through request”.
If the LUN indicates that the command is such a request then the current layer shall use bytes 0-1 of the eight byte
LUN structure, after the adjustment shown in figure 17, to determine the address of the device to which the
command is to be sent. When the command is sent to the target the eight byte LUN structure that was received
shall be adjusted to create the new eight byte LUN structure as shown in figure 17. After adjustment, bytes six and
seven of each new eight byte LUN structure shall be set to zero.

The address of a logical unit consists of the four components shown in table 2. Each address field corresponds to
one of the levels shown in figure 17. The format of each field is shown in table 3.

The device pointed to by each field may be any physical or logical device addressable by an application client.

4.7.5.3 Logical unit addressing method

All SCSI commands are allowed when the logical unit address method is selected, however logical units are only
required to support mandatory SCSI commands. Devices are not required to relay commands, from the
application client, to a lower layer. Any command that is not supported or relayed to a lower addressing layer shall
be terminated with a CHECK CONDITION status. The sense key shall be set to ILLEGAL REQUEST and the
additional sense code shall be set to INVALID COMMAND OPERATION CODE.

If the logical unit addressing method is selected the device shall relay the received command, if not filtered, to the
addressed logical unit.

NOTE 1 A SCSI device may filter commands to prevent an application client from issuing, for example, a write
command to a specific logical unit. A reason for doing this would be to prevent an application client from bypassing
configuration requirements at an intermediate level of the hierarchy.

Table 3 — Format of addressing fields

Bit
Byte

7 6 5 4 3 2 1 0

n-1 ADDRESS METHOD (MSB)

n ADDRESS METHOD SPECIFIC (LSB)

Table 4 — ADDRESS METHOD field values

Code Description Clause

10b Logical unit addressing method 4.7.5.3

00b Peripheral device addressing method 4.7.5.4

01b Virtual device addressing method 4.7.5.5

11b Reserved
32 working draft SCSI Architecture Model - 2 (SAM-2)

29 March 1998 T10/1157-D revision 4
See table 5 for the definition of the ADDRESS METHOD SPECIFIC field used when the logical unit addressing method is
selected.

The TARGET field, BUS NUMBER field, and LUN field address the logical unit to which the received command shall be
relayed. The command shall be relayed to the logical unit (LUN field value) within target (TARGET field value) located
on bus (BUS NUMBER field value).

NOTE 2 The value of targets within the TARGET field are defined by individual standards. (e.g., SCSI-3 Parallel
Interface Standard defines targets to be in the range 0-7, 0-15, and 0-31).

4.7.5.4 Peripheral device addressing method

All SCSI commands are allowed when the peripheral device address method is selected, however peripheral
devices are only required to support mandatory SCSI commands. Devices are not required to relay commands,
from the application client, to a lower layer. Any command that is not supported or relayed shall be terminated with
a CHECK CONDITION status. The sense key shall be set to ILLEGAL REQUEST and the additional sense code
shall be set to INVALID COMMAND OPERATION CODE.

If the peripheral device addressing method is selected the device shall relay the received command, if not filtered,
to the addressed peripheral device.

NOTE 3 A SCSI device may filter commands to prevent an application client from issuing, for example, a write
command to a specific peripheral device. A reason for doing this would be to prevent an application client from
bypassing configuration requirements at an intermediate level of the hierarchy.

See table 6 for the definition of the ADDRESS METHOD SPECIFIC field used when the peripheral device addressing
method is selected.

The BUS IDENTIFIER field identifies the bus or path that the SCSI device shall use to relay the received command.
The BUS IDENTIFIER field may use the same value encoding as the BUS NUMBER field (see 4.7.5.3). However, bus
identifier zero shall indicate that the command is to be relayed to a logical unit within the SCSI device at the current
level.

Table 5 — Logical unit addressing

Bit
Byte

7 6 5 4 3 2 1 0

n-1 1 0 TARGET

n BUS NUMBER LUN

Table 6 — Peripheral device addressing

Bit
Byte

7 6 5 4 3 2 1 0

n-1 0 0 BUS IDENTIFIER

n TARGET/LUN
working draft SCSI Architecture Model - 2 (SAM-2) 33

T10/1157-D revision 4 29 March 1998
Editors Note 5 - ROW: I’m pretty sure the last sentence in the following paragraph is wrong. The LUN
for the relayed command is the adjusted LUN (see table 1), not LUN 0.

The TARGET/LUN field indicates the address of the peripheral device to which the SCSI device shall relay the
received command. If the BUS IDENTIFIER field is not zero the TARGET/LUN field contains the target and LUN
addressing information to be used on the bus indicated by the BUS IDENTIFIER field when relaying the received
command. The received command to shall be relayed to LUN zero.

Editors Note 6 - ROW: I have changed the wording of the following paragraph to use “entities” instead of
“objects” and polished the grammar slightly.

A BUS IDENTIFIER field of zero represents a logical interconnection logical units. This representation of the logical
units may be used when the SCSI device either does not use hierarchical addressing for assigning LUNs to entities
or the SCSI device has entities that need LUNs and are not attached to buses (e.g, fans, cache, controllers, etc.).

A BUS IDENTIFIER field greater than zero represents physical interconnects that connect a group of SCSI devices.
Each of the buses shall be assigned a number from 1 to 63 by the SCSI device. The bus identifiers shall be used
in the BUS IDENTIFIER field by the SCSI device when assigning addresses to peripheral devices attached to those
buses.

NOTE 4 The value of targets within the TARGET/LUN field are defined by individual standards. (e.g., SCSI-3
Parallel Interface Standard defines targets to be in the range 0-7, 0-15, and 0-31).

The SCSI device located within the current level shall be addressed by a BUS IDENTIFIER field and a TARGET/LUN

field of all zeros, also known as LUN 0 (see 4.7.5.1).

4.7.5.5 Virtual device addressing method

The virtual device address method points to a virtual device that executes command(s) using the algorithms
defined by a configuration.

NOTE 5 The virtual device might not be under the control of the addressed SCSI device. It is allowed to be in an
SCSI device lower in the hierarchy.

All SCSI commands are allowed when the virtual device address method is used, however virtual devices are not
required to support all SCSI commands. Any command that is not supported shall be terminated with a CHECK
CONDITION status. The sense key shall be set to ILLEGAL REQUEST and the additional sense code shall be set
to INVALID COMMAND OPERATION CODE.

In the response to an INQUIRY command (see SPC-2) the addressed virtual device shall return a valid SCSI
peripheral device type.(e.g., direct access device, streaming device, etc.)
34 working draft SCSI Architecture Model - 2 (SAM-2)

29 March 1998 T10/1157-D revision 4
When the virtual device addressing method is selected the SCSI device at the current level addresses peripheral
devices as required to execute the received command. See table 7 for the definition of the ADDRESS METHOD

SPECIFIC field used when the virtual device addressing method is selected.

The LUN field indicates the address of the virtual device to which the current level shall direct the received
command.

4.8 The SCSI-3 model for distributed communications

The SCSI-3 model for communications between distributed objects is based on the technique of layering.
According to this technique, the initiator and target I/O systems are viewed as being logically composed of the
ordered set of subsystems represented for convenience by the vertical sequence shown in figure 18.

The layers comprising this model and the specifications defining the functionality of each layer are denoted by
horizontal sequences. A layer consists of peer entities which communicate with one another by means of a
protocol. Except for the physical interconnect layer, such communication is accomplished by invoking services
provided by the adjacent lower layer. By convention, the layer from which a request for service originates is called
the upper level protocol layer or ULP layer. The layer providing the service is referred to as the lower level protocol
layer or LLP layer. The following layers are defined:

a) SCSI-3 application layer: Contains the clients and servers that originate and execute SCSI-3 I/O
operations by means of an SCSI-3 application protocol;

Table 7 — Virtual device addressing

Bit
Byte

7 6 5 4 3 2 1 0

n-1 0 1 (MSB)

n LUN (LSB)

Figure 18 — Protocol service reference model

SCSI-3
Application

SCSI-3
Protocol
Services

Physical
Interconnect

Services

SCSI-3
Application

SCSI-3
Protocol
Services

Physical
Interconnect

Services

SCSI-3 Application
Protocol

SCSI Protocol

SCSI-3 Application
Layer

SAM and
Command
Standards

SCSI-3
Protocol
Standard

Physical
Interconnect

Standard

SCSI-3 Protocol
Layer

Physical
Interconnect Layer

Initiator I/O System Target I/O System

Physical Interconnect

Protocol
Service Interface

Physical Interconnect
Service Interface
working draft SCSI Architecture Model - 2 (SAM-2) 35

T10/1157-D revision 4 29 March 1998
b) SCSI-3 protocol layer: Consists of the services and protocols through which clients and servers
communicate; and

c) Physical interconnect layer: Comprised of the services, signaling mechanism and interconnect subsystem
needed for the physical transfer of data from sender to receiver.

The subsystems that make up the protocol and interconnect layers are collectively referred to as the service
delivery subsystem. The service delivery port is the device-resident portion of this system.

The set of protocol services implemented by the service delivery subsystem are intended to identify external
behavioral requirements that apply to SCSI-3 protocol specifications. While these protocol services may serve as
a guide for designing reusable software or firmware that can be adapted to different SCSI-3 protocols, there is no
requirement for an implementation to provide the service interfaces specified in this standard.

An interaction between layers can originate from an entity within the LLP or ULP layer. Such interactions are
defined with respect to the ULP layer as outgoing or incoming interactions. An outgoing interaction takes the form
of a procedure call invoking an LLP service. An incoming interaction appears as a signal sent by the LLP layer,
which may be accompanied by parameters and data. Both types of interaction are described using the notation for
procedures specified in 3.6.5. In this model, input arguments are defined relative to the layer receiving an
interaction. That is, an input is a parameter supplied to the receiving layer by the layer initiating the interaction.

The following types of service interactions between layers are defined:

a) Protocol service request: A request from the ULP layer invoking some service provided by the LLP layer;
b) Protocol service indication: A signal from the LLP layer informing the ULP layer that an asynchronous

event has occurred, such as a reset or the receipt of a peer-to-peer protocol transaction;
c) Protocol service response: A call to the LLP layer invoked by the ULP layer in response to a protocol

service indication. A protocol service response may be invoked to return a reply to the ULP peer;
d) Protocol service confirmation: A signal from the LLP layer notifying the ULP layer that a protocol service

request has completed. A confirmation may communicate parameters that indicate the completion status
of the protocol service request or any other status. A protocol service confirmation may be used to convey
a response from the ULP peer.

