
To: INCITS T10 Committee
From: Matt Ball, Quantum Corporation
Date: 27 June 2006
Subject: SSC-3: Using NIST AES Key-Wrap for Key Establishment

Revision History
Revision 0 (T10/06-225r0):
Posted to the T10 web site on 4 May 2006.

Revision 1 (T10/06-225r1) 18 May 2006:
Changed SPI to SAI.
Added definition for 'encrypted information packet'.
Removed 'Secure Channel'.
Added mention of ANS X9.102 as a standard that could replace AES Key Wrap.
Within Table Y1 – Set Data Encryption page, moved the SAI (formerly SPI) and SEQUENCE NUMBER fields
into the KEY field and left those as 'reserved' (as they were previously). Table Y1 is now unchanged.
Updated Table Y9 – key field contents with key format field set to 02h to include SAI and SEQUENCE
NUMBER fields.
Minor edits.

Revision 2 (T10/06-225r2) 6 June 2006:
Moved the security association parameters into a table.
Created additional level 5 subclauses for describing the various key formats.
Added changes to the references section
Added clauses for these topics: Nonces and Key derivation functions
Changed the layout for the 'key reference' format
Changed key-wrap reference to RFC 3394 instead of "AES Key-Wrap (Draft)"
Added table for assigning an ID to the key derivation functions (KDF).
Numerous rewordings.

Revision 3 (T10/06-225r3) 27 June 2006:
Edits based on feedback from Michael Banther

Related Documents
T10/SSC-3 r2 "SCSI Stream Commands 3"
T10/06-172r1 (Paul Entzel, Quantum Corp.) "Add commands to control data encryption"
T10/06-103r1 (David Black, EMC) "Encrypt keys for transfer to device"
T11 FC-SP/06-157v2 "Fibre Channel Security Protocols (FC-SP)"
NIST AES Key-Wrap (Draft, November 2001)
NIST FIPS 140-2 "Security Requirements for Cryptographic Modules"
NIST FIPS 140-2, Annex D "Approved Key Establishment Techniques"
NIST FIPS 140-2 IG "Implementation Guidance for FIPS PUB 140-2 and the Cryptographic Module Validation

Program"
NIST FIPS 180-2 “Secure Hash Standard (SHS)”
NIST FIPS 197 "Announcing the Advanced Encryption Standard (AES)"
NIST SP 800-38B "Recommendation for Block Cipher Modes of Operation: The CMAC Mode for Authentication"
NIST SP 800-56A "Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm

Cryptography"
NIST SP 800-57 "Recommendation on Key Management"
NIST SP 800-90 "Recommendation for Random Number Generation Using Deterministic Random Bit Generators"
IEEE 802.11i "Amendment 6: Medium Access Control (MAC) Security Enhancements"
IETF RFC 3394 "Advanced Encryption Standard (AES) Key Wrap Algorithm"
IETF RFC 4303 "IP Encapsulating Security Payload (ESP)"
IETF RFC 4306 “Internet Key Exchange (IKEv2) Protocol”

General
NOTE: This is a proposal against SSC-3, with modifications from T10/06-172r1.

T10/06-225r3

Page 2 of 10

The purpose of this proposal is to provide a way for the application client to pass an encrypted key to the device
server (note: this is different than passing an encryption key; the goal is to encrypt the encryption key). This
feature has some of the following benefits:
• It is possible to hide the encryption key from an eavesdropper. Generally speaking, the encryption key is

more valuable than the data, so it is important to keep this information safe.
• To comply with NIST FIPS 140-2, it is necessary to encrypt the key before passing it to the device server.

Currently, there is no method in SSC-3 to provide a FIPS-compliant solution.

Currently, there are two FIPS 140-2 approved methods for key establishment (see
<http://csrc.nist.gov/publications/fips/fips140-2/fips1402annexd.pdf>):
• Key Management using ANSI X9.17 (NIST FIPS 171)
• NIST AES Key-Wrap (See <http://csrc.nist.gov/CryptoToolkit/kms/AES_key_wrap.pdf>)

The first method, FIPS 171, was withdrawn by NIST on February 8, 2005. This pretty much leaves us with 'AES
Key-Wrap'. Accordingly, this proposal provides a method for using AES Key-Wrap to establish a key within a
device server.

The AES Key-Wrap algorithm requires the use of a shared session key for wrapping the key. David Black
proposed in T10/06-103r1 an outline for using Diffie-Hellman for creating such a session key. This proposal does
not duplicate this work, but instead assumes that a security association (SA) is already established.

