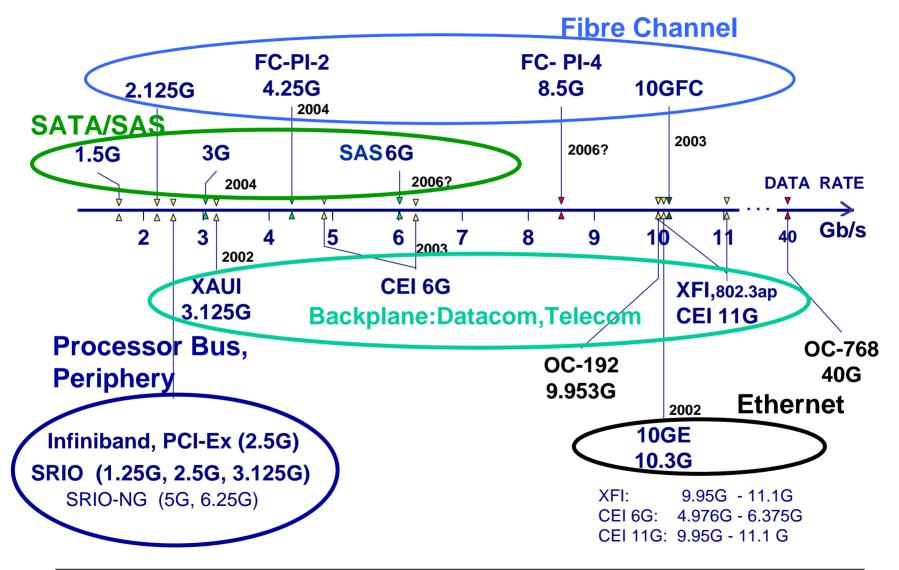
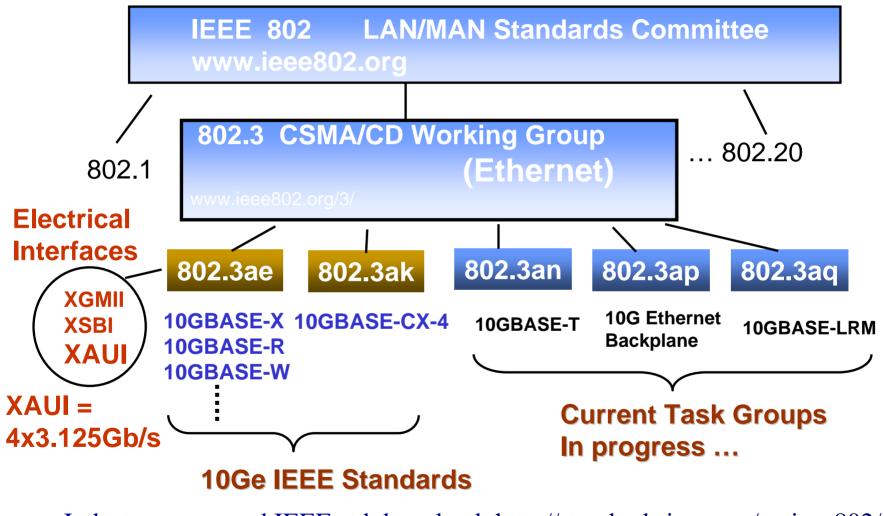
T10/05-219r0