The services provided by an LLP layer are either confirmed or unconfirmed. A ULP service request invoking a
confirmed service always results in a confirmation from the LLP layer.
36 working draft SCSI Architecture Model - 2 (SAM-2)

29 March 1998 T10/1157-D revision 4
Figure 19 shows the relationships between the four protocol service types.

Figure 24 shows how protocol services may be used to execute a client-server request-response transaction at the
SCSI application layer.

Figure 19 — Protocol service model

Figure 20 — Request-Response ULP transaction and related LLP services

Protocol Service
Request

Protocol Service
Indication

Protocol Service
Confirmation

Protocol Service
Response

LLP Layer

ULP Layer

Protocol Service
Request

Protocol Service
Indication

Protocol Service
Confirmation

Protocol Service
Response

LLP Protocol
Transactions

LLP Protocol
Transactions

LLP Layer

ULP Layer

Client Server

Server Request

Server Response

Protocol Service
Interface
working draft SCSI Architecture Model - 2 (SAM-2) 37

T10/1157-D revision 4 29 March 1998
The dashed lines show an SCSI application protocol transaction as it might appear to sending and receiving
entities within the client and server. The solid lines show the corresponding protocol services and LLP transactions
that are used to physically transport the data.
38 working draft SCSI Architecture Model - 2 (SAM-2)

29 March 1998 T10/1157-D revision 4
5 SCSI Command Model

An application client invokes the following remote procedure to execute an SCSI command:

Service response =Execute Command (Task Address, CDB, [Task Attribute], [Data-Out Buffer],
[Command Byte Count], [Autosense Request] || [Data-In Buffer], [Sense Data],
Status)

Input Arguments:

Output Arguments:

An SCSI-3 command shall not allow both the Data-In Buffer and the Data-Out Buffer arguments.

Service Response assumes one of the following values:

Task Address: See object definition 7.

CDB: Command descriptor block (see 5.1).

Task Attribute: A value specifying one of the task attributes defined in 7.5. This argument shall
not be specified for an untagged command or the next command in a sequence
of linked commands. (Untagged tasks shall implicitly have the SIMPLE attribute.
The attribute of a task that executes linked commands shall be set according to
the Task Attribute argument specified for the first command in the sequence.)

Data-Out Buffer: A buffer containing command-specific information to be sent to the logical unit,
such as data or parameter lists needed to service the command.

Command Byte Count: The maximum number of bytes to be transferred by the command.

Autosense Request: An argument requesting the automatic return of sense data by means of the
autosense mechanism specified in 5.6.4.2. It is not an error for the application
client to provide this argument when autosense is not supported by the SCSI-3
protocol or logical unit.

Data-In Buffer: A buffer containing command-specific information returned by the logical unit on
command completion. The application client shall not assume that the buffer
contents are valid unless the command completes with a status of GOOD,
INTERMEDIATE, or INTERMEDIATE-CONDITION MET. While some valid data
may be present for other values of status, the application client will usually have
to obtain additional information from the logical unit, such as sense data, to
determine the state of the buffer contents.

Sense Data: A buffer containing sense data returned by means of the autosense mechanism
(see 5.6.4.2).

Status: A one-byte field containing command completion status (see 5.2). If the com-
mand ends with a service response of SERVICE DELIVERY OR TARGET FAILURE, the
application client shall consider this parameter to be undefined.

TASK COMPLETE: A logical unit response indicating that the task has ended. The status parameter
shall have one of the values specified in 5.2 other than INTERMEDIATE or
INTERMEDIATE-CONDITION MET.
working draft SCSI Architecture Model - 2 (SAM-2) 39

T10/1157-D revision 4 29 March 1998
The actual protocol events corresponding to a response of TASK COMPLETE, LINKED COMMAND COMPLETE, LINKED

COMMAND COMPLETE (WITH FLAG) or SERVICE DELIVERY OR TARGET FAILURE shall be specified in each protocol
standard.

An application client requests execution of a linked command by setting the LINK bit to one in the CDB CONTROL

byte as specified in 5.1.2. The task attribute is determined by the Task Attribute argument specified for the first
command in the sequence. Upon receiving a response of LINKED COMMAND COMPLETE or LINKED COMMAND

COMPLETE (WITH FLAG), an application client may issue the next command in the series through an Execute
Command remote procedure call having the same task identifier. The Task Attribute argument shall be omitted. If
the application client issues the next command without waiting for one of the linked command complete responses,
the overlapped command condition described in 5.6.2 may result.

5.1 Command Descriptor Block

The command descriptor block defines the operation to be performed by the device server. For some commands,
the command descriptor block is accompanied by a list of command parameters contained in the Data-Out buffer
defined in clause 5. The parameters required for each command are specified in the applicable SCSI-3 command
standards.

Validation of reserved fields in a CDB is a logical unit option. If a logical unit validates reserved CDB fields and
receives a reserved field within the CDB that is not zero or receives a reserved CDB code value, the logical unit
shall terminate the command with CHECK CONDITION status; the sense key shall be set to ILLEGAL REQUEST
with an additional sense code of INVALID FIELD IN CDB (see the SPC-2 standard). It shall also be acceptable for
a logical unit to interpret a field or code value in accordance with a future revision to an SCSI-3 standard.

For all commands, if the logical unit detects an invalid parameter in the command descriptor block, then the logical
unit shall complete the command without altering the medium.

As shown in table 8, all command descriptor blocks shall have an OPERATION CODE as the first byte and a CONTROL

byte as the last byte. The remaining parameters depend on the command to be executed. All SCSI protocol
specifications shall accept command descriptor blocks less than or equal to 16 bytes in length. Command
descriptor blocks shall not exceed sixteen bytes in length.

LINKED COMMAND

COMPLETE:

LINKED COMMAND

COMPLETE (WITH FLAG):

Logical unit responses indicating that a linked command has completed
successfully. As specified in 5.2, the status parameter shall have a value of
INTERMEDIATE or INTERMEDIATE-CONDITION MET. A value of LINKED

COMMAND COMPLETE (WITH FLAG) indicates that a linked command with the flag
bit set to one in the CDB control byte has completed.

SERVICE DELIVERY OR

TARGET FAILURE:
The command has been ended due to a service delivery failure or target device
malfunction. All output parameters may be invalid.

Table 8 — Format of Command Descriptor Block

Bit
Byte

7 6 5 4 3 2 1 0

0 OPERATION CODE

1
Command-specific parameters

n-1

n CONTROL
40 working draft SCSI Architecture Model - 2 (SAM-2)

29 March 1998 T10/1157-D revision 4
5.1.1 OPERATION CODE byte

The first byte of an SCSI command descriptor block shall contain an operation code. The OPERATION CODE (see
table 9) of the command descriptor block has a GROUP CODE field and a COMMAND CODE field. The three-bit GROUP

CODE field provides for eight groups of command codes. The five-bit COMMAND CODE field provides for thirty-two
command codes in each group. A total of 256 possible operation codes exist. Operation codes are defined in the
SCSI command standards. The group code for CDBs specified therein shall correspond to the length of the
command descriptor as set forth in table 10.

The value in the GROUP CODE field specifies one of the groups shown in table 10.

5.1.2 CONTROL byte

The CONTROL byte is the last byte of every command descriptor block. The CONTROL byte is defined in table 11.

All SCSI-3 protocol specifications and protocol implementations shall provide the functionality needed for a logical
unit to implement the NACA bit, LINK bit and FLAG bit as described herein.

The NACA (Normal ACA) bit is used to control the rules for handling an ACA condition caused by the command.
Clause 5.6.1.1 specifies the actions to be taken by a logical unit in response to an auto contingent allegiance
condition for NACA bit values of one or zero. All logical units shall implement support for the NACA value of zero and
may support the NACA value of one. The ability to support a NACA value of one is indicated in standard INQUIRY
data (see the SPC-2 standard).

Table 9 — OPERATION CODE byte

Bit 7 6 5 4 3 2 1 0

GROUP CODE COMMAND CODE

Table 10 — Group Code values

Group
Code Meaning

0 6 byte commands

1 10 byte commands

2 10 byte commands

3 reserved

4 16 byte commands

5 12 byte commands

6 vendor specific

7 vendor specific

Table 11 — CONTROL byte

Bit 7 6 5 4 3 2 1 0

Vendor-specific Reserved NACA LINK FLAG
working draft SCSI Architecture Model - 2 (SAM-2) 41

T10/1157-D revision 4 29 March 1998
If the NACA bit is set to a value that is not supported, the logical unit shall complete the command with a status of
CHECK CONDITION and a sense key of ILLEGAL REQUEST. The rules for handling the resulting auto contingent
allegiance condition shall be in accordance with the supported bit value.

The LINK bit is used to continue the task across multiple commands. The FLAG bit may be used, in conjunction with
the LINK bit, to notify the initiator in an expedited manner that the command has completed.

Support for the LINK bit is a logical unit option. A LINK bit of one indicates that the initiator requests continuation of
the task across two or more SCSI commands. If the LINK bit is one and the FLAG bit is zero and if the command
completes successfully, a logical unit that supports the LINK bit shall continue the task and return a status of
INTERMEDIATE or INTERMEDIATE-CONDITION MET and a service response of LINKED COMMAND COMPLETE (see
5.2).

Support for the FLAG bit is a logical unit option. If the LINK bit and FLAG bit are both set to one and if the command
completes with a status of INTERMEDIATE or INTERMEDIATE-CONDITION MET a logical unit that supports the
FLAG bit shall return a service response of LINKED COMMAND COMPLETE (WITH FLAG).

The logical unit shall complete the command with a status of CHECK CONDITION and a sense key of ILLEGAL
REQUEST if:

a) The LINK bit is set to one and the logical unit does not support linked commands or,
b) The FLAG bit is set to one and the logical unit does not support the FLAG bit or,
c) The FLAG bit is set to one and the LINK bit is set to zero.

5.2 Status

The status codes are specified in table 12. Status shall be sent from the logical unit to the application client
whenever a command ends with a service response of TASK COMPLETE, LINKED COMMAND COMPLETE, or LINKED

C O M M A N D C O M P L E T E (W I T H F L A G) . The rece ip t o f any s ta tus, exc ep t INTERMEDIATE o r
INTERMEDIATE-CONDITION MET, shall indicate that the associated task has ended.

Table 12 — Status codes

Status Code Status

0h GOOD

2h CHECK CONDITION

4h CONDITION MET

8h BUSY

10h INTERMEDIATE

14h INTERMEDIATE-CONDITION MET

18h RESERVATION CONFLICT

22h COMMAND TERMINATED

28h TASK SET FULL

30h ACA ACTIVE

All other codes Reserved
42 working draft SCSI Architecture Model - 2 (SAM-2)

29 March 1998 T10/1157-D revision 4
Definitions for each status code are given below.

GOOD. This status indicates that the Device Server has successfully completed the task.

CHECK CONDITION. This status indicates that an Auto Contingent Allegiance condition has occurred (see 5.6.1).