This proposal borrows several concepts from the IETF, IEEE, and NIST. The message format is very similar to
that of RFC 4303, "IP Encapsulating Security Payload (ESP)". The key derivation function (KDF) is taken from a
recent standard by NIST (SP 800-56A). The reader is encouraged to become familiarized with these documents
and other from the ‘Related Documents’ section.

Note: NIST is working on an updated version for the 'AES Key Wrap Specification'. This updated key-wrap
algorithm will also be included in the ANS X9.102 standard. You can find a draft copy at
<http://eprint.iacr.org/2004/340.pdf>. We may consider referencing this new standard if it looks like it will be FIPS
140-3 Approved (FIPS 140-3 will replace 140-2 and should be out this year).

If we need a standards number for Key Wrap, it would be possible to refer to RFC 3394 "Advanced Encryption
Standard (AES) Key Wrap Algorithm" (although I'm a little hesitant to use a standard with the name "Request for
Comment (RFC)" in the title).

Proposed Changes
Editor’s Note: These proposed changes apply to SSC-3 r2 (2006/03/01) as updated by T10/06-172r2. Some
headings are used only to keep the numbering consistent. (Proposed changes are in blue)

1 Scope

2 Normative references

2.1 Normative references

2.2 Approved references

2.3 References under development

2.4 IETF references
Copies of the following approved IETF standards may be obtained through the Internet Engineering Task Force
(IETF) at the World Wide Web site <http://www.ietf.org>.

RFC 3394, Advanced Encryption Standard (AES) Key Wrap Algorithm
RFC 4303, IP Encapsulating Security Payload (ESP)
RFC 4306, Internet Key Exchange (IKEv2) Protocol

T10/06-225r3

Page 3 of 10

2.5 NIST references
Copies of the following approved NIST standards may be obtained through the National Institute of Standards and
Technology (NIST) at the World Wide Web site <http://csrc.nist.gov>.

NIST AES Key-Wrap (Draft, November 2001)
NIST FIPS 180-2, Secure Hash Standard (SHS)
NIST FIPS 197, Announcing the Advanced Encryption Standard (AES)
NIST SP 800-38B, Recommendation for Block Cipher Modes of Operation: The CMAC Mode for Authentication
NIST SP 800-56A, Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm

Cryptography

3 Definitions, acronyms, keywords, and conventions

3.1 Definitions
3.1.a ciphertext: Data that has been encrypted
3.1.b plaintext: Data that is not encrypted
3.1.c encapsulating security payload (ESP): A protocol for sending encrypted and authenticated information

that is specified by IETF RFC 4303.
3.1.d encrypted information packet: A packet of encrypted data that passes across the service delivery

subsystem and minimally includes an SAI, sequence number, and ICV.
3.1.e key derivation function (KDF): a cryptographic function used to create derived keys based on a set of

shared secret and public parameters (see 4.2.20.7).
3.1.f key encryption key (KEK): a key used for encrypting another key.
3.1.g integrity check value (ICV): a message authentication code used to validate the integrity of data passed

across the service delivery subsystem. This is the term used by the IETF.
3.1.h security association (SA): A relationship and associated security processing between an application

client and device server (see 4.2.20.2).
3.1.i security association identifier (SAI): A 32-bit value that uniquely specifies a particular security

association (see 4.2.20.3). This is similar to the IETF’s security parameters index (SPI).
3.1.j security association parameters: The parameters necessary to define a security association.
3.1.k security association participant (SA participant): An application client or device server participating in

a security association.
3.1.l sequence number (SN): An integer used to order encrypted information packets sent using a security

association (see 4.2.20.5).
3.1.m shared key: a symmetric cryptographic key that is shared between a particular application client and

device server, and that is not known to any other entity. A shared key is used for encrypting and
authenticating encrypted information packets.

3.2 Acronyms
|| Concatenation operator

AES Advanced Encryption Standard

ESP encapsulating security payload

FIPS Federal Information Processing Standard

ICV integrity check value

IETF Internet Engineering Task Force

KEK key encryption key

NIST National Institute of Standards and Technology

RFC (IETF) request for comment

SA security association

SP (NIST) special publication

T10/06-225r3

Page 4 of 10

SAI security association identifier

4 General Concepts

4.1 Overview

4.2 Sequential-access device model

4.2.19 Data encryption

4.2.20 Encryption of information across the service delivery subsystem

4.2.20.1 Overview
The following subclauses describe cryptographic concepts needed for passing encrypted information packets
over the service delivery subsystem. None of the concepts in the following subclauses refer to data stored on the
media (see 4.2.19 for those concepts).

