Working Draft Project
American National 04-284r1 (T10/1740-D)
Standard

Revision 0
17 January 2005

Information technology -
Serial Attached SCSI Driver Interface (SDI)

This is an internal working document of T10, a Technical Committee of Accredited Standards Committee
INCITS (International Committee for Information Technology Standards). As such this is not a completed
standard and has not been approved. The contents may be modified by the T10 Technical Committee. The
contents are actively being modified by T10. This document is made available for review and comment only.

Permission is granted to members of INCITS, its technical committees, and their associated task groups to
reproduce this document for the purposes of INCITS standardization activities without further permission,
provided this notice is included. All other rights are reserved. Any duplication of this document for commercial
or for-profit use is strictly prohibited.

T10 Technical Editor: Robert C Elliott
Hewlett-Packard Corporation
MC 140801
PO Box 692000
Houston, TX 77269-2000
USA

Telephone: 281-518-5037
Email: elliott@hp.com

Reference number
ISO/IEC 14776-xxx:200x
ANSI INCITS ***-200x

Printed 12:43 AM Monday 17 January 2005

Points of contact

International Committee for Information Technology Standards (INCITS) T10 Technical Committee

T10 Chair T10 Vice-Chair
John B. Lohmeyer George O. Penokie
LSI Logic IBM Corporation
4420 Arrows West Drive MS: 2C6
Colorado Springs, CO 80907-3444 3605 Highway 52 N
USA Rochester, MN 55901
USA
Telephone: (719) 533-7560 Telephone: (507) 253-5208
Email: lohmeyer@t10.org Email: gop@us.ibm.com

T10 Web Site: http://www.t10.0rg

T10 E-mail reflector:

Server: majordomo@1t10.org

To subscribe send e-mail with ‘subscribe’ in message body

To unsubscribe send e-mail with ‘unsubscribe’ in message body

INCITS Secretariat
Suite 200

1250 Eye Street, NW
Washington, DC 20005

USA

Telephone: 202-737-8888

Web site: http://www.incits.org
Email: incits@itic.org

Information Technology Industry Council
Web site: http://www.itic.org

Document Distribution
INCITS Online Store
managed by Techstreet
1327 Jones Drive

Ann Arbor, Ml 48105

USA
Web site: http://www.techstreet.com/incits.html
Telephone: (734) 302-7801 or (800) 699-9277

Global Engineering Documents, an IHS Company
15 Inverness Way East
Englewood, CO 80112-5704

USA
Web site: http://global.ihs.com
Telephone: (303) 397-7956 or (303) 792-2181 or (800) 854-7179

Working Draft Serial Attached SCSI Driver Interface (SDI)

17 January 2005 04-284r1 (T10/1740-D) Revision 0

American National Standard
for Information Technology

Serial Attached SCSI Driver Interface (SDI)

Secretariat
Information Technology Industry Council

Approved mm.dd.yy
American National Standards Institute, Inc.
ABSTRACT

This standard specifies an interface for Serial Attached SCSI (SAS) and Serial ATA (SATA) host bus adapter
(HBA) drivers to allow management and diagnostic programs to query and control the HBA and request that it
send SSP (Serial SCSI Protocol), STP (Serial ATA Tunneling Protocol), SMP (Serial Management Protocol),
and Serial ATA frames.

Working Draft Serial Attached SCSI Driver Interface (SDI) i

04-284r1 (T10/1740-D) Revision 0 17 January 2005

American Approval of an American National Standard requires verification by ANSI that the

National
Standard

Published by

requirements for due process, consensus, and other criteria for approval have been met by
the standards developer. Consensus is established when, in the judgment of the ANSI
Board of Standards Review, substantial agreement has been reached by directly and
materially affected interests. Substantial agreement means much more than a simple
majority, but not necessarily unanimity. Consensus requires that all views and objections be
considered, and that effort be made towards their resolution.

The use of American National Standards is completely voluntary; their existence does not in
any respect preclude anyone, whether he has approved the standards or not, from
manufacturing, marketing, purchasing, or using products, processes, or procedures not
conforming to the standards.

The American National Standards Institute does not develop standards and will in no
circumstances give interpretation on any American National Standard. Moreover, no person
shall have the right or authority to issue an interpretation of an American National Standard
in the name of the American National Standards Institute. Requests for interpretations
should be addressed to the secretariat or sponsor whose name appears on the title page of
this standard.

CAUTION NOTICE: This American National Standard may be revised or withdrawn at any
time. The procedures of the American National Standards Institute require that action be
taken periodically to reaffirm, revise, or withdraw this standard. Purchasers of American
National Standards may receive current information on all standards by calling or writing the
American National Standards Institute.

CAUTION: The developers of this standard have requested that holders of patents that
may be required for the implementation of the standard, disclose such patents to the
publisher. However, neither the developers nor the publisher have undertaken a patent
search in order to identify which, if any, patents may apply to this standard. As of the date
of publication of this standard, following calls for the identification of patents that may be
required for the implementation of the standard, no such claims have been made. No
further patent search is conducted by the developer or the publisher in respect to any
standard it processes. No representation is made or implied that licenses are not
required to avoid infringement in the use of this standard.

American National Standards Institute
11 W. 42nd Street, New York, New York 10036

Copyright © 2005 by Information Technology Industry Council (ITI).
All rights reserved.

No part of this publication may by reproduced in any

form, in an electronic retrieval system or otherwise,

without prior written permission of ITl, 1250 Eye Street NW, Suite 200,
Washington, DC 20005.

Printed in the United States of America

Working Draft Serial Attached SCSI Driver Interface

17 January 2005 04-284r1 (T10/1740-D) Revision 0
Revision Information

R.1 Revision 04-284r1 (17 January 2005)
First revision in FrameMaker based on:
a) 04-245rl Project proposal for Serial Attached SCSI Driver Interface (SDI) (Steve Fairchild and Rob
Elliott, HP)
b) 04-284r0 Common Storage Management Interface (Steve Fairchild, HP)

Lots of editors notes identify areas for discussion by T10.

Working Draft Serial Attached SCSI Driver Interface (SDI) %

04-284r1 (T10/1740-D) Revision 0 17 January 2005

Contents
Page
Yoo] o1 U U UTPTO PP UPPPTPPPTIN 1
2 NOIMALIVE REFEIENCES ...ttt ettt e e e et e e e e e e ettt e e e e eee sttt eeseesbansaaeeeseeetateeeaesesranns 2
2.1 NOIMALIVE TEFEIENCES OVEIVIEW ...vuuniciiiiiiiieeieeeeettee e e e ettt e e e e e et e e e e e e et e e e e eee st e eaesessbtaaeeeessartanaaeseerannnnns 2
A N o] o] ()Y = To =] (] (=T g ol =TT TR 2
2.3 References UNder deVEIOPIMENT i ittt e e e e e e e s ab bbb e et e e e e e e e e e e sbbbeaeeeeaaaeans 3
A @1 01T A (=) (=T (=] g o= T PO S UUPPPPPR 3
3 Definitions, symbols, abbreviations, keywords, and CONVENLIONScccoiiiiiiiiiiiiiiiiiie e 4
T B =Y i1 01111] PO UPPPPRRR 4
3.2 SYmDbOIS @nd @bDreVIAtIONScco.euiiiiiiiiiii ettt e e e e e e e bbb r e e e e e e e bbb a e e e eaaaa s 5
R (=) VLY o] o KPP TP U TSP 5
I O] 0 1V/=T o1 1[0 o F- TP O PPPPPRR 6
N CT=T o 1T o= | OO PRPORRIIN 8
o T g T=T = W0 A= T oY= PO TORRR 8
4,2 MICrOSOfI® WINUOWS®ciiiiieiiiieeeieiiiti e ee e ettt e e e ettt e e e e e e ettt e e e e e e eabta e e e e e s s aba e eeseebbaa s eesssebbanaeassessannsnns 8
4.2.1 PlatfOrm FEOUIMEIMENTS.......ueeiiiiii ittt et e e e e e bbbt e et e e e e e e s e e e babbeaeeeeeaaaaeasaaannbeeeeaaaaaeaeeaaanes 8
4.2.2 FUNCHON INVOCALION ... cieiiii et e et e s e e ettt e e e et ea it e e e e e e et tat e e eeee ettt eeseeassansaeesesrasannsaaesesranaaaaees 9
e N [0] 01U | TP PP PPUPPPPPPTPTPTP 9
R N @ V11 o 18 | PP UPUTUPPPPPN 10
4.2.5 SITUCTUIE DEIINMITIONS ... ittt e e e e e ettt e e e e e et s e e e eeeta e seeseseesaaeeeeseesranenns 10
A IS T=Tol U] 1Y PPPPPPRPRRP 11
2,3 LINUX® ouvuuneeiiititee e e et ettt e e e e ettt e e e e e e eaa b e e e e e ee it eseesse s aaeeeessaaaaeessebaaaeeeeeeaba e aeees b baaaeseeetaaaeserbaraaaaans 12
2 0 N = Vo 1o o T 4 AV 0 Jor- V[0] o USSP RPPPROR 12
O T [o] o1 U | ST TP UPURUPPTPPN 12
T @ 111 o 18 | PP UPURUPPPPPN 12
4.3.4 SITUCTUIE DEIINITIONS ... ittt e e e e e ettt e e e e e et s e e e e ee b e e e e seressaaeeeseesrannns 13
R IS T=Tol U] 1Y PSP UPPPPPRPRRP 13
4.4 NOVEII® NEIWATE®cuuuiiiiiiiiitiei ettt ettt e e e ettt e e e e e eett e e e e s e sttt e e s eee bt e seeseseesnanaeeeesatansnns 13
4.4.1 PlatfOrm FEOUIEIMENTS......ueiiiiiiie ettt ettt e e e e e ettt et e e e e e e aa e e nb bbb eeeeeeeaaeaeesaansnbbeseeeaaeaaeeanaannes 13
o =Vl ox i o] o W10\ 0 Jor- V(o] o IO OO PUPSPRSR 13
R o VO = L U =TT = TP UPUTUPPPPPN 13
O [o o1 U | S PP UPURUPPTPPN 14
O S @ U1 18 | PP UPURUPPTPPN 14
4.4.6 SITUCTUIE DEIINITIONS ... ittt e e e e e e e et e e e e e et s e e e eee b eseeseree st e eeseesrannns 14
AT Tol U | 1 Y PSP P PP UPPPPPRPRRP 15
D REBIUIN COUBS ...ttt ettt ettt e e ettt e e e e e e ettt e e e e e e sab e e e e e e saa e seessesbanaeeeeesesbansaeeesersbansaeesesranns 16
LT =T (VT g W oo Yo [T PO RPPPRPR 16
(SRS D1 IR {V] [ox 110] o S PSSO PUPPR 19
6.1 SDI fUNCLIONS OVEIVIEW ...vuuniiiiiiiiiiieeeeeeettee e e e ettt e e e e e et e e e e e e e et e e e e e e e bt e eeeeessabaaeese s bbbt eeaesesttannneaeseesannss 19
6.2 CC_SDI_GET _DRIVER INFO ...ttt s s s e aeae s ta b e ra b aaaa e ns 21
ST I = 1= o T AV o] SO URPPRPPR 21
LI | 1] 01U | T T PP PP TP UR PR PR 21
LI @ 111 o1V | ST PP TP TR OTPT PR 21
6.2.4 SITUCTUIE DBfINItIONS . ..uut it e e et e e e e et e e e e e e ees b s e e e s eetabaeeeeesesabaneeesesranns 22
6.3 CC_SDI_GET _CNTLR _CONFIG ..ottt s e e s e e e e e e e e e e e e e e e e e ae e e e ae b e e e ns 22
LOTC TR I = 1= o T Y/ o] S PO PRPPR 22
LCIRC TZ AN 1] 01U | T T PP T PP PT PP PR PR 22
LSRRG TG @ 1011 o] U | AT T TP P TP PP PP 23
6.3.4 SITUCTUIE DBIINItIONS . ..uut it et e et e e e e e et e e e e e e ees bt s e e e s eebabaaeeeeesessbansaeesesranns 24
6.4 CC_SDI _GET _CNTLR ST ATUS .. ittt s s e s e s e e e e e e e e e e et et e e e aeaeaarrrer e ans 25