CONDITION MET. This status shall be returned whenever the requested operation specified by an unlinked
command is satisfied (see the SEARCH DATA and PRE-FETCH commands in the SBC standard).

BUSY. This status indicates that the logical unit is busy. This status shall be returned whenever a logical unit is
unable to accept a command from an otherwise acceptable initiator (i.e., no reservation conflicts). The
recommended initiator recovery action is to issue the command again at a later time.

INTERMEDIATE. This status or INTERMEDIATE-CONDITION MET shall be returned for each successfully
completed command in a series of linked commands (except the last command), unless the command is
terminated with CHECK CONDITION, RESERVATION CONFLICT, TASK SET FULL, BUSY or COMMAND
TERMINATED status. If INTERMEDIATE or INTERMEDIATE-CONDITION MET status is not returned, the series
of linked commands is terminated and the task is ended.

INTERMEDIATE-CONDITION MET. This status is returned whenever the operation requested by a linked
command is satisfied (see the SEARCH DATA and PRE-FETCH commands in the SBC standard), unless the
command is terminated with CHECK CONDITION, RESERVATION CONFLICT, TASK SET FULL, BUSY or
COMMAND TERMINATED status. If INTERMEDIATE or INTERMEDIATE-CONDITION MET status is not
returned, the series of linked commands is terminated and the task is ended.

RESERVATION CONFLICT. This status shall be returned whenever an initiator attempts to access a logical unit,
an extent within a logical unit or an element of a logical unit that is reserved with a conflicting reservation type for
another SCSI initiator. (See the RESERVE, RELEASE, PERSISTENT RESERVE OUT and PERSISTENT
RESERVE IN commands in the SPC-2 standard). The recommended initiator recovery action is to issue the
command again at a later time. Removing a persistent reservation belonging to a failing initiator may require the
execution of a PERSISTENT RESERVE OUT command with the Preempt or Preempt and Clear actions (see the
SPC-2 standard).

COMMAND TERMINATED. This status shall be returned whenever the logical unit terminates a task in response
to a TERMINATE TASK task management request (see 6.7). This status also indicates that an Auto Contingent
Allegiance has occurred (see 5.6.1).

TASK SET FULL. This status shall be implemented if the logical unit supports the creation of tagged tasks (see
object definition 7). This status shall be returned when the logical unit receives a command and does not have
enough resources to enter the associated task in the task set.

ACA ACTIVE. This status shall be returned when an auto contingent allegiance exists within a task set and an
initiator issues a command for that task set when at least one of the following is true:

a) There is a task with the ACA attribute in the task set;
b) The initiator issuing the command did not cause the ACA condition;
c) The task created to execute the command did not have the ACA attribute and the NACA bit was set to one in

the CDB CONTROL byte of the faulting command (see 5.6.1).

The initiator may reissue the command after the ACA condition has been cleared.
working draft SCSI Architecture Model - 2 (SAM-2) 43

T10/1157-D revision 4 29 March 1998
5.2.1 Status precedence

If more than one condition applies to a completed task, the report of a BUSY, RESERVATION CONFLICT, ACA
ACTIVE or TASK SET FULL status shall take precedence over the return of any other status for that task.

5.3 Protocol Services in Support of Execute Command

This clause describes the protocol services that support the remote procedure call. All SCSI-3 protocol
specifications shall define the protocol-specific requirements for implementing the Send SCSI Command Protocol
service request and the Command Complete Received confirmation described below. Support for the SCSI
Command Received indication and Send Command Complete response by an SCSI-3 protocol standard is
optional. All SCSI-3 I/O systems shall implement these protocols as defined in the applicable protocol
specification.

Unless stated otherwise, argument definitions and the circumstances under which a conditional argument must be
present are the same as in clause 5.

Protocol Service Request:

Send SCSI Command (Task Address, CDB, [Task Attribute], [Data-Out Buffer], [Command Byte
Count], [Autosense Request] ||)

Protocol Service Indication:

SCSI Command Received (Task Identifier, [Task Attribute], CDB, [Autosense Request] ||)

Protocol Service Response (from device server):

Send Command Complete (Task Identifier, [Sense Data], Status, Service Response ||)

The Sense Data argument, if present, instructs the target's service delivery port to return sense information to the
initiator automatically (see 5.6.4.2).

Protocol Service Confirmation:

Command Complete Received (Task Address, [Data-In Buffer], [Sense Data], Status, Service Response ||)

5.3.1 Data Transfer Protocol Services

The data transfer services described in this section are provided to complete the functional model of target protocol
services which support the Execute Command remote procedure call. All SCSI-3 protocol standards shall define
the protocols required to implement these services.

It is assumed that the buffering resources available to the logical unit are limited and may be much less than the
amount of data that can be transferred in one SCSI command. In this case, such data must be moved between the
application client and the media in segments that are smaller than the transfer size specified in the SCSI command.

Autosense Request: This parameter is only present if the Autosense Request parameter was speci-
fied in the Send SCSI Command call and autosense delivery is supported by
the SCSI-3 protocol and logical unit.
44 working draft SCSI Architecture Model - 2 (SAM-2)

29 March 1998 T10/1157-D revision 4
The amount of data moved per request is usually a function of the buffering resources available to the logical unit.
Figure 21 shows the model for such incremental data transfers.

As shown in figure 21, the application client's buffer appears to the device server as a single, logically contiguous
block of memory large enough to hold all the data required by the command. The model requires unidirectional
data transfer. That is, the execution of an SCSI-3 command shall not require the transfer of data for that command
both to and from the application client.

The movement of data between the application client and device server is controlled by the following parameters:

If an SCSI-3 protocol supports random buffer access, as described below, the offset and byte count specified for
each data segment to be transferred may overlap. In this case the total number of bytes moved for a command is
not a reliable indicator of transfer extent and shall not be used by an initiator or target implementation to determine
the command byte count.

All SCSI-3 protocol specifications and initiator implementations shall support a resolution of one byte for the above
parameters. A target device may support any convenient resolution.

Random buffer access occurs when the device server requests data transfers to or from segments of the
application client's buffer which have an arbitrary offset and extent. Buffer access is sequential when successive
transfers access a series of monotonically increasing, adjoining buffer segments. Support for random buffer
access by an SCSI-3 protocol specification is optional. A device server implementation designed for any protocol
implementation should be prepared to use sequential buffer access when necessary.

The following clauses specify the LLP confirmed services used by the device server to request the transfer of
command data to or from the application client. The initiator protocol service interactions are unspecified.

Figure 21 — Model for buffered data transfers

Application Client
Buffer Offset:

Offset in bytes from the beginning of the application client's buffer to the first byte
of transferred data.

Byte Count Requested
by Device Server:

Number of bytes to be moved by the data transfer request.

Command Byte Count: Upper limit on the extent of the data to be transferred by the SCSI command.

Byte Count
Requested by
Device Server

Application
Client

Buffer Offset

Command
Byte Count
working draft SCSI Architecture Model - 2 (SAM-2) 45

T10/1157-D revision 4 29 March 1998
5.3.2 Data-In Delivery Service

Request:

Send Data-In (Task Identifier, Device Server Buffer, Application Client Buffer Offset,
Request Byte Count ||)

Argument descriptions:

Confirmation:

Data-In Sent (Task Identifier ||)

Editors Note 7 - ROW: The name on the above service in SAM-2 revision 3 was “Data-Out Received”,
which was so obviously bogus that I simply changed it.

This confirmation notifies the device server that the specified data was successfully delivered to the application
client buffer.

5.3.3 Data-Out Delivery service

Request:

Receive Data-Out (Task Identifier, Application Client Buffer Offset, Request Byte Count,
Device Server Buffer ||)

Argument Descriptions: See 5.3.2.

Confirmation:

Data-Out Received (Task Identifier ||)

This confirmation notifies the device server that the requested data has been successfully delivered to its buffer.

5.4 Task and command lifetimes

This clause specifies the events delimiting the beginning and end of a task or pending SCSI-3 command from the
viewpoint of the device server and application client. The device server shall create a task upon receiving an SCSI
Command Received indication unless the command represents a continuation of a linked command as described
in clause 5.

Task Identifier: See object definition 7.

Device Server Buffer: Buffer from which data is to be transferred.

Application Client
Buffer Offset:

Offset in bytes from the beginning of the application client's buffer to the first byte
of transferred data.

Request Byte Count: Number of bytes to be moved by this request.
46 working draft SCSI Architecture Model - 2 (SAM-2)

29 March 1998 T10/1157-D revision 4
The task shall exist until:

a) The device server sends a protocol service response for the task of TASK COMPLETE;
b) A power on condition occurs;
c) The logical unit executes a logical unit reset operation as described in 5.6.7;
d) The task manager executes an ABORT TASK referencing the specified task; or
e) The task manager executes an ABORT TASK SET or CLEAR TASK SET task management function

directed to the task set containing the specified task.

An SCSI-3 command is pending when the associated SCSI Command Received indication is passed to the device
server. The command ends on the occurrence of one of the conditions described above or when the device server
sends a service response for the task of LINKED COMMAND COMPLETE or LINKED COMMAND COMPLETE (WITH FLAG).

The application client assumes that the task exists from the time the Send SCSI Command protocol service
request is invoked until it receives one of the following target responses:

a) A service response of TASK COMPLETE for that task;
b) A unit attention condition with one of the following additional sense codes:

a) COMMANDS CLEARED BY ANOTHER INITIATOR (if in reference to the task set containing the task);
b) POWER ON;
c) RESET; or
d) TARGET RESET.

c) A service response of SERVICE DELIVERY OR TARGET FAILURE for the command. In this case, system
implementations shall guarantee that the task associated with the failed command has ended;

d) A service response of FUNCTION COMPLETE following an ABORT TASK task management request directed
to the specified task;

e) A service response of FUNCTION COMPLETE following an ABORT TASK SET or CLEAR TASK SET task
management function directed to the task set containing the specified task; or

f) A service response of FUNCTION COMPLETE in response to a TARGET RESET.

The application client assumes the command is pending from the time it calls the Send SCSI Command protocol
service until one of the above responses or a service response of LINKED COMMAND COMPLETE or LINKED COMMAND

COMPLETE (WITH FLAG) is received.

As discussed in 4.6.1, when an SCSI-3 protocol does not require state synchronization, there will usually be a time
skew between the completion of a device server request-response transaction as seen by the application client and
device server. As a result, the lifetime of a task or command as it appears to the application client will usually be
different from the lifetime observed by the device server.

5.5 Command processing examples

The following clauses give examples of the interactions for linked and unlinked commands.
working draft SCSI Architecture Model - 2 (SAM-2) 47

T10/1157-D revision 4 29 March 1998
5.5.1 Unlinked command example

An unlinked command is used to show the events associated with the processing of a single device service request
(see figure 22). This example does not include error or exception conditions.

