
T10/98-183 SSS & IP packets over SCSI revision 0

[98-183r0.doc] 09/01/98 3:35 PM, Keith W. Parker <diogenes@europa.com> Page 1 of 46
Diogenes' Unofficial SCSI Socket Services (SSS) http://www.europa.com/~diogenes/SSS/

Document: T10/98-183 revision 0
Date: 98-09-01
To: NCITS T10 SCSI Working Group
From: Keith W. Parker <diogenes@europa.com> (503)255-1035
Subject: SSS & IP packets over SCSI

SSS & IP packets over SCSI

Purpose of this document

This document (with revisions over time) will contain all necessary information from the SSS draft
standard to implement Internet IP packets over SCSI.

The majority of this document is to be included in the draft standard for
"SCSI Socket Services (SSS) Command Set" (NCITS Project T10/1246-D) as the clauses describing the
Clause 2 - "References",
Clause 4 - "SSS General Model",
Clause 5 - "Model for transport of SSS packets over SCSI",
Clause 7 - "Model for transport of Internet IP packets over SCSI",
Clause 8 - "Data Structures for SSS packets over SCSI",
Clause 11 -"SCSI Commands for Internet IP packets over SCSI", &
Clause 12 - "Data Structures for Internet IP packets over SCSI".

This is being presented as a separate document for 2 reasons:
1.) there is an immediate interest and need for transporting Internet IP packets over SCSI, and
2.) even though the implementation of "Internet IP packets over SCSI" is independent of the "Socket API
RPC over SCSI" portion of the standard, many people/organizations are intimidated the sheer mass of the
total document.

Socket API RPC over SCSI
vs.
Internet IP packets over SCSI

These are two methods of accomplishing the same objective: providing a high performance (i.e. SCSI
bandwidth) Platform/Device Independent (PDI) "Socket" Application Programming Interface (API).

The "Socket Application Programming Interface (API) Remote Procedure Call (RPC)" method
couples systems together at the TOP of the Protocol Stack (PS). This method has the highest
performance potential since it does not use the TCP/IP protocol stack and a Socket API call requires only
two (2) SCSI command executions. The down side is that writing the driver for a specific platform is
much more complex. Fortunately, this only has to be done once. An additional strong point is superior
manageability. This is the method of choice for purists.

The "Internet IP packets over SCSI" method couples systems together at the BOTTOM of the Protocol
Stack (PS). This method has lower performance potential since it uses the TCP/IP protocol stack and
each packet transported requires a SCSI command execution (and there may be many packets transported
per Socket API call). The up side is that writing the driver for a specific platform is much less complex.
However, this only has to be done once. This is the method of choice for pragmatists.

Editor's Note: As my e-mail name "Diogenes" suggests, I have a strong tendency for the purist position.
As this document suggests, I also have an appreciation for the pragmatic.

T10/98-183 SSS & IP packets over SCSI revision 0

[98-183r0.doc] 09/01/98 3:35 PM, Keith W. Parker <diogenes@europa.com> Page 2 of 46
Diogenes' Unofficial SCSI Socket Services (SSS) http://www.europa.com/~diogenes/SSS/

Revision History

1998-09-01 - "98-183r0" - First release.

This is the first release.
It is intended to be used to begin computer science class discussion.
It is not intended that code will be written to implement this 1st release.
The next release is to be on 1998-10-01.
The 1998-10-01 2nd release will be usable for a first prototype implementation specification.

This document is located at:
"SSS & IP packets over SCSI" T10 document T10/98-183r0
 http://www.symbios.com/t10/io/t10/document.98/98-183r0.pdf
ftp://ftp.symbios.com/pub/standards/io/t10/document.98/98-183r0.pdf

The appropriate clauses from this document have been pasted into the first release of the SSS draft
standard located at:
"SCSI Socket Services (SSS) Command Set" NCITS project T10/1246-D
 http://www.symbios.com/t10/io/t10/drafts/sss/
 http://www.symbios.com/t10/io/t10/drafts/sss/sss-r00.pdf
ftp://ftp.symbios.com/pub/standards/io/t10/drafts/sss/sss-r00.pdf
ftp://ftp.symbios.com/pub/standards/io/t10/drafts/sss/

Editor's Note: The SCSI command numbers used in this release are TENTATIVE!
They will not be final until acted upon by the T10 committee.

T10/98-183 SSS & IP packets over SCSI revision 0

[98-183r0.doc] 09/01/98 3:35 PM, Keith W. Parker <diogenes@europa.com> Page 3 of 46
Diogenes' Unofficial SCSI Socket Services (SSS) http://www.europa.com/~diogenes/SSS/

Implementation

There may be factors other than throughput, manageability, or ease of implementation in deciding which
method to implement.

Often the design objective is maximum throughput and manageability indicating the Socket API over
SCSI RPC is most appropriate. Certain situations (such as using SCSI as an expansion bus for bridges,
routers, hubs, or switches) are intrinsically IP packet oriented and would logically use the "Internet IP
packets over SCSI" method.

Not only is it possible, it is desirable for a device to support both the "Socket API RPC over SCSI" method
and the "Internet IP packets over SCSI" method as alternate/redundant paths to the same application.
Many products would be more useful if they could be accessed with the same network applications over
SCSI and/or other networks such as Ethernet or the Internet. If the device already has a TCP/IP protocol
stack it takes very little effort to implement Internet IP packets over SCSI.

Editor's Note: Any implementation plans presented here are not to become part of the SSS standard.
They are merely the editor's suggestions.

The general implementation plan is to first implement the pragmatic "Internet IP packets over SCSI"
to get a functional system operational and
then implement the purist "Socket API RPC over SCSI"
to get the maximum in performance and manageability.

1.) Barest, minimalist IP over SCSI system - Unbuffered (one packet transferred per SCSI command)
"IP over SCSI" accessing default channel only. Only basic packet transfer functions are to be
implemented. No management functions are to be implemented. Everything is "default".

Check out a senior design project implemented on the Linux operating system:
"IP Encapsulation in SCSI Driver" by Randy Scott and Chris Frantz (based on RFC 2143)
http://www.wwa.com/~scottr/sd/
http://www.wwa.com/~scottr/sd/design/scsinet-2.1.25.tar.gz

"Encapsulating IP using SCSI" by Ben Elliston, Linux Journal, August 1998, issue 52
RFC 2143 "IP Encapsulation over the Small Computer Systems Interface"
ftp://ftp.internic.net/rfc/rfc2143.txt
ftp://ds.internic.net/rfc/rfc2143.txt

Note: Both examples use SCSI command 2Ah in a non-standard manner which conflicts with some SCSI
device types (such as disk drives), preventing their use as a functionality extension.
Since SSS SCSI commands are to be officially defined as OPTIONAL for ALL device types, it is not
necessary (or desirable) to avoid accessing standard SCSI devices such as disk drives to avoid conflicts.
Since official SCSI command numbers are being assigned,
any device that does not support SSS will simply respond with an "Invalid Command" error code.

2.) Buffered IP over SCSI system - Add buffering for transferring multiple packets per SCSI command.
This improves performance potential by significantly reducing the arbitration/selection/command
overhead (which is dominant in situations of high bandwidth with short data phases). It also improves
performance by allowing a single system context switch to handle many IP packets at once.

3.) Managed IP over SCSI system - Add system management functions. Allow accessing channels and
functions other than "default".

T10/98-183 SSS & IP packets over SCSI revision 0

[98-183r0.doc] 09/01/98 3:35 PM, Keith W. Parker <diogenes@europa.com> Page 4 of 46
Diogenes' Unofficial SCSI Socket Services (SSS) http://www.europa.com/~diogenes/SSS/

4.) SCSI-NIC - SCSI Network Interface Card (NIC) - (Optional) As an "SCSI Old Computer Trick",
implement a fully functional prototype of a single-chip SCSI Network Interface Card (SCSI-NIC).
This may be 802.3 Ethernet, Fibre Channel, Token Ring, or whatever.
Add as many network interfaces as desired by simply plugging more SCSI-NICs onto the SCSI bus(es).
A SCSI-NIC may have any type/number of network ports.

5.) "Socket API RPC over SCSI" - Now that there is a successful build of
coupling systems together at the "bottom" of the Protocol Stack (PS),
the code can be extended to couple systems together at the "top" of the Protocol Stack.

6.) SCSI Beowulf Linux Cluster -
Use a Beowulf Linux Cluster (currently based on 100 mbps Ethernet) to compare performance between
100 mbps Ethernet, SSS Internet IP packets over SCSI, and SSS Socket API RPC over SCSI.

Beowulf Consortium
http://cesdis.gsfc.nasa.gov/beowulf/consortium/consortium.html

"Beowulf is a project to produce parallel Linux clusters from off-the-shelf hardware and freely available
software and make the system trivially replicatable. The purpose of the Consortium is to facilitate
communication within this confederation of independent groups and aid in the rapid deployment of this
technology. Originally the "Beowulf Consortium" was considered in advocacy group. However, the rate at
which Beowulf clusters have spread as across the community has been so high that there has been little
need for such a group. To be honest, independent of the efforts of the "Consortium", Beowulf clusters now
exist or are being built at many sites over the world. "

Beowulf Project at CESDIS
Center of Excellence in Space Data and Information Sciences
Universities Space Research Association
http://cesdis.gsfc.nasa.gov/linux/beowulf/

Beowulf Linux Clusters
http://cesdis.gsfc.nasa.gov/linux/beowulf/beowulf.html

7.) SCSI Harbor Processor & Peripheral Modules -

The SCSI Trade Association (STA) SCSI Harbor Project is currently defining an industry standard for
hot-plug SCSI modules. The driving force (for today) is to support 3.5" disk drives in storage servers.
The same standard can also be used for implementing hot-pluggable SCSI Harbor Processor Modules and
SCSI Harbor Peripheral Modules. Entire systems can be built with these sub-system level hot-pluggable
modules, eventually leading to the extinction of the "Stegosaurs" PC configuration.

http://www.scsita.org/
http://www.scsita.org/harbor/

Keith W. Parker <diogenes@europa.com>
Portland, Oregon, USA 1-(503)-255-1035
Technical Editor, NCITS Project T10/1246-D
SCSI Socket Services (SSS) Command Set

Diogenes' Unofficial SCSI Socket Services (SSS) web site:
http://www.europa.com/~diogenes/SSS/

T10/98-183 SSS & IP packets over SCSI revision 0

[98-183r0.doc] 09/01/98 3:35 PM, Keith W. Parker <diogenes@europa.com> Page 5 of 46
Diogenes' Unofficial SCSI Socket Services (SSS) http://www.europa.com/~diogenes/SSS/

SCSI Socket Services (SSS) Command Set draft standard summary

These are the clauses of the SCSI Socket Services draft standard. The clauses (1, 6, 9, 10, &
13), relating exclusively to the SCSI Remote Procedure Call (RPC) commands and the Socket
API Remote Procedure Set (RPS), are not included in this document (since the purpose of this
document is to facilitate the implementation of Internet IP packets over SCSI).