Survey of High-Speed Serial Technologies

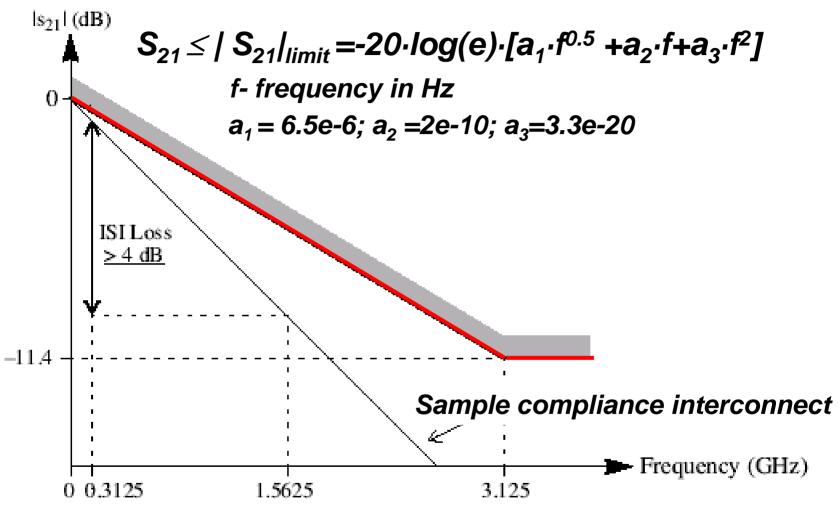

T10 SAS-2 WG meeting, Houston, 25-26 May 2005


Yuriy M. Greshishchev PMC-Sierra Inc.

Outline

- Multi-Gigabit Standard Space
- Milestones
 - > XAUI
 - > XFI
 - > OIF CEI
- Transceiver Equalization at 6Gb/s
 - Basic Techniques and Terminology
 - > Industry 6Gb/s state-of-the-art ICs and trends
- New Frontiers

Multi-Gigabit Standards Space



Industry sponsored IEEE std download: http://standards.ieee.org/getieee802/

XAUI-like Electrical Interfaces

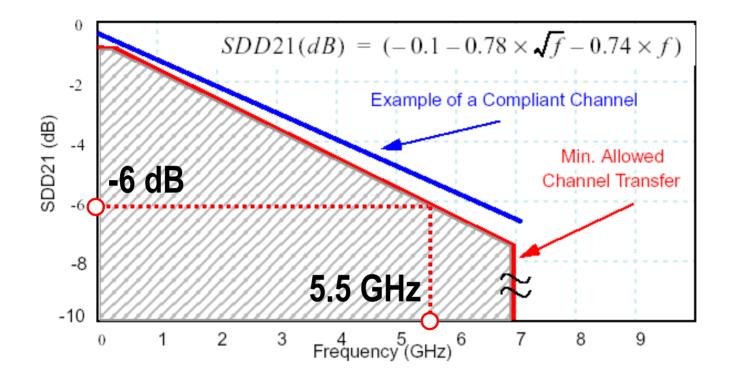
- XAUI was the first 3.125Gb/s industry standard
 - Channel ISI is limited to 4-6 dB, two connectors
 - > The Rx eye is open
 - Moderate reflections and frequency dispersion
 - Single-pole equalization is sufficient
 - » 2-tap FIR in Tx (pre-emphases)
 - » FFE in Rx (if no equalizer in Tx)
 - » Or both for cables
 - > 8b/10b, CJPAT testing
- Due to interoperability success XAUI has influenced many other electrical standards

XAUI - Compliant Interconnect

The S21 phase and S12,S11,S22 are not specified. Potentially could lead to interoperability problems

Copyright PMC-Sierra Inc. Survey of High-Speed Serial Technologies Y.Greshishchev.

The XFI "Ziffy"


"The XFI "Ziffy" is the high speed serial electrical interface for XFP modules with a nominal baud rate of 9.95-11.1 Gb/s. XFI connects a serial 9.95-11.1 Gb/s SerDes to a module over 300mm of improved FR4¹ material or up to 200mm of standard FR4 with one connector. The electrical interface is based on high speed low voltage AC coupled logic with a nominal differential impedance of 100 Ω . The XFP module could be an Electrical-to-Optical or an Electrical-to-Electrical device.