The numbers in figure 22 identify the events described below.

1. The application client performs an Execute Command remote procedure call by invoking the Send SCSI
Command protocol service to send the CDB and other input parameters to the logical unit.

2. The device server is notified through an SCSI Command Received indication containing the CDB and
command parameters. A task is created and entered into the task set. The device server may invoke the
appropriate data delivery service one or more times to complete command execution.

3. The task ends upon completion of the command. On command completion, the Send Command Complete
protocol service is invoked to return a status of GOOD and a service response of TASK COMPLETE.

4. A confirmation of Command Complete Received is passed to the ULP by the initiator's service delivery
subsystem.

5.5.2 Linked command example

A task may consist of multiple commands "linked" together. After the logical unit notifies the application client that
a linked command has successfully completed, the application client issues the next command in the series.

Figure 22 — Command processing events

Waiting

Working

Time

3

1

2

4

Time

Initiator

Target

Activity

Activity

Application Client

Task
48 working draft SCSI Architecture Model - 2 (SAM-2)

29 March 1998 T10/1157-D revision 4
The example in figure 23 shows the events in a sequence of two linked commands.

The numbers in figure 23 Identify the events described below.

1. The application client performs an Execute Command remote procedure call by invoking the Send SCSI
Command protocol service to send the CDB and other input parameters to the logical unit. The LINK bit is
set to one in the CDB CONTROL byte (see 5.1.2).

2. The target's service delivery port issues SCSI Command Received to the device server. The device server
creates a task (Task A) and enters it into the task set.

3. Upon completion of the first command, the device server invokes the Send Command Complete protocol
service with the Status argument set to INTERMEDIATE or INTERMEDIATE-CONDITION MET and a
Service Response of LINKED COMMAND COMPLETE. Task A is not terminated.

4. The initiator's service delivery port returns the status and service response to the ULP by means of a
Command Complete Received confirmation.

5. The application client performs an Execute Command remote procedure call by means of the Send SCSI
Command protocol service as described in step 1. The Task Attribute argument is omitted. The LINK bit in
the CDB CONTROL byte is clear.

6. The device server receives the last command in the sequence and executes the operation.

7. The command completes successfully. Task A is terminated. A Send Command Complete protocol
service response of TASK COMPLETE, with status GOOD, is sent to the application client.

8. The LLP delivers an Command Complete Received confirmation to the application client, which contains
the service response and status.

Figure 23 — Linked command processing events

Waiting

Working

Time3

1

2

4

Initiator

Device Server

Activity

Activity

Application Client

Task A

Waiting

Working

7

5

6

8
Activity

Application Client

Task

TimeActivity

Waiting
working draft SCSI Architecture Model - 2 (SAM-2) 49

T10/1157-D revision 4 29 March 1998
5.6 Command processing considerations and exception conditions

The following clauses describe some exception conditions and errors associated with command processing and
the sequencing of commands.

5.6.1 Auto Contingent Allegiance

The Auto Contingent Allegiance condition shall exist within the task set when the logical unit completes a command
by returning a COMMAND TERMINATED or CHECK CONDITION status (see 5.2).

Editors Note 8 - ROW: It is my opinion that the following paragraph is rendered obsolete by the inclusion
of glossary definitions for “faulting command” (see 3.1.29), “faulted initiator” (see 3.1.27), and “faulted
task set” (see 3.1.28). Therefore, I plan to remove this paragraph in revision 5 of SAM-2.

In the following discussion, the term "faulting command" refers to the command that completed with a CHECK
CONDITION or COMMAND TERMINATED status. The term "faulted initiator" refers to the initiator receiving the
COMMAND TERMINATED or CHECK CONDITION status. The term "faulted task set" refers to the task set having
the Auto Contingent Allegiance condition.

5.6.1.1 Logical Unit response to Auto Contingent Allegiance

The Auto Contingent Allegiance condition shall not cross task set boundaries and shall be preserved until it is
cleared as described in 5.6.1.2. If requested by the application client and supported by the protocol and logical
unit, sense data shall be returned as described in 5.6.4.2.

Notes:
6 The SCSI-2 Contingent Allegiance condition and Extended Contingent Allegiance condition have been

replaced in SCSI-3 by Auto Contingent Allegiance.
7 If the SCSI-3 protocol does not enforce state synchronization as described in 4.6.1, there may be a time delay

between the occurrence of the Auto Contingent Allegiance condition and the point at which the initiator
becomes aware of the condition.

After sending status and a service response of TASK COMPLETE, the logical unit shall modify the state of all tasks
in the faulted task set as described in clause 7.

A task created by the faulted initiator while the Auto Contingent Allegiance condition is in effect may be entered into
the faulted task set under the conditions described below. Except for a PERSISTENT RESERVE command with a
Preempt and Clear action as described in 5.6.1.2, tasks created by other initiators while the ACA condition is in
effect shall not be entered into the task set and shall be completed with a status of ACA ACTIVE.

Tasks created by other initiators while the ACA condition is in effect shall not be entered into the faulted task set
and shall be completed with a status of ACA ACTIVE.

As described in 5.6.1.2, the setting of the NACA bit in the CONTROL byte of the faulting command determines the
rules that apply to an ACA condition caused by that command. If the NACA bit was set to zero the SCSI-2
Contingent Allegiance rules shall apply. In that case, the completion of a subsequent command from the faulted
initiator with a status of CHECK CONDITION or COMMAND TERMINATED shall cause a new Auto Contingent
Allegiance condition to exist. The rules for responding to the new Auto Contingent Allegiance condition shall be
determined by the state of the NACA bit in the new faulted command.
50 working draft SCSI Architecture Model - 2 (SAM-2)

29 March 1998 T10/1157-D revision 4
If the NACA bit was set to one in the CONTROL byte of the faulting command, then a new task created while the ACA
condition is in effect shall not be entered into the faulted task set unless all of the following conditions are true:

a) The command was originated by the faulted initiator;
b) The task has the ACA attribute; and
c) No other task having the ACA attribute is in the task set.

If any of the conditions listed above are not met, the newly created task shall not be entered into the task set and
shall be completed with a status of ACA ACTIVE.

If a task having the ACA attribute is received and no Auto Contingent Allegiance condition is in effect for the task
set or if the NACA bit was set to zero in the CDB for the faulting command, then the ACA task shall be completed
with a status of CHECK CONDITION. The sense key shall be set to ILLEGAL REQUEST with an additional sense
code of INVALID MESSAGE ERROR. As noted in 5.6.1.2, a new Auto Contingent Allegiance condition shall be
established.

5.6.1.2 Clearing an Auto Contingent Allegiance condition

An Auto Contingent Allegiance condition shall always be cleared after a power on condition or a logical unit reset
(see 5.6.7).

If the NACA bit is set to zero in the CONTROL byte of the faulting command, then the SCSI-2 rules for clearing
Contingent Allegiance shall apply. In this case, the logical unit shall also clear the associated Auto Contingent
Allegiance condition upon sending sense data by means of the autosense mechanism described in 5.6.4.2.

While the SCSI-2 rules for clearing the ACA condition are in effect, a logical unit that supports the CLEAR ACA task
management function shall ignore all CLEAR ACA requests and shall return a service response of FUNCTION

COMPLETE (see 6.3).

If the logical unit accepts a value of one for the NACA bit and this bit was set to one in the CONTROL byte of the
faulting command, then the SCSI-2 rules for clearing an Auto Contingent Allegiance condition shall not apply. In
this case, the ACA condition shall only be cleared:

a) As the result of a power on or a logical unit reset as described above;
b) Through a CLEAR ACA task management function issued by the faulting initiator as described in 6.3; or
c) Through a Preempt and Clear action of a PERSISTENT RESERVE OUT command that clears the tasks of

the faulting initiator (see the SPC-2 standard).

The state of all tasks in the task set when an Auto Contingent Allegiance condition is cleared shall be modified as
described in clause 7.

5.6.2 Overlapped commands

Editors Note 9 - ROW: In the following paragraph, the revision 3 name “task address” appears to be a
euphemism for “tag”. Certainly, object definition 7 does not contain a “task address” definition, as
revision 3 states. Therefore, I have changed “task address” to “tag” wherever throughout. Also, 5.4
contains no discussion of Tag reuse or overlapped commands. Therefore, the reference to 5.4 will be
deleted in revision 5.

An overlapped command occurs when an application client reuses a task address Tag (see object definition 7) in a
new command while a previous command to which that address was assigned is still pending as specified in 5.4.
working draft SCSI Architecture Model - 2 (SAM-2) 51

T10/1157-D revision 4 29 March 1998
Each SCSI-3 protocol standard shall specify whether or not a logical unit is required to detect overlapped
commands.

A logical unit that detects an overlapped command shall abort all tasks for the initiator in the task set and shall
return CHECK CONDITION status for that command. If the overlapped command condition was caused by an
untagged task or a tagged task with a tag value exceeding FFh, then the sense key shall be set to ABORTED
COMMAND and the additional sense code shall be set to OVERLAPPED COMMANDS ATTEMPTED. Otherwise,
an additional sense code of TAGGED OVERLAPPED TASKS shall be returned with the additional sense code
qualifier byte set to the value of the duplicate tag.

Notes:
8 An overlapped command may be indicative of a serious error and, if not detected, could result in corrupted

data. This is considered a catastrophic failure on the part of the initiator. Therefore, vendor-specific error
recovery procedures may be required to guarantee the data integrity on the medium. The target logical unit
may return additional sense data to aid in this error recovery procedure (e.g., sequential-access devices may
return the residue of blocks remaining to be written or read at the time the second command was received).

9 Some logical units may not detect an overlapped command until after the command descriptor block has been
received.

5.6.3 Incorrect Logical Unit selection

The target's response to an incorrect logical unit identifier is described in the following paragraphs.

The logical unit identifier may be incorrect because:

a) The target does not support the logical unit (e.g., some targets support only one peripheral device).

In response to any other command except REQUEST SENSE and INQUIRY, the target shall terminate the
command with CHECK CONDITION status. Sense data shall be set to the values specified for the
REQUEST SENSE command in item b below;

b) The target supports the logical unit, but the peripheral device is not currently attached to the target.

In response to an INQUIRY command the target shall return the INQUIRY data with the peripheral qualifier
set to the value required in the SPC-2 standard. In response to a REQUEST SENSE command, the target
shall return sense data. The sense key shall be set to ILLEGAL REQUEST and the additional sense code
shall be set to LOGICAL UNIT NOT SUPPORTED.

In response to any other command except REQUEST SENSE and INQUIRY, the target shall terminate the
command with CHECK CONDITION status. Sense data shall be set to the values specified for the
REQUEST SENSE command above;

c) The target supports the logical unit and the peripheral device is attached, but not operational.