Clause 1 Scope
Editor's note: Only a dummy clause for numbering is included in this document.

Clause 2 References
The normative and informative references that apply to this proposed standard.

Clause 3 Definitions
Describes the definitions, symbols and abbreviations used in this proposed standard.

Clause 4 SSS General Model
This clause provides an overview of the SSS general models.
This clause also specifies the conventions used throughout the proposed standard.

Clause 5 Model for transport of SSS packets over SCSI
Describes the transport of SSS packets (RPC & IP) over SCSI.

Clause 6 Model for transport of RPC packets over SCSI
Editor's note: Only a dummy clause for numbering is included in this document.

Clause 7 Model for transport of Internet IP packets over SCSI
Describes the specifics of IP (and other) packets over SCSI.

Clause 8 Data structures for SSS packets over SCSI
Describes data structure common to all SSS commands.

Clause 9 SCSI commands for RPC packets over SCSI
Describes SSS_RPC_ commands to transport Remote Procedure Call (RPC) request and reply.
Editor's note: Only a dummy clause for numbering is included in this document.

Clause 10 Data structures for RPC packets over SCSI
Describes data structures unique to SSS_RPC_ commands.
Editor's note: Only a dummy clause for numbering is included in this document.

Clause 11 SCSI commands for Internet IP packets over SCSI
Describes SSS_PKT_ commands to transport Internet IP (and other) packets.

Clause 12 Data structures for Internet IP packets over SCSI
Describes data structures unique to SSS_PKT_ commands.

Clause 13 SSS Socket API Remote Procedure Set (RPS)
Editor's note: Only a dummy clause for numbering is included in this document.

The rest of this document is excerpted/pasted from/to the proposed standard
"SCSI Socket Services (SSS) Command Set", NCITS project T10/1246-D.

T10/98-183 SSS & IP packets over SCSI revision 0

[98-183r0.doc] 09/01/98 3:35 PM, Keith W. Parker <diogenes@europa.com> Page 6 of 46
Diogenes' Unofficial SCSI Socket Services (SSS) http://www.europa.com/~diogenes/SSS/

AMERICAN NATIONAL STANDARD (DRAFT) 199N x3.NNN

American National Standard for Information Systems - (DRAFT)

Information Technology -

SCSI Socket Services (SSS) Command Set

1. Scope

Editor's note: Dummy clause to make numbers match.

T10/98-183 SSS & IP packets over SCSI revision 0

[98-183r0.doc] 09/01/98 3:35 PM, Keith W. Parker <diogenes@europa.com> Page 7 of 46
Diogenes' Unofficial SCSI Socket Services (SSS) http://www.europa.com/~diogenes/SSS/

2. References

2.1 Normative References
The following standards contain provisions that, through reference in the text, constitute
provisions of this standard. At the time of publication, the editions indicated were valid. All
standards are subject to revision, and parties to agreements based on this standard are
encouraged to investigate the possibility of applying the most recent editions of the standards
listed below.

Copies of the following documents can be obtained from ANSI: Approved ANSI standards,
approved and draft international and regional standards (ISO, IEC, CEN/CENELEC, ITUT), and
approved and draft standards of other countries (including BSI, JIS, and DIN). For further
information, contact ANSI Customer Service Department at 212-642-4900 (telephone), 212-302-
1286 (fax) or via the World Wide Web at http://www.ansi.org.

Additional availability contact information is provided below as needed.

2.1.1 Approved references

SCSI-3 Architecture Model, X3.270-1997

SCSI-3 Primary Commands, X3.301-1997

SCSI-3 Stream Commands (SSC)
{Date: 1998/08/05, Rev: 12, Status: NCITS Approval, Project: 0997-D}

Portable Operating System Interface (POSIX) - Part xx: Protocol Independent Interfaces
(PII) (IEEE Std. 1003.1g: 199?)

Portable Operating System Interfaces for Computer Environments (IEEE Std. 1003.1:
1990)

2.1.2 References under development
At the time of publication, the following referenced standard was still under development. For
information on the current status of the document, or regarding availability, contact the relevant
standards body as indicated.

Note 1: For more information on the current status of the document, contact the X3
Secretariat at 202-737-8888 (telephone), 202-638-4922 (fax) or via Email at
x3sec@itic.nw.dc.us. To obtain copies of this document, contact Global Engineering at
15 Inverness Way East Englewood, CO 80112-5704 at 800-854-7179 (telephone), 303-
792-2181 (telephone), or 303-792-2192 (fax).

T10/98-183 SSS & IP packets over SCSI revision 0

[98-183r0.doc] 09/01/98 3:35 PM, Keith W. Parker <diogenes@europa.com> Page 8 of 46
Diogenes' Unofficial SCSI Socket Services (SSS) http://www.europa.com/~diogenes/SSS/

2.2 Informative references

Small Computer System Interface-2 [X3.131-1994] [ISO/IEC 9316-1:1996]

RFC-1831: RPC: Remote Procedure Call Protocol Specification 2
ftp://ds.internic.net/rfc/rfc1831.txt

RFC-1832: XDR: External Data Representation Standard
ftp://ds.internic.net/rfc/rfc1832.txt

RFC-1833: Binding Protocols for ONC RPC Version 2
ftp://ds.internic.net/rfc/rfc1833.txt

"Windows Sockets 2 Application Programming Interface", Rev. 2.2.2, 97-08-07
ftp://ftp.microsoft.com/bussys/winsock/winsock2/WSAPI22.DOC

"Windows Sockets 2 Protocol-Specific Annex", Rev. 2.0.3, 96-05-10
ftp://ftp.microsoft.com/bussys/winsock/winsock2/wsanx203.doc

"Windows Sockets 2 Service Provider Interface" Rev. 2.2.2 97-08-07
ftp://ftp.microsoft.com/bussys/winsock/winsock2/WSSPI22.DOC

"Windows Generic QOS Mapping (Draft)" Ver. 2.9, 09/11/97 5:19PM
ftp://ftp.microsoft.com/bussys/winsock/winsock2/wsgqos.doc

"UNIX Network Programming - Volume 1, Networking APIs: Sockets and XTI", Second
Edition
by W. Richard Stevens, Prentice-Hall, ISBN 0-13-490012-X

"Linux Kernel Internals" by M Beck, H Bohme, M Dziadzka, U Kuntz, R Magnus, D
Verworner
Addison-Wesley, ISBN 0-201-87741-4

"Power Programming with RPC" by John Bloomer
O'Reilly & Associates, Inc., ISBN 0-937175-77-3

NCITS (National Committee on Information Technology Standards)
http://www.ncits.org/

NCITS Technical Committee T10 (SCSI) Home Page
http://www.symbios.com/t10/

SCSI Trade Association (STA), SCSI Harbor project (hot-pluggable SCSI modules)
http://www.scsita.org/
http://www.scsita.org/harbor/

Diogenes' Unofficial SCSI Socket Services (SSS) web site:
http://www.europa.com/~diogenes/SSS/
Keith W. Parker, Technical Editor, NCITS project T10/1246-D

T10/98-183 SSS & IP packets over SCSI revision 0

[98-183r0.doc] 09/01/98 3:35 PM, Keith W. Parker <diogenes@europa.com> Page 9 of 46
Diogenes' Unofficial SCSI Socket Services (SSS) http://www.europa.com/~diogenes/SSS/

3. Definitions, symbols and abbreviations

Editor's note: Dummy clause to make numbers match.

T10/98-183 SSS & IP packets over SCSI revision 0

[98-183r0.doc] 09/01/98 3:35 PM, Keith W. Parker <diogenes@europa.com> Page 10 of 46
Diogenes' Unofficial SCSI Socket Services (SSS) http://www.europa.com/~diogenes/SSS/

4. SSS General Model

Clause 4 provides an overview of the socket device extension class and the extension
command set. This clause also specifies the conventions used throughout the standard.

This standard is intended to be used in conjunction with the SCSI-3 Architecture Model (SAM)
standard and with the[X3.270] the SCSI-3 Primary Command Set (SPC).

4.1 Accessing/Controlling SCSI Devices with standard network
applications
The purpose of the SSS SCSI Command Extension Set is to allow SCSI devices to be
accessed/controlled with standard network applications in a Platform/Device Independent (PDI)
manner.

4.1.1 Standard network protocols and applications
The ideal of the SSS model is that, once a single piece of system software (the Socket API to
SSS SCSI driver) has been installed for a given platform, there would be no need for any
platform specific drivers or applications to access/control any conceivable functionality in a SCSI
device with SSS extensions.

Instead of writing platform specific applications to run on various platforms, the developer would
write interactive web pages to be served up by the device and configure how standard
applications such as FTP, NFS, SMB, & e-mail respond to requests.

4.1.1.1 User Interface
The primary user interface to SSS extended SCSI devices is the web-browser.
• HTTP
• CGI forms
• JAVA
• VRML
• RealAudio, RealVideo

Any other desired network application may be used.
• IRC Chat

4.1.1.2 Bulk data transfer
Bulk data transfer would generally be implemented using any desired network file server
protocol.
• FTP (File Transfer Protocol),
• NFS (Network File System),
• SMB (Server Message Block - Windows & OS/2)

4.1.1.3 Event notification
• e-mail
• e-mail relay to wireless pager

T10/98-183 SSS & IP packets over SCSI revision 0

[98-183r0.doc] 09/01/98 3:35 PM, Keith W. Parker <diogenes@europa.com> Page 11 of 46
Diogenes' Unofficial SCSI Socket Services (SSS) http://www.europa.com/~diogenes/SSS/

4.1.2 Sample applications of SSS

4.1.2.1 Adding functionality to existing SCSI devices

4.1.2.1.1 Adding "File Drive" services to a "Disk Drive" (SBC & RBC)

For example, a SCSI disk drive may be used with standard device drivers for a SCSI Block
device.