Vi Working Draft Serial Attached SCSI Driver Interface

17 January 2005 04-284r1 (T10/1740-D) Revision 0

(S R =TT o T VT | OSSPSR 25
L 1] 1 25
L 0 T 111 o 26
6.4.4 SETUCTUIE DBIINIIONS .. tetttiitit ittt re et e et e e e e e e e e eeeeeeeeeseeeeesebeasababeesbaberbbanaaann e ns 26
6.5 CC_SDI_FIRMWARE_DOWNLOAD..... .ottt s a s s s s e e e e e e e e e aeteaeeeeeesaeseenntnsns e eeans 26
(SRR R =11 o T V[| OSSPSR 26
L= 022 1] 1 27
L 70 T 1111 o 27
B.5.4 SEITUCTUIE DBIINITIONS .. vetttittitiieiie ettt et et e e e e e e e e e e e e eeeeeeeeeseeeeesebrbebbabaesbabebbranaaann s ans 28
6.6 CC_SDI_GET_RAID_INFO ..ottt ies et e ettt sssaas e s e s e s e eeaeaeaeaeteaeeeaeesssseennnnnnsnnnnnnnannns 28
(SR T R =1=T o T Ao | OO PP 28
L 022 1] 1 28
L 0 T 11 o 28
6.6.4 SEITUCTUIE DBIINITIONS .. uutttiiiitiieiie ettt ee e e e e e e e e e e e e e eeeeeeeeseeeeebebabrbbabeesbarebbbanaaann e ns 28
6.7 CC_SDI_GET_RAID_CONFIG ...utttiiiiiiei ettt s s ss s s s e s e s e e e aaaaaeeeeeeeanaeanetesetnnnnnnnnananneaeeas 29
(ST R =11 o T AT | OO OO 29
OO A 1] 01U | T PP PU PP TP PT PP PR 29
B.7.3 OULPUL ...ttt oo oo oo oo e e e e e ettt et et e eee e bebe b et e o e oo 4424252 eeeeeeeeeeeeeeeeeeee b bebeeeeeebeebbbebeb s 29
B.7.4 SITUCTUIE DBfINIIONS . ..uut it ettt e e e e ettt e e e e e e eaa b s e e e e eababa e eeeeesersbanaeeesesranns 31
SR O O Yo I I €1 = B d = I A 11 T 32
(SRR T I = 1= o T AV o] SR RPPRPPR 32
(O T2 1 0] 01U | T PSP TP TR PP PP PR 32
(O TG O 1011 o]V | ST PO PSP PP PP PP PR 32
6.8.4 SITUCTUIE DBfINIIONS . ..uut it et e et e e e e ettt e e e e e e eas bt s eeeseatabaeeeeesessbanseeesesranns 35
6.9 CC_SDI_SET PHY INFO ..ottt st et e e e s e e s s s e eeeas 36
(SR IR S 1= o T AV o] SO UPPPPPR 36
(O T 1] 01U | T PP P TP PP PP PR 36
(OIS TR O 111 o]V | ST TP P TP PTPT PR 37
6.9.4 SITUCTUIE DBfINIIONS ...uut i et e et e e e e e e e e e e e e e eas b s eeeseebabaeeeeesessbanaaeesesranes 37
6.10 CC_SDI_GET _LINK _ERRORS.....ceiiii i e e e e e e e e e e et e e et s s 37
ST O A =11 o F= 1Y/ o | OO PPPPR 37
(ST KO T2 [o] o1 | S T TSP U PP PTPTPT PR 37
B.010.3 OULPUL ...ttt r oo e e oo e e e e e e e ettt ee e e eeee e bebe b et e oo oo 44242 e e e e e e e e e et et e ee st enee b babbe e e eeeenbbbnbaa e aeaeaeeas 38
6.10.4 SITUCTUIE DETiNMITIONS. ... ettt e e e e e e e e e e e e e aa b s e e e s eebabaeeeeesessbtnseeesesranns 38
6.11 CC_SDI_SMP_PASSTHROUGH.......cci it e e e e e e e as 38
L0 I A ST o =LY o | OO URPPPPPR 38
L I 2 ST =Tl U 11 TP TSRO 38
(O G B [o] o1 | ST TP PSSP PP PT PP PR 38
B.00.4 OULPULieee ettt e e e oo oo e e e e e et ettt eeeeeeebe b et et s oo 4o 422 o2 a2 e e e e e e e et et et e eeeeee b babbe e e eeeeebbbnbnn e e aeaeeas 39
B.11.5 SHrUCTUIE DETiNITIONS. ... ettt e e e ettt e e e e e e e ea b e e e e e eebab e eeeeesesabtnseeesesranes 40
6.12 CC_SDI_SSP_PASSTHROUGHccoiiiiiiiii st e e e e e e e e e e e e e e 41
LT I N =11 o =LY/ o | PO URPPPTPR 41
L ST T ol U 11 TP TSRO 42
(O 2 B [o] o1 | ST TP U PP TT PP PP PR 42
B.02.4 OULPUL ... ettt oo oo oo e e e e e e e et ettt et e eee e bebe b et s o e 4o 44242 o2 e e e e e e e ee et et e seeeee e bebbe e e eebeebbbnbnn e a e e aeeas 44
6.12.5 SHUCTUIE DETiNMITIONS. ... ittt ettt e e e e e e e aa b s e e e s eababaeeeeesesabaasaeesesrenes 45
6.13 CC_SDI_STP_PASSTHROUGH........uuiiiiiiiii s e e e e e e e e e e e e e e e re e s 45
LT T A =11 o =LY/ o | OO URPPPPPR 45
Lo B I ST =Tl U 11 PP UURP TP 46
(ST JRC B [0] o1 | ST PP TP PP PP PR 46
B.13.4 OULPUL ...ttt oo e oo oo oo e e e e e et ettt et teee e beb et et e oo oo 442 o2 a2 e e e e e e e et et et et e eeee b babbe e e eeeenbbbnbna e a e aeeas 47
6.13.5 SIIUCTUIE DETINMITIONS. ... ettt e e e et e e e e e e e ea b s e e e s eababaeeeeeeessbaneeeesesranes 48
6.14 CC_SDI_GET _SATA SIGNATUREttt st e e e e e e e e e e e e e e re e s 49
LTI A ST o =LY o | OO RPPPPPR 49
LI I S [o] o1 | ST TP PSSP PP PT PP PP PR 49
B.04.3 OULPUL ...ttt oo e e oo oo e e e e e et ettt et teee e baba b et s o e oo 4o 2o e a2 e e e e e e e eeee et e eeesen b babbe e e eeeenbnbnban e a e e e aeenn 49
6.14.4 SITUCTUIE DETiNITIONS. ... ittt ettt e e ettt e e e e e e eaa b s e e e s eabab e eeeeeeessbansaeesesranes 49

Working Draft Serial Attached SCSI Driver Interface (SDI) Vii

04-284r1 (T10/1740-D) Revision 0 17 January 2005

6.15 CC_SDI_GET_SCSI_ADDRESScoiiiiiiiii ittt ettt e e e e ettt r e et e e et e e s st ae e e e aaeeeesansannsrenraneeeeees 49
(ST T R =11 o\ (o OO PPP PR 49

L 00 1= T2 [o | 50
6.15.3 SITUCTUIE DEIINITIONS. ...uuuutitiiiii e it et reee s e e e e e e e e e e e eeeeeeeeeseeeeebebabrabab e s bbbersbannaann e ses 50
6.16 CC_SDI_GET _DEVICE_ADDRESScoi ittt ettt et e e e s e e s st ae e e e e e e e e s assannbnnrnneeeeee s 50
B.16.1 BENAVION........eeeieeeeiiitit et ettt et et e et et e et e ettt b b eetaeeeeeeeaeaeeaeeeeaea e e e a e e et bbb b beerereararrra b s 50

L 00 02 [o | 51

L 00 I 0 T 11 o U 51
6.16.4 SITUCTUIE DEIINITIONS. . .uuuttitiiiie et et e et reee e e e e e e e e e e eeeeeeeeeeeeeeeeebebabrabab e e bebersbannaann e es 51
6.17 CC_SDI_TASK MANAGEMENTettiiiiieii it e e e e e e e r e e e e e e s e e s st an e eeeaeaeesansansrnnanneeeeees 51
(ST R =11 g B (o OO PRRRR 51
0 A T U1 52

L 00 0 T [o | 52
L0t 0 0 L 1 o U 53
B.17.5 SHTUCTUIE DEIINITIONS. . .uuuititiiiie ettt re e e e e e e e e s e e e e eeeeeeeeeseeeeebebaarabab e e rebebbbanaaann s es 53
6.18 CC_SDI_PHY _CONTROLuuuuiiiiiiiiieeie e e is e esiette e e e e e e s e e s sss st ste e e e e aaeeesessnnnsasbaseeeeeeaeeessanansnsanreenaeaeees 54
LTS A ST o F= LY o | PRSPPI 54
B.18.2 SBCUIY ..t etieeiee ittt e ettt et e e oo oo oo ab e et ettt e e e e e e e e e o e a b e ab b e et e e e e e e e e e e aa e aanbeeeeeaeeaeeeaaannrenaeees 54
6.18.3 SPINUP DENAVIOr MOUEI ...ttt e e e e e et e e e e e e e s anbbeeeees 54
6.18.4 Phy signal control behavior MOAElooo e 55
(OIS TR [0] 01U | ST U PP PT PP PP PR 55
B.18.6 OULPULeieiiieiiieeee ettt e e e e oo oo e e e e e et ettt eeteee e bab et et s £ e oo 44242 o2 e e e e e e e eeeeeeeeeenae b babbe e s eseenbbbbbba e aeaeaeenn 58
B.18.7 SIIUCTUIE DETINITIONS. ... ittt e e e et e e e e e e e ea b s e e e s eabab e eeeeesessbanaaeesesranes 59
6.19 CC_SDI_GET _CONNECTOR _INFO ...ttt ettt e et e e e e e e e e e e e e e eaaarbaaeaeeeas 60
(ST A =11 o =LY o | OO PPPPR 60
(OIS T2 [0] o1 | ST PU TP PT PP PP PR 60
B.09.3 OULPUL ... ettt s oo e oo oo e e e e e et ettt et teee e bab et et e o e oo 4o 2o e e e e e e e e e e ee et eee e e enentbabbe e e eeeeebnbnban e e e e e s 60
6.19.4 SIIUCTUIE DETiNITIONS. ... ettt e e ettt e e e e e e ea b s e e e e eetab e eeeeesessbaneaeesesranes 61
PN] (o AN o =T= Lo [T o 1T TSR UPRRUPRRIN: 62
YN o 1= T L= i LS RPPRRRPN 62

viii Working Draft Serial Attached SCSI Driver Interface

17 January 2005 04-284r1 (T10/1740-D) Revision 0

Tables

Page
1 SEANAANAS DOTIES ..ottt s bt e e e s et e e e e e e e e bt e e e bbb as 2
2 1SO and American NUMDBEING CONVENTIONScoiuiiiiiiiit ettt e e e e e e ettt e e e e e e e s e e s e s anbebebeeaaaaaaeaans 7
3 Parameter NAMING CONVENTIONeiiiiiiiaiii ittt e e e e e e e e bbb e e et e e e e e e e s e e abbbeseeeeeaaaaeesaeaanbsseeeaaaaeassaaannes 7
A SDI SECUILY TEVEIS ...ttt et e e oo oo oo s bttt e et e e e e e e e e e s et abeeeeaaaeeeseeannbnsbensbeneeaas 8
5 WiIindows to SDI data tyPe MAaPPING ...eeeeieeii ittt e e e ettt et e e e e e s e e st bbb et e e eeaeaaeasaannbesbaeeaaeaeesaaaannns 10
6 Windows registry encoding of SDI SECUItY IEVEIScooiiiiiiiiiiiie e 12
7 RELUIMNCOUE FIEIA ..ot e et e e ekt e e e ek b et e e e s asbe e e e e br e e e e e anr e e e e e eannes 16
LIS B {0 o [od 1T I O OO PO PP PP PP PTPPPPN 20
9 SCSI commands allowed without full SECUTIY BCCESSccoiiiiiiiiiiiiie et 42
10 ATA commands allowed without full SECUFILY ACCESSccuuuiiiiiiiiiie i a e 46

Working Draft Serial Attached SCSI Driver Interface (SDI) iX

04-284r1 (T10/1740-D) Revision 0 17 January 2005

Figures
Page

X Working Draft Serial Attached SCSI Driver Interface

17 January 2005 04-284r1 (T10/1740-D) Revision 0

Foreword (This foreword is not part of this standard)

Requests for interpretation, suggestions for improvement and addenda, or defect reports are welcome. They
should be sent to the INCITS Secretariat, International Committee for Information Technology Standards,
Information Technology Institute, 1250 Eye Street, NW, Suite 200, Washington, DC 20005-3922.