NOTE - Many of these concepts are derived from the IETF's encapsulating security payload (ESP) protocol (see
IETF RFC 4303 and RFC 4306).

4.2.20.2 Security association
An application client and device server may establish a security association (SA) for passing encrypted
information packets (see 3.1.d). An SA is relationship between an application client and a device server that is
used for passing encrypted information packets. An SA participant is an application client or device server that
maintains an SA. Table 4.1 shows the information that defines an SA.

Table 4.1 – Information that defines a security association

Name Size
(bytes)

Scope Description Reference

SAIc 4 public A security association identifier generated by the application
client

4.2.20.3

SAIs 4 public A security association identifier generated by the device server 4.2.20.3
Nc 16 public A random nonce generated by the application client 4.2.20.4
Ns 16 public A random nonce generated by the device server 4.2.20.4
SNc 4 public The current sequence number for encrypted information packets

sent from the application client to the device server
4.2.20.5

SNs 4 public The current sequence number for encrypted information packets
sent from the device server to the application client

4.2.20.5

SKEYSEED 32 secret A special encryption key known only to the application client and
device server of this SA. This value is used to generate keying
material.

4.2.20.6

KDF_ID 2 public Key derivation function identifier 4.2.20.7

Scope description:
public: a parameter that may be externally disclosed in plaintext.
secret: a parameter that shall not be externally disclosed in plaintext.

If an application client or device server supports security associations then it shall maintain an SA list.

An SA participant shall not transmit in plaintext over the service delivery subsystem any shared secrets from an
SA (e.g. the SKEYSEED).

An application client or device server may destroy SA parameters at any time for any reason. If an SA is
destroyed, all the data within the SA structure should be internally cleared.

Editor's note: When the SA architecture is fully defined, there needs to be a method to request the other side to
destroy its SA. This is useful in situations where an SA participant thinks that its secret information may have
been compromised.

T10/06-225r3

Page 5 of 10

4.2.20.3 Security association identifier
A security association identifier (SAI) is either of two 32-bit numbers (SAIc and SAIs) that uniquely identifies a
particular SA.

NOTE - As part of the protocol for establishing an SA, the application client provides SAIc, and the device server
provides SAIs. Each SA participant shall pass this SAI value to the other participant so that both sides contain
the same information within the SA structure.

Any encrypted information packet transmitted over the service delivery subsystem shall include the SAI of the
receiver (either SAIc or SAIs) to identify the SA. The SAI value shall be between 256 and 232-1, inclusive. The
values 0 to 255 are reserved for use by the IETF (see RFC 4306).

If a device server receives an encrypted information packet with an invalid SAIs, it shall terminate the associated
task with CHECK CONDITION status, set the sense key to ILLEGAL REQUEST, and set additional sense code to
INVALID SECURITY ASSOCIATION IDENTIFIER. An SAI is invalid if the recipient supports security associations
and the SAI does not exist in the recipient’s SA list.

Editor's Note: INVALID SECURITY ASSOCIATION IDENTIFIER is a new ASQ

4.2.20.4 Nonce
As part of establishing a new SA, each participant shall create a nonce using a cryptographically secure random
number generator. The nonce should be generated using a random number generator approved by NIST (see
NIST FIPS 140-2 and NIST SP 800-90). The nonce shall never be reused for creating subsequent security
associations.

4.2.20.5 Sequence number
A sequence number (SN) is an unsigned 32-bit integer that is used for sequencing encrypted information packets.
The main purpose of a sequence number is to prevent a replay attack, in which an attacker sends an old
encrypted information packet as new. Both the application client and the device server shall maintain a sequence
number for each encrypted information packet in each direction. When a new SA is established, the application
client and device server shall set the two sequence numbers to zero. Before sending an encrypted information
packet, the sender shall increment the sequence number. Therefore, the first valid sequence number in an
encrypted information packet is one. The receiver of an encrypted information packet shall verify that the
sequence number is larger than that of all previous encrypted information packets that reference the same SA. If
this is not true, the command shall be terminated with CHECK CONDITION status, with the sense key set to
ILLEGAL REQUEST, and the additional sense code set to INVALID SEQUENCE NUMBER.

Editor's Note: INVALID SEQUENCE NUMBER is a new ASQ.