The SSS SCSI command extension set may be used to allow the user (with a web browser) to
configure the disk drive to appear to be several smaller disk/file drives on separate LUNs.

These smaller virtual disk/file drives may then be made read-only (to defend from a virus attack)
and/or appear to be an FTP (File Transfer Protocol) device to be accessed with a standard
network FTP application and/or appear to be an NFS (Network File System) device to be
accessed with a standard network NFS driver and/or appear to be an SMB (Server Message
Block - Windows & OS/2) server.

4.1.2.1.2 Adding web-browser user interface to a Medium Changer (SMC)

4.1.2.1.3 Adding web-browser user interface to a Multimedia (MMC) device

4.1.2.1.4 Adding web-browser user interface to a RAID Controller (SCC-2)

4.1.2.1.5 Adding web-browser user interface to a Enclosure Services (SES) device

4.1.2.1.6 Adding web-browser user interface to a Stream (SSC) device

T10/98-183 SSS & IP packets over SCSI revision 0

[98-183r0.doc] 09/01/98 3:35 PM, Keith W. Parker <diogenes@europa.com> Page 12 of 46
Diogenes' Unofficial SCSI Socket Services (SSS) http://www.europa.com/~diogenes/SSS/

4.1.2.2 SCSI Peripheral Modules

4.1.2.2.1 Advantages

4.1.2.2.1.1 Consistent user interface (web-browser) across all platforms

4.1.2.2.1.2 Platform/Device Independent

4.1.2.2.1.3 Single design works with all platforms

4.1.2.2.1.4 Eliminates need for platform/device specific drivers & applications

4.1.2.2.1.5 Enclosed module instead of exposed circuit boards

4.1.2.2.1.6 SCSI Peripheral Module has processing power needed for application

• Does not place a processing burden on the host processor

4.1.2.2.1.7 May continue operation while host is powered down

• Modem / e-Mail server / Ethernet / FAX / Voice Mail telephone line support device

4.1.2.2.2 Examples

4.1.2.2.2.1 Modem / e-Mail server / Ethernet / FAX / Voice Mail telephone line support device

• Provides network interface by modem (PPP) and/or Ethernet
• Personal e-mail server
• FAX reception / transmission / forwarding
• Voice Mail
• Continues operation while host system powered down
• 2x Data/FAX/Voice modems, 2x Ethernet, modest CPU, battery back-up/input,

VGA/NTSC/PAL video in/out, Audio In/Out, Keyboard/Mouse ports, 2x USB ports

4.1.2.2.2.2 SCSI SSS X-terminal

• X-windows at SCSI bandwidth

4.1.2.2.2.3 Audio-Video editing system

• Gang operation for added channels

T10/98-183 SSS & IP packets over SCSI revision 0

[98-183r0.doc] 09/01/98 3:35 PM, Keith W. Parker <diogenes@europa.com> Page 13 of 46
Diogenes' Unofficial SCSI Socket Services (SSS) http://www.europa.com/~diogenes/SSS/

4.1.2.3 SCSI Processor Modules

Whether an SSS SCSI device would be considered a Processor Module or a Peripheral Module
is determined by the relative power of the processor (and the application using it).

If the power of the CPU (and the application using it) is much more significant that the peripheral
devices of the module, then it is a SCSI Processor Module. If the power of the CPU

4.1.2.3.1 Advantages

4.1.2.3.1.1 Only spend money on CPU, memory, and SCSI when upgrading

4.1.2.3.1.2 Enclosed Modules

4.1.2.3.1.3 Packaged like SCSI disk drives (with panel space for connectors)

4.1.2.3.2 Examples

4.1.2.3.2.1 Upgrade system with SCSI Processor Module instead of new system of motherboard

4.1.2.3.2.2 Foundation for SCSI Application Modules

4.1.2.3.2.3 Embedded systems

T10/98-183 SSS & IP packets over SCSI revision 0

[98-183r0.doc] 09/01/98 3:35 PM, Keith W. Parker <diogenes@europa.com> Page 14 of 46
Diogenes' Unofficial SCSI Socket Services (SSS) http://www.europa.com/~diogenes/SSS/

4.1.2.4 SCSI Application Modules

Once low cost SCSI Processor Modules are available it would be financially viable to change
from supporting a large and complex software in somebody else's computer to porting the entire
application into a SCSI Processor Module and use standard network applications at SCSI
bandwidth.

4.1.2.4.1 Advantages
There are many advantages to the SCSI Application Module configuration. While any single
advantage may not be sufficient to justify the change, taken together they will.

4.1.2.4.1.1 Connects to any host platform

• Multiple platform support with a single product

4.1.2.4.1.2 Select CPU for best Performance / Cost ratio

• No legacy compatibility expense/issues
• Pick best instruction set for application

4.1.2.4.1.3 Security of application

• Module physically sealed with tamper switches

4.1.2.4.1.4 Total control of application configuration

• No user files inside SCSI Application Module
• No application files installed in user's system

4.1.2.4.1.5 Reduce customer support expenses on configuration issues

• User can not modify files inside SCSI Application Module

4.1.2.4.1.6 Reduce Bootlegging

• Alternate CPU reduces potential

4.1.2.4.1.7 Transaction based billing possible

4.1.2.4.2 Examples

4.1.2.4.2.1 CAD design system

4.1.2.4.2.2 Database system

4.1.2.4.2.3 Audio-Video Editing system

4.1.2.4.2.4 Full immersion virtual reality user interface system

T10/98-183 SSS & IP packets over SCSI revision 0

[98-183r0.doc] 09/01/98 3:35 PM, Keith W. Parker <diogenes@europa.com> Page 15 of 46
Diogenes' Unofficial SCSI Socket Services (SSS) http://www.europa.com/~diogenes/SSS/

4.1.2.5 SCSI Modules replace Stegosaurus PC configuration

 At the beginning of the 20th century it was acceptable that if you owned an automobile you
would be either "mechanically inclined", or wealthy enough to hire someone who was
"mechanically inclined". Today the vast majority of automobile users expect to turn a key, push
the pedal, and go.

The traditional Stegosaurus PC configuration of a motherboard and register level plug-in adapter
boards (with equivalent operating system specific drivers and applications) is a highly tuned
version of the early 20th century automobile in requiring technical expertise.

The vast majority of the end user population needs a system no more complex than inserting a
video cassette into a VCR.

Fully enclosed, hot-pluggable SCSI modules (with SCSI Socket Services (SSS) providing a
Platform/Device Independent (PDI) network style interface) are a solution.

4.1.2.5.1 SCSI as Corpus Callosum

• Platform/Device Independent

4.1.2.5.2 SCSI Expansion boxes replace current PC packaging

• Chassis, power supply and ventilation for hot-pluggable SCSI Harbor modules
• SCSI backplane with automatic active terminators and external connectors at each end
• NO motherboard

4.1.2.5.3 SCSI Trade Association (STA) SCSI Harbor project

• Hot-pluggable SCSI modules
http://www.scsita.org/
http://www.scsita.org/harbor/

4.1.2.5.4 Advantages

• End user friendly
• Mix and match operating systems and processors

4.1.2.5.5 Examples

T10/98-183 SSS & IP packets over SCSI revision 0

[98-183r0.doc] 09/01/98 3:35 PM, Keith W. Parker <diogenes@europa.com> Page 16 of 46
Diogenes' Unofficial SCSI Socket Services (SSS) http://www.europa.com/~diogenes/SSS/

4.2 Socket API use of SSS RPC and Packets

4.2.1 Socket API via RPC

4.2.2 Socket API via IP packets

4.3 Alternate use of SSS RPC and P ackets

4.3.1 Alternate use of SSS RPC

4.3.2 Alternate use of SSS Packets

T10/98-183 SSS & IP packets over SCSI revision 0

[98-183r0.doc] 09/01/98 3:35 PM, Keith W. Parker <diogenes@europa.com> Page 17 of 46
Diogenes' Unofficial SCSI Socket Services (SSS) http://www.europa.com/~diogenes/SSS/

4.4 SSS SCSI Command Extension Set for all SCSI device types

The SSS SCSI commands are optional for all SCSI device types. They may be an optional
extended mechanism for accessing/controlling the (extended) functionality of a SCSI device or
they may be used as the only way of accessing/controlling the functionality of a SCSI device.

They are not to have any effect on the normal operation of the SCSI commands for a given
SCSI type device.

4.4.1 Non-interference with existing SCSI device types operation

Non-interference with existing SCSI device types operation

4.5 Platform/Device Independent (PDI) operation

The implementation of SSS is to be Platform/Device Independent (PDI).

4.6 Initiator Mode Only operation

The SSS command set allows either symmetrical communication between two Target Mode
capable SCSI host adapters or asymmetrical communication between a Target Mode SCSI
device and an Initiator Only SCSI device.

This is to accommodate the very large number of SCSI Host Bus Adapters (HBA) that are not
supported by a SCSI Target Mode Applications Programming Interface (API). Virtually all
personal computer SCSI host bus adapters do not have Target Mode API support.

4.7 Receiver Makes Right Endian

The standard SSS_PKT_HDR_t header wrapping each SSS packet indicates the "endianness" of
each packet on a packet by packet basis.

4.8 SSS SCSI Command Gr oups

There are two major groups of commands. One major group supports the "Socket (or other) API
over SCSI RPC" and the other major supports "Internet IP (or other) Packets over SCSI".

Within each major group there are two sub-groups. One sub-group supports the management
functions (i.e. housekeeping etc.) and the other sub-group supports the actual transfer of packets
of information/commands.

Within each sub-group there is a _GET and a _PUT command. These complementary
commands support the ability to have symmetrical communications even when one of the two
communicating SCSI devices is capable of only SCSI Initiator functions.

T10/98-183 SSS & IP packets over SCSI revision 0

[98-183r0.doc] 09/01/98 3:35 PM, Keith W. Parker <diogenes@europa.com> Page 18 of 46
Diogenes' Unofficial SCSI Socket Services (SSS) http://www.europa.com/~diogenes/SSS/

4.8.1 SSS SCSI command group summary

4.8.1.1 SSS_RPC_xxxx_xxx - Remote Procedure Call (RPC)
SSS_RPC_xxxx_xxx - These commands support the SSS Remote Procedure Call (RPC)
mechanism. This connects systems together at the "top" of the protocol stack. This method has
the highest performance/management potential since it does not use the TCP/IP protocol stack.
It is the most complex to implement.