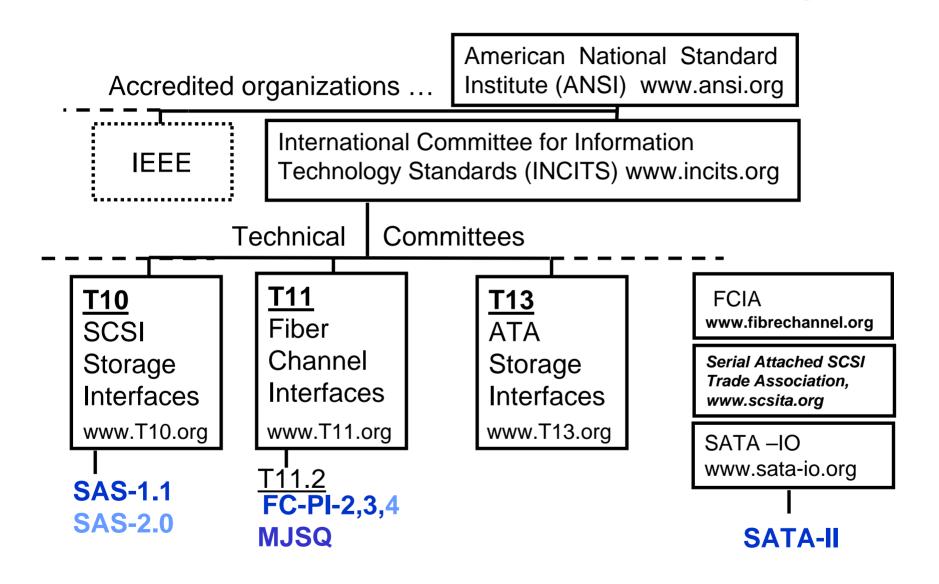
The XFP modules and the host system are hot-pluggable. The module or the host system shall not be damaged by unexpected insertion or removal of the module"

1. Standard FR4 has a typical loss tangent of 0.022, where improved FR4 such as Nelco 4000-13 has a typical loss tangent of 0.016.

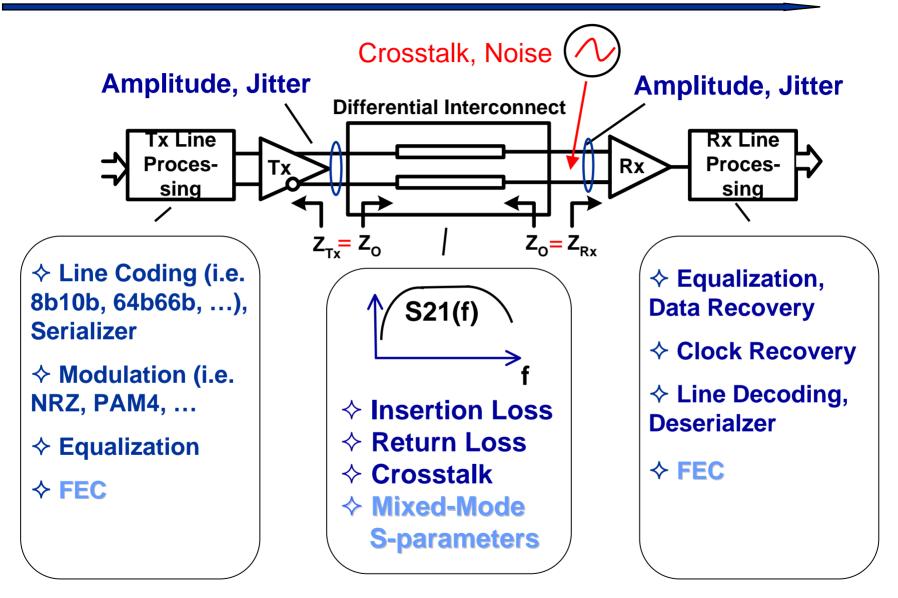
- XFI had become de facto next milestone in H/S interfaces at 10Gb/s
 - Data protocol agnostic
 - > Was also adapted by Fiber Channel and OIF 11G SR
- Requires Rx FFE, no Tx equalization is allowed
 - Reduced EMI
- Specifies advanced set of differential S-parameters to control primary and secondary reflections
- Interoperability testing with the test boards

XFI Compliant Channel

Includes XFP connector (0.5dB at 5.5GHz)
 Total channel loss budget 9.6 dB including crosstalk and reflections