A sequence number is not allowed to wrap. The last valid sequence number is 232-1. After sending or receiving
an encrypted information packet that uses the highest valid sequence number, the SA shall be destroyed.

4.2.20.6 Generating keying material for the SA
All encrypted information packets associated with a given SA shall use shared keys for encrypting and validating
information across the service delivery subsystem. These shared keys are a function of a shared key-seed
(SKEYSEED), the SAI values, and the nonce values. Table 4.2 shows all the shared keys, along with their
respective indices and descriptions.

Table 4.2 - Description of shared keys

Name Index Description
SK_d 1 derived key used to generate a new SKEYSEED during a re-keying operation
SK_ac 2 used for authenticating ESP messages from the application client to the device server
SK_as 3 used for authenticating ESP messages from the device server to the application client
SK_ec 4 used for encrypting ESP messages from the application client to the device server
SK_es 5 used for encrypting ESP messages from the device server to the application client
SK_pc 6 used for authenticating an SA (see RFC 4306)
SK_ps 7 used for authenticating an SA (see RFC 4306)
SK_kwec 8 used for encryption of NIST AES key-wrap payloads

T10/06-225r3

Page 6 of 10

Name Index Description
SK_kwac 9 used for authentication of NIST AES key-wrap payloads
Legend:

SK = shared key
d = derived
a = authentication (integrity check value)
e = encryption
c = application client
s = device server
kw = key-wrap

To generate the shared keys, an application client or device server shall use the negotiated key derivation
function (KDF) for an SA, providing the index as an input. The size of each shared key shall match the size of the
corresponding hash function used by the KDF. See 4.2.20.7 for more details on key derivation functions.

The shared keys shall not be transmitted across the service delivery subsystem in plaintext.

4.2.20.7 Key derivation function
A key derivation function (KDF) is a cryptographic primitive that computes the shared keys using the SKEYSEED,
SAI, and nonce values as input. An application client and device server shall negotiate a key derivation function
identifier (KDF_ID) from Table 4.1.

Table 4.3 - Key derivation functions

Code Description Reference
0000h Reserved
0001h NIST SP 800-56A: Concatenation Key Derivation Function (Approved Alternative

1) using SHA-256
4.2.20.8

0002h-
0FFFh

Reserved

1000h-
FFFFh

Vendor specific

An application client or device server only needs to generate the shared keys that might be used.

If a particular function requires a shared key shorter than the full shared key size, then that function shall use the
leftmost bits (i.e. most significant) to create a smaller shared key.

4.2.20.8 Key derivation function using NIST SP 800-56A
A KDF_ID value of 0001h shall indicate the key derivation function as specified in NIST SP 800-56A under the
clause entitled "Concatenation Key Derivation Function (Approved Alternative 1)", with the following qualifiers:

Auxiliary Function:
1) H: SHA-256 hashing function as specified in NIST FIPS 180-2

Input:
1) Z: SKEYSEED
2) keydatalen: 256 * 9 (i.e. the hash size times the maximum number of shared keys)
3) OtherInfo:

AlgorithmID: The empty string "".
PartyUInfo: SAIc || Nc (that is, the concatenation of SAIc and Nc)
PartyVInfo: SAIs || Ns (that is, the concatenation of SAIs and Ns)
SuppPubInfo: The empty string "".
SuppPrivInfo: The empty string "".

When generating a particular output from this KDF, the value 'counter' shall be set to the corresponding Index
within Table 4.2. Each shared key that is generated by this KDF shall have a size of 256 bits.

T10/06-225r3

Page 7 of 10

Immediately after an application client or device server generates all the shared keys, it shall set all instances of
the SKEYSEED variable to zero, as required by NIST SP 800-56A.

5 Explicit address command descriptions for sequential-access devices
6 Implicit address command descriptions for sequential-access devices
7 Common command descriptions for sequential-access devices
8 Parameters for sequential-access devices
8.1 Diagnostic parameters
8.2 Log Parameters
8.3 Mode Parameters
8.4 Vital product data (VPD) parameters
8.5 Security protocol parameters

8.5.1 Security protocol overview
8.5.2 SECURITY PROTOCOL IN command specifying Tape Data Encryption security protocol
8.5.3 SECURITY PROTOCOL OUT command specifying Tape Data Encryption security protocol
8.5.3.1 SECURITY PROTOCOL OUT command specifying Tape Data Encryption security protocol

overview

8.5.3.2 Set Data Encryption page

8.5.3.2.1 Set data encryption page format
Table Y1 shows the parameter list format of the Set Data Encryption page.

Table Y1 – Set Data Encryption page

Bit
Byte

7 6 5 4 3 2 1 0

0 (MSB)