While the primary focus is Socket API RPC, these commands can also be used to support API
RPCs other than the Socket API RPC.

4.8.1.2 SSS_PKT_xxxx_xxx - Packet transport (PKT)
SSS_PKT_xxxx_xxx - These commands support the SSS "IP Packets over SCSI" mechanism.
This is an alternate method of accomplishing the same objective: providing a high performance
(i.e. SCSI bandwidth) Platform/Device Independent (PDI) "Socket" Application Programming
Interface (API). This connects systems together at the "bottom" of the protocol stack. This
method is much easier to implement if a system already has a TCP/IP protocol stack.
It also addresses the issue of situations that are intrinsically packet oriented such as using SCSI
as an expansion bus for bridges, routers, hubs and switches or as an intermediate link in a data
stream that has already been broken down into packets.

While the primary focus is Internet IP Packets (IPv4 & IPv6), other packets (802.3, USB, IrDA,
etc.) may be transported.

Editor's Note: This is new to the SSS project. It an extension for the sake of pragmatism, it is
much easier (therefore more likely) to implement.

4.8.1.3 SSS_xxx_MGMT_xxx - Management commands
SSS_xxx_MGMT_xxx - These commands support communication management functions.
These are handled separately from the transfer (_XFER_) functions because they may be
relatively large and infrequently used so it is desirable for them to be unloaded from memory
when not needed.

4.8.1.4 SSS_xxx_XFER_xxx - Transfer commands
SSS_xxx_XFER_xxx - These commands support the actual transfer of data. These are more
compact and often used so they need to be left in memory.

4.8.1.5 SSS_xxx_xxxx_GET & SSS_xxx_xxxx_PUT -
SSS_xxx_xxxx_GET & SSS_xxx_xxxx_PUT - These commands GET and PUT packets into
the transport buffers. They allow symmetric communications even when one of the SCSI
devices is "Initiator Only" capable.

T10/98-183 SSS & IP packets over SCSI revision 0

[98-183r0.doc] 09/01/98 3:35 PM, Keith W. Parker <diogenes@europa.com> Page 19 of 46
Diogenes' Unofficial SCSI Socket Services (SSS) http://www.europa.com/~diogenes/SSS/

4.9 SCSI Peripheral Device Types

The SSS packet commands are optional to all SCSI device types and may be added as an
extension to any SCSI device type. This allows any type of device to be extended so that its
functionality can be accessed with standard network tools such as web browsers, FTP, and e-
mail without effecting the device's normal operation.

4.9.1 Unknown or No Device Type peripheral device type (code 1Fh)

If a SCSI device does not need to implement a particular SCSI device type, it may return a value
of 1Fh (Unknown or no device type) in the "Peripheral device type" field of the "standard
INQUIRY data" of the INQUIRY command (SPC-2 clause 7.5.1 Standard INQUIRY data).

4.9.2 SCSI commands Common to all SCSI device types

Commands common to all SCSI device types are described in
Clause 5 "Model common to all device types"
of "SCSI Primary Commands - 2 (SPC-2)" (NCITS project T10/1236-D).

4.9.2.1 SCSI commands Mandatory for all SCSI device types
Table ?.? - SCSI Co mmands Mandatory for All Device Types

Code Size Type SCSI Primary Command SPC clause
00h 6 Man. TEST UNIT READY 7.24
03h 6 Man. REQUEST SENSE 7.20
12h 6 Man. INQUIRY 7.5
1Dh 6 Man. SEND DIAGNOSTIC 7.23

4.9.2.2 SCSI commands Optional for all SCSI device types
Table ?.? - SCSI Co mmands Optional for Pro cessor AND Comm unication Device Types

Code Size Type SCSI Primary Command SPC clause
1Ch 6 Opt. RECEIVE DIAGNOSTIC RESULTS 7.16
3Bh 10 Opt. WRITE BUFFER 7.25
3Ch 10 Opt. READ BUFFER 7.15
40h 10 Opt. CHANGE DEFFINITION 7.1
4Ch 10 Opt. LOG SELECT 7.6
4Dh 10 Opt. LOG SENSE 7.7
A0h 12 Opt. REPORT LUNS 7.19

T10/98-183 SSS & IP packets over SCSI revision 0

[98-183r0.doc] 09/01/98 3:35 PM, Keith W. Parker <diogenes@europa.com> Page 20 of 46
Diogenes' Unofficial SCSI Socket Services (SSS) http://www.europa.com/~diogenes/SSS/

4.9.3 Processor Device peripheral device type (code 03h)

Processor Devices are described in
Clause 6 "Model for processor devices",
Clause 9 "Commands for processor type devices", and
Clause 10 "Parameters for processor type devices"
of "SCSI Primary Commands - 2 (SPC-2)" (NCITS project T10/1236-D).

Table ?.? - SCSI Co mmands Mandatory for Processor Device Type
Code Size Type SCSI Primary Command SPC clause
0Ah 6 Man. SEND(06) 9.2 shared
1Dh 6 Man. SEND DIAGNOSTIC 7.23

4.9.4 Communication Device peripheral device type (code 09h)

Communication Devices are described in
Clause 7 "Communication devices"
of "SCSI-3 Stream Device Commands (SSC)" (NCITS project T10/997-D).

Table ?.? - SCSI Co mmands Mandatory for Communication Device Type
Code Size Type SCSI Stream Command SSC clause
0Ah 6 Man. SEND MESSAGE(06) 7.3.4 shared
1Dh 6 Man. SEND DIAGNOSTIC SPC 7.23

4.9.5 Other peripheral device types

SSS may be used with any other SCSI device types without conflict.

Other devices are described in
of SAM

T10/98-183 SSS & IP packets over SCSI revision 0

[98-183r0.doc] 09/01/98 3:35 PM, Keith W. Parker <diogenes@europa.com> Page 21 of 46
Diogenes' Unofficial SCSI Socket Services (SSS) http://www.europa.com/~diogenes/SSS/

4.10 SSS SCSI commands

SCSI Group Code #4 (16 byte) commands
OPTIONAL for ALL device types

#define SSS_RPC_MGMT_GET 0x90
#define SSS_RPC_MGMT_PUT 0x91
#define SSS_RPC_XFER_GET 0x92
#define SSS_RPC_XFER_PUT 0x93

#define SSS_PKT_MGMT_GET 0x94
#define SSS_PKT_MGMT_PUT 0x95
#define SSS_PKT_XFER_GET 0x96
#define SSS_PKT_XFER_PUT 0x97

Editor's Note: The SCSI command numbers used in this release are TENTATIVE!
They will not be final until acted upon by the T10 committee.

4.10.1 SSS commands DCB fields

All commands use the exact same format with the exception that the SSS_Pkt_Count and
SSS_Data_len fields specify the actual amounts to be transferred during SSS_xxx_xxxx_PUT
commands and the maximum amounts that can be transferred during the SSS_xxx_xxxx_GET
commands.

Byte |Bits| Type | Field Name
------+----+----------+---------------------------
 0 | 8 | BE_uchar | SSS_SCSI_Cmd_Num
 1 | 8 | BE_uchar | SSS_Func_Code
 2-3 | 16 | BE_short | SSS_Pkt_Count
 4-7 | 32 | BE_long | SSS_Data_Len
 8-11 | 32 | BE_long | SSS_Cmd_Key
12-13 | 16 | BE_short | SSS_Channel_Token
14 | 8 | BE_uchar | SSS_Func_Flags
15 | 8 | BE_uchar | SSS_Control(SAM r18 5.1, 5.6 ; SAM-2 r5a 5.1.2, 5.6)

T10/98-183 SSS & IP packets over SCSI revision 0

[98-183r0.doc] 09/01/98 3:35 PM, Keith W. Parker <diogenes@europa.com> Page 22 of 46
Diogenes' Unofficial SCSI Socket Services (SSS) http://www.europa.com/~diogenes/SSS/

4.10.1.1 SSS_SCSI_Cmd_Num
A constant with one of the following values:

#define SSS_RPC_MGMT_GET 0x90
#define SSS_RPC_MGMT_PUT 0x91
#define SSS_RPC_XFER_GET 0x92
#define SSS_RPC_XFER_PUT 0x93

#define SSS_PKT_MGMT_GET 0x94
#define SSS_PKT_MGMT_PUT 0x95
#define SSS_PKT_XFER_GET 0x96
#define SSS_PKT_XFER_PUT 0x97

4.10.1.2 SSS_Func_Code
The command function code with a value defined by the enumeration SSS_PKT_TYPE_e in
header file SSS_.H (Clause 8).

4.10.1.3 SSS_Pkt_Count
The number of packets to be transferred in this command. During the SSS_xxx_xxxx_PUT
commands this field indicates the actual number of packets to be transfered. During the
SSS_xxx_xxxx_GET commands this field indicates the maximum number of packets that can be
accepted.

4.10.1.4 SSS_Data_Len
The number of data bytes to be transfered in this command. During the SSS_xxx_xxxx_PUT
commands this field indicates the actual number of bytes to be transfered. During the
SSS_xxx_xxxx_GET commands this field indicates the maximum number of bytes that can be
accepted.

4.10.1.5 SSS_Cmd_Key
A tracking/security field for this command.

4.10.1.6 SSS_Channel_Token
A tracking/security field for this command.

4.10.1.7 SSS_Func_Flags
Flags specific to the command number in the CDB field SSS_Func_Code.

4.10.1.8 SSS_Control
The standard control byte as defined in the SCSI Architecture Model (SAM r18 5.1, 5.6 ; SAM-2
r5a 5.1.2, 5.6)

T10/98-183 SSS & IP packets over SCSI revision 0

[98-183r0.doc] 09/01/98 3:35 PM, Keith W. Parker <diogenes@europa.com> Page 23 of 46
Diogenes' Unofficial SCSI Socket Services (SSS) http://www.europa.com/~diogenes/SSS/

4.11 SSS data structures and function prototype

Several POSIX C language data structures are defined so that from implementation to
implementation the key data structures controlling system operation will be familiar.

Three POSIX C header files are defined. The file sss_.h is to be included in all
implementations of SSS drivers. The file sss_rpc.h is to be included in implementations of
SSS drivers that support Remote Procedure Call (RPC) over SCSI. The file sss_pkt.h is to be
included in implementations of SSS drivers that support Internet IP packets over SCSI.