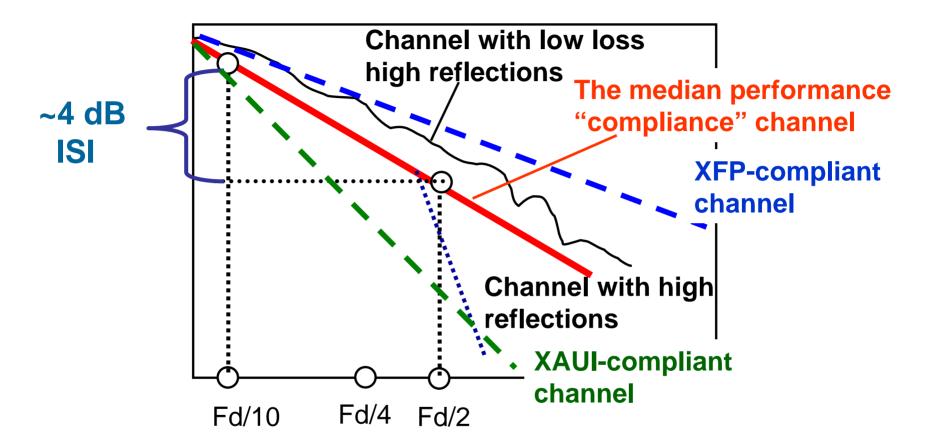

Source XFP MSA

Copyright PMC-Sierra Inc.

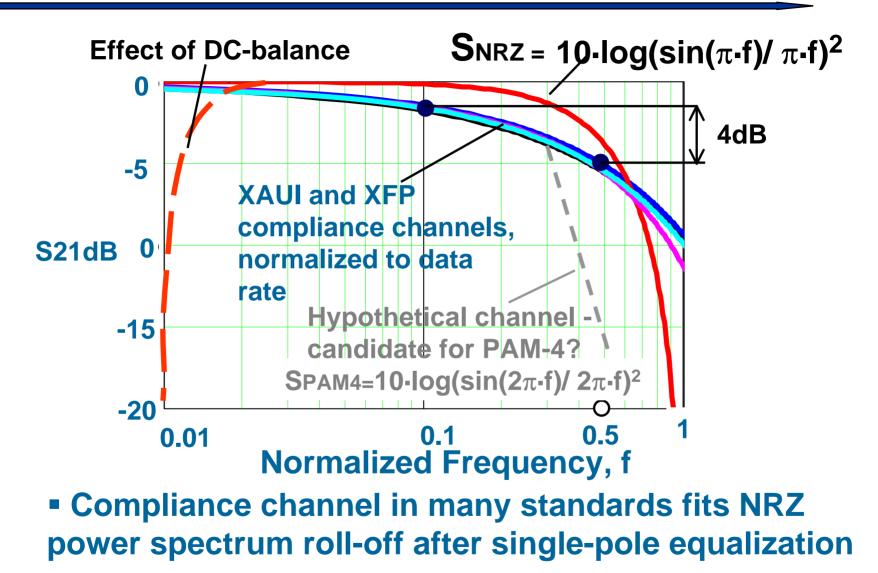

Optical Internetworking Forum (OIF)/05-219r0

- Electrical Interfaces for OC-192, OC768
- CEI 6G SR, LR (over legacy backplanes)
- CEI 11G
- A milestone in 6Gb/s interconnects and in advanced equalization techniques for interfaces with BER < 10⁻¹⁵
- Has the most comprehensive up to date multi-gigabit range serial electrical interface specification with Common Electrical Interfaces (CEI) *"Jitter and Interoperability Methodology*
- Will be covered in separate presentations

Storage Area Standards Framework^{0/05-219r0}


Generic View on Serial Electrical Interface

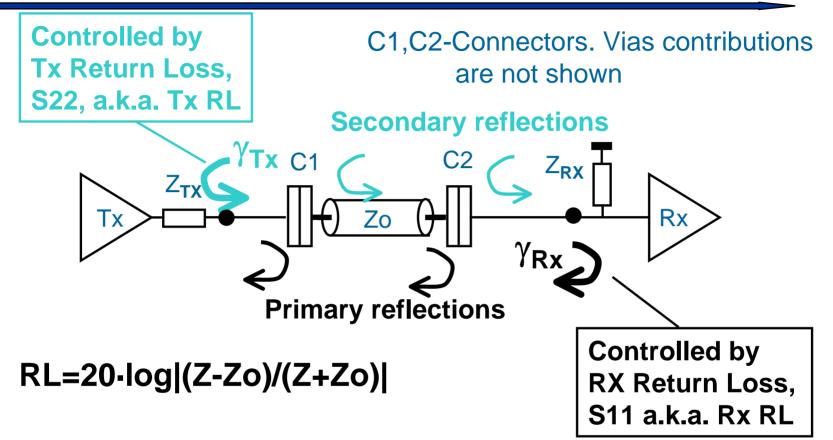
What Matters in Interconnects ?