This standard was processed and approved for submittal to ANSI by the International Committee for
Information Technology Standards (INCITS). Committee approval of the standard does not necessarily imply
that all committee members voted for approval. At the time it approved this standard, INCITS had the
following members:

Karen Higginbottom, Chair
David Michael, Vice-Chair

INCITS Technical Committee T10 on Lower Level Interfaces, which developed and reviewed this standard,
had the following members:

John B. Lohmeyer, Chair
George O. Penokie, Vice-Chair
Ralph O. Weber, Secretary

Working Draft Serial Attached SCSI Driver Interface (SDI) Xi

04-284r1 (T10/1740-D) Revision 0 17 January 2005

Introduction
The standard is organized as follows:

Clause 1 (Scope) describes the relationship of this standard to the SCSI family of standards.

Clause 2 (Normative References) provides references to other standards and documents.

Clause 3 (Definitions, symbols, abbreviations, keywords, and conventions) defines terms and
conventions used throughout this standard.

Clause 4 (General) provides a general overview.

Clause 5 (Return codes) defines the SDI return codes.

Clause 6 (SDI functions) defines the SDI functions.

xii Working Draft Serial Attached SCSI Driver Interface

AMERICAN NATIONAL STANDARD BSR INCITS.xxx:2005

American National Standard
for Information Technology -

Serial Attached SCSI Driver Interface (SDI)

1 Scope

This standard specifies an interface for Serial Attached SCSI (SAS) and Serial ATA (SATA) host bus adapter
(HBA) drivers to allow management and diagnostic programs to query and control the HBA and request that it
send SSP (Serial SCSI Protocol), STP (Serial ATA Tunneling Protocol), SMP (Serial Management Protocol),
and Serial ATA frames.

Working Draft Serial Attached SCSI Driver Interface (SDI) 1

04-284r1 (T10/1740-D) Revision 0 17 January 2005

2 Normative References

2.1 Normative references overview

The following standards contain provisions that, by reference in the text, constitute provisions of this standard.
At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to
agreements based on this standard are encouraged to investigate the possibility of applying the most recent
editions of the standards listed below.

Copies of the following documents may be obtained from ANSI:

a) approved ANSI standards;
b) approved and draft international and regional standards (e.g., ISO, IEC, CEN/CENELEC, ITU-T); and
c) approved and draft foreign standards (e.g., BSI, JIS, and DIN).

For further information, contact ANSI Customer Service Department at 212-642-4900 (phone), 212-302-1286

(fax) or via the World Wide Web at http://www.ansi.org.

Additional availability contact information is provided below as needed.

Table 1 lists standards bodies and their web sites.

Table 1 — Standards bodies

Abbreviation | Standards body Web site
ANSI American National Standards Institute http://www.ansi.org
BSI British Standards Institution http://www.bsi-global.com
CEN European Committee for Standardization http://www.cenorm.be
CENELEC Ey;sgzsj?zgggmittee for Electrotechnical http://www.cenelec.org
DIN German Institute for Standardization http://www.din.de
IEC International Engineering Consortium http://www.iec.ch
IEEE Institute of Electrical and Electronics Engineers http://www.ieee.org
IETF Internet Engineering Task Force http://www.ietf.org
INCITS Isrlfrzgz';ié):al Committee for Information Technology hitp:/fwww.incits.org
ISO International Standards Organization http://www.iso.ch
ITI Information Technology Industry Council http://www.itic.org
gt
JIS Japanese Industrial Standards Committee http://www.jisc.org
T10 INCITS T10 Committee - SCSI storage interfaces http://www.t10.0rg
T11 INCITS T11 Committee - Fibre Channel interfaces http://www.t11.0rg
T13 INCITS T13 Committee - ATA storage interface http://www.t13.0rg

2.2 Approved references

At the time of publication, the following referenced standards were approved:

ISO/IEC 9899:1999, Programming Languages - C
ISO/IEC 9899:1999 Cor. 1:2001, Technical Corrigendum 1

Working Draft Serial Attached SCSI Driver Interface

17 January 2005 04-284r1 (T10/1740-D) Revision 0

2.3 References under development

At the time of publication, the following referenced standards were still under development. For information on
the current status of the documents, or regarding availability, contact the relevant standards body as
indicated.

ISO/IEC 14776-413, SCSI Architecture Model - 3 (SAM-3) standard (T10/1561-D)
ISO/IEC 14776-453, SCSI Primary Commands - 3 (SPC-3) standard (T10/1416-D)
ISO/IEC 14776-372, SCSI Enclosure Services - 2 (SES-2) standard (T10/1559-D)

NOTE 1 - For more information on the current status of the document, contact the INCITS Secretariat at
202-737-8888 (telephone), 202-638-4922 (fax) or via Email at incits@itic.org. To obtain copies of this
document, contact Global Engineering at 15 Inverness Way East Englewood, CO 80112-5704 at
800-854-7179 (telephone), 303-792-2181 (telephone), or 303-792-2192 (fax).

2.4 Other references

Information on the Microsoft® Windows® operating system is available on http://www.microsoft.com.
Microsoft and Windows are registered trademarks of Microsoft Corporation in the United States and/or other
countries. Specific references:

Microsoft Windows Server™ 2003 Driver Development Kit (DDK). See
http://www.microsoft.com/whdc/devtools/ddk/default. mspx.
Platform Software Development Kit (SDK). See ??7?

Information on the Linux® operating system is available on http://www.kernel.org. Linux is a registered
trademark of Linus Torvalds. Specific references:

Linux 2.4 SCSI subsystem HOWTO. Revision 2.1, by Douglas Gilbert. See
http://sg.torque.net/scsi/SCSI-2.4-HOWTO.

Information on the Novell® NetWare® operating system is available on http://www.novell.com. Novell and
NetWare are registered trademarks of Novell, Inc. in the United States and/or other countries. Specific
references:

Novell NetWare Developers Kit. See http://developer.novell.com/ndk/doc.htm)
Novell NetWare Peripheral Architecture (NWPA). See http://developer.novell.com/ndk/doc/storarch.

Editor’s Note 1: TM = Ctrl-Q *, (R) = Ctrl-Q (

Working Draft Serial Attached SCSI Driver Interface (SDI) 3

04-284r1 (T10/1740-D) Revision 0 17 January 2005

3 Definitions, symbols, abbreviations, keywords, and conventions

3.1 Definitions

3.1.1 application client: An object that is the source of SCSI commands. See SAM-3.

3.1.2 byte: A sequence of eight contiguous bits considered as a unit.

3.1.3command: A request describing a unit of work to be performed by a device server. See SAM-3.

3.1.4 command descriptor block (CDB): The structure used to communicate commands from an
application client to a device server. See SPC-3.

3.1.5 data-in buffer: The buffer identified by the application client to receive data from the device server
during the processing of a command. See SAM-3.

3.1.6 data-out buffer: The buffer identified by the application client to supply data that is sent from the
application client to the device server during the processing of a command. See SAM-3.

3.1.7 device server: An object within a logical unit that processes SCSI tasks according to the rules of task
management. See SAM-3.

3.1.8 device type: The type of device (or device model) implemented by the device server as indicated by
the PERIPHERAL DEVICE TYPE field of the standard INQUIRY data. See SPC-3.

3.1.9 direct-access block device: A device that is capable of containing data stored in blocks that each
have a unique logical block address.

3.1.10 domain: An I/O system consisting of a set of SCSI devices that interact with one another by means of
a service delivery subsystem. See SAM-3.

3.1.11 field: A group of one or more contiguous bits, a part of a larger structure such as a CDB (see 3.1.4) or
sense data (see SPC-3).

3.1.12 hard reset: A condition resulting from the events defined by SAM-3 in which the SCSI device
performs the hard reset operations described in SAM-3, SPC-3, SES-2 (if applicable), and this standard.

3.1.13 |_T nexus loss: A condition resulting from the events defined by SAM-3 in which the SCSI device
performs the |_T nexus loss operations described in SAM-3, SPC-3, SES-2 (if applicable), and this standard.

3.1.14 logical unit (LU): An externally addressable entity within a target that implements a SCSI device
model and contains a device server. A detailed definition of a logical unit may be found in SAM-3.

3.1.15 logical unit number (LUN): An encoded 64-bit identifier for a logical unit. A detailed definition of a
logical unit number may be found in SAM-3.

3.1.16 logical unit reset: A condition resulting from the events defined by SAM-3 in which the logical unit
performs the logical unit reset operations described in SAM-3, SPC-3, SES-2 (if applicable), and this
standard.

3.1.17 power cycle: Power being removed followed by power being applied to a SCSI device.

3.1.18 power on: A condition resulting from the events defined by SAM-3 in which the SCSI device performs
the power on operations described in SAM-3, SPC-3, SES-2 (if applicable), and this standard.

4 Working Draft Serial Attached SCSI Driver Interface

17 January 2005 04-284r1 (T10/1740-D) Revision 0

3.1.19 sense data: Data describing an error or exceptional condition that a device server delivers to an
application client in association with CHECK CONDITION status. See SPC-3.

3.1.20 status: One byte of response information sent from a device server to an application client upon
completion of each command. See SAM-3.

3.2 Symbols and abbreviations

See table 1 for abbreviations of standards bodies (e.g., ISO). Additional symbols and abbreviations used in
this standard include:

Abbreviation Meaning

CDB command descriptor block (see 3.1.4)

FCP Fibre Channel Protocol (revision not relevant)
FCP-3 Fibre Channel Protocol - 3 standard

I/0 input/output

iSCSI Internet SCSI standard

LSB least significant bit

LU logical unit (see 3.1.14)

LUN logical unit number (see 3.1.15)

MSB most significant bit

SAM-3 SCSI Architecture Model - 3 standard

SAS Serial Attached SCSI (revision not relevant)
SAS-1.1 Serial Attached SCSI - 1.1 standard

SCSI Small Computer System Interface family of standards
SCC-2 SCSI-3 Controller Commands - 2 standard
SES-2 SCSI Enclosure Services - 2 standard

SPC-3 SCSI Primary Commands - 3 standard

3.3 Keywords

3.3.1 can: A keyword used for statements of possibility and capability indicating a condition that is required to
be handled (equivalent “it is possible to”).

3.3.2 cannot: A keyword used for statements of possibility and capability indicating a condition that is not
required to be handled (equivalent “it is not possible to”).

NOTE 2 - “May” signifies permission expressed by this standard, whereas “can” refers the ability of a device
compliant with this standard to handle events outside of control of this standard.

3.3.3 expected: A keyword used to describe the behavior of the hardware or software in the design models
assumed by this standard. Other hardware and software design models may also be implemented.

3.3.4ignored: A keyword used to describe an unused bit, byte, word, field or code value. The contents or
value of an ignored bit, byte, word, field or code value shall not be examined by the receiving SCSI device and
may be set to any value by the transmitting SCSI device.

3.3.5invalid: A keyword used to describe an illegal or unsupported bit, byte, word, field or code value.
Receipt of an invalid bit, byte, word, field or code value shall be reported as an error.

3.3.6 mandatory: A keyword indicating an item that is required to be implemented as defined in this
standard.

Working Draft Serial Attached SCSI Driver Interface (SDI) 5

04-284r1 (T10/1740-D) Revision 0 17 January 2005

3.3.7 may: A keyword that indicates flexibility of choice with no implied preference; equivalent to “may or may
not” and equivalent to the phrase “it is permitted.”

3.3.8 may not: Keywords that indicate flexibility of choice with no implied preference; equivalent to “may or
may not” and equivalent to the phrase “it is permitted.”

3.3.9 need not: Keywords indicating a feature that is not required to be implemented; equivalent to “is not
required that.”

3.3.10 obsolete: A keyword indicating that an item was defined in prior SCSI standards but has been
removed from this standard.

3.3.11 optional: A keyword that describes features that are not required to be implemented by this standard.
However, if any optional feature defined by this standard is implemented, then it shall be implemented as
defined by this standard.

3.3.12 reserved: A keyword referring to bits, bytes, words, fields and code values that are set aside for future
standardization. A reserved bit, byte, word or field shall be set to zero, or in accordance with a future
extension to this standard. Recipients are not required to check reserved bits, bytes, words or fields for zero
values. Receipt of reserved code values in defined fields shall be reported as an error.

3.3.13 restricted: A keyword referring to bits, bytes, words, and fields that are set aside for use in other SCSI
standards. A restricted bit, byte, word, or field shall be treated as a reserved bit, byte, word or field for the
purposes of the requirements defined in this standard.

3.3.14 shall: A keyword indicating a mandatory requirement. Designers are required to implement all such
mandatory requirements to ensure interoperability with other products that conform to this standard.

3.3.15 should: A keyword indicating flexibility of choice with a strongly preferred alternative; equivalent to the
phrase “it is strongly recommended.”