In response to an INQUIRY command the target shall return the INQUIRY data with the peripheral qualifier
set to the value required in the SPC-2 standard. In response to REQUEST SENSE, the target shall return
sense data.

The target's response to any command other than INQUIRY and REQUEST SENSE is vendor specific; or
52 working draft SCSI Architecture Model - 2 (SAM-2)

29 March 1998 T10/1157-D revision 4
d) The target supports the logical unit but is incapable of determining if the peripheral device is attached or is
not operational when it is not ready.

In response to an INQUIRY command the target shall return the INQUIRY data with the peripheral qualifier
set to the value specified in the SPC-2 standard. In response to a REQUEST SENSE command the target
shall return the REQUEST SENSE data with a sense key of NO SENSE unless an Auto Contingent
Allegiance exists.

The target's response to any other command is vendor specific.

5.6.4 Sense data

Sense data shall be made available by the logical unit in the event a command completes with a CHECK
CONDITION status, COMMAND TERMINATED status or other conditions. The format, content and conditions
under which sense data shall be prepared by the logical unit are specified in this standard, the SPC-2 standard, the
applicable device command standard and applicable SCSI-3 protocol standard.

Sense data shall be preserved by the logical unit for the initiator until it is transferred by one of the methods listed
below or until another task from that initiator is entered into the task set.

The sense data may be transferred to the initiator through any of the following methods:

a) The REQUEST SENSE command specified in the SPC-2 standard;
b) An asynchronous event report; or
c) Autosense delivery.

The following clauses describe the last two transfer methods.

5.6.4.1 Asynchronous Event Reporting

Asynchronous Event Reporting is used by a logical unit to signal another device that an asynchronous event has
occurred. The mechanism automatically returns sense data associated with the event. Each SCSI protocol
specification shall describe a mechanism for Asynchronous Event Reporting, including a procedure whereby an
SCSI device can selectively enable or disable asynchronous event reports from being sent to it by a specific target.
(In this clause, references to Asynchronous Event Reporting assume that the device to be notified has enabled
asynchronous event reports from the target.) Support for asynchronous event reporting is a logical unit option.

NOTE 10 An SCSI device which can produce asynchronous event reports at initialization time should provide
means to defeat these reports. This can be done with a switch or jumper wire. Devices which implement saved
parameters may alternatively save the asynchronous event reporting permissions either on a per SCSI device
basis or as a system wide option.

Parameters affecting the use of asynchronous event reporting are contained in the control mode page (see the
SPC-2 standard).

Asynchronous Event Reporting is used to signal a device that one of the four events listed below has occurred:

a) an error condition was encountered after command completion;
b) a newly initialized device is available;
c) some other type of unit attention condition has occurred; or
d) an asynchronous event has occurred.

An example of the first case above occurs in a device that implements a write cache. If the target is unable to write
cached data to the medium, it may use an asynchronous event report to inform the initiator of the failure.
working draft SCSI Architecture Model - 2 (SAM-2) 53

T10/1157-D revision 4 29 March 1998
An example of the second case above is a logical unit that generates an asynchronous event report, following a
power-on cycle, to notify other SCSI devices that it is ready to accept I/O commands.

An example of the third case above occurs in a device that supports removable media. Asynchronous event
reporting may be used to inform an initiator of a not-ready-to-ready transition (medium changed) or of an operator
initiated event (e.g., activating a write protect switch or activating a start or stop switch).

An example of the fourth case above is a sequential-access device performing a REWIND command with the
IMMEDIATE bit set to one. An asynchronous event report may be used to inform an initiator that the beginning of
medium has been reached. Completion of a CD-ROM AUDIO PLAY command started in the immediate mode is
another example of this case.

Sense data accompanying the report identifies the condition (see 5.6.4).

An error condition or Unit Attention condition shall be reported to a specific initiator once per occurrence of the
event causing it. The logical unit may choose to use an asynchronous event report or to return CHECK
CONDITION status on a subsequent command, but not both. Notification of command-related error conditions
shall be sent only to the initiator that initiated the affected task.

Asynchronous event reports may be used to notify devices that a system resource has become available. If a
logical unit uses this method of reporting, the sense key in the AER sense data shall be set to UNIT ATTENTION.

5.6.4.2 Autosense

Autosense is the automatic return of sense data to the application client coincident with the completion of an
SCSI-3 command under the conditions described below. The return of sense data in this way is equivalent to an
explicit command from the application client requesting sense data immediately after being notified that an ACA
condition has occurred. Inclusion of autosense support in an SCSI-3 protocol standard is optional.

As specified in clause 5, the application client may request autosense service for any SCSI command. If supported
by the protocol and logical unit and requested by the application client, the device server shall only return sense
data in this manner coincident with the completion of a command with a status of CHECK CONDITION or
COMMAND TERMINATED. The sense data shall then be cleared.

Protocol standards that support autosense shall require an autosense implementation to:

a) Notify the logical unit when autosense data has been requested for a command; and
b) Inform the application client when autosense data has been returned upon command completion (see

clause 5).

It is not an error for the application client to request the automatic return of sense data when autosense is not
supported by the SCSI-3 protocol or logical unit implementation. If the application client requested the return of
sense data through the autosense facility and the protocol service layer does not support this feature, then the
confirmation returned by the initiator's service delivery port should indicate that no sense data was returned. If the
protocol service layer supports autosense but the logical unit does not, then the target should indicate that no
sense data was returned. In either case, sense information shall be preserved and the application client may issue
a command to retrieve it.
54 working draft SCSI Architecture Model - 2 (SAM-2)

29 March 1998 T10/1157-D revision 4
5.6.5 Unit Attention condition

Each logical unit shall generate a Unit Attention condition whenever the logical unit has been reset as described in
5.6.6 or by a power-on reset. In addition, a logical unit shall generate a Unit Attention condition for each initiator
whenever one of the following events occurs:

a) A removable medium may have been changed;
b) The mode parameters in effect for this initiator have been changed by another initiator;
c) The version or level of microcode has been changed;
d) Tasks for this initiator were cleared by another initiator;
e) INQUIRY data has been changed;
f) The mode parameters in effect for the initiator have been restored from non-volatile memory;
g) A change in the condition of a synchronized spindle; or
h) Any other event requiring the attention of the initiator.

Logical units may queue Unit Attention conditions. After the first Unit Attention condition is cleared, another Unit
Attention condition may exist (e.g., a power on condition followed by a microcode change condition).

A Unit Attention condition shall persist on the logical unit for each initiator until that initiator clears the condition as
described in the following paragraphs.

If an INQUIRY command is received from an initiator to a logical unit with a pending Unit Attention condition (before
the logical unit generates the Auto Contingent Allegiance condition), the logical unit shall perform the INQUIRY
command and shall not clear the Unit Attention condition.

If a request for sense data is received from an initiator with a pending Unit Attention condition (before the logical
unit establishes the Auto Contingent Allegiance condition), then the logical unit shall either:

a) Report any pending sense data and preserve the unit attention condition on the logical unit; or,
b) Report the Unit Attention condition.

If the second option is chosen (reporting the Unit Attention condition), the logical unit may discard any pending
sense data and may clear the Unit Attention condition for that initiator.

If the logical unit has already generated the Auto Contingent Allegiance condition for the Unit Attention condition,
the logical unit shall perform the second action listed above.

If an initiator issues a command other than INQUIRY or REQUEST SENSE while a Unit Attention condition exists
for that initiator (prior to generating the Auto Contingent Allegiance condition for the Unit Attention condition), the
logical unit shall not perform the command and shall report CHECK CONDITION status unless a higher priority
status as defined by the logical unit is also pending (see 5.2.1).

If a logical unit successfully sends an asynchronous event report informing the initiator of the Unit Attention
condition, then the logical unit shall clear the Unit Attention condition for that initiator on the logical unit (see
5.6.4.1).

5.6.6 Target hard reset

A target hard reset is a target response to a TARGET RESET task management request (see 6.6), or a reset event
within the service delivery subsystem. The definition of target reset events is protocol and interconnect specific.
Each SCSI-3 protocol standard shall specify the response to a target reset event including the conditions under
which a target hard reset shall be executed.

To execute a hard reset a target shall initiate a logical unit reset for all attached logical units as described in 5.6.7.
working draft SCSI Architecture Model - 2 (SAM-2) 55

T10/1157-D revision 4 29 March 1998
5.6.7 Logical Unit reset

A logical unit reset is a response to a LOGICAL UNIT RESET task management request (see 6.5), or a some other
logical unit reset event, such as a target hard reset (see 5.6.6). The definition of such events may be
device-specific or dependent on the protocol and interconnect. Each appropriate SCSI-3 standard shall specify the
conditions under which a logical unit reset shall be executed.

To execute a logical unit reset the logical unit shall:

a) Abort all tasks in its task set;
b) Clear an Auto Contingent Allegiance condition, if one is present;
c) Release all SCSI device reservations;
d) Return the device’s operating mode to the appropriate initial conditions, similar to those conditions that

would be found following device power-on. The MODE SELECT conditions (see the SPC-2 standard) shall
be restored to their last saved values if saved values have been established. MODE SELECT conditions
for which no saved values have been established shall be returned to their default values;

e) Set a Unit Attention condition (see 5.6.5); and
f) Initiate a logical unit reset for all nested logical units (see 4.7.5).

In addition to the above, the logical unit shall execute any additional functions required by the applicable standards.
56 working draft SCSI Architecture Model - 2 (SAM-2)

29 March 1998 T10/1157-D revision 4
6 Task Management Functions

Task management functions provide an initiator with a way to explicitly control the execution of one or more tasks.
An application client invokes a task management function by means of a procedure call having the following format:

Service response = Function name (Object Identifier [,Input-1] [,Input-2-] … || [Output-1] [,Output-2] …)

Service Response:

One of the following protocol-specific responses shall be returned:

Each SCSI protocol standard shall define the actual events comprising each of the above service responses.

The task management functions are summarized as follows (see the clauses below for detailed definitions of each
task management function):

Editors Note 10 - ROW: There is no definition of Task Address in object definition 7. Therefore, I have
changed Task Address to Tag in all instances in the following paragraphs.

ABORT TASK (Tag ||) - Abort the task identified by the Tag parameter. This function shall be supported if the
logical unit supports tagged tasks and may be supported if the logical unit does not support tagged tasks (see
object definition 7).

ABORT TASK SET (Logical Unit Identifier ||) - Abort all tasks in the task set for the requesting initiator. This
function shall be supported by all logical units.