- Characteristic impedance
 - > Differential, Zdif = 100 Ohm (+/- 10% typical)
 - Common mode, Zcm= 25-40 Ohm
- The differential transfer function S21(jω)
 - |S21(j\u00f3)| insertion loss vs. frequency (compliance channel limits acceptable loss in the interconnect)
- Crosstalk with adjacent channels
- What matters but, not usually specified?
 - Arg(S21(j\u00fc)) phase vs. frequency response, or delay DELAY(\u00fc) = Arg(S21(j\u00fc))/\u00fc (must be constant over frequency). "Group delay" is not this same parameter !
- Recent standard developments use S-parameters matrix describing interconnect as a "black box" including adjacent channel interconnect

PCB Compliance Channel, S21

Compliance channel is a useful tool, however may not always guarantee interoperability without knowledge of the full S-parameters matrix

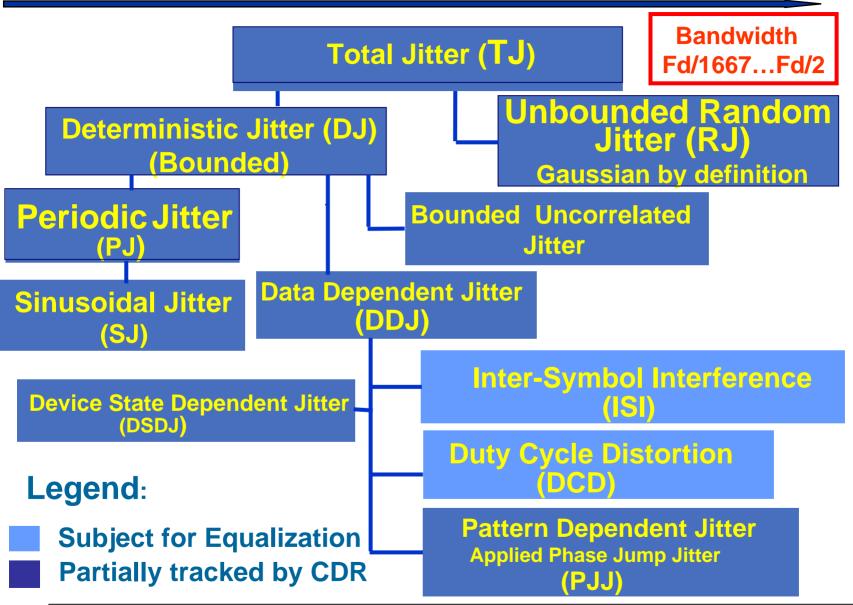
NRZ Spectrum and Compliance Channel®



Multi-Level Spectral Efficiency

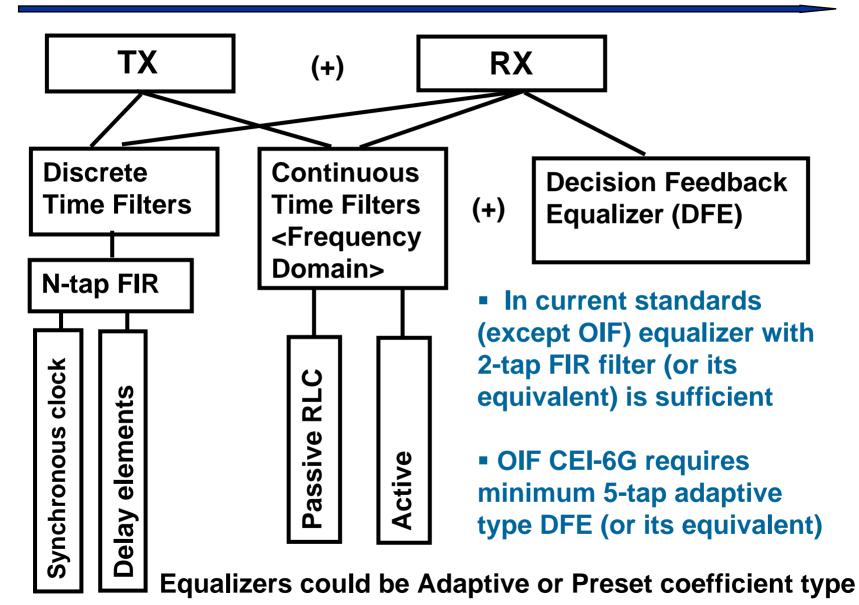
PAM-4 (4-levels)