3.3.16 vendor-specific: Something (e.g., a bit, field, or code value) that is not defined by this standard and
may be used differently in various implementations.
3.4 Conventions

Certain words and terms used in this standard have a specific meaning beyond the normal English meaning.
These words and terms are defined either in this clause or in the text where they first appear.

Names of commands are in all uppercase (e.g., INQUIRY or IDENTIFY DEVICE).

Names of fields and state variables are in small uppercase (e.g. NAME). When a field or state variable name
contains acronyms, uppercase letters may be used for readability. Normal case is used when the contents of
a field or state variable are being discussed. Fields or state variables containing only one bit are usually
referred to as the NAME bit instead of the NAME field.

Normal case is used for words having the normal English meaning.

6 Working Draft Serial Attached SCSI Driver Interface

17 January 2005 04-284r1 (T10/1740-D) Revision 0

The American convention of numbering is used (i.e., the thousands and higher multiples are separated by a
comma and a period is used as the decimal point). Table 2 shows a comparison of the ISO and American
numbering conventions.

Table 2 — I1SO and American numbering conventions

ISO American
0,6 0.6
3,141 592 65 3.14159265
1000 1,000
1323 462,95 1,323,462.95

Numbers that are not immediately followed by lower-case b or h are decimal values.

Numbers immediately followed by lower-case b (e.g., 0101b) are binary values. Underscores may be included
in binary values to increase readability or delineate field boundaries (e.g., 0101_1010b).

A sequence of numbers or upper case letters ‘A’ through ‘F’ immediately followed by lower-case h (e.g.,
FA23h) are hexadecimal values. Underscores may be included in hexadecimal values to increase readability
or delineate field boundaries (e.g., FD8C_FA23h).

The prefix ‘0x’ followed by a sequence of numbers or upper case letters ‘A’ through ‘F’ (e.g., 0xFA23) is a
hexadecimal value. Underscores may be included in hexadecimal values to increase readability or delineate
field boundaries (e.g., OXFD8C_FA23).

Lists sequenced by letters (e.g., a) red, b) blue, c) green) show no ordering relationship between the listed
items. Numbered lists (e.g., 1) red, 2) blue, 3) green) show an ordering between the listed items.

If a conflict arises between text, tables or figures, the order of precedence to resolve the conflicts is text, then
tables, and finally figures. Not all tables or figures are fully described in the text. Tables show data format and
values.

Notes do not constitute any requirements for implementers.

Table 3 shows the convention for parameter names in data structures.

Table 3 — Parameter naming convention

Prefix Description
b char or unsigned char (8 bits)
us unsigned short (16 bits)
u unsigned long (32 bits)
74 ASCII string terminated with a NULL character (0x00)

Editor’s Note 2: should Hungarian notation be used or not? If so, what prefixes? b usually means
boolean, not byte; by can be used for byte and c for char. | is for long, not just u. Linux kernel
coding style guidelines recommend against Hungarian - if the .h file is destined there, it may be
best to avoid it.

Working Draft Serial Attached SCSI Driver Interface (SDI) 7

04-284r1 (T10/1740-D) Revision 0 17 January 2005

4 General

4.1 General overview

This document is intended to define a Serial Attached SCSI Driver Interface (SDI) composed of a set of
function codes, definitions, data structures and return codes that a Windows, Linux or Netware driver should
implement to provide a standard mechanism for accessing the physical components within a Serial Attached
SCSI or Serial ATA domain.

The SDI function codes and submission mechanism is dependent on the OS platform, but is often based on
device I/O controls (i.e., IOCTLSs). The definitions, data structures, return codes and functions are independent
of the OS platform.

The SDI data structure that defines the SDI function uses a platform-specific header structure. To allow a
common C language header file to define SDI, the header structure is named IOCTL_HEADER. While the
name is the same across OS platforms, the actual content of the IOCTL_HEADER data structure is unique to
the OS platform. The application needs to be aware of the OS platform in order to properly access the
elements of the IOCTL_HEADER structure - some of the field names are common (e.g., ReturnCode, Length,
and Timeout) while others are platform-specific.

All drivers should make an accessible device node available for the controller, even if no physical devices are
registered with the SCSI subsystem.

SDI security levels are defined in table 4.

Table 4 — SDI security levels

SDI security level | Description

None Access to all SDI functions is prohibited.
. Access to some SDI functions (e.g., reads) is allowed; access to others (e.g., writes)
Restricted . -

is prohibited.

- Access to some SDI functions (e.g., reads and firmware downloads) is allowed;

Limited . . L

access to others (e.g., writes) is prohibited.

Full Access to all SDI functions allowed

Editor’s Note 3: these names are sometimes confusing - Full could be interpreted as “the user
must have full access rights” while none could be viewed as “no special permission necessary”

4.2 Microsoft® Windows®

4.2.1 Platform requirements
The driver may be a SCSIPort or StorPort based miniport driver.

SCSIPort drivers in Windows Server 2003 and later operating systems shall set
HKLM\System\CurrentControlSet\Services\<ServiceName>\Parameters\Device\CreatelnitiatorLU to 1, so the
port driver accepts requests even if no device is connected to the controller. either. SCSIPort drivers in older
operating systems shall create a pseudo-LUN to provide access. StorPort drives need not do either.

Editor’s Note 4: investigate above some more

8 Working Draft Serial Attached SCSI Driver Interface

17 January 2005 04-284r1 (T10/1740-D) Revision 0

4.2.2 Function invocation

For Windows, SDI is defined as a set of function codes that are submitted using the DeviceloControl function
(defined in <winbase.h>; included from <windows.h>)(see the Windows Platform SDK):

BOOL DeviceloControl {
HANDLE hDevice;
DWORD dwloControlCode;
LPVOID IplInBuffer;
DWORD niInBufferSize;
LPVOID IpOutBuffer;
DWORD nOutBufferSize;
LPDWORD IpBytesReturned;
LPOVERLAPPED IpOverlapped;
)

with the following parameters:

a) hDevice: specifies the handle of a device managed by the device driver;

b) dwloControlCode: set to IOCTL_SCSI_MINIPORT (defined in <ntddscsi.h>);

c) IpInBuffer: points to an input buffer containing an IOCTL_HEADER (i.e., SRB_IO_CONTROL) data
structure that contains the specific SDI function code being requested and any necessary input data;

d) nInBufferSize: specifies the size of the input buffer data structure in bytes;

e) IpOutBuffer: points to an output buffer to receive an IOCTL_HEADER (i.e., SRB_IO_CONTROL) data
structure;

f) nOutBufferSize: specifies the size of the output buffer in bytes;

0) IpBytesReturned: points to a variable to receive the size of the output buffer; and

h) IpOverlapped: points to an OVERLAPPED structure if the device was opened with the
FILE_FLAG_OVERLAPPED flag.

This request is forwarded to the miniport driver (conceptually with HwStorBuildlo and HwStorStartlo for
StorPort (see <storport.h>) or just HwScsiStartlo for SCSIPort (see <scsiport.h>)) as a
SCSI_REQUEST_BLOCK (defined in <srb.h>) with the Function field set to
SRB_FUNCTION_IO_CONTROL. Only the SrbFlags, TimeOutValue, DataBuffer, and DataTransferLength
fields are used.

If a SDI function code is not supported, the DeviceloControl function shall return a 1 indicating function
success and set the loctiHeader.ReturnCode field to SDI_ STATUS BAD CNTL_CODE.

If the SDI buffer provided is too small, then the DeviceloControl function shall return a 1 indicating success
and set the loctiHeader.ReturnCode to SDI_STATUS INVALID_PARAMETER.

Editor’s Note 5: should boolean values be referenced with defines TRUE and FALSE rather than O
and 1?

4.2.3 Input

The DeviceloControl function with the IOCTL_SCSI_MINIPORT control code accepts an IOCTL_HEADER
(i.e., SRB_IO_CONTROL) data structure containing the following fields:

a) HeaderLength (platform-specific): Specifies the length of the IOCTL_HEADER data structure (i.e.,
sizeof (IOCTL_HEADER));

b) Signature (platform-specific): Specifies a namespace signature, dependent on the SDI function code
used. See Security and Enabling Features;

c) Timeout (platform-independent): Specifies the time in seconds to wait before the SDI function is
considered to have failed. See Timeouts;

d) ControlCode (platform-specific): Specifies which SDI function to execute. Control codes are defined in
6.1,

Working Draft Serial Attached SCSI Driver Interface (SDI) 9

04-284r1 (T10/1740-D) Revision 0 17 January 2005

Editor’s Note 6: plan to rename ControlCode to FunctionCode everywhere possible to avoid
confusion with the Windows DeviceloControl function dwloControlCode argument. In Linux, the
value is passed in a request argument.

e) ReturnCode (platform-independent): This field shall be set to 0;

f) Length (platform-independent): Specifies the length in bytes of the SDI data structure buffer that
immediately follows the IOCTL_HEADER data structure. This field should be set to at least
(sizeof(SDI_xxx_BUFFER) — sizeof(IOCTL_HEADER)) where xxx_xxx is associated with the SDI
function name. A larger buffer may be supplied.

4.2.4 Output

The DeviceloControl function with the IOCTL_SCSI_MINIPORT control code shall return an
IOCTL_HEADER (i.e., SRB_IO_CONTROL) data structure with the following fields:

a) HeaderLength: Same as input;

b) Signature: Same as input;

c) Timeout: Same as input;

d) ControlCode: Same as input;

e) ReturnCode: indicates the resulting status of the SDI function. Return codes are defined in 5.1; and
f) Length: Same as input.

4.2.5 Structure Definitions

Editor’s Note 7: move structure definitions ahead of the place where they are first referenced. For
example, the SRB_IO_CONTROL structure would move ahead of the Input and Output sections.

For Windows, the SRB_IO_CONTROL data structure is used as the IOCTL_HEADER data structure. The
SRB_IO_CONTROL uses the standard Windows data types for its members. Table 5 shows how the
Windows data types in the SRB_IO_CONTROL correspond to SDI data types.

Table 5 — Windows to SDI data type mapping

Windows data type SDI data type
UCHAR _u8

CHAR __ 18
USHORT _ulé
ULONG _u32

Editor’s Note 8: (not Windows specific): the is at least one 64 bit data structure defined
(BaseMemoryAddress in SDI_CNTLR_CONFIG), but __ u64 is not used for them. That is not ideal
for 64-bit and/or big-endian processors. That structure forces the four least significant bytes of the
8-byte address to be in the first/lowest 4 bytes of storage (bytes 0-3); this is not the way a
big-endian processor would normally store a 64-bit memory address (where the most significant
byte should be at byte 0).

The following data structures are used (defined in Windows <ntddscsi.h>):

typedef struct SRB 10 _CONTROL {
ULONG HeaderLength;

10 Working Draft Serial Attached SCSI Driver Interface

17 January 2005 04-284r1 (T10/1740-D) Revision 0

UCHAR Signature[8];
ULONG Timeout;
ULONG ControlCode;
ULONG ReturnCode;
ULONG Length;
} SRB_10_CONTROL, *PSRB_I10_CONTROL;

4.2.6 Security

Since the DeviceloControl function IOCTL_SCSI_MINIPORT control code is not protected, the driver shall
use the DriverParameters registry value (for SCSIPort) or DriverParameter registry value of the miniport
driver registry definition (see the Windows DDK) to identify which SDI functions are allowed.

Editor’s Note 9: Windows protects IOCTL_SCSI_PASSTHROUGH by requiring the application to
have both read and write access to the device. IOCTL_SCSI_MINIPORT has the same protection
- in ntddscsi.h the ControlCode is defined similarly:

#define IOCTL_SCSI_PASSTHROUGH CTL_CODE(IOCTL_SCSI_BASE, 0x0401,
METHOD_BUFFERED, FILE_READ_ACCESS | FILE_WRITE_ACCESS);

#define IOCTL_SCSI__MINIPORT CTL_CODE(IOCTL_SCSI_BASE, 0x0402,
METHOD_BUFFERED, FILE_READ_ACCESS | FILE_WRITE_ACCESS);

Although that could imply that SDI does not need additional protection (since the main SCSI
passthrough provides no more protection), some miniports apply additional checks on the
commands being used. SDI follows that approach.

Editor’s Note 10: Instead, could the miniport check if the user has Administrator privileges? That
would provide a similar level of security across OSes and avoid the need for this complicated
scheme for Windows.

The SDI security registry value shall be delineated from existing DriverParameters registry values (for
SCSIPort) or DriverParameter registry values by using a semicolon (‘;”) before and/or after the SDI security
registry value. For example if the DriverParameter value already contains “abc def”, then after adding the SDI
security, the DriverParameter value contains “abc def;SDI=Full;".

Editor’s Note 11: no standard exists for formatting this string; JNI uses spaces to separate items.
Adaptec has used /XXX=yyy.