1
PAGE CODE (0010h)

(LSB)

2 (MSB)

3
PAGE LENGTH (m-3)

(LSB)

4 SCOPE Reserved LOCK

5 Reserved CKOD CKORP CKORL

6 ENCRYPTION MODE

7 DECRYPTION MODE

8 ALGORITHM INDEX

9 KEY FORMAT

10

17
Reserved

18 (MSB)

19
KEY LENGTH (n-19)

(LSB)

20

n
KEY

n+1

m
KEY-ASSOCIATED DATA DESCRIPTORS LIST

(Text removed)

T10/06-225r3

Page 8 of 10

The KEY FORMAT field indicates the format of the value in the KEY field. Values for this field are described in Table
Y5.

Table Y5 – KEY FORMAT field values

Code Description Reference

00h The KEY field contains the key to be used to
encrypt or decrypt data.

8.5.3.2.2

01h The KEY field contains a vendor specific key
reference

8.5.3.2.3

02h AES key wrap format (see RFC 3394) 8.5.3.2.4

03h – BFh Reserved N/A

C0h – FFh Vendor specific N/A

The KEY LENGTH field indicates the length of the key field in bytes.

(Move KEY-ASSOCIATED DATA DESCRIPTORS LIST text here)

8.5.3.2.2 Plaintext key format
If the KEY FORMAT field is 00h the KEY field contains the key in an algorithm specific format. Table Y8 defines the
format of the key in the KEY field.

Table Y8 – KEY field contents with KEY FORMAT field set to 00h

Bit
Byte

7 6 5 4 3 2 1 0

020 (MSB)

n
KEY

(LSB)

The KEY LENGTH field indicates the length of the key field in bytes.

8.5.3.2.3 Key reference format
If the KEY FORMAT field is 01h, the KEY field shall contain 8 bytes of T10 vendor identification (see SPC-4) followed
immediately by a vendor specific key reference identifying the key to be used to encrypt or decrypt data. If the
KEY field contains a vendor specific key reference that is unknown to the device server, the command shall be
terminated with CHECK CONDITION status, with the sense key set to ILLEGAL REQUEST, and the additional
sense code set to VENDOR SPECIFIC KEY REFERENCE NOT FOUND.

If the KEY FORMAT field is 01h, the KEY field shall contain the information as defined by Table Y8a.

Table Y8a – KEY field contents with KEY FORMAT field set to 01h

Bit
Byte

7 6 5 4 3 2 1 0

20 (MSB)

27
T10 VENDOR IDENTIFICATION

(LSB)

28 (MSB)

n
VENDOR SPECIFIC KEY REFERENCE

(LSB)

The T10 VENDOR IDENTIFICATION field shall contain 8 bytes of T10 vendor identification (see SPC-4).

The VENDOR SPECIFIC KEY REFERENCE field shall include vendor-specific information used for identifying the
key that encrypts or decrypts data. If the VENDOR SPECIFIC KEY REFERENCE field contains a vendor specific
key reference that is unknown to the device server, the command shall be terminated with CHECK CONDITION

T10/06-225r3

Page 9 of 10

status, with the sense key set to ILLEGAL REQUEST, and the additional sense code set to VENDOR SPECIFIC
KEY REFERENCE NOT FOUND.

8.5.3.2.4 AES key wrap format
If the KEY FORMAT field of Table Y1 is 02h, the KEY field shall contain a wrapped key, as specified by IETF RFC
3394 (AES Key-wrap), in conjunction with a sequence number and integrity check value. Table Y9 shows the
layout of the KEY field for KEY FORMAT 02h.

Table Y9 – KEY field contents with KEY FORMAT field set to 02h

Bit
Byte

7 6 5 4 3 2 1 0

20 (MSB)

23
SECURITY ASSOCIATION IDENTIFIER (SAIs)

(LSB)

24 (MSB)

27
SEQUENCE NUMBER

(LSB)

28 (MSB)

n-16
AES KEY-WRAPPED KEY

(LSB)

n-15 (MSB)

n
INTEGRITY CHECK VALUE (ICV)

(LSB)

The SAIs field shall reference the security association (SA) that contains the shared keys SK_kwec and
SK_kwac. SK_kwac provides the key for generating the integrity check value (ICV) and SK_kwec provides the
Key Encryption Key (KEK) for the AES Key-Wrap algorithm (see 4.2.20.3).