- > Theoretically, could almost double the throughput
 - In practice, is less favorable as compared to NRZ with advanced channel equalization
- Not used by current standards
- Duo-binary (3-levels)
 - Theoretically, has an intermediate efficiency between NRZ and PAM-4
 - Employed in Hard Drives Channels
 - Was under consideration at 802.3ap
- All multi-level signaling changes RX detection scheme from zero-crossing (NRZ) to an absolute level detection, thus requiring Tx adaptation


Return Loss and Signal Reflection^{510/05-219r0}

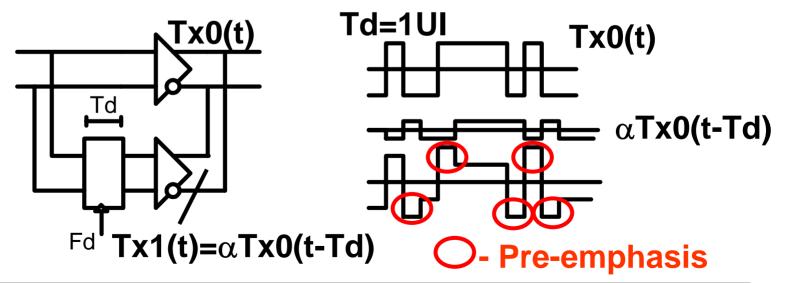
Return loss impact depends on channel attenuation and reflections from neighboring discontinuity
Maximum ISI jitter is for the worst mismatch and minimum loss in the channel

- Fiber Channel Methodology for Jitter and Signal Quality Specification – MJSQ (MJS-1999, MJSQ, rev14 -2004)
 - > Deals with the "Open Eye" interfaces
 - > Originally was developed to serve FC specifications, however has become an industry wide methodology
 - > Defines jitter components, Tx,Rx measurement methods
- Statistical Eye (OIF)
 - Was mainly developed to target "Closed Eye" interfaces with BER requirement <10⁻¹⁵-10⁻¹⁸. Based on analytical BER simulation technique ("StatEye") with 5-tap ideal DFE to open the eye and S-parameters to represent the "channel"
 - StatEye.org is a non-profit open source forum. Operates under the open source license agreement. www.StatEye.org


Jitter Components

The Interconnect Channel Equalization^{219r0}

- The interconnect channel equalization aims to reduce impact of channel induced ISI – <u>a</u> generally known and well defined problem in <u>Digital Communications</u>
- Current standards are based on NRZ signaling technique – the poorest in spectral efficiency. Equalization helps to substantially improve NRZ signaling quality
- Most backplane standards do allow, but do not budget Rx for equalization (except OIF)
- Equalization can be implemented in either the Tx or Rx, or simultaneously in both
 - > Tx equalization (i.e. pre-emphasis)
 - Rx equalization (i.e. decision feedback equalizer,DFE)

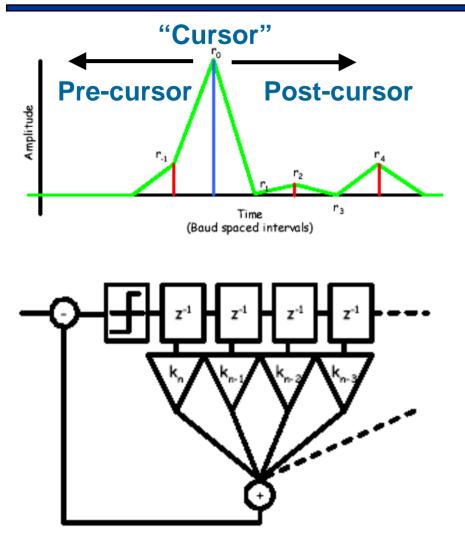

Equalization Methods

Tx Equalization Terminology

Tx "pre-emphasis" (signal emphasis before the channel) ="transmit emphasis" ="de-emphasis" (a way to implement emphasis in a Tx circuit, when the maximum amplitude is reduced) = "single-pole post tap" (equalizer filter type)