Editor’s Note 12: DriverParameters is not defined by the current DDK, but KnowledgeBase article
133706 mentions it. HKEY _LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services. Passed in
HwScsiFindAdapter as ArgumentString. Either g12x00\Parameters\Devices\DriverParameters to
pass the values to all HBAs of that driver type “q12x00”

Editor’'s Note 13: it appears that SCSIPort uses DriverParameters but StorPort uses
DriverParameter.

Working Draft Serial Attached SCSI Driver Interface (SDI) 11

04-284r1 (T10/1740-D) Revision 0 17 January 2005

The registry value content should be identified as valid only if the SDI descriptor matches exactly the ASCII
string in table 6.

Table 6 — Windows registry encoding of SDI security levels

SDI security level | Windows Registry DriverParameter value
None “;SDI=None;”
Restricted “;SDI=Restricted;”
Limited “:SDI=Limited;” or no value (i.e., this is the default setting)
Full “SDI=Full;"

Editor’s Note 14: CSMI included a path and value for Windows monolithic port drivers (not
SCSIPort/StorPort based). Should we bother?

Editor’s Note 15: can only detect these at driver initialization time. Have to reboot (or at least
restart the driver) to change the security level when done this way.

4.3 Linux®

4.3.1 Function invocation

For Linux, SDI is defined as a set of function codes that are submitted using the ioctl function call (defined in
<sysl/ioctl.h>):

int 1octl (int d; int request, ...)
with the following parameters:

a) d: specifies an open file descriptor;
b) request: specifies which SDI function to execute. Control codes are defined in 6.1; and
c) third argument: specifies a pointer to an input buffer containing an IOCTL_HEADER data structure.

The IOCTL_HEADER is a reference to the typedef of the struct IOCTL_HEADER on the Linux platform.

4.3.2 Input
The ioctl function accepts a IOCTL_HEADER data structure containing the following fields:

a) lOControllerNumber (platform-specific): The I/O controller number for drivers that support multiple I/O
controllers (i.e., adapters);

b) Length: Length of the SDI data structure buffer including IOCTL_HEADER. At a minimum this should
be the sizeof(SDI_xxxx_xxxx_BUFFER) associated with the SDI control code. A larger buffer may be
supplied;

c) ReturnCode (platform-independent): Initialized to O;

d) Timeout (platform-independent): Time in seconds to wait before the SDI function is considered to
have failed. See Timeouts; and

e) Direction (platform-specific): specifies the direction of data flow through the ioctl function.
SDI_DATA_READ (i.e., 0) specifies that data be returned by the ioctl function. SDI_DATA WRITE
(i.e., 1) specifies that data be provided to the ioctl function.

4.3.3 Output
The ioctl function shall return 0 for success with a IOCTL_HEADER data structure with the following fields:

a) lOControllerNumber. Same as input;

12 Working Draft Serial Attached SCSI Driver Interface

17 January 2005 04-284r1 (T10/1740-D) Revision 0

b) Length. Same as input;

¢) ReturnCode: Indicates the resulting status of the SDI function. Return codes are defined in 5.1;
d) Timeout. Same as input; and

e) Direction. Same as input.

4.3.4 Structure Definitions
The following data structures are used:

typedef struct _I0CTL_HEADER {
__u32 I10ControllerNumber;
__u32 Length;
__u32 ReturnCode;
__u32 Timeout;
___ul6 Direction;

} I0CTL_HEADER, *PIOCTL_HEADER;

4.3.5 Security

Since the SDI functions can only be issued by an application with root security access, no specific protection
mechanisms are required or provided for Linux.

There is also no provision for the namespace signature, because the SDI control codes on the Linux platform
should prevent a namespace collision.

4.4 Novell® NetWare®

4.4.1 Platform requriements

There are no platform requirements.

4.4.2 Function invocation

For NetWare, SDI is defined as a set of I/O control codes that are submitted using the
NPA_HACB_Passthru() API.

The IOCTL_HEADER is a reference to the typedef of the struct _IOCTL_HEADER on the NetWare platform.
Definition of this data structure is provided below. Unlike the Windows or Linux versions, this data structure is
minimal since most IOCTL details are already contained within the NetWare Peripheral Architecture (NWPA)
Host bus Adapter Control Block (HACB) structure. See the Novell Developer’s Kit (NDK) for complete
information on NWPA and HACB definitions. The information provided here is for convenience only.

4.4.3 HACB Usage

Application NLMs rely on the use of the Novell Media Manager (MM) for discovery of drivers, adapters, and
devices. Driver pass through calls are used where necessary to identify and acquire hardware-device specific
information. Where passthroughs and MM calls cannot deliver required information, a vendor unique set of
Host Bus Adapter Control Block (HACB) 10Ctrls (SDI) are defined.

The NWPA specification allows for a number of methods for implementing vendor unique HACB calls. The
method defined by this standard is using the HACB hacbType field set to 0. The HACB contains a 28-byte
command overlay area (i.e., union) of HACBStruct to define each vendor unique IOCTL. SDI shall use the
host data structure in that area:

// HACB Command Block Overlay Area
struct /* HACB Type = 0: Host Adapter Cmd */
{
LONG function;
LONG parameterQO;
LONG parameterl;
LONG parameter?2;
BYTE reserved[12];

Working Draft Serial Attached SCSI Driver Interface (SDI) 13

04-284r1 (T10/1740-D) Revision 0 17 January 2005

} host;

The function field is used for IOCTL definition, leaving 24 bytes of space to define additional parameters.
These 24 bytes are insufficient to allow for a common usage of the SDI IOCTLs across different operating
system platforms. The following will allow for the usage of the SDI IOCTLs within the confines of the NetWare
Peripheral Architecture.

All NetWare SDI IOCTLs are issued with the Data_Direction_Bit set to WRITE within the HACB controlinfo
field (e.g., 0x00000002). The SDI IOCTL data structure buffer is always sent to the driver in the HACB
*vDataBufferPtr field. Upon IOCTL return (to a HACB WRITE) the driver sends the SDI IOCTL data structure
buffer back to the calling application using the HACB *vErrorSenseBufferPtr field.

NOTE 3 - By design the NWPA HACB process is unidirectional; thus when a READ IOCTL is issued, the
memory referenced by the HACB pdataBufferPointer is only to be used for reading data from the driver, not
for transporting data to the driver. When a WRITE IOCTL is issued, the HACB pdataBufferPointer is only to
be used for sending information to the driver, not for reading data from the driver. However, the
VErrorSenseBufferPtr is always available as a data transport by the driver for both READ and WRITE
operations.

4.4.4 Input
For each SDI command, the HACB data structure fields shall be set as follows:

a) hacbPutHandle: Specifies the handle identifying the current HACB;

b) hacbCompletion: Initialized to 0O;

c) controlinfo: The application shall set the Data_Direction_Bit to 1 (i.e., 0x00000002);

d) hacbType: Set to 0x0000 (i.e., adapter-specific Host command structures).

e) timeoutAmount: Time in seconds to wait before the SDI function is considered to have failed. See
Timeoults;

a) deviceHandle: NWPA-supplied handle for a specific registered device. Obtained via
NPA_Return_DeviceHandle();

b) dataBufferLen: Length in bytes of the SDI command data structure buffer;

c) vDataBufferPtr: Virtual address pointer to the SDI command data structure buffer. The data structure
is SDI IOCTL command dependent;

d) pDataBufferPtr: Physical address of the buffer pointed at by vDataBufferpPtr;

e) errorSenseBufferLen: Same as dataBufferLen;

f) vErrorSenseBufferPtr: Same as vDataBufferPtr; and

g) pErrorSenseBufferPtr: Physical address of the buffer pointed at by vErrorSenseBufferPtr;

h) reserved: Reserved;

i) hamSpace: and

j) command: Uses the host structure:
A) command.host.function: Specifies the SDI function;
B) command.parameterQ: Set to 0;
C) command.parameterl: Set to O;
D) command.parameter2: Set to 0;
E) command.reserved: Setto 0.

4.4.5 Output

For each SDI command, the driver shall return information within the following HACB data structure fields:

a) hacbCompletion: Per NWPA specifications, the return status of this HACB,;
b) errorSenseBufferLen: WORD aligned length of SDI command data structure buffer; and
c) VErrorSenseBufferPtr: Virtual address pointer to the SDI command data structure buffer.
4.4.6 Structure Definitions
The following data structures are used:

typedef struct _I0CTL_HEADER {
long lLength; // size SDI 10CTL specific command data structure

14 Working Draft Serial Attached SCSI Driver Interface

17 January 2005 04-284r1 (T10/1740-D) Revision 0

unsigned long ulReturnCode; // SDI return code
} I0CTL_HEADER;

4.4.7 Security

Since the SDI functions can only be issued by an application with administrative security access, no specific
protection mechanisms are required or provided for NetWare platforms.

Working Draft Serial Attached SCSI Driver Interface (SDI) 15

04-284r1 (T10/1740-D) Revision 0 17 January 2005

5 Return codes

5.1 Return codes

Editor’s Note 16: make this an early section in chapter 6

Editor’s Note 17: consider deleting the list of functions that use each code, which may become a
maintenance nightmare

Table 7 defines the return codes that are returned in the ReturnCode field of the IOCTL_HEADER structure
on completion of a function call.

Table 7 — ReturnCode field (part 1 of 3)

SDI functions that return
(CC_sDI_..)

GET_DRIVER_INFO
GET_CNTLR_CONFIG
GET_CNTLR_STATUS
FIRMWARE_DOWNLOAD
GET_RAID_INFO
GET_RAID_CONFIG
GET_PHY_INFO
SET_PHY_INFO
GET_LINK_ERRORS SDI function completed
SMP_PASSTHROUGH successfully.
SSP_PASSTHROUGH
STP_PASSTHROUGH
GET_SATA_SIGNATURE
GET_SCSI_ADDRESS
GET_DEVICE_ADDRESS
TASK_MANAGEMENT
GET_CONNECTOR_INFO
PHY_CONTROL

GET_DRIVER_INFO
GET_CNTLR_CONFIG
GET_CNTLR_STATUS
GET_RAID_INFO
GET_RAID_CONFIG
GET_PHY_INFO
SET_PHY_INFO SDI function failed to complete.
GET_LINK_ERRORS
STATUS FAILED SMP_PASSTHROUGH This is the non-specific default for an
SSP_PASSTHROUGH error condition that does not meet a
STP_PASSTHROUGH more specific definition.
GET_SATA_SIGNATURE
GET_SCSI_ADDRESS
GET_DEVICE_ADDRESS
TASK_MANAGEMENT
GET_CONNECTOR_INFO
PHY_CONTROL

SDI return code (SDI_...) Description

STATUS_SUCCESS

16 Working Draft Serial Attached SCSI Driver Interface

17 January 2005

04-284r1 (T10/1740-D) Revision 0

Table 7 — ReturnCode field (part 2 of 3)

SDI return code (SDI_...)

SDI functions that return
(CC_SDI_..)

Description

BAD_CNTL_CODE

Any reserved code

The SDI function code is invalid or
unknown.

INVALID_PARAMETER

GET_DRIVER_INFO
GET_CNTLR_CONFIG
GET_CNTLR_STATUS
FIRMWARE_DOWNLOAD
GET_RAID_INFO
GET_RAID_CONFIG
GET_PHY_INFO
SET_PHY_INFO
GET_LINK_ERRORS
SMP_PASSTHROUGH
SSP_PASSTHROUGH
STP_PASSTHROUGH
GET_SATA_SIGNATURE
GET_SCSI_ADDRESS
GET_DEVICE_ADDRESS
TASK_MANAGEMENT
PHY_CONTROL

The SDI data structure contained an
invalid parameter on input. No
additional information is provided.

SECURITY_VIOLATION

SET_PHY_INFO
SMP_PASSTHROUGH
SSP_PASSTHROUGH
STP_PASSTHROUGH
TASK_MANAGEMENT
SET_PHY_INFO
PHY_CONTROL

The SDI data structure contained a
directive to write information to the
physical device and the SDI security
level does not allow the operation.

RAID_SET_OUT_OF_RANGE

GET_RAID_CONFIG

URaidSetIndex is out of range.

PHY_INFO_CHANGED

SET_PHY_INFO

Phy information was successfully
changed.

PHY_INFO_NOT_CHANGEABLE

SET_PHY_INFO

Phy information could not be
changed. Indicates that the driver
does not support changing the phy
information.

LINK_RATE_OUT_OF_RANGE

SET_PHY_INFO
PHY_CONTROL

The link rate was not supported by
the hardware.

