

Proposed Controller Failover Profile

High Availability Study Group X3T10: 95-312r0

Proposed Controller Failover Profile

Overview

- Purpose
- Architectural Concepts
- The Problem
- Assumptions about Fault Tolerant Controller Configurations & Failover
 - Required Changes for SCC & SCSI-3
- Functional Description of FT Controller Configuration Usage
- Additional SCSI-3 Requirements for more Flexibility

SJS 5-November 8-1995

X3T10 High Availability Study Group

Purpose for Profile

- Generalize the concept of fault tolerant controller configurations
 - 1 controller logically with many ports
- Generalize usage of SCC to aid OS driver development across all industry platforms for various fault tolerant configuration types
 - standardize setup and/or registration of controllers in FT configuration (with naming independent of serial #'s)
 - standardize reporting of failing controller/returning controller events
 - one port to n-port controller boards
 - any number of controller boards in configuration

Architectural Concepts

- **FT** Controller Configuration definition:
 - Any two or more control units sharing access paths to an arbitrary set of devices/Luns
 - Control Units may be active simultaneously or in some kind of active-standby mode
 - Differing LUN Access models for hosts

Architectural Concepts

- **FT Controller Configuration Definition:**
 - Failover between controllers
 - Failback between controllers
 - Failover/Failback by controllers automatically or under host control
 - Failover Failback notification direct or indirect (message or timeout)

The Problem

- Non-standard Configuration setup and reporting
- Non-standard failover/failback detections & options for speed/simplicity
- Interoperability with different OS burdened
- Need for standard in open system networked storage environment

Assumptions & Changes

- Assumptions are for adherence to SCC models of SACL's
- Assumptions are:
 - Two or more controllers sharing access paths to storage devices
 - The controllers configured with devices logically represent 'one controller with n ports to host'
 - The controllers configured with devices report the same configuration between them

Assumptions and Changes

Assumptions cont;

- Controller communicate with eachother directly (comm) or indirectly (through shared storage) or
- Controller components may have single or multiple host ports & single or multiple device interfaces
- Controllers may be pre-configured or be configured by hosts. Configs verified during controller/host init as well as after initial config
- Any/all surviving controllers within configuration can resume service of storage to host after controller failure.

X3T10 High Availability Study Group

SCC & Fault Tolerant Controller Assumptions

- 1. All hosts can access all controller
- 2. All controllers share access pathts to storage
- 3. All controllers can communicate with all other controllers in configuration via shared storage bus(es) or private comm intrfce

SCC & SCSI-3 Changes

- SCC changes involve some specific changes to the ATTACH to COMPONENT DEVICE and REPORT COMPONENT DEVICE ATTACHMENTS service actions
 - Changes to Attach involve LUN_C=0 denoting service action for controller attachments
 - Changes to parameter list based on LUN_C=0 for list to refer to controllers to be attached to controller receiving service action.

SCC & SCSI-3 Changes

- Changes to the Report COMPONENT DEVICE ATTACHMENT command
 - LUN_C=0 denotes controller service action to report about controller attachments
 - Response contains information about all current attachments, the name of the attachment, and information controllers eligible to become attached.

SCSI-3 Changes

- New ASC/ASCq's for Fault Detection in FT controller configuration:
 - FAILOVER
 - FAILBACK
 - sent to hosts by detecting controller(s) of failed controller.
 Method determined by SCSI-3 exception handling methods (AEN, Unit Attention, etc..)

FT Controller Configurations

- Using these changes, hosts can
 - Configure fault tolerant controller configurations
 - Efficient configuration checks by hosts (top level controller checks, followed by One scan down through a controller to verify LUN/device configuration
 - Failover/Failback much more quickly since controllers can detect partner failures faster
 - Identification of Load balancing opportunities
 - Consistent and Complimentary to Persistent Reserve & Global device/LUN IDs

Additional SCC Requirements for Configuration Flexibility

- For more Flexible Configuration, controller configuration capabilities to support multiple configurations of LUNs between attached controllers is possible/desireable
 - With networked storage
 - With serial storage & high connectivity
- Capabilities should be reported and controllable

- 'N' Controller component configurations may want/need different LUN access models.
 - Total sharing of all LUNs configured between all controllers attached to eachother.
 - This is represented by the profile as it stands today with the proposed SCC changes
 - This ties a set of controllers to all LUNs configured from any/all controllers in the attached configuration. Class 1 configuration
 - Other devices may share access but comprise LUNs for different controller attachments.

- The Controller Attachment and Controller to LUN attachments allow for
 - Ease of configuration: less OS polling of all targets and LUNs to build configuration maps with one or two level controller configurations
 - class 1 configuration (one level)
 - class 2 configuration (two level)

- Controller Attachments and Controller to LUN Attachments also provide for
 - Easier use and management of Global IDs for devices and LUNs within a controller configuration.

- LUNs attached to specific sets of controllers within an attached controller configuration
 - This requires an Attachment of Controller to specific LUN. It also implies a set of flags for reporting of and control of the LUN access method to be employed by the controller(s) attached to the LUN.

- The LUN attachment method is basically a 'Sub-component attachment between controllers to sets of LUNs on shared access paths. Class 2 configuration.
 - A Create Controller-LUN Attachment command would need to be added
 - Global ID Assignment
 - Setup Class of LUN Service

LUN Access/Service Methods

- LUN access with controllers may be:
 - Allowed by only one controller, that controller only responds to read/write commands
 - Allowed by one controller at a time, but requires interlock commands to bind/unbind from a controller (i.e. Reserve/Release)
 - Allowed by both controller simultaneously, assuming a high level of interlock on LUN accesses

- A Report Controller-LUN Attachment Command will also be required
 - To Report Attached LUNs
 - To Report Eligible LUNs
- The Report Component Device Attachment (for Controllers, LUN_C=0) needs
 - To Report Class of LUN access/service Allowed
 - Controller Configuration Type (1,2,other)