4.11.1 SSS header file sss_.h (Clause 8)
The file sss_.h (Clause 8)is to be included in all implementations of SSS drivers.

4.11.1.1 typedef struct SSS_CDB 16_BE_t
typedef struct SSS_CDB16_BE_t
This data structure is a big-endian representation of the 16 byte Command Descriptor Block
(CDB) to be copied directly into the SCSI CDB. NOTE: Beware of possible padding by the
compiler.

4.11.1.2 typedef struct SSS_CDB 16_t
typedef struct SSS_CDB16_t
This data structure is a host-endian representation of the 16 byte Command Descriptor Block
(CDB) to be used for driver control.

4.11.1.3 typedef enum SSS_PKT_TYPE_e
typedef enum SSS_PKT_TYPE_e
This is an enumeration of the SSS packet types to be used in the sss_pkt_type field of the
SSS_PKT_HDR_t structure use with all SSS packets.

4.11.1.4 typedef struct SSS_PKT_HDR_t
typedef struct SSS_PKT_HDR_t
This is the SSS_PKT_HDR_t structure to be used with all SSS packets.

4.11.1.5 int sss_pkt_hdr_check(SSS_PKT_HDR_t *);
int sss_pkt_hdr_check(SSS_PKT_HDR_t *);
This optional recommended function is used to validate/check SSS_PKT_HDT_t structures as a
sanity check. It may also be used as a debugging/security hook.

T10/98-183 SSS & IP packets over SCSI revision 0

[98-183r0.doc] 09/01/98 3:35 PM, Keith W. Parker <diogenes@europa.com> Page 24 of 46
Diogenes' Unofficial SCSI Socket Services (SSS) http://www.europa.com/~diogenes/SSS/

4.11.2 SSS header file sss_rpc.h (Clause 10)
The file sss_rpc.h (Clause 10)is to be included in implementations of SSS drivers that support
Remote Procedure Call (RPC) over SCSI.

4.11.2.1 typedef enum SSS_RPC_MGMT_FUNC_CODE_e
typedef enum SSS_RPC_MGMT_FUNC_CODE_e

4.11.2.2 typedef enum SSS_RPC_XFER_FUNC_CODE_e
typedef enum SSS_RPC_XFER_FUNC_CODE_e

4.11.3 SSS header file sss_pkt.h (Clause 12)
The file sss_pkt.h (Clause 12)is to be included in implementations of SSS drivers that support
Internet IP packets over SCSI.

4.11.3.1 typedef enum SSS_PKT_MGMT_FUNC_CODE_e
typedef enum SSS_PKT_MGMT_FUNC_CODE_e

4.11.3.2 typedef enum SSS_PKT_XFER_FUNC_CODE_e
typedef enum SSS_RPC_PKT_FUNC_CODE_e

T10/98-183 SSS & IP packets over SCSI revision 0

[98-183r0.doc] 09/01/98 3:35 PM, Keith W. Parker <diogenes@europa.com> Page 25 of 46
Diogenes' Unofficial SCSI Socket Services (SSS) http://www.europa.com/~diogenes/SSS/

5. Clause ?? Model for transport of SSS packets over SCSI

This clause describes the model for transport of SSS packets over SCSI.

5.1 Initiator Only operation

The SSS command set allows either symmetrical communication between two Target Mode
capable SCSI host adapters or asymmetrical communication between a Target Mode SCSI
device and an Initiator Only SCSI device.

5.2 Receiver Makes Right Endian

The standard SSS_PKT_HDR_t header wrapping each packet indicated the "endianness" of
each packet on a packet by packet basis.

The endian flag is the least significant bit of the sss_pkt_falgs field of the SSS_PKT_HDR_t
structure. Even indicates "little-endian" and odd indicates "big-endian".

5.3 SSS SCSI Command Gr oups

There are two major groups of commands. One major group supports the "Socket (or other) API
over SCSI RPC" and the other major supports "Internet IP (or other) Packets over SCSI".

Within each major group there are two sub-groups. One sub-group supports the management
functions (i.e. housekeeping etc.) and the other sub-group supports the actual transfer of packets
of information/commands.

Within each sub-group there is a _GET and a _PUT command. These complementary
commands support the ability to have symmetrical communications even when one of the two
communicating SCSI devices is capable of only SCSI Initiator functions. This is to
accommodate the very large number of SCSI Host Bus Adapters (HBA) that are not supported
by a SCSI Target Mode Applications Programming Interface (API).

5.4 Transport of RPC packets (Connection Oriented)

Delivery of RPC packets.

5.5 Transport of multiple packets (Connectionless)

Delivery of Internet IP packets.
Best effort, non-guaranteed delivery of packets.

Multiple packets can be transferred with each SSS_PKT SCSI command to reduce the overhead
of the arbitration/selection/command phases (which is dominant in situations of high bandwidth
with short data phases).

Each SSS Packet wrapped with an SSS_PKT_HDR_t header data structure.

T10/98-183 SSS & IP packets over SCSI revision 0

[98-183r0.doc] 09/01/98 3:35 PM, Keith W. Parker <diogenes@europa.com> Page 26 of 46
Diogenes' Unofficial SCSI Socket Services (SSS) http://www.europa.com/~diogenes/SSS/

5.6 SSS Packet Transport between devices model

The general model is that within both the client and server devices there are packet buffers for
both outbound and inbound packets and that the SSS SCSI commands only transport packets
from the outbound packet buffer of one device to the inbound packet buffer of the other device.

The higher levels of the device drivers are then notified that packets have been sent and
received, as appropriate. Generally, the successful completion of a SSS SCSI command does
not indicate that the packet has been processed successfully, only that it has been transported
(to the next device) successfully.

A single SSS SCSI command transaction can transport one or more SSS packets. The ability to
transport more than one SSS packet per command transaction reduces the overhead (both for
the SCSI bus and the operating systems at each end) of the SCSI
Arbitration/Selection/Command phases. This may not be very significant for very large packet
sizes but it may be significant for smaller packet sizes.

One of the primary purposes of this model is to accommodate the very large number of SCSI
Host Bus Adapters (HBA) that are not supported by a SCSI Target Mode Applications
Programming Interface (API).

It makes no difference if the SSS packets have been transported with a SSS_xxx_xxxx_PUT
command or a SSS_xx_xxxx_GET command. From the perspective of the higher levels of the
device drivers the result is the same.

T10/98-183 SSS & IP packets over SCSI revision 0

[98-183r0.doc] 09/01/98 3:35 PM, Keith W. Parker <diogenes@europa.com> Page 27 of 46
Diogenes' Unofficial SCSI Socket Services (SSS) http://www.europa.com/~diogenes/SSS/

5.6.1 Driver operation

5.6.1.1 Incoming

The Interrupt Service Routine (ISR) moves packets into the packet buffers from the SCSI bus.

The ISR then notifies the driver demon with a semaphore (or other mechanism).

The driver demon becomes ready and begins execution to process the received data.

5.6.1.2 Outgoing

The driver demon moves packets into the packet buffers.

The driver demon then notified the ISR with a semaphore (or other mechanism).

The ISR becomes ready and moves the data from the packet buffers to the SCSI bus.

5.6.2 Transfer of single packets without header

The disadvantage to this general model is that there may be situations where is desirable to
transport packets to or from an application thread's data space or that the successful completion
indication for the SCSI command actually indicates that the packet has been processed
successfully.

This is easily accomplished by using a SSS_Func_Code that supports only a single SSS packet to
be transport and may optionally imply successful processing of the packet with an indication of a
successful completion of the SSS SCSI command.

T10/98-183 SSS & IP packets over SCSI revision 0

[98-183r0.doc] 09/01/98 3:35 PM, Keith W. Parker <diogenes@europa.com> Page 28 of 46
Diogenes' Unofficial SCSI Socket Services (SSS) http://www.europa.com/~diogenes/SSS/

6. Clause ?? Model for RPC over SCSI

SSS_RPC_MGMT_GET - SCSI Socket Services Packet Management Get
SSS_RPC_MGMT_PUT - SCSI Socket Services Packet Management Put
SSS_RPC_XFER_GET - SCSI Socket Services Packet Transfer Get
SSS_RPC_XFER_PUT - SCSI Socket Services Packet Transfer Put

SCSI Group Code #4 (16 byte) commands
OPTIONAL for ALL device types

T10/98-183 SSS & IP packets over SCSI revision 0

[98-183r0.doc] 09/01/98 3:35 PM, Keith W. Parker <diogenes@europa.com> Page 29 of 46
Diogenes' Unofficial SCSI Socket Services (SSS) http://www.europa.com/~diogenes/SSS/

7. Clause ?? Model for Internet IP packets over SCSI

SSS_PKT_MGMT_GET - SCSI Socket Services Packet Management Get
SSS_PKT_MGMT_PUT - SCSI Socket Services Packet Management Put
SSS_PKT_XFER_GET - SCSI Socket Services Packet Transfer Get
SSS_PKT_XFER_PUT - SCSI Socket Services Packet Transfer Put

SCSI Group Code #4 (16 byte) commands
OPTIONAL for ALL device types

T10/98-183 SSS & IP packets over SCSI revision 0

[98-183r0.doc] 09/01/98 3:35 PM, Keith W. Parker <diogenes@europa.com> Page 30 of 46
Diogenes' Unofficial SCSI Socket Services (SSS) http://www.europa.com/~diogenes/SSS/

8. Clause ?? Data structures for SSS packets over SCSI

This clause describes SCSI commands for SSS support of Internet IP packets over SCSI.