PHY_DOES_NOT_EXIST

SET_PHY_INFO
GET_LINK_ERRORS
SMP_PASSTHROUGH
SSP_PASSTHROUGH
STP_PASSTHROUGH
GET_SATA_SIGNATURE
PHY_CONTROL

Specified phy does not exist.

PHY_DOES_NOT_MATCH_PORT

SMP_PASSTHROUGH
SSP_PASSTHROUGH
STP_PASSTHROUGH

The phy and port combination does
not exist

PHY_CANNOT_BE_SELECTED

SMP_PASSTHROUGH
SSP_PASSTHROUGH
STP_PASSTHROUGH

Specified phy cannot be selected

Working Draft Serial Attached SCSI Driver Interface (SDI)

17

04-284r1 (T10/1740-D) Revision 0

17 January 2005

Table 7 — ReturnCode field (part 3 of 3)

SDI return code (SDI_...)

SDI functions that return
(CC_sSDI_..)

Description

SELECT_PHY_OR_PORT

SMP_PASSTHROUGH
SSP_PASSTHROUGH
STP_PASSTHROUGH

Return code indicating that either
phy or port needs to be selected

PORT_DOES_NOT_EXIST

SMP_PASSTHROUGH
SSP_PASSTHROUGH
STP_PASSTHROUGH

Specified port does not exist.

PORT_CANNOT_BE_SELECTED

SMP_PASSTHROUGH
SSP_PASSTHROUGH
STP_PASSTHROUGH

Specified port cannot be selected.

CONNECTION_FAILED

SMP_PASSTHROUGH
SSP_PASSTHROUGH
STP_PASSTHROUGH
TASK_MANAGEMENT

Connection failed.

NO_SATA_DEVICE

GET_SATA_SIGNATURE

Specified phy is not connected to a
SATA device or has not completed a
SATA OOB sequence.

NO_SATA_SIGNATURE

GET_SATA_SIGNATURE

Specified phy has not received the
initial Register Device To Host FIS
from the SATA device

SCSI_EMULATION

STP_PASSTHROUGH

Use the SCSI emulation CDB for
passing SATA commands

NOT_AN_END_DEVICE

GET_SCSI_ADDRESS
TASK_MANAGEMENT

The OS specific platform address
cannot be returned because the
device is not an end device

NO_SCSI_ADDRESS

GET_SCSI_ADDRESS
TASK_MANAGEMENT

No OS specific platform address
was found for this SAS address

NO_DEVICE_ADDRESS

GET_DEVICE_ADDRESS
TASK_MANAGEMENT

No SAS address was found for this
OS specific platform address

18

Working Draft Serial Attached SCSI Driver Interface

17 January 2005 04-284r1 (T10/1740-D) Revision 0

6 SDI functions

6.1 SDI functions overview

The SDI function code is provided, based on the platform (see 4.2 for Windows, 4.3 for Linux, and 4.4 for
NetWare), as either an element of a buffer structure that is submitted as part of the device I/O control or as an
argument to the device 1/0 control call. In either case, an SDI data structure buffer is provided as the content
of the device 1/0O control call. The SDI data structure buffer has the general form of:

typedef struct _SDI_xxxx_xxxx_BUFFER {
I0CTL_HEADER loctlHeader;
¥} SDI_xxxx_XxXxxX_BUFFER, *PSDIl_XxxxxX_XxxX_BUFFER;

The SDI data structure buffer provides as input the necessary information to specify the SDI function desired.
It also provides space for any resulting data requested by the SDI function. The application using the SDI
function codes shall ensure that enough memory has been allocated to contain any requested data. If the
memory provided is too small a SDI error is returned from the device 1/O control call.

Editor’'s Note 18: remove bolding below

Working Draft Serial Attached SCSI Driver Interface (SDI) 19

04-284r1 (T10/1740-D) Revision 0

17 January 2005

Table 8 lists the SDI functions. The constants specified by the “Timeout” column should be specified in the
Timeout field of the IOCTL_HEADER structure on submission of the device 1/0O control call. The “Security”
column indicates which security level applies to the function for Windows (see 4.2.6).

Table 8 — SDI functions

Minimum
SDI function Timeout requw_ed Required | Reference
security
level
CC_SDI_GET_DRIVER_INFO SDI_ALL_TIMEOUT | Restricted M 6.2
CC_SDI_GET_CNTLR_CONFIG SDI_ALL_TIMEOUT | Restricted (@) 6.3
CC_SDI_GET_CNTLR_STATUS SDI_ALL_TIMEOUT | Restricted M 6.4
CC_SDI_FIRMWARE_DOWNLOAD SDI_ALL_TIMEOUT Limited (0] 6.5
CC_SDI_GET_RAID_INFO SDI_RAID_TIMEOUT | Restricted | M if RAID 2 6.6
CC_SDI_GET_RAID_CONFIG SDI_RAID_TIMEOUT | Restricted | M if RAID 2 6.7
CC_SDI_GET_PHY_INFO SDI_TIMEOUT Restricted M 6.8
CC_SDI_SET_PHY_INFO SDI_TIMEOUT Full M 6.9
CC_SDI_GET_LINK_ERRORS SDI_TIMEOUT Restricted M 6.10
See
CC_SDI_SMP_PASSTHROUGH SDI_TIMEOUT function | M if SMP P 6.11
definition
See
CC_SDI_SSP_PASSTHROUGH SDI_TIMEOUT function M if SSP ¢ 6.12
definition
See .
CC_SDI_STP_PASSTHROUGH SDI_TIMEOUT function | MIFSTPOM | g4
" SATA
definition
CC_SDI_GET_SATA_SIGNATURE SDI_TIMEOUT Restricted | M if SATA © 6.14
CC_SDI_GET_SCSI_ADDRESS SDI_TIMEOUT Restricted M 6.15
CC_SDI_GET_DEVICE_ADDRESS SDI_TIMEOUT Restricted M 6.16
CC_SDI_TASK_MANAGEMENT SDI_TIMEOUT Full M 6.17
CC_SDI_GET_CONNECTOR_INFO SDI_TIMEOUT Restricted M 6.18
CC_SDI_PHY_CONTROL SDI_TIMEOUT Full (@) 6.19

a

® Q O T

Mandatory if the controller supports RAID; optional otherwise.
Mandatory if the controller supports SMP; optional otherwise.
Mandatory if the controller supports SSP; optional otherwise.

Mandatory if the controller supports STP and/or directly attached SATA devices; optional otherwise.
Mandatory if the controller supports directly attached SATA devices; optional otherwise.

Editor’s Note 19: defined the control code assignments here (just offsets; each OS would have a
different base value). Change the values from thosein 04-284r0.

20

Editor’s Note 20: change or drop the CC_ prefix. It means Control Code right now. Just the rest of

Working Draft Serial Attached SCSI Driver Interface

17 January 2005 04-284r1 (T10/1740-D) Revision 0

the name (SDI_...)may conflict with structure names, though.

6.2 CC_SDI_GET_DRIVER_INFO

6.2.1 Behavior

The CC_SDI_GET_DRIVER_INFO SDI function requests descriptive and version information about the
device driver. The information returned should be consistent with any file information provided on the platform
OS for the driver.

6.2.2 Input

This function accepts a SDI_DRIVER_INFO_BUFFER data structure containing the following fields:
a) loctlHeader: see the IOCTL_HDR definition in 4.2.3, 4.3.2, and 4.4.4; and
b) Information: All fields set to 0.

6.2.3 Output

This function shall return a SDI_DRIVER_INFO_BUFFER data structure with the following fields:

a) loctlIHeader.ReturnCode: Return codes are defined in 5.1;

b) Information.szName: Name of the binary driver. May contain a string of up to 80 ASCII characters
including a null termination. Should reference the base name of the driver, without a file extension;

¢) Information.szDescription: Description of the driver. May contain a string of up to 80 ASCII characters
including a null termination. Should reference the vendor, product family and model information;

Editor’s Note 21: 04-284r0 had 81 byte string fields; switched to 80 bytes

Editor’'s Note 22: ASCII is appropriate for szName. Is ASCII appropriate for the Description field, or
is Unicode UCS-2 more appropriate for modern OSes? If so, it will need to be 160 bytes long to
allow the same number of characters.

d) Information.usMajorRevision: Major revision of the driver;

e) Information.usMinorRevision: Minor revision of the driver;

f) Information.usBuildRevision: Build revision of the driver;

g) Information.usReleaseRevision: Release revision of the driver;

Editor’s Note 23: Revision number formats may need to be OS specific. Or, just provide an ASCII
string field.

Editor’s Note 24: Windows INF files include DriverVer=mm/dd/yyyy[,w.x.y.z], where mm/dd/yyyy
specify the date of the “driver package” (driver files and .inf) - the most recent date of any file in the
package. / can be replaced by -. The optional w.x.y.z has integers greater than 0 (although O
seems to be supported too) but less than 65535. These values are displayed in the Device
Manager as the Driver Date and Driver Version. A driver resource file includes an additional
internal version number provided in the double-DWORD value FILEVERSION (not used by
Windows) and the FileVersion character string (displayed by Windows); internal format
X.XX.00.xxxx and external string X.XX.XXXX.

Working Draft Serial Attached SCSI Driver Interface (SDI) 21

04-284r1 (T10/1740-D) Revision 0 17 January 2005

Editor’s Note 25: For Netware drivers, X.yy.z (displayed as 1.00c or 1.00.03). Each are numbers.

Editor’s Note 26: For Linux drivers, x.y.z-a (major.minor.subminor-pass). x and y are linux kernel
numbers. z is also a number. a may be an ASCII string.

h) Information.usSDIMajorRevision: Revision of this standard that the driver supports. The driver should
return the constant SDI_ MAJOR_REVISION; and

i) Information.usSDIMinorRevision: Revision of tthis standard that the driver supports. The driver should
return the constant SDI_ MINOR_REVISION.

Editor’'s Note 27: Use the SPC-3 style version descriptor instead - one 16-bit field.

6.2.4 Structure Definitions
The following data structures are used:

typedef struct _SDI_DRIVER_INFO {
__u8 szName[81];
__u8 szDescription[81];
__ul6 usMajorRevision;
__ul6 usMinorRevision;
__ul6 usBuildRevision;
__ul6 usReleaseRevision;
__ul6 usSDIMajorRevision;
__ul6 usSDIMinorRevision;
} SDI_DRIVER_INFO, *PSDI_DRIVER_INFO;

typedef struct _SDI_DRIVER_INFO_BUFFER {
I0CTL_HEADER loctlHeader;
SDI_DRIVER_INFO Information;

} SDI_DRIVER_INFO_BUFFER, *PSDI_DRIVER_INFO_BUFFER;

Editor’s Note 28: Excerpts from sdi.h included piecemeal like this will easily become out of date
and incorrect. Consider structuring sdi.h as a shell that includes 19 .h files, one per function.
Include each of those .h files in the appropriate section. A preprocessor could be provided tomerge
them into a single .h file for real use.

6.3 CC_SDI_GET_CNTLR_CONFIG

6.3.1 Behavior

The CC_SDI_GET_CNTLR_CONFIG SDI function requests descriptive and version information about the
hardware, firmware and boot BIOS associated with a storage controller.

6.3.2 Input

This function accepts a SDI_CNTLR_CONFIG_BUFFER data structure containing the following fields:

a) loctlHeader: see the IOCTL_HDR definition in 4.2.3, 4.3.2, and 4.4.4; and
b) Configuration: All fields set to zero.

22 Working Draft Serial Attached SCSI Driver Interface

17 January 2005 04-284r1 (T10/1740-D) Revision 0

6.3.3 Output
This function shall return a SDI_CNTLR_CONFIG_BUFFER data structure with the following fields:

a)
b)

c)
d)

e)

)]

loctiHeader.ReturnCode: Return codes are defined in 5.1;

Configuration.uBaseloAddress: Base I/0 Address of the controller. If the controller has more than one
base I/0 address, this field shall indicate the lowest one used;

Configuration.BaseMemoryAddress: Base memory address of the controller. If the controller has
more than one base memory address, this field shall indicate the lowest one used;
Configuration.uBoardID: 32-bit subsystem ID from the controller’'s PCI configuration space. Bits 0 —
15 contain the subsystem vendor ID and bits 16 — 31 contain the subsystem ID as defined by the PCI
specification;

Configuration.usSlotNumber: The physical slot number of the controller in the system. If the driver
cannot determine the physical slot number, it shall return the SLOT_NUMBER_UNKNOWN (i.e.,
OxFFFF);

Configuration.bControllerClass: Indicates the class of the controller (e.g., HBA or RAID). This shall be
setto SDI_CNTLR_CLASS HBA (i.e., 0x05);

Configuration.bloBusType: System I/O bus type of the controller. Shall be set to one of the following:
A) SDI_BUS _TYPE_PCI (i.e., 0x03): if the host bus adapter is in a PCI slot; or

B) SDI_BUS_TYPE_PCMCIA (i.e., 0x04): if the host bus adapter is in a PCMCIA slot;

Editor’s Note 29: where did the bus types come from?

h)

Configuration.BusAddress: The 1/O bus address (i.e., bus number, device number, and function
number) of the controller, if applicable;

Editor’s Note 30: replace BaseMemoryAddr, uBoardID, usSlotNumber, and bloBusType with
whatever OS-specific information is used by that OS to identify cards and their drivers.