The SEQUENCE NUMBER field shall contain the next SNs value for the referenced SA. The device server shall verify
the sequence number and report an error if a non-increasing number is detected (see 4.2.20.5).

The AES KEY-WRAPPED KEY field shall contain the wrapped key, according to the NIST AES Key-wrap
algorithm.

NOTE - After performing the AES key-wrap algorithm, the wrapped-key expands in size by 8 bytes. These extra
8 bytes provide an integrity check for the unwrapping process.

The device server shall ensure that the length of the AES KEY-WRAPPED KEY field is a multiple of 8 bytes, as
specified by the AES Key-wrap specification (i.e. the device server shall ensure that the KEY LENGTH field minus
32 bytes is a multiple of 8 bytes). If the application client violates this alignment, the device server shall terminate
the command with CHECK CONDITION status, with the sense key set to ILLEGAL REQUEST, and the additional
sense code set to INVALID KEY LENGTH ALIGNMENT.

Editor’s note: INVALID KEY LENGTH ALIGNMENT is a new sense code.

The INTEGRITY CHECK VALUE (ICV) field shall contain a 128-bit ICV that is computed, in order, over the KEY
LENGTH, SAIs, SEQUENCE NUMBER, and AES KEY-WRAPPED KEY fields using the CMAC authentication
mode, as specified in NIST SP 800-38B. The device server shall invoke the CMAC algorithm using the AES
block cipher with a 256-bit key provided by SK_kwac (see 4.2.20.6). If the calculated ICV does not match the
value in the ICV field, the command shall be terminated with CHECK CONDITION status, with the sense key set
to ILLEGAL REQUEST, and the additional sense code set to INVALID INTEGRITY CHECK VALUE. The device
server shall not distinguish between a failure in the ICV or in the AES key-wrap algorithm.

Editor’s note: INVALID INTEGRITY CHECK VALUE is a new sense code.

The device server shall also validate the integrity of the wrapped key, according to the NIST AES Key-wrap
algorithm. If this integrity check fails, the command shall be terminated with CHECK CONDITION status, with the
sense key set to ILLEGAL REQUEST, and the additional sense code set to INVALID INTEGRITY CHECK
VALUE.

T10/06-225r3

Page 10 of 10

NOTE - The length of the final unwrapped key equals the KEY LENGTH field minus 32 bytes. These 32 bytes
correspond to the total length of the SAIs, SEQUENCE NUMBER, and INTEGRITY CHECK VALUE fields, plus
the additional 8 bytes created by the AES Key-Wrap algorithm.

	1 Scope
	2 Normative references
	2.1 Normative references
	2.2 Approved references
	2.3 References under development
	2.4 IETF references
	2.5 NIST references

	3 Definitions, acronyms, keywords, and conventions
	3.1 Definitions
	3.2 Acronyms

	4 General Concepts
	4.1 Overview
	4.2 Sequential-access device model
	4.2.19 Data encryption
	4.2.20 Encryption of information across the service delivery subsystem
	4.2.20.1 Overview
	4.2.20.2 Security association
	4.2.20.3 Security association identifier
	4.2.20.4 Nonce
	4.2.20.5 Sequence number
	4.2.20.6 Generating keying material for the SA
	4.2.20.7 Key derivation function
	4.2.20.8 Key derivation function using NIST SP 800-56A

	5 Explicit address command descriptions for sequential-access devices
	6 Implicit address command descriptions for sequential-access devices
	7 Common command descriptions for sequential-access devices
	8 Parameters for sequential-access devices
	8.1 Diagnostic parameters
	8.2 Log Parameters
	8.3 Mode Parameters
	8.4 Vital product data (VPD) parameters
	8.5 Security protocol parameters
	8.5.1 Security protocol overview
	8.5.2 SECURITY PROTOCOL IN command specifying Tape Data Encryption security protocol
	8.5.3 SECURITY PROTOCOL OUT command specifying Tape Data Encryption security protocol
	8.5.3.1 SECURITY PROTOCOL OUT command specifying Tape Data Encryption security protocol overview
	8.5.3.2 Set Data Encryption page
	8.5.3.2.1 Set data encryption page format
	8.5.3.2.2 Plaintext key format
	8.5.3.2.3 Key reference format
	8.5.3.2.4 AES key wrap format