/********************* BEGINING OF FILE: sss_.h ********************/
/* sss_.h */

/*
* Clause ?? Data Structures for SSS support of SSS over SCSI
* NCITS Project T10/1246-D "SCSI Socket Services (SSS) Command Set"
*
* This clause is presented as a POSIX C compliant header file defining
* data structures required to implement "SSS_ over SCSI".
*/
/**/
/*
* SCSI Socket Services (SSS) default Command Descriptor Block (CDB)
*
* Common for ALL SSS commands unless a special CDB is implied
* by the SSS_Func_Code in the 2nd byte of all SSS CDBs.
*/

typedef struct
 SSS_CDB16_BE_t /* NOTE: THIS IS BIG-ENDIAN */
 {
 BE_uchar SSS_SCSI_Cmd_Num ;
 BE_uchar SSS_Func_Code ;
 BE_short SSS_Pkt_Count ;
 BE_long SSS_Data_Len ;
 BE_long SSS_Cmd_Key ;
 BE_short SSS_Channel_Token ;
 BE_uchar SSS_Func_Flags ;
 BE_uchar SSS_Control ;/*SAM r18 5.1, 5.6; SAM-2 r5a 5.1.2, 5.6*/
 } ;

typedef struct
 SSS_CDB16_t /* NOTE: THIS IS HOST-ENDIAN */
 {
 uchar SSS_SCSI_Cmd_Num ;
 uchar SSS_Func_Code ;
 short SSS_Pkt_Count ;
 long SSS_Data_Len ;
 long SSS_Cmd_Key ;
 short SSS_Channel_Token ;
 uchar SSS_Func_Flags ;
 uchar SSS_Control ;/*SAM r18 5.1, 5.6; SAM-2 r5a 5.1.2, 5.6*/
 } ;

/*
* SSS_SCSI_Cmd_Num = SCSI Command Number = SSS_PKT_PUT = 0x??
* SSS_Func_Code = Function Code to perform on data-out
* SSS_Pkt_Count = Number of packets sending
* SSS_Data_Len = Number of bytes sending
* SSS_Cmd_Key = Security / tracking Key for this command
* SSS_Channel_Token = Channel / Token value
* SSS_Func_Flags = dependent on SSS_Func_Code value
* SSS_Control = Control octet defined in SCSI Architecture Model
* (SAM r18 5.1, 5.6; SAM-2 r5a 5.1.2, 5.6)
*/
/**/

T10/98-183 SSS & IP packets over SCSI revision 0

[98-183r0.doc] 09/01/98 3:35 PM, Keith W. Parker <diogenes@europa.com> Page 31 of 46
Diogenes' Unofficial SCSI Socket Services (SSS) http://www.europa.com/~diogenes/SSS/

/**/
/*
 * This defines the values for the
 * "sss_pkt_type" field of struct SSS_PKT_HDR_t
 */

typedef enum
 SSS_PKT_TYPE_e
 {
 SSS_PKT_TYPEe_NULL = 0, /* no data field */
 SSS_PKT_TYPEe_VERSION = 1, /* version & default info */
 SSS_PKT_TYPEe_IPv4 = 2, /* IPv4 packet */
 SSS_PKT_TYPEe_IPv6 = 3, /* IPv6 packet */
 SSS_PKT_TYPEe_802_3 = 4, /* EtherNet 802.3 packet */
 SSS_PKT_TYPEe_USB , /* USB Universal Serial Bus */
 SSS_PKT_TYPEe_IRDA , /* IRdA InfaRed */
 SSS_PKT_TYPEe_ENUM_END
 } ;

/**/
/*
 * This header is common to all packets transferred with the
 * SSS_ SCSI commands
 */

typedef struct
 SSS_PKT_HDR_t
 { /* ENDIAN FLAG must be LSB of first byte
 * or LSB of first field which must be 8-bits in size */
 /* even = little-endian, odd = big-endian */
 uchar sss_pkt_flags; /* ENDIAN FLAG */
 uchar sss_pkt_opt_1;
 uchar sss_pkt_opt_2;
 uchar sss_pkt_opt_3; /*32-bit alignment */
 long sss_pkt_type; /* SSS_PKT_TYPE_e */
 long sss_pkt_type_version;
 long sss_pkt_len;
 long sss_pkt_hdr_len;
 long sss_pkt_hdr_pad_len;
 long sss_pkt_data_len;
 long sss_pkt_data_pad_len;
 long sss_pkt_dest; /* 0 => default */
 long sss_pkt_source; /* 0 => default */
 } ;

/**/

int sss_pkt_hdr_check
 (/* test redundant header values as a sanity check */
 /* may also be used for debugging hook */
 /* may also be used for security hook */
 /* if applied to all packets, discarding if error */
 /* if error discard and release memory/resources */

 struct SSS_PKT_HDR_t * sss_pkt_hdr;

) ; /* return non-zero if error */

/* ??? need enumeration of SSS_PKT_HDR_CHK_ERR_ ??? */

/**/

/*********************** END OF FILE: sss_.h ***********************/

T10/98-183 SSS & IP packets over SCSI revision 0

[98-183r0.doc] 09/01/98 3:35 PM, Keith W. Parker <diogenes@europa.com> Page 32 of 46
Diogenes' Unofficial SCSI Socket Services (SSS) http://www.europa.com/~diogenes/SSS/

9. Clause ?? SCSI commands for RPC over SCSI

This clause describes SCSI commands for SSS support of Internet IP packets over SCSI.

SSS_RPC_MGMT_GET - SCSI Socket Services Packet Management Get
SSS_RPC_MGMT_PUT - SCSI Socket Services Packet Management Put
SSS_RPC_XFER_GET - SCSI Socket Services Packet Transfer Get
SSS_RPC_XFER_PUT - SCSI Socket Services Packet Transfer Put

SCSI Group Code #4 (16 byte) commands
OPTIONAL for ALL device types

T10/98-183 SSS & IP packets over SCSI revision 0

[98-183r0.doc] 09/01/98 3:35 PM, Keith W. Parker <diogenes@europa.com> Page 33 of 46
Diogenes' Unofficial SCSI Socket Services (SSS) http://www.europa.com/~diogenes/SSS/

9.1 SSS_RPC_MGMT_GET

SCSI command SSS_RPC_MGMT_GET "SSS RPC Management Get"

Byte Bits Type
 0 8 BE_uchar SSS_SCSI_Cmd_Num = SSS_RPC_MGMT_GET = 0x90 ??
 1 8 BE_uchar SSS_Func_Code
 2-3 16 BE_short SSS_Pkt_Count_max
 4-7 32 BE_long SSS_Data_Len_max
 8-11 32 BE_long SSS_Cmd_Key
12-13 16 BE_short SSS_Channel_Token
14 8 BE_uchar SSS_Func_Flags
15 8 BE_uchar Control (SAM r18 5.1, 5.6 ; SAM-2 r5a 5.1, 5.6)

Byte |Bits| Type | Field Name
------+----+----------+---------------------------
 0 | 8 | BE_uchar | SSS_SCSI_Cmd_Num
 1 | 8 | BE_uchar | SSS_Func_Code
 2-3 | 16 | BE_short | SSS_Pkt_Count
 4-7 | 32 | BE_long | SSS_Data_Len
 8-11 | 32 | BE_long | SSS_Cmd_Key
12-13 | 16 | BE_short | SSS_Channel_Token
14 | 8 | BE_uchar | SSS_Func_Flags
15 | 8 | BE_uchar | Control(SAM r18 5.1, 5.6 ; SAM-2 r5a 5.1.2, 5.6)

SCSI_Cmd_Num SSS_RPC_MGMT_GET = 0x90 ??
Func_Code Function Code
Pkt_Count_max Maximum Number of packets in data phase of command
Data_Len_max Maximum Length (in bytes) of data-in phase
Cmd_Key Security / Tracking key for this command
Channel_ Token Channel Number or Token
Func_Flags Func_Code specific flags
Control Control byte defined in SCSI Architecture Model

SAM r18 sections 5.1, 5.6 ; SAM-2 r5a sections 5.1, 5.6

T10/98-183 SSS & IP packets over SCSI revision 0

[98-183r0.doc] 09/01/98 3:35 PM, Keith W. Parker <diogenes@europa.com> Page 34 of 46
Diogenes' Unofficial SCSI Socket Services (SSS) http://www.europa.com/~diogenes/SSS/

9.2 SSS_RPC_MGMT_PUT

SCSI command SSS_RPC_MGMT_PUT "SSS RPC Management Put"

Byte Bits Type
 0 8 BE_uchar SCSI_Cmd_Num = SSS_RPC_MGMT_PUT = 0x91 ??
 1 8 BE_uchar Func_Code
 2-3 16 BE_short Pkt_Count
 4-7 32 BE_long Data_Len
 8-11 32 BE_long Cmd_Key
12-13 16 BE_short Channel_Token
14 8 BE_uchar Func_Flags
15 8 BE_uchar Control (SAM r18 5.1, 5.6 ; SAM-2 r5a 5.1, 5.6)

Byte |Bits| Type | Field Name
------+----+----------+---------------------------
 0 | 8 | BE_uchar | SSS_SCSI_Cmd_Num
 1 | 8 | BE_uchar | SSS_Func_Code
 2-3 | 16 | BE_short | SSS_Pkt_Count
 4-7 | 32 | BE_long | SSS_Data_Len
 8-11 | 32 | BE_long | SSS_Cmd_Key
12-13 | 16 | BE_short | SSS_Channel_Token
14 | 8 | BE_uchar | SSS_Func_Flags
15 | 8 | BE_uchar | Control(SAM r18 5.1, 5.6 ; SAM-2 r5a 5.1.2, 5.6)

SCSI_Cmd_Num SSS_RPC_MGMT_PUT = 0x92 ??
Func_Code Function Code
Pkt_Count Number of packets in data phase of command
Data_Len Length (in bytes) of data-out phase
Cmd_Key Security / Tracking key for this command
Channel _Token Channel Number or Token
Func_Flags Func_Code specific flags
Control Control byte defined in SCSI Architecture Model

SAM r18 sections 5.1, 5.6 ; SAM-2 r5a sections 5.1, 5.6

T10/98-183 SSS & IP packets over SCSI revision 0

[98-183r0.doc] 09/01/98 3:35 PM, Keith W. Parker <diogenes@europa.com> Page 35 of 46
Diogenes' Unofficial SCSI Socket Services (SSS) http://www.europa.com/~diogenes/SSS/

9.3 SSS_RPC_XFER_GET

SCSI command SSS_RPC_XFER_GET "SSS RPC Transfer Get"

Byte Bits Type
 0 8 BE_uchar SSS_SCSI_Cmd_Num = SSS_RPC_XFER_GET = 0x92 ??
 1 8 BE_uchar SSS_Func_Code
 2-3 16 BE_short SSS_Pkt_Count_max
 4-7 32 BE_long SSS_Data_Len_max
 8-11 32 BE_long SSS_Cmd_Key
12-13 16 BE_short SSS_Channel_Token
14 8 BE_uchar SSS_Func_Flags
15 8 BE_uchar Control (SAM r18 5.1, 5.6 ; SAM-2 r5a 5.1, 5.6)