Configuration.szSerialNumber: Controller serial number. Contains a string of up to 80 ASCII
characters including a null termination character. Should reference the serial number of the controller.
If the value is unknown, then the field shall be set to O;

Configuration.usMajorRevision: Major revision of the controller firmware. If the value is unknown, then
the field shall be set to O;

Configuration.usMinorRevision: Minor revision of the controller firmware. If the value is unknown, then
the field shall be set to O;

Configuration.usBuildRevision: Build revision of the controller firmware. If the value is unknown, then
the field shall be set to O;

Configuration.usReleaseRevision: Release revision of the controller firmware. If the value is
unknown, then the field shall be set to 0;

Editor’s Note 31: version numbers with this 4 number structure may not suit all vendors. An ASCII
string might be more palatable.

n)
0)
p)

a)

Configuration.usBIOSMajorRevision: Major revision of the controller boot BIOS. If the value is
unknown, then the field shall be set to 0;

Configuration.usBIOSMinorRevision: Minor revision of the controller boot BIOS. If the value is
unknown, then the field shall be set to 0;

Configuration.usBIOSBuildRevision: Build revision of the controller boot BIOS. If the value is
unknown, then the field shall be set to 0;

Configuration.usBIOSReleaseRevision: Release revision of the controller boot BIOS. If the value is
unknown, then the field shall be set to 0;

Working Draft Serial Attached SCSI Driver Interface (SDI) 23

04-284r1 (T10/1740-D) Revision 0 17 January 2005

Editor’s Note 32: BIOS is too x86 specific. EFI doesn't call itself a BIOS. PCI uses “expansion
ROM?". Also, maybe an ASCII string would better fit a variety of HBA vendors.

r

uControllerFlags: Controller subclass definition. One or more of the following constants may be used:
A) SDI_CNTLR_SAS HBA: controller is a SAS HBA,;

B) SDI_CNTLR_SAS RAID: controller is a SAS HBA with RAID support;

C) SDI_CNTLR_SATA HBA: controller is a SATA HBA,;

D) SDI_CNTLR_SATA RAID: controller is a SATA HBA with RAID support;

Editor’s Note 33: Change ControllerFlags to a bitmask with just 3 bits used so far for SAS, SATA,
and RAID. OR them together for SAS_RAID and SATA_RAID combinations.

E) SDI_CNTLR_FWD_SUPPORT: controller supports firmware download SDI function code
CC_SDI_FIRMWARE_DOWNLOAD;

F) SDI_CNTLR_FWD_ONLINE: controller supports online update of firmware;

G) SDI_CNTLR_FWD_SRESET: controller requires soft reset to initiate a firmware update. The
driver manages coordinating the download to ensure outstanding 1Os are not impacted;

H) SDI_CNTLR_FWD_HRESET: controller requires a hard reset to initiate a firmware update. The
driver forces the controller to a power-up state and re-initializes the controller as necessary;

) SDI_CNTLR_FWD_RROM: controller supports a redundant copy of the ROM image;

Configuration.usRromMajorRevision: Major revision of the redundant controller firmware. If the value

is unknown, then the field shall be set to O;

Configuration.usRromMinorRevision: Minor revision of the redundant controller firmware. If the value

is unknown, then the field shall be set to O;

Configuration.usRromBuildRevision: Build revision of the redundant controller firmware. If the value is

unknown, then the field shall be set to O;

Configuration.usRromReleaseRevision: Release revision of the redundant controller firmware. If the

value is unknown, then the field shall be set to O;

Configuration.usRromBIOSMajorRevision: Major revision of the redundant controller boot BIOS. If the

value is unknown, then the field shall be set to O;

Configuration.usRromBIOSMinorRevision: Minor revision of the redundant controller boot BIOS. If the

value is unknown, then the field shall be set to O;

Configuration.usRromBIOSBuildRevision: Build revision of the redundant controller boot BIOS. IIf the

value is unknown, then the field shall be set to O;

Configuration.usRromBIOSReleaseRevision: Release revision of the redundant controller boot BIOS.

If the value is unknown, then the field shall be set to 0; and

Editor’'s Note 34: see comments above about version numbers

aa) Configuration.bReserved[7]: This field shall be set to 0.

6.3.4 Structure Definitions

The following data structures are used:

typedef struct _SDI_PCI_BUS_ADDRESS {

24

__u8 bBusNumber;

__u8 bDeviceNumber;
__u8 bFunctionNumber;
__u8 bReserved;

} SDI_PCI_BUS_ADDRESS, *PSDI_PCI_BUS_ADDRESS:

Working Draft Serial Attached SCSI Driver Interface

17 January 2005 04-284r1 (T10/1740-D) Revision 0

typedef union _SDI_10_BUS_ADDRESS {
SDI_PCI_BUS_ADDRESS PciAddress;
__u8 bReserved[32];

} SDI_10_BUS_ADDRESS, *PSDI_I10_BUS_ADDRESS;

typedef struct SDI_CNTLR_CONFIG {

__u32 uBaseloAddress;
struct {

__u32 uLowPart;

__u32 uHighPart;
} BaseMemoryAddress;
__u32 uBoardlID;
__ul6 usSlotNumber;
__u8 bControllerClass;
__u8 bloBusType;
SD1_10_BUS_ADDRESS BusAddress;
__u8 szSerialNumber[81];
__ul6 usMajorRevision;
__Uul6 usMinorRevision;
_ul6 usBuildRevision;
__ul6 usReleaseRevision;
__ul6 usBIOSMajorRevision;
__ul6 usBIOSMinorRevision;
__ul6 usBIOSBuildRevision;
__ul6 usBIOSReleaseRevision;
__u32 uControllerFlags;
__ul6 usRromMajorRevision;
__ul6 usRromMinorRevision;
__ul6 usRromBuildRevision;
__ul6 usRromReleaseRevision;
__ul6 usRromBlOSMajorRevision;
__ul6 usRromBIOSMinorRevision;
~_ul6 usRromBIOSBuildRevision;
__ul6 usRromBIOSReleaseRevision;
__u8 bReserved[7];

} SDI_CNTLR_CONFIG, *PSDI_CNTLR_CONFIG;

typedef struct _SDI_CNTLR_CONFIG_BUFFER {
I0CTL_HEADER loctlHeader;
SD1_CNTLR_CONFIG Configuration;

} SDI_CNTLR_CONFIG_BUFFER, *PSDI_CNTLR_CONFIG_BUFFER;

6.4 CC_SDI_GET_CNTLR_STATUS

6.4.1 Behavior
The CC_SDI_GET_CNTLR_STATUS SDI function requests the current status of the controller.

6.4.2 Input
This function accepts a SDI_CNTLR_STATUS_BUFFER data structure containing the following fields:

a) loctiHeader: see the IOCTL_HDR definition in 4.2.3, 4.3.2, and 4.4.4; and
b) Status: All fields set to to 0.

Working Draft Serial Attached SCSI Driver Interface (SDI) 25

04-284r1 (T10/1740-D) Revision 0 17 January 2005

6.4.3 Output
This function shall return a SDI_CNTLR_STATUS BUFFER data structure with the following fields:

a) loctlIHeader.ReturnCode: Return codes are defined in 5.1;
b) Status.uStatus: Current status of the controller. Should contain one of the following values:

c)

A) SDI_CNTLR_STATUS_ GOOD: operating normally;

B) SDI_CNTLR_STATUS_ FAILED: the controller has failed. No I/O is allowed to the controller in this
state;

C) SDI_CNTLR_STATUS_OFFLINE: the controller is in a transitional state and is currently
inaccessible. It has not failed, but no I/O is allowed to the controller in this state; or

D) SDI_CNTLR_STATUS POWEROFF: the controller slot is powered off. It may have been failed
before but currently does not have power to the slot;

Status.uOfflineReason: If the Status.uStatus field is set to SDI_CNTLR_STATUS_OFFLINE, the

reason it is so. Contains one of the following values:

A) SDI_OFFLINE_REASON_NO_REASON: unknown reason;

B) SDI_OFFLINE_REASON_INITIALIZING: the driver is in the process of initializing the controller
and bringing it online;

C) SDI_OFFLINE_REASON_BACKSIDE_BUS_ DEGRADED: the physical interface to the SAS or
SATA domain is in a degraded state; or

D) SDI_OFFLINE_REASON_BACKSIDE_BUS_FAILURE: the physical interface to the SAS or
SATA domain has failed;

and

d) Status.bReserved: This field shall be set to 0.

6.4.4 Structure Definitions

The following data structures are used:

typedef struct _SDI_CNTLR_STATUS {
__u32 uStatus;
__u32 uOfflineReason;
__u8 bReserved[28];

} SDI_CNTLR_STATUS, *PSDI_CNTLR_STATUS;

typedef struct _SDI_CNTLR_STATUS BUFFER {
I0CTL_HEADER loctlHeader;
SDI_CNTLR_STATUS Status;

} SDI_CNTLR_STATUS_BUFFER, *PSDI_CNTLR_STATUS BUFFER;

6.5 CC_SDI_FIRMWARE_DOWNLOAD

6.5.1 Behavior

The CC_SDI_FIRMWARE_DOWNLOAD SDI function allows the controller firmware to be updated online.
This is an optional function. The driver indicates support for this function in the CC_SDI_CNTLR_CONFIG
control. For the function to be successful, the uControllerFlags field in the SDI_CNTLR_CONFIG structure
must include both SDI_CNTLR_FWD_SUPPORT and SDI_CNTLR_FWD_ONLINE. Either
SDI_CNTLR_FWD_SRESET or SDI_CNTLR_FWD_HRESET must be set depending on the upgrade reset
behavior. The driver and controller are responsible for validating the integrity of the ROM image before
attempting to upgrade.

26

Editor’s Note 35: should this be done through an initiator LUN implementing the WRITE BUFFER
command (or the controller LUN for RAID controllers)? Problems: That could require a new
peripheral device type (or revival of the processor peripheral device type). Would have to provide a
Class driver for that device type. There is no direct way to confirm which LUN is the initiator LUN
(remote devices could also use the processor device type). Security archicture would have to

Working Draft Serial Attached SCSI Driver Interface

17 January 2005 04-284r1 (T10/1740-D) Revision 0

change.

6.5.2 Input

This function accepts a SDI_FIRMWARE_DOWNLOAD_BUFFER data structure containing the following
fields:

a) loctlHeader: see the IOCTL_HDR definition in 4.2.3, 4.3.2, and 4.4.4;
b) Information.uBufferLength: Specifies the length of the ROM image being downloaded in uDataBuffer;
¢) Information.uDownloadFlags: Control for the firmware download operation. Contains one or more of
the following values:
A) SDI_FWD_VALIDATE: validate the download image, but do not upgrade the image. If this
operation is not supported, then return the Information.uStatus field set to SDI_FWD_REJECT;
B) SDI_FWD_SOFT_RESET: download operation initiates a soft reset to the controller after the
ROM image has been upgraded. The driver manages all /0O until the controller has returned to a
ready state. If a soft reset is insufficient to complete a firmware download operation then the
Information.uStatus field shall be set to SDI_FWD_REJECT and the upgrade operation shall not
be initiated; and/or
C) SDI_FWD_HARD_RESET: download operation initiates a hard reset to the controller after the
ROM image has been upgraded. The driver suspends all I/0 until the controller has returned to a
ready state. If a hard reset is insufficient to complete a firmware download operation then the
Information.uStatus field shall be set SDI_FWD_REJECT and the upgrade operation shall not be
initiated;
d) Information.bReserved[32]: This field shall be set to O;
e) Information.usStatus: This field shall be set to 0;
f) Information.usSeverity: This field shall be set to 0; and
g) bDataBuffer: Represents the first byte of the ROM image that is being written to the controller.