CLEAR ACA (Logical Unit Identifier ||) - Clear Auto Contingent Allegiance condition. This function shall be
supported if the logical unit accepts an NACA bit value of one in the CDB CONTROL byte and may be supported if the
logical unit does not accept an NACA bit value of one in the CDB CONTROL byte (see 5.1.2).

CLEAR TASK SET (Logical Unit Identifier ||) - Abort all tasks in the specified task set. This function shall be
supported by all logical units that support tagged tasks (see object definition 7) and may be supported by logical
units that do not support tagged tasks.

LOGICAL UNIT RESET (Logical Unit Identifier ||) - Perform a logical unit reset as described in 5.6.7 by
terminating all tasks in the task set and propagating the reset to all nested logical units. Support for this function is
mandatory for hierarchical logical units and may be supported by non-hierarchical logical units.

FUNCTION COMPLETE: A task manager response indicating that the requested function is complete.
The task manager shall unconditionally return this response upon completion of
a task management request supported by the logical unit or target device to
which the request was directed. Upon receiving a request to execute an
unsupported function, the task manager may return this response or the
FUNCTION REJECTED response described below.

FUNCTION REJECTED: An optional task manager response indicating that the operation is not
supported by the object to which the function was directed (e.g., the logical unit
or target device).

SERVICE DELIVERY

OR TARGET FAILURE:
The request was terminated due to a service delivery failure or target
malfunction. The target may or may not have successfully performed the
specified function.
working draft SCSI Architecture Model - 2 (SAM-2) 57

T10/1157-D revision 4 29 March 1998
TARGET RESET (Target Identifier ||) - Reset the target device and terminate all tasks in all task sets. All target
devices shall support this function.

TERMINATE TASK (Tag ||) - Terminate the identified by the Tag parameter. Implementation of this function is a
logical unit option.

Argument descriptions:

NOTE 11 The TARGET RESET, CLEAR TASK SET, ABORT TASK and ABORT TASK SET functions provide a
means to terminate one or more tasks prior to normal completion. The TARGET RESET command clears all tasks
for all initiators on all task sets of the target. The CLEAR TASK SET function terminates all tasks for all initiators on
the specified task set of the target. An ABORT TASK SET function terminates all tasks for the initiator on the
specified task set of the target. An ABORT TASK function terminates only the specified task.

All SCSI-3 protocol specifications shall provide the functionality needed for a task manager to implement all of the
task management functions defined above.

6.1 ABORT TASK

Function call:

Service Response = ABORT TASK (Task Address ||)

Description:

This function shall be supported by a logical unit that supports tagged tasks and may be supported by a logical unit
that does not support tagged tasks.

The task manager shall abort the specified task if it exists. Previously established conditions, including MODE
SELECT parameters, reservations, and Auto Contingent Allegiance shall not be changed by the ABORT TASK
function.

If the logical unit supports this function, a response of FUNCTION COMPLETE shall indicate that the task was aborted
or was not in the task set. In either case, the target shall guarantee that no further responses from the task are sent
to the initiator.

6.2 ABORT TASK SET

Function Call:

Service Response = ABORT TASK SET (Logical Unit Identifier ||)

Description:

This function shall be supported by all logical units.

Target Identifier: Target device identifier defined in object definition 5.

Logical Unit Identifier: Logical Unit identifier defined in object definition 6.

Tag: Tag value that identifies a task (see object definition 7).
58 working draft SCSI Architecture Model - 2 (SAM-2)

29 March 1998 T10/1157-D revision 4
The task manager shall terminate all tasks in the task set which were created by the initiator.

The task manager shall perform an action equivalent to receiving a series of ABORT TASK requests. All tasks from
that initiator in the task set serviced by the logical unit shall be aborted. Tasks from other initiators or in other task
sets shall not be terminated. Previously established conditions, including MODE SELECT parameters,
reservations, and Auto Contingent Allegiance shall not be changed by the ABORT TASK SET function.

6.3 CLEAR ACA

Function Call

Service response = CLEAR ACA (Logical Unit Identifier ||)

Description:

This function shall only be implemented by a logical unit that accepts an NACA bit value of one in the CDB CONTROL

byte (see 5.1.2).

The initiator invokes CLEAR ACA to clear an auto contingent allegiance condition from the task set serviced by the
logical unit according to the rules specified in 5.6.1.2. The function shall always be terminated with a service
response of FUNCTION COMPLETE.

If the task manager clears the Auto Contingent Allegiance condition, any task within that task set may be
completed subject to the rules for task set management specified in clause 7.

6.4 CLEAR TASK SET

Function Call:

Service response = CLEAR TASK SET (Logical Unit Identifier ||)

Description:

This function shall be supported by all logical units that support tagged tasks (see object definition 7) and may be
supported by logical units that do not support tagged tasks.

The target shall perform an action equivalent to receiving a series of ABORT TASK requests from each initiator. All
tasks, from all initiators, in the specified task set shall be aborted. The medium may have been altered by partially
executed commands. All pending status and data for that logical unit for all initiators shall be cleared.

No status shall be sent for any task. A Unit Attention condition shall be generated for all other initiators with tasks
in that task set. When reporting the Unit Attention condition the additional sense code shall be set to COMMANDS
CLEARED BY ANOTHER INITIATOR.

Previously established conditions, including MODE SELECT parameters (see the SPC-2 standard), reservations,
and Auto Contingent Allegiance shall not be changed by the CLEAR TASK SET function.
working draft SCSI Architecture Model - 2 (SAM-2) 59

T10/1157-D revision 4 29 March 1998
6.5 LOGICAL UNIT RESET

Function Call:

Service Response = LOGICAL UNIT RESET (Logical Unit Identifier ||)

Description:

This function shall be supported by all logical units that support hierarchical logical units (see 4.7.5) and may be
supported by non-hierarchical logical units.

Before returning a FUNCTION COMPLETE response the logical unit shall perform the logical unit reset functions
specified in 5.6.7. A Unit Attention condition for all initiators shall be created on each logical unit as specified in
5.6.5.

6.6 TARGET RESET

Function Call:

Service Response = TARGET RESET (Target Identifier ||)

Description:

This function shall be supported by all target devices.

Before returning a FUNCTION COMPLETE response the target shall perform the target hard reset functions specified
in 5.6.6. A Unit Attention condition for all initiators shall be created on each logical unit as specified in 5.6.5.

6.7 TERMINATE TASK

Function Call:

Service response = TERMINATE TASK (Task Address ||)

Description:

Support for this function is a logical unit option.

The TERMINATE TASK function is invoked by the initiator to request task completion. A response of FUNCTION

COMPLETE indicates that the request has been accepted and does not imply that the referenced task has ended.
Assuming the task existed when the TERMINATE TASK function was invoked, the initiator shall consider the task to
continue in existence until one of the events specified in 5.4 is detected.

With the following exceptions, the logical unit shall complete the specified task and send COMMAND
TERMINATED status. The sense key shall be set to NO SENSE. The additional sense code and qualifier are set
to TASK TERMINATED.
60 working draft SCSI Architecture Model - 2 (SAM-2)

29 March 1998 T10/1157-D revision 4
If the work performed by the terminated task involves the transfer of data, the logical unit shall set the VALID bit in
the sense data to one and set the INFORMATION field as follows:

a) If the command descriptor block specifies an allocation length or parameter list length, the INFORMATION

field shall be set to the difference (residue) between the number of bytes successfully transferred and the
requested length;

b) If the command descriptor block specifies a transfer length field, the INFORMATION field shall be set as
defined in the REQUEST SENSE command (see the SPC-2 standard).

If an error is detected for the specified task, the logical unit shall ignore the TERMINATE TASK request and send a
service response of FUNCTION COMPLETE.

If the operation requested for the specified task has been completed but status has not been sent, the logical unit
shall ignore the TERMINATE TASK request and return a service response of FUNCTION COMPLETE.

If the target does not support this function or is unable to stop the task, the target shall return a service response of
FUNCTION REJECTED to the initiator and continue the task in a normal manner.

The effect of a TERMINATE TASK request on the task set depends on the task set error recovery option specified
in the Control mode page (see the SPC-2 standard) and on whether or not an Auto Contingent Allegiance condition
is generated.

NOTE 12 The TERMINATE TASK function provides a means for the initiator to request the logical unit to reduce the
transfer length of the referenced command to the amount that has already been transferred. The initiator can use
the sense data to determine the actual number of bytes or blocks that have been transferred. This function is
normally used by the initiator to stop a lengthy read, write, or verify operation when a higher-priority command is
available to be executed. It is up to the initiator to complete the terminated command at a later time, if required.

6.8 Task management protocol services

The confirmed service described in this clause is used by an application client to issue a task management remote
procedure call. The following arguments are passed:

All SCSI-3 protocol specifications shall define the protocol-specific requirements for implementing the Send Task
Management Request protocol service and the Received Function-Executed confirmation described below.
Support for the Task Management Request Received indication and Task Management Function Executed protocol
service response by the SCSI-3 protocol standard is optional. All SCSI-3 I/O systems shall implement these
protocols as defined in the applicable protocol specification.

The argument definitions correspond to those of clause 6.

Object Address: A Task Address, Logical Unit Identifier or Target Identifier supplied by the appli-
cation client to identify the object to be operated upon. The initiator's service
delivery port will convert a Task Address to a Task Identifier before forwarding
the request to the target.

Object Identifier: A Task Identifier, Logical Unit Identifier or Target Identifier passed to the task
manager by the protocol service indication.

Function Identifier: Parameter encoding the task management function to be performed.
working draft SCSI Architecture Model - 2 (SAM-2) 61

T10/1157-D revision 4 29 March 1998
Request sent by application client:

Send Task Management Request (Object Address, Function Identifier ||)

Indication received by task manager:

Task Management Request Received (Object Identifier, Function Identifier ||)

Response from task manager:

Task Management Function Executed (Object Identifier, Service Response ||)

Editors Note 11 - ROW: Unless someone can identify the reference in “(see 6)”, it will be removed from
the next revision of this draft.

The Service Response parameter encodes a value representing one of the following (see 6):

Confirmation received by application client:

Received Function-Executed (Object Address, Service Response ||)

Since the object identifier does not uniquely identify the transaction, there may be no way for an initiator to
associate a confirmation with a request. An SCSI protocol that does not provide such an association should not
allow an initiator to have more than one pending task management request per logical unit.

FUNCTION REJECTED: The task manager does not implement the requested function.

FUNCTION COMPLETE: The requested function has been completed.
62 working draft SCSI Architecture Model - 2 (SAM-2)

29 March 1998 T10/1157-D revision 4
6.9 Task management function example

Figure 24 shows the sequence of events associated with a task management function.

The numbers in figure 24 identify the events described below.

1. The application client issues a task management request by invoking the Send Task Management Request
protocol service.