Byte |Bits| Type | Field Name
------+----+----------+---------------------------
 0 | 8 | BE_uchar | SSS_SCSI_Cmd_Num
 1 | 8 | BE_uchar | SSS_Func_Code
 2-3 | 16 | BE_short | SSS_Pkt_Count
 4-7 | 32 | BE_long | SSS_Data_Len
 8-11 | 32 | BE_long | SSS_Cmd_Key
12-13 | 16 | BE_short | SSS_Channel_Token
14 | 8 | BE_uchar | SSS_Func_Flags
15 | 8 | BE_uchar | Control(SAM r18 5.1, 5.6 ; SAM-2 r5a 5.1.2, 5.6)

SCSI_Cmd_Num SSS_RPC_XFER_GET = 0x92 ??
Func_Code Function Code
Pkt_Count_max Maximum Number of packets in data phase of command
Data_Len_max Maximum Length (in bytes) of data-in phase
Cmd_Key Security / Tracking key for this command
Channel_ Token Channel Number or Token
Func_Flags Func_Code specific flags
Control Control byte defined in SCSI Architecture Model

SAM r18 sections 5.1, 5.6 ; SAM-2 r5a sections 5.1, 5.6

T10/98-183 SSS & IP packets over SCSI revision 0

[98-183r0.doc] 09/01/98 3:35 PM, Keith W. Parker <diogenes@europa.com> Page 36 of 46
Diogenes' Unofficial SCSI Socket Services (SSS) http://www.europa.com/~diogenes/SSS/

9.4 SSS_RPC_XFER_PUT

SCSI command SSS_RPC_PUT "SSS RPC Transfer Put"

Byte Bits Type
 0 8 BE_uchar SCSI_Cmd_Num = SSS_RPC_XFER_PUT = 0x93 ??
 1 8 BE_uchar Func_Code
 2-3 16 BE_short Pkt_Count
 4-7 32 BE_long Data_Len
 8-11 32 BE_long Cmd_Key
12-13 16 BE_short Channel_Token
14 8 BE_uchar Func_Flags
15 8 BE_uchar Control (SAM r18 5.1, 5.6 ; SAM-2 r5a 5.1, 5.6)

Byte |Bits| Type | Field Name
------+----+----------+---------------------------
 0 | 8 | BE_uchar | SSS_SCSI_Cmd_Num
 1 | 8 | BE_uchar | SSS_Func_Code
 2-3 | 16 | BE_short | SSS_Pkt_Count
 4-7 | 32 | BE_long | SSS_Data_Len
 8-11 | 32 | BE_long | SSS_Cmd_Key
12-13 | 16 | BE_short | SSS_Channel_Token
14 | 8 | BE_uchar | SSS_Func_Flags
15 | 8 | BE_uchar | Control(SAM r18 5.1, 5.6 ; SAM-2 r5a 5.1.2, 5.6)

SCSI_Cmd_Num SSS_RPC_XFER_PUT = 0x93 ??
Func_Code Function Code
Pkt_Count Number of packets in data phase of command
Data_Len Length (in bytes) of data-out phase
Cmd_Key Security / Tracking key for this command
Channel _Token Channel Number or Token
Func_Flags Func_Code specific flags
Control Control byte defined in SCSI Architecture Model

SAM r18 sections 5.1, 5.6 ; SAM-2 r5a sections 5.1, 5.6

T10/98-183 SSS & IP packets over SCSI revision 0

[98-183r0.doc] 09/01/98 3:35 PM, Keith W. Parker <diogenes@europa.com> Page 37 of 46
Diogenes' Unofficial SCSI Socket Services (SSS) http://www.europa.com/~diogenes/SSS/

10. Clause ?? Data structures for RPC over SCSI

This clause describes SCSI commands for SSS support of Internet IP packets over SCSI.

/********************* BEGINING OF FILE: sss_rpc.h ********************/
/* sss_rpc.h */

/*
* Clause ?? Data Structures for SSS support of RPC over SCSI
* NCITS Project T10/1246-D "SCSI Socket Services (SSS) Command Set"
*
* This clause is presented as a POSIX C compliant header file defining
* data structures required to implement "RPC over SCSI".
*/

/**/

/**/
/*
* Common to SCSI commands SSS_RPC_MGMT_GET and SSS_RPC_MGMT_PUT
*
* These are the common defined values for the
* "SSS_Func_Code" fields of the CDB16 for
* SCSI commands SSS_RPC_MGMT_GET and SSS_RPC_MGMT_PUT
*/

typedef enum /* SSS_RPC_MFCe_ */
 SSS_RPC_MGMT_FUNC_CODE_e
 { /* passed in SSS_Func_Code field of SS_PKT_XFER_xxx */
 SSS_RPC_MFCe_NOP = 0, /* ignores pkts, always OK */
 SSS_RPC_MFCe_GET_ABORT = 1, /*aborts disconnected SSS_RPC_MGMT_GET*/

 SSS_RPC_MFCe_VERS_GET = 2, /* xfer version & defaults */
 SSS_RPC_MFCe_VERS_PUT = 3, /* xfer version & defaults */

 SSS_RPC_MFCe_PKT_GET = 4, /* xfer any packet types */
 SSS_RPC_MFCe_PKT_PUT = 5, /* xfer any packet types */

 SSS_RPC_MFCe_ENUM_END
 } ;

/**/

T10/98-183 SSS & IP packets over SCSI revision 0

[98-183r0.doc] 09/01/98 3:35 PM, Keith W. Parker <diogenes@europa.com> Page 38 of 46
Diogenes' Unofficial SCSI Socket Services (SSS) http://www.europa.com/~diogenes/SSS/

/**/
/*
* Common to SCSI commands SSS_RPC_XFER_GET and SSS_RPC_XFER_PUT
*
* These are the common defined values for the
* "SSS_Func_Code" fields of the CDB16 for
* SCSI commands SSS_RPC_XFER_GET and SSS_RPC_XFER_PUT
*/

typedef enum /* SSS_RPC_XFCe_ */
 SSS_RPC_XFER_FUNC_CODE_e
 { /* passed in SSS_Func_Code field of SS_PKT_XFER_xxx */
 SSS_RPC_XFCe_NOP = 0, /* ignores pkts, always OK */
 SSS_RPC_XFCe_GET_ABORT = 1, /*aborts disconnected SSS_PKT_XFER_GET*/

 SSS_RPC_XFCe_VERS_GET = 2, /* xfer version & defaults */
 SSS_RPC_XFCe_VERS_PUT = 3, /* xfer version & defaults */

 SSS_RPC_XFCe_PKT_GET = 4, /* xfer any packet types */
 SSS_RPC_XFCe_PKT_PUT = 5, /* xfer any packet types */

 SSS_RPC_XFCe_ENUM_END
 } ;

/**/

/*********************** END OF FILE: sss_rpc.h ***********************/

T10/98-183 SSS & IP packets over SCSI revision 0

[98-183r0.doc] 09/01/98 3:35 PM, Keith W. Parker <diogenes@europa.com> Page 39 of 46
Diogenes' Unofficial SCSI Socket Services (SSS) http://www.europa.com/~diogenes/SSS/

11. Clause ?? SCSI commands for Internet IP packets over SCSI

This clause describes SCSI commands for SSS support of Internet IP packets over SCSI.

SSS_PKT_MGMT_GET - SCSI Socket Services Packet Management Get
SSS_PKT_MGMT_PUT - SCSI Socket Services Packet Management Put
SSS_PKT_XFER_GET - SCSI Socket Services Packet Transfer Get
SSS_PKT_XFER_PUT - SCSI Socket Services Packet Transfer Put

SCSI Group Code #4 (16 byte) commands
OPTIONAL for ALL device types

T10/98-183 SSS & IP packets over SCSI revision 0

[98-183r0.doc] 09/01/98 3:35 PM, Keith W. Parker <diogenes@europa.com> Page 40 of 46
Diogenes' Unofficial SCSI Socket Services (SSS) http://www.europa.com/~diogenes/SSS/

11.1 SSS_PKT_MGMT_GET

SCSI command SSS_PKT_MGMT_GET "SSS Packet Management Get"

Byte Bits Type
 0 8 BE_uchar SSS_SCSI_Cmd_Num = SSS_PKT_MGMT_GET = 0x94 ??
 1 8 BE_uchar SSS_Func_Code
 2-3 16 BE_short SSS_Pkt_Count_max
 4-7 32 BE_long SSS_Data_Len_max
 8-11 32 BE_long SSS_Cmd_Key
12-13 16 BE_short SSS_Channel_Token
14 8 BE_uchar SSS_Func_Flags
15 8 BE_uchar Control (SAM r18 5.1, 5.6 ; SAM-2 r5a 5.1, 5.6)

Byte |Bits| Type | Field Name
------+----+----------+---------------------------
 0 | 8 | BE_uchar | SSS_SCSI_Cmd_Num
 1 | 8 | BE_uchar | SSS_Func_Code
 2-3 | 16 | BE_short | SSS_Pkt_Count
 4-7 | 32 | BE_long | SSS_Data_Len
 8-11 | 32 | BE_long | SSS_Cmd_Key
12-13 | 16 | BE_short | SSS_Channel_Token
14 | 8 | BE_uchar | SSS_Func_Flags
15 | 8 | BE_uchar | Control(SAM r18 5.1, 5.6 ; SAM-2 r5a 5.1.2, 5.6)

SCSI_Cmd_Num SSS_PKT_MGMT_GET = 0x94 ??
Func_Code Function Code
Pkt_Count_max Maximum Number of packets in data phase of command
Data_Len_max Maximum Length (in bytes) of data-in phase
Cmd_Key Security / Tracking key for this command
Channel_ Token Channel Number or Token
Func_Flags Func_Code specific flags
Control Control byte defined in SCSI Architecture Model

SAM r18 sections 5.1, 5.6 ; SAM-2 r5a sections 5.1, 5.6

T10/98-183 SSS & IP packets over SCSI revision 0

[98-183r0.doc] 09/01/98 3:35 PM, Keith W. Parker <diogenes@europa.com> Page 41 of 46
Diogenes' Unofficial SCSI Socket Services (SSS) http://www.europa.com/~diogenes/SSS/

11.2 SSS_PKT_MGMT_PUT

SCSI command SSS_PKT_MGMT_PUT "SSS Packet Management Put"