Editor’s Note 36: need to describe bDataBuffer[1] better

6.5.3 Output
This function shall return a SDI_FIRMWARE_DOWNLOAD_BUFFER data structure with the following fields:

a) loctlIHeader.ReturnCode: Return codes are defined in 5.1;
b) Information.uBufferLength: Same as input;
¢) Information.uDownloadFlags: Same as input;
d) Information.bReserved[32]: Same as input;
e) Information.uStatus: Status of the firmware download operation. Contains one of the following values:
A) SDI_FWD_SUCCESS: download operation was successful;
B) SDI_FWD_FAILED: download operation has failed. No 1/O is allowed to the controller;
C) SDI_FWD_USING_RROM: download operation has failed and the controller is using the
redundant ROM image;
D) SDI_FWD_REJECT: download operation was rejected. The ROM image was corrupted or
incorrect for this controller;
E) SDI_FWD_DOWNREYV: download operation was successful. However, the ROM image was an
earlier revision than the executing image;
f) Information.uSeverity: The severity code for the uStatus. Should contain one of the following values:
A) SDI_FWD_INFORMATION: uStatus is informational only;
B) SDI_FWD_WARNING: uStatus is indicating a condition that may be helpful for diagnostic
purposes;
C) SDI_FWD_ERROR: uStatus is indicating a recoverable error condition; or
D) SDI_FWD_FATAL: uStatus is indicating a fatal error condition.

and

g) bDataBuffer: Represents the first byte of t the ROM image that was to be written to the controller.

Working Draft Serial Attached SCSI Driver Interface (SDI) 27

04-284r1 (T10/1740-D) Revision 0 17 January 2005

6.5.4 Structure Definitions
The following data structures are used:

typedef struct _SDI_FIRMWARE_DOWNLOAD {
__u32 uBufferLength;
__u32 ubownloadFlags;
_u8 bReserved[32];
__ul6 usStatus;
___ul6 usSeverity;
} SDI_FIRMWARE_DOWNLOAD, *PSDI_FIRMWARE_DOWNLOAD;

typedef struct _SDI_FIRMWARE_DOWNLOAD_BUFFER {
I0CTL_HEADER loctlHeader;
SD1_FIRMWARE_DOWNLOAD Information;
___u8 bDataBuffer[1];
} SDI_FIRMWARE_DOWNLOAD_ BUFFER, *PSDI_FIRMWARE_DOWNLOAD_BUFFER;

6.6 CC_SDI_GET_RAID_INFO

6.6.1 Behavior

The CC_SDI_GET_RAID_INFO SDI function requests information on the number of RAID volumes and
number of physical drives on a controller. The RAID solution may be implemented within the driver (i.e.,
software RAID) or by firmware on the controller. If the uControllerFlags in the SDI_CNTLR_CONFIG structure
indicates that the controller supports RAID, then the driver that implements this specification shall support this
SDI function; otherwise the driver may respond to this function code with a generic 10 error (see Submitting
SDI Control Codes).

6.6.2 Input
This function accepts a SDI_RAID_INFO_BUFFER data structure containing the following fields:

a) loctlHeader: see the IOCTL_HDR definition in 4.2.3, 4.3.2, and 4.4.4; and
b) Information: All fields shall be set to 0.

6.6.3 Output
This function shall return a SDI_RAID_INFO_BUFFER data structure with the following fields:

a) loctlIHeader.ReturnCode: Return codes are defined in 5.1;

b) Information.uNumRaidSets: Number of logical RAID volumes (or sets) currently defined. If no
volumes (or sets) have been defined, then a 0 value is returned,;

¢) Information.uMaxDrivesPerSet: Maximum number of physical drives within a logical RAID volume.
This may be an absolute maximum or the actual maximum currently defined for all volumes. This
value will be used to allocate memory for the CC_SDI_GET_RAID_CONFIG SDI function; and

d) Information.bReserved[92]: This field shall be set to O.

6.6.4 Structure Definitions
The following data structures are used:

typedef struct _SDI_RAID_INFO {
__u32 uNumRaidSets;
_u32 uMaxDrivesPerSet;
__u8 bReserved[92];

} SDI_RAID_INFO, *PSDI_RAID_INFO;

typedef struct _SDI_RAID_INFO BUFFER {

I0CTL_HEADER loctlHeader;
SDI_RAID_INFO Information;

28 Working Draft Serial Attached SCSI Driver Interface

17 January 2005 04-284r1 (T10/1740-D) Revision 0

} SDI_RAID_INFO_BUFFER, *PSDI_RAID_INFO_BUFFER;
6.7 CC_SDI_GET_RAID_CONFIG

6.7.1 Behavior

The CC_SDI_GET_RAID_CONFIG SDI function requests information for a specified RAID set on a controller
that supports RAID. To obtain the information for all the logical RAID sets defined; this SDI function shall be
called for each RAID set of the controller. If the uControllerFlags in the SDI_CNTLR_CONFIG structure
indicates that the controller supports RAID, then the driver that implements this specification shall support this
SDI function; otherwise the driver may respond to this function code with a generic 10 error (see Submitting
SDI Control Codes).

6.7.2 Input
This function accepts a SDI_RAID_CONFIG_BUFFER data structure containing the following fields:

a) loctlHeader: see the IOCTL_HDR definition in 4.2.3, 4.3.2, and 4.4.4;

b) Configuration.uRaidSetindex: Contains the number of the RAID set for which information is being
requested. A calling routine would increment this value to enumerate the information for all RAID sets.
If this value exceeds the number of RAID sets (see CC_SDI_GET_RAID_INFO), then the SDI
function shall return the loctiHeader.ReturnCode field set to SDI_RAID_SET_OUT_OF_RANGE;

c) Configuration.uCapacity: This field shall be set to O;

d) Configuration.uStripeSize: This field shall be set to 0O;

e) Configuration.bRaidType: This field shall be set to 0;

f) Configuration.bStatus: This field shall be set to 0;

g) Configuration.binformation: This field shall be set to O;

h) Configuration.bDriveCount: This field shall be set to 0; and

i) Configuration.bReserved[20]: This field shall be set to 0;

6.7.3 Output
This function shall return a SDI_RAID_CONFIG_BUFFER data structure with the following fields:

a) loctlIHeader.ReturnCode: Return codes are defined in 5.1;
b) Configuration.uRaidSetindex: Same as input;
¢) Configuration.uCapacity: Contains the capacity of the RAID set in mebibytes (i.e., MiB);
d) Configuration.uStripeSize: Contains the stripe size of the RAID set in kibibytes (i.e., KiB);
e) Configuration.bRaidType: Contains the basic RAID type of the RAID set. Contains one of:
A) SDI_RAID_TYPE_NONE: indicates the RAID set is composed of a single drive;
B) SDI_RAID_TYPE_O: indicates the RAID set is a striped set, with no fault tolerance;
C) SDI_RAID_TYPE_1: indicates the RAID set is a mirrored set;
D) SDI_RAID_TYPE_10: indicates the RAID set is a striped mirror set;
E) SDI_RAID_TYPE_5: indicates the RAID set is a parity set supporting single drive failure;
F) SDI_RAID_TYPE_15: indicates the RAID set is an advanced parity set;
G) SDI_RAID_TYPE_6: indicates the RAID set is an advanced parity set supporting dual drive
failures; or
H) SDI_RAID_TYPE_OTHER: indicates the RAID set type configuration does not match the
standard types;

Editor’s Note 37: Maybe just return an ASCII (or Unicode UCS-2) string as the RAID type.

f) Configuration.bStatus: Contains the status of the RAID set. Should be one of:
A) SDI_RAID_SET_STATUS_OK: indicates the RAID set is operational;
B) SDI_RAID_SET_STATUS_DEGRADED: indicates the RAID set is no longer functioning in a fault
tolerant mode;

Working Draft Serial Attached SCSI Driver Interface (SDI) 29

04-284r1 (T10/1740-D) Revision 0 17 January 2005

)

h)

C) SDI_RAID_SET_STATUS_ REBUILDING: indicates the RAID set is rebuilding. This implies a
degraded operation. Once the rebuild completes successfully, the status will change to
SDI_RAID_SET_STATUS_OK. If the rebuilding process fails, the status will be updated
appropriately;

D) SDI_RAID_SET_STATUS_FAILED: indicates the RAID set has failed. There is no guarantee on
the operational behavior of the RAID set and data loss has occurred or is imminent;

Configuraton.binformation: Contains clarifying information for Configuration.bStatus results. The

actual content depends on the Configuration.bStatus result. Should be:

A) If Configuration.bStatus is set to SDI_RAID_SET_STATUS_OK, then Configuration.binformation
shall be 0;

B) If Configuration.bStatus is set to SDI_RAID_SET_STATUS DEGRADED, then
Configuration.binformation shall contain the failed drive index number;

C) If Configuration.bStatus is set to SDI_RAID_SET_STATUS_ REBUILDING, then
Configuration.binformation shall contain the percentage complete. The value shall be in the range
of 0 to 100 (Oh to 64h);

D) If Configuration.bStatus is set to SDI_RAID_SET_STATUS_FAILED, then
Configuration.binformation shall be 0 or vendor specific. Since the failure modes could include
drive or controller failures, Configuration.binformation may provide a vendor specific error code to
indicate which component led to the failed status;

Configuration.bDriveCount: Contains the number of drives in the RAID set and in turn the number of

SDI_RAID_DRIVES data structures that will exist;

Configuration.Drives[n]: Contains one SDI_RAID_DRIVES data structure for each physical drive

which is used in the RAID set, each containing the following fields:
A) Configuration.Drives[n].obModel: Contains 40 ASCII characters indicating the drive model number:
a) For SAS drives, this is the concatenation of the 8-byte VENDOR IDENTIFICATION field and the
16-byte PRODUCT IDENTIFICATION field from the standard INQUIRY data (see SPC-3) with 16
ASCII space characters; or

b) For SATA drives, this is the 40-byte MODEL NUMBER field from the IDENTIFY DEVICE data
(see ATA/ATAPI-7 V1) with each pair of bytes swapped to create a valid ASCII string format;

B) Configuration.Drives[n].bFirmware: Contains 8 ASCII characters indicating the drive firmware
revision level.

a) For SAS drives, this is the concatenation of the PRODUCT REVISION LEVEL field from the
standard INQUIRY data (see SPC-3) with 4 ASCII space characters;

b) For SATA drives, this is from the FIRMWARE REVISION field in the IDENTIFY DEVICE data (see
ATA/ATAPI-7 V1) with each pair of bytes swapped to create a valid ASCII string format;

C) Configuration.Drives[n].bSerialNumber: Contains 40 ASCII characters indicating the drive serial
number:

a) For SAS drives, this is the first 40 bytes of the PRODUCT SERIAL NUMBER field from the Unit
Serial Number VPD page (see SPC-3), if any, concatenated with ASCII space characters;

b) For SATA drives, this is from the SErRIAL NUMBER field in the IDENTIFY DEVICE data (see
ATA/ATAPI-7 V1) with each pair of bytes swapped to create a valid ASCII string format;

Editor’s Note 38: all the above strings changed to filled with ASCII spaces not nulls

D) Configuration.Drives[n].bSASAddress: Contains the SAS address of the physical drive. If the
drive does not have a SASAddress (e.g., a directly attached SATA drive), then this field shall be
setto O;

E) Configuration.Drives[n].bSASLun: Contains the SCSI logical unit number of the physical drive. If
the drive does not have a SCSI logical unit number (e.g., a directly attached SATA drive), then
this field shall be set to O;

Editor’s Note 39: SASLun is poorly named. physical drive vs. logical unit terminology needs work.

30

Working Draft Serial Attached SCSI Driver Interface

17 January 2005 04-284r1 (T10/1740-D) Revision 0

F) Configuration.Drives[n].bDriveStatus: Indicates the status of the physical drive. Contains one of:

a)
b)

c)

d)

SDI_DRIVE_STATUS_OK: indicates the physical drive is operational;
SDI_DRIVE_STATUS DEGRADED: indicates the physical drive has posted a SMART
notification (e.g., an ATA SMART event or a SCSI informational exception condition) to the
controller;

SDI_DRIVE_STATUS_ REBUILDING: indicates the physical drive is the target drive of a
RAID set rebuild. Once the rebuild completes successfully, the status will change to
SDI_DRIVE_STATUS_OK. If the rebuilding process fails, the status will be updated
appropriately; or

SDI_DRIVE_STATUS_ FAILED: indicates the physical drive has posted unrecoverable errors
to the controller or has triggered a vendor specific action to remove the physical drive from
the RAID set. There is no guarantee on the operational behavior of the drive and data loss
has occurred or is imminent;

G) Configuration.Drives[n].bDriveUsage: Indicates whether the physical drive is part of the RAID set.
Contains one of:

a)
b)
c)

and

SDI_DRIVE_CONFIG_NOT_USED: indicates the physical drive is not part of a RAID set;
SDI_DRIVE_CONFIG_MEMBER: indicates the physical drive is part of this RAID set; or
SDI_DRIVE_