2. The task manager is notified through a Task Management Request Received and begins executing the
function.

3. The task manager performs the requested operation and responds by invoking the Task Management
Function Executed protocol service to notify the application client. The Service Response parameter is
set to a value of FUNCTION COMPLETE.

4. A Received Function-Executed confirmation is received by the application client.

Figure 24 — Task management processing events

Waiting

Working

Time

3

1

2

4

Time

Initiator

Target

Activity

Activity

Application Client

Task Manager
working draft SCSI Architecture Model - 2 (SAM-2) 63

T10/1157-D revision 4 29 March 1998
64 working draft SCSI Architecture Model - 2 (SAM-2)

29 March 1998 T10/1157-D revision 4
7 Task Set Management

This clause specifies task set management requirements in terms of task states, task attributes and events that
cause task state transitions.

Task behavior, as specified herein, refers to the functioning of a task as observed by an application client within the
initiator -- including the results of command execution and interactions with other tasks. Examples of behavior not
observable by the application client are the physical activity on the interconnect or the format of transmitted data
packets associated with a command. To define these and other aspects of behavior, SCSI-3 protocol and
interconnect standards may impose other requirements, outside the scope of this standard, which are related to
observable behavior within the protocol or interconnect layers.

The rules for task set management only apply to a task after it has been entered into the task set. A task shall be
entered into the task set unless a condition exists which causes that task to be completed with a status of BUSY,
RESERVATION CONFLICT, TASK SET FULL, ACA ACTIVE or CHECK CONDITION (if caused by the detection of
an overlapped command). A task may also be completed in this manner because of a CHECK CONDITION status
caused by certain protocol-specific errors. In these cases, the task shall be completed as soon as the condition is
detected.

7.1 Terminology

The following definitions are used extensively in this clause.

7.1.1 suspended information: Information within the logical unit that is not available to a pending task.

7.1.2 current task: A task that has a data transfer protocol service request in progress (see 5.3.1) or is in the
process of sending command status. Each SCSI-3 protocol standard shall define the protocol-specific conditions
under which a task is considered a current task.

7.1.3 pending task: Any task that is not a current task.

7.2 Task management events

The following describe the events that drive changes in task state.

All older tasks ended: All tasks have ended that were accepted into the task set earlier in time
than the referenced task.

All older Head of Queue
and older Ordered tasks

ended:

All Head of Queue and Ordered tasks have ended that were accepted into the
task set earlier in time than the referenced task.

ACA: An auto contingent allegiance condition has occurred.

task abort: One of the events described in 7.3 has occurred.

task completion: The device server has sent a service response of TASK COMPLETE for the task
(see clause 5 and 5.4).

task ended: A task has completed or aborted.

ACA cleared: An ACA condition has been cleared.
working draft SCSI Architecture Model - 2 (SAM-2) 65

T10/1157-D revision 4 29 March 1998
Editors Note 12 - ROW: The technical editor cannot determine the intent of the following paragraph well
enough to edit it into readable English.

Clause 7.4 describes the events, changes in task state and device server actions for a Simple, Ordered, ACA or
Head of Queue task.

7.3 Task Abort Events

A Task Abort event is one of the following:

a) Completion of an ABORT TASK task management function directed to the specified task;
b) Completion of an ABORT TASK SET task management function under the conditions specified in 6.2;
c) Completion of a CLEAR TASK SET task management function referencing the task set containing the

specified task;
d) Completion of a PERSISTENT RESERVE with a Preempt and Clear action directed to the specified task;
e) An ACA condition was cleared and the QErr bit was set to one in the control mode page (see the SPC-2

standard);
f) An ACA condition was cleared and the task had the ACA attribute;
g) A logical unit reset (see 5.6.7);
h) The return of an Execute Command service response of SERVICE DELIVERY OR TARGET FAILURE as

described in clause 5; or
i) A power on condition.

7.4 Task states

Editors Note 13 - ROW: The technical editor was not comfortable with the location of figure 25 and
made the slight organizational changes indicated by the next paragraph.

The next several clauses identify and describe the states in the task state model. Following them, is a description
of two task time-lines involving three of the four states.

7.4.1 Enabled

A task in the Enabled state may become a current task and may complete at any time, subject to the task
completion constraints specified in the Control mode page (see the SPC-2 standard). A task that has been
accepted into the task set shall not complete or become a current task unless it is in the enabled state.

Except for the use of target resources required to preserve task state, a task shall produce no effects detectable by
the application client before the task's first transition to the Enabled state. Although, before entering this state for
the first time, the task may perform other activities visible to lower layers -- such as pre-fetching data to be written to
the media -- this activity shall not result in a detectable change in device state as perceived by an application client.
In addition, the behavior of a completed task, as defined by the commands it has executed, shall not be affected by
the task's states before it became enabled.
66 working draft SCSI Architecture Model - 2 (SAM-2)

29 March 1998 T10/1157-D revision 4
7.4.2 Blocked

A task in the Blocked state is prevented from completing due to an Auto Contingent Allegiance condition. A task in
this state shall not become a current task. While a task is in the Blocked state, any information the logical unit has
or accepts for the task shall be suspended.

7.4.3 Dormant

A task in the Dormant state is prevented from completing due to the presence of certain other tasks in the task set.
A task in this state shall not become a current task. While a task is in the Dormant state, any information the logical
unit has or accepts for the task shall be suspended.

7.4.4 Ended

A task in the Ended state is removed from the task set.

7.4.5 Task states and task lifetimes

Figure 25 shows the events corresponding to two task execution sequences. Except for the Dormant state
between times A and B in case 1, logical unit conditions and the commands executed by the task are identical.
Assuming in each case the task completes with a status of GOOD at time C, the system state observed by the
application client for case 1 shall be indistinguishable from the state observed for case 2.

Editors Note 14 - ROW: It would appear that “task completed” should be “task ended” in figure 25.

Figure 25 — Example of Dormant state task behavior

A
Task

Created

Timeline

B
Task

Enabled

C
Task

Completed

Task Dormant

A

Timeline

B
Task Created
and Enabled

C
Task

Completed

Case 1

Case 2

Application client
observes system

state
working draft SCSI Architecture Model - 2 (SAM-2) 67

T10/1157-D revision 4 29 March 1998
7.5 Task Attributes

A task shall have one of the attributes defined below.

7.5.1 SIMPLE Task

A task having the Simple attribute shall be accepted into the task set in the Dormant state. The task shall not enter
the Enabled state until all older Head of Queue and older Ordered tasks in the task set have ended (see 7.2).

7.5.2 ORDERED Task

A task having the Ordered attribute shall be accepted into the task set in the Dormant state. The task shall not
enter the Enabled state until all older tasks in the task set have ended (see 7.2).

7.5.3 HEAD OF QUEUE Task

A task having the Head of Queue attribute shall be accepted into the task set in the Enabled state.

7.5.4 ACA Task

A task having the ACA attribute shall be accepted into the task set in the Enabled state. As specified in 5.6.1.1,
there may be no more than one ACA task per task set.

7.6 Task state transitions

The task state diagram of figure 26 shows the behavior of a single task in response to an external event.

Figure 26 — Task states

{ }Simple Task: All older Head of Queue and
older Ordered tasks ended

or
Ordered Task: All older tasks ended

ACA Clear and:

S0: Dormant S1: Enabled

S0:S1
S3: Ended

Task Abort

Task Abort

S2: Blocked

ACA Cleared

Remove task from task

S1:S2
ACA

S2:S1

S3:S1
Task End

S2:S3

S0:S3
68 working draft SCSI Architecture Model - 2 (SAM-2)

29 March 1998 T10/1157-D revision 4
The following clauses describe task state transitions, actions and associated triggering events as they appear to an
application client. Although the logical unit response to events affecting multiple tasks, such as a CLEAR TASK
SET, may be different from the response to an event affecting a single task, from the viewpoint of the application
client the collective behavior appears as a series of state changes occurring to individual tasks.

In the discussion below, "dormant task" refers to a task in the Dormant state, "enabled task" to a task in the
Enabled state, and so forth.

7.6.1 Transition S0:S1 (Ordered Task): Provided an ACA condition does not exist, a dormant task having the
ORDERED attribute shall enter the Enabled state when all older tasks have ended. This transition shall not occur
while an ACA condition is in effect for the task set.

7.6.2 Transition SO:S1 (Simple task): Provided an ACA condition does not exist, a dormant task having the
SIMPLE attribute shall enter the Enabled state when all older Head of Queue and older Ordered tasks have ended.
This transition shall not occur while an ACA condition is in effect for the task set.

7.6.3 Transitions S0:S3, S2:S3: A task abort event shall cause the task to unconditionally enter the Ended state.

7.6.4 Transition S1:S2: An ACA condition shall cause an enabled task to enter the Blocked state.

7.6.5 Transition S1:S3: A task that has completed or aborted shall enter the Ended state. This is the only state
transition that applies to an ACA task.

7.6.6 Transition S2:S1: When an ACA condition is cleared and the QErr bit is set to zero in the Control mode
page (see the SPC-2 standard), a task in the Blocked state shall re-enter the Enabled state.

7.7 Task set management examples

The following clauses give several task set management scenarios. These are valid for single or multi-initiator
cases. That is, the interaction among tasks in a task set is independent of the initiator originating a task. The
figure accompanying each example shows successive snapshots of a task set after various events, such as task
creation or completion. In all cases, the constraints on task completion order established using the Control mode
page (see the SPC-2 standard) are not in effect.

A task set is shown as an ordered list or queue of tasks with the head of the queue towards the top of the page. A
new Head of Queue task always enters the task set at the head, displacing older Head of Queue tasks. Simple,
Ordered and ACA tasks always enter the task set at the end of the queue.

Tasks, denoted by rectangles, are numbered in ascending order from oldest to most recent. Fill, shape and line
weight are used to distinguish task states and attributes as follows:

Task attributes:

a) Simple tasks -- rounded corners;
b) Ordered -- square corners and thin lines;
c) Head of Queue -- square corners and thick lines; or
d) ACA tasks -- square corners and thin dashed lines.
working draft SCSI Architecture Model - 2 (SAM-2) 69

T10/1157-D revision 4 29 March 1998
Task states:

a) Enabled -- no fill;
b) Dormant -- grey (50 percent fill); or
c) Blocked -- black.

7.7.1 Blocking boundaries

The conditions preventing a dormant task from becoming enabled (in the absence of an ACA condition) are shown
by means of “blocking boundaries”. Such boundaries appear as dotted horizontal lines with an arrow on both ends.
The accompanying text identifies the tasks causing the barrier condition. A task is impeded by the barrier if it is
between the boundary and the end of the queue. When no ACA is in effect, a task enters the Enabled state after all
intervening barriers have been removed.

Blocking boundaries are not shown while an ACA condition exists. In this case, the blocking effect of an ACA
condition takes precedence.