Byte Bits Type
 0 8 BE_uchar SCSI_Cmd_Num = SSS_PKT_MGMT_PUT = 0x95 ??
 1 8 BE_uchar Func_Code
 2-3 16 BE_short Pkt_Count
 4-7 32 BE_long Data_Len
 8-11 32 BE_long Cmd_Key
12-13 16 BE_short Channel_Token
14 8 BE_uchar Func_Flags
15 8 BE_uchar Control (SAM r18 5.1, 5.6 ; SAM-2 r5a 5.1, 5.6)

Byte |Bits| Type | Field Name
------+----+----------+---------------------------
 0 | 8 | BE_uchar | SSS_SCSI_Cmd_Num
 1 | 8 | BE_uchar | SSS_Func_Code
 2-3 | 16 | BE_short | SSS_Pkt_Count
 4-7 | 32 | BE_long | SSS_Data_Len
 8-11 | 32 | BE_long | SSS_Cmd_Key
12-13 | 16 | BE_short | SSS_Channel_Token
14 | 8 | BE_uchar | SSS_Func_Flags
15 | 8 | BE_uchar | Control(SAM r18 5.1, 5.6 ; SAM-2 r5a 5.1.2, 5.6)

SCSI_Cmd_Num SSS_PKT_MGMT_PUT = 0x95 ??
Func_Code Function Code
Pkt_Count Number of packets in data phase of command
Data_Len Length (in bytes) of data-out phase
Cmd_Key Security / Tracking key for this command
Channel _Token Channel Number or Token
Func_Flags Func_Code specific flags
Control Control byte defined in SCSI Architecture Model

SAM r18 sections 5.1, 5.6 ; SAM-2 r5a sections 5.1, 5.6

T10/98-183 SSS & IP packets over SCSI revision 0

[98-183r0.doc] 09/01/98 3:35 PM, Keith W. Parker <diogenes@europa.com> Page 42 of 46
Diogenes' Unofficial SCSI Socket Services (SSS) http://www.europa.com/~diogenes/SSS/

11.3 SSS_PKT_XFER_GET

SCSI command SSS_PKT_XFER_GET "SSS Packet Transfer Get"

Byte Bits Type
 0 8 BE_uchar SSS_SCSI_Cmd_Num = SSS_PKT_XFER_GET = 0x96 ??
 1 8 BE_uchar SSS_Func_Code
 2-3 16 BE_short SSS_Pkt_Count_max
 4-7 32 BE_long SSS_Data_Len_max
 8-11 32 BE_long SSS_Cmd_Key
12-13 16 BE_short SSS_Channel_Token
14 8 BE_uchar SSS_Func_Flags
15 8 BE_uchar Control (SAM r18 5.1, 5.6 ; SAM-2 r5a 5.1, 5.6)

Byte |Bits| Type | Field Name
------+----+----------+---------------------------
 0 | 8 | BE_uchar | SSS_SCSI_Cmd_Num
 1 | 8 | BE_uchar | SSS_Func_Code
 2-3 | 16 | BE_short | SSS_Pkt_Count
 4-7 | 32 | BE_long | SSS_Data_Len
 8-11 | 32 | BE_long | SSS_Cmd_Key
12-13 | 16 | BE_short | SSS_Channel_Token
14 | 8 | BE_uchar | SSS_Func_Flags
15 | 8 | BE_uchar | Control(SAM r18 5.1, 5.6 ; SAM-2 r5a 5.1.2, 5.6)

SCSI_Cmd_Num SSS_PKT_XFER_GET = 0x96 ??
Func_Code Function Code
Pkt_Count_max Maximum Number of packets in data phase of command
Data_Len_max Maximum Length (in bytes) of data-in phase
Cmd_Key Security / Tracking key for this command
Channel_ Token Channel Number or Token
Func_Flags Func_Code specific flags
Control Control byte defined in SCSI Architecture Model

SAM r18 sections 5.1, 5.6 ; SAM-2 r5a sections 5.1, 5.6

T10/98-183 SSS & IP packets over SCSI revision 0

[98-183r0.doc] 09/01/98 3:35 PM, Keith W. Parker <diogenes@europa.com> Page 43 of 46
Diogenes' Unofficial SCSI Socket Services (SSS) http://www.europa.com/~diogenes/SSS/

11.4 SSS_PKT_XFER_PUT

SCSI command SSS_PKT_XFER_PUT "SSS Packet Transfer Put"

Byte Bits Type
 0 8 BE_uchar SCSI_Cmd_Num = SSS_PKT_XFER_PUT = 0x97 ??
 1 8 BE_uchar Func_Code
 2-3 16 BE_short Pkt_Count
 4-7 32 BE_long Data_Len
 8-11 32 BE_long Cmd_Key
12-13 16 BE_short Channel_Token
14 8 BE_uchar Func_Flags
15 8 BE_uchar Control (SAM r18 5.1, 5.6 ; SAM-2 r5a 5.1, 5.6)

Byte |Bits| Type | Field Name
------+----+----------+---------------------------
 0 | 8 | BE_uchar | SSS_SCSI_Cmd_Num
 1 | 8 | BE_uchar | SSS_Func_Code
 2-3 | 16 | BE_short | SSS_Pkt_Count
 4-7 | 32 | BE_long | SSS_Data_Len
 8-11 | 32 | BE_long | SSS_Cmd_Key
12-13 | 16 | BE_short | SSS_Channel_Token
14 | 8 | BE_uchar | SSS_Func_Flags
15 | 8 | BE_uchar | Control(SAM r18 5.1, 5.6 ; SAM-2 r5a 5.1.2, 5.6)

SCSI_Cmd_Num SSS_PKT_XFER_PUT = 0x97 ??
Func_Code Function Code
Pkt_Count Number of packets in data phase of command
Data_Len Length (in bytes) of data-out phase
Cmd_Key Security / Tracking key for this command
Channel _Token Channel Number or Token
Func_Flags Func_Code specific flags
Control Control byte defined in SCSI Architecture Model

SAM r18 sections 5.1, 5.6 ; SAM-2 r5a sections 5.1, 5.6

T10/98-183 SSS & IP packets over SCSI revision 0

[98-183r0.doc] 09/01/98 3:35 PM, Keith W. Parker <diogenes@europa.com> Page 44 of 46
Diogenes' Unofficial SCSI Socket Services (SSS) http://www.europa.com/~diogenes/SSS/

12. Clause ?? Data Structures for Internet IP packets over SCSI

/********************* BEGINING OF FILE: sss_pkt.h ********************/
/* sss_pkt.h */

/*
* Clause ?? Data Structures for SSS support of Internet IP packets over SCSI
* NCITS Project T10/1246-D "SCSI Socket Services (SSS) Command Set"
*
* This clause is presented as a POSIX C compliant header file defining
* data structures required to implement "Internet IP packets over SCSI".
*/

/**/

/**/
/*
* Common to SCSI commands SSS_PKT_MGMT_GET and SSS_PKT_MGMT_PUT
*
* These are the common defined values for the
* "SSS_Func_Code" fields of the CDB16 for
* SCSI commands SSS_PKT_MGMT_GET and SSS_PKT_MGMT_PUT
*/

typedef enum
 SSS_PKT_MGMT_FUNC_CODE_e /* SSS_PKT_MFCe_ */
 { /* passed in SSS_Func_Code field of SS_PKT_XFER_xxx */
 SSS_PKT_MFCe_NOP = 0, /* ignores pkts, always OK */
 SSS_PKT_MFCe_GET_ABORT = 1,/*aborts disconnected SSS_PKT_MGMT_GET */

 SSS_PKT_MFCe_VERS_GET = 2, /* xfer version & defaults */
 SSS_PKT_MFCe_VERS_PUT = 3, /* xfer version & defaults */

 SSS_PKT_MFCe_PKT_GET = 4, /* xfer any packet types */
 SSS_PKT_MFCe_PKT_PUT = 5, /* xfer any packet types */

 SSS_PKT_MFCe_ENUM_END
 } ;

/**/

T10/98-183 SSS & IP packets over SCSI revision 0

[98-183r0.doc] 09/01/98 3:35 PM, Keith W. Parker <diogenes@europa.com> Page 45 of 46
Diogenes' Unofficial SCSI Socket Services (SSS) http://www.europa.com/~diogenes/SSS/

/**/
/*
* Common to SCSI commands SSS_PKT_XFER_GET and SSS_PKT_XFER_PUT
*
* These are the common defined values for the
* "SSS_Func_Code" fields of the CDB16 for
* SCSI commands SSS_PKT_XFER_GET and SSS_PKT_XFER_PUT
*/

typedef enum /* SSS_PKT_XFCe_ */
 SSS_PKT_XFER_FUNC_CODE_e
 { /* passed in SSS_Func_Code field of SS_PKT_XFER_xxx */
 SSS_PKT_XFCe_NOP = 0, /* ignores pkts, always OK */
 SSS_PKT_XFCe_GET_ABORT = 1,/* aborts disconnected SSS_PKT_XFER_GET */

 SSS_PKT_XFCe_VERS_GET = 2, /* xfer version & defaults */
 SSS_PKT_XFCe_VERS_PUT = 3, /* xfer version & defaults */

 SSS_PKT_XFCe_PKT_GET = 4, /* xfer any packet types */
 SSS_PKT_XFCe_PKT_PUT = 5, /* xfer any packet types */

 SSS_PKT_XFCe_IP_ANY_GET = 6, /* xfer any IP packets */
 SSS_PKT_XFCe_IP_ANY_PUT = 7, /* xfer any IP packets */

 SSS_PKT_XFCe_IP_IPv4_GET = 8, /* xfer IPv4 packets only */
 SSS_PKT_XFCe_IP_IPv4_PUT = 9, /* xfer IPv4 packets only */

 SSS_PKT_XFCe_IP_IPv6_GET = 10, /* xfer IPv6 packets only */
 SSS_PKT_XFCe_IP_IPv6_PUT = 11, /* xfer IPv6 packets only */

 SSS_PKT_XFCe_ENUM_END
 } ;

/**/

/*********************** END OF FILE: sss_pkt.h ***********************/

T10/98-183 SSS & IP packets over SCSI revision 0

[98-183r0.doc] 09/01/98 3:35 PM, Keith W. Parker <diogenes@europa.com> Page 46 of 46
Diogenes' Unofficial SCSI Socket Services (SSS) http://www.europa.com/~diogenes/SSS/

13. SSS Socket API Remote Procedure Set (RPS)

Editor's note: Dummy clause to make numbers match.