= "2 tap FIR" (equalizer filter type)

- The "FIR" means "Finite Impulse Response".
- The impulse response is "finite" because there is no feedback in the filter: only delayed inputs are taken to construct the filter output
- In opposite to"IIR" (Infinite IR), where filter output is used to construct filter response and it may become infinite
- The "impulse response" of a FIR filter is actually just the set of FIR coefficients
- Important feature of FIR is a linear phase response
- Transversal Filter another name for a FIR filter implementation


Rx-equalization

- A simple equalizer is an amplifier with boosted high frequency gain at Fd/2
 - > Useful, if signal comes from not-equalized Tx or, if working in conjunction with Tx equalization
 - Subject for SNR degradation
- A Feed Forward Equalizer (FFE) equalizer uses a parallel combination of "flat gain" amplifier and "boost amplifier"
 - In FFE equalizer with adaptation the gain is varied, based on the measured power in the frequency band of interest
- An FFE type equalizer some times is used in front of DFE and/or clock recovery path to "pre-open" the eye

Step, Pulse and Impulse Responses T10/05-219r0

- Step response is a system response on a step function 1(t)
- Impulse response is a system response on δ -function, that is a derivative of the step response
 - > TDR is based on impulse response
 - > Impulse response is an IFFT of S21(f)
- Pulse response is a system response on a pulse width equal to a bode interval
- All parameters are interrelated according to linear system theory

Decision Feedback Equalizer (DFE) T10/05-219r0

• DFE is a nonlinear type equalizer for post-cursor ISI only

Pros:

- DFE has an advantage in
- high crosstalk environment
 - DFE does not amplify crosstalk noise
- DFE may efficiently cancel reflections
 - -Subject to a number of taps

Cons:

- Probability of error propagation
 - may be low with typical DFE settings

Graphics is from CEI-02.0

6Gb/s Backplane Transceivers

Company	Data	Тх	Rx	Channel	Comments
	Rate			Loss at Nyquist	
	Gb/s			Frequency	
Agere	3-6.25	PAM-4/NRZ	PAM-4/NRZ	Legacy backpl	Macrocell
IBM	4.9-6.4	4-tap FIR	Peak+5-tap	32 dB	Core IP
			DFE	25 dB (DFE)	
LSI Logic	4.8-6.4	2-tap FIR	4-tap DFE	40" FR4	Core IP
PMC-Sierra	4.9-6.4	2-tap FIR	10-tap DFE	25dB	Device
Synopsis	0.6-9.6	3-tap FIR	1-tap DFE	36' BER=10 ⁻¹²	Core IP
Texas	3.5-6.25	4-tap FIR	4-tap DFE	30'' FR4	Device
Instruments					
Vitesse	5-Gb/s	3-tap FIR	FFE +3-tap	9.9dB	Device
			DFE		

Source: ISSCC'05, CICC'04, www.agere.com

- More aggressive bandwidth utilization in existing infrastructure
 - > Tx pre-emphases (2-tap) \rightarrow multi-tap Tx FIR
 - Improved pre and post -cursor (due to convolution with the channel response). May help to reduce number of DFE taps
 - Preset or adaptable FIR Tx (if up-channel is permitted by requirements)
 - $\succ \mathsf{FFE} \mathsf{Rx} \rightarrow \mathsf{Rx} \mathsf{DFE}$
 - DFE tackles ISI without amplifying noise
 - » Adaptable DFE has been widely proven
 - Preceding FFE may be a subject for consideration
 - » Noise impact

IEEE 802.3ap

10G Ethernet Backplane

11Gb/s + over 1 m backplane, BER < 10^{-12}

 Ethernet protocol (duplex link) opens a way for adaptable Tx equalizer and multi-level (PAM-4, Duobinary) signaling techniques

FC-PI-4

8.5 GB/s Fibre Channel Physical interfaces