7.7.2 Head of Queue tasks

Figure 27 shows task set conditions when several Head of Queue tasks are executed.

In snapshot 1 the task set initially contains one Head of Queue and one Simple task. As shown by the blocking
boundary, simple task 2 is Dormant because of the older Head of Queue task. Snapshot 2 shows the task set after
Head of Queue task 3 and Simple task 4 are created. The new Head of Queue task is placed at the front of the
queue in the Enabled state, displacing task 1. Snapshot 3 shows the task set after task 3 completes. Since the
conditions indicated by the task 1 blocking boundary are still in effect, tasks 2 and 4 are held in the Dormant state.

Figure 27 — Head of Queue tasks and blocking boundaries (example 1)

Head of Queue
Task 1

Simple Task 2 Simple Task 2

Head of Queue
Task 3

Simple Task 2

Snapshot 1 Snapshot 2

Head of Queue
Task 1

Simple Task 4

Snapshot 3

Task Set Task Set Task Set

Head of Queue
Task 1

Simple Task 4

Blocking boundary
task 1

Blocking boundary
task 1

Blocking boundary
task 3

Time

Blocking boundary
task 1
70 working draft SCSI Architecture Model - 2 (SAM-2)

29 March 1998 T10/1157-D revision 4
Figure 28 is the same as the previous example, except that task 1 completes instead of task 3.

The completion of task 1 allows task 2 to enter the Enabled state. Simple task 4 is held in the Dormant state until
task 3 completes.

Figure 28 — Head of Queue tasks and blocking boundaries (example 2)

Head of Queue
Task 1

Simple Task 2

Simple Task 2

Head of Queue
Task 3

Simple Task 2

Snapshot 1 Snapshot 2

Head of Queue
Task 3

Simple Task 4

Snapshot 3

Task Set Task Set Task Set

Head of Queue
Task 1

Simple Task 4

Blocking boundary
task 1

Blocking boundary
task 1

Blocking boundary
task 3

Blocking boundary
task 3

Time
working draft SCSI Architecture Model - 2 (SAM-2) 71

T10/1157-D revision 4 29 March 1998
7.7.3 Ordered tasks

An example of Ordered and Simple task interaction is shown in figure 29.

The state of dormant tasks 2 through 5 is determined by the following rules:

Tasks 2 and 5 --An Ordered task cannot enter the Enabled state until all older tasks have ended.
Tasks 3 and 4 --A Simple task cannot enter the Enabled state until all older Head of Queue and older Ordered

tasks have ended.

These constraints are shown by the blocking boundaries in snapshot 1.

In snapshot 2, the completion of task 1 allows ordered task 2 to become Enabled. Since the initial constraints on
tasks 3, 4 and 5 are still in effect, these tasks must remain Dormant. As shown in snapshot 3, the completion of
task 2 triggers two state changes: -- namely, the transitions of task 3 and task 4 to the Enabled state. Task 5 must
be held in the Dormant state until these tasks end.

Figure 29 — Ordered tasks and blocking boundaries

Simple Task 3

Simple Task 3

Snapshot 1 Snapshot 2 Snapshot 3

Task Set Task Set Task Set

Blocking boundary
tasks 1 and 2

Simple Task 1

Time

Ordered Task 2

Simple Task 4

Ordered Task 5

Blocking boundary
tasks 1-4 task 5

Blocking boundary
task 2

Ordered Task 2

Blocking boundary
task 2

Simple Task 3

Simple Task 4

Blocking boundary
tasks 2-4 task 5

Ordered Task 5

Simple Task 4

Ordered Task 5

Blocking boundary
tasks 3 and 4 task 5
72 working draft SCSI Architecture Model - 2 (SAM-2)

29 March 1998 T10/1157-D revision 4
7.7.4 ACA task

Figure 30 shows the effects of an ACA condition on the task set. This example assumes the QErr flag is set to zero
in the Control mode page (see the SPC-2 standard). Consequently, clearing an ACA condition will not cause tasks
to be aborted.

The completion of task 2 with CHECK CONDITION status causes task 1 to enter the Blocked state shown in
snapshot 2. In snapshot 3, Ordered task 3 is aborted and ACA task 5 is created to handle the exception. Once the
ACA condition is cleared, (snapshot 4) Simple task 1 can reenter the Enabled state. Since there are no Head of
Queue or Ordered tasks older than task 4, it too can be placed in the Enabled state.

7.7.5 Deferred task completion

In the example of figure 31, the logical unit must defer task completion in response to an exception condition until
the task enters the Enabled state. In this case, completion is caused by a TERMINATE TASK task management

Figure 30 — ACA task example

Snapshot 1 Snapshot 2 Snapshot 3

Task Set Task Set Task Set

Simple Task 1

Time

Simple Task 4

Blocking boundary
task 3

Simple Task 1

Snapshot 4

Task Set

Simple Task 4Simple Task 2

Ordered Task 3

Blocking boundary
tasks 1 and 2 task 3

Simple Task 1

Simple Task 4

Ordered Task 3

Blocking boundary
task 1 and task 3

Simple Task 1

Simple Task 4

ACA Task 5

Ordered Task 3

Blocking boundary
task 3

Blocking boundary
task 3

Blocking boundary
task 1 and task 3
working draft SCSI Architecture Model - 2 (SAM-2) 73

T10/1157-D revision 4 29 March 1998
function directed to a dormant task. The example would also apply to other cases, such as a task to be completed
with CHECK CONDITION status because of an error in a CDB parameter.

In snapshot 1, a TERMINATE TASK task management request has been directed to Dormant task 3. Because of
Ordered task 1, task 3 cannot enter the Enabled state and therefore cannot complete. The eventual completion of
task 1 allows tasks 2 and 3 to become enabled as shown in snapshot 2. The pending TERMINATE TASK request
can now be executed. The resulting auto contingent allegiance condition causes task 2 to enter the Blocked state
shown in snapshot 3.

Because tasks in the Enabled state may complete in any order Simple task 2 may complete before task 3. In that
case, the following alternate outcomes are possible:

a) Simple task 2 may complete with GOOD status, followed by the completion of task 3 with CHECK
CONDITION status; or

b) Simple task 2 may complete with CHECK CONDITION status; task 3 is placed in the Blocked state.

Figure 31 — Example of deferred task completion

Snapshot 1 Snapshot 2 Snapshot 3

Task Set Task Set Task Set

Time

Ordered Task 1

Blocking boundary
task 1

Simple Task 2

Simple Task 3

Simple Task 2

Simple Task 3

Simple Task 2
74 working draft SCSI Architecture Model - 2 (SAM-2)

	1 Approved Documents Included
	2 Revision History
	2.1 Revision 1 (1 September 1996, Charles Monia)
	2.2 Revision 2 (28 March 1997, Charles Monia)
	2.3 Revision 3 (5 May 1997, Charles Monia)
	2.4 Revision 4 (January 1998)

	3 Plans for Future Revisions
	3.1 Minor Changes
	3.2 Substantial Changes

	Foreword
	Introduction
	1 Scope
	1.1 Requirements precedence
	1.2 SCSI-3 standards family

	2 Normative references
	2.1 Document and draft document availability information
	2.2 Normative approved references for mandatory features
	2.3 Normative approved references for optional features

	3 Definitions, symbols, abbreviations, and conventions
	3.1 Definitions
	3.2 Acronyms
	3.3 Keywords
	3.4 Editorial Conventions
	3.5 Numeric Conventions
	3.6 Objects and object notation
	3.6.1 Notation for objects
	3.6.2 Objects containing addresses, identifiers and numeric parameters
	3.6.3 Predefined objects
	3.6.4 Hierarchy diagrams
	3.6.5 Notation for procedures and functions
	3.6.6 Notation for state diagrams

	4 SCSI-3 Architecture Model
	4.1 Introduction
	4.2 The SCSI-3 distributed service model
	4.3 The SCSI-3 client-server model
	4.4 The SCSI-3 structural model
	4.5 SCSI domain
	4.6 The service delivery subsystem
	4.6.1 Synchronizing client and server states
	4.6.2 Request/Response ordering

	4.7 SCSI device models
	4.7.1 SCSI initiator model
	4.7.2 SCSI target model
	4.7.3 The Task Manager
	4.7.4 Logical Unit
	4.7.5 Hierarchical Logical Units
	4.7.5.1 LUN 0 address
	4.7.5.2 Eight byte LUN structure
	4.7.5.3 Logical unit addressing method
	4.7.5.4 Peripheral device addressing method
	4.7.5.5 Virtual device addressing method

	4.8 The SCSI-3 model for distributed communications

	5 SCSI Command Model
	5.1 Command Descriptor Block
	5.1.1 operation code byte
	5.1.2 control byte

	5.2 Status
	5.2.1 Status precedence

	5.3 Protocol Services in Support of Execute Command
	5.3.1 Data Transfer Protocol Services
	5.3.2 Data-In Delivery Service
	5.3.3 Data-Out Delivery service

	5.4 Task and command lifetimes
	5.5 Command processing examples
	5.5.1 Unlinked command example
	5.5.2 Linked command example

	5.6 Command processing considerations and exception conditions
	5.6.1 Auto Contingent Allegiance
	5.6.1.1 Logical Unit response to Auto Contingent Allegiance
	5.6.1.2 Clearing an Auto Contingent Allegiance condition

	5.6.2 Overlapped commands
	5.6.3 Incorrect Logical Unit selection
	5.6.4 Sense data
	5.6.4.1 Asynchronous Event Reporting
	5.6.4.2 Autosense

	5.6.5 Unit Attention condition
	5.6.6 Target hard reset
	5.6.7 Logical Unit reset

	6 Task Management Functions
	6.1 ABORT TASK
	6.2 ABORT TASK SET
	6.3 CLEAR ACA
	6.4 CLEAR TASK SET
	6.5 LOGICAL UNIT RESET
	6.6 TARGET RESET
	6.7 TERMINATE TASK
	6.8 Task management protocol services
	6.9 Task management function example

	7 Task Set Management
	7.1 Terminology
	7.2 Task management events
	7.3 Task Abort Events
	7.4 Task states
	7.4.1 Enabled
	7.4.2 Blocked
	7.4.3 Dormant
	7.4.4 Ended
	7.4.5 Task states and task lifetimes

	7.5 Task Attributes
	7.5.1 SIMPLE Task
	7.5.2 ORDERED Task
	7.5.3 HEAD OF QUEUE Task
	7.5.4 ACA Task

	7.6 Task state transitions
	7.7 Task set management examples
	7.7.1 Blocking boundaries
	7.7.2 Head of Queue tasks
	7.7.3 Ordered tasks
	7.7.4 ACA task
	7.7.5 Deferred task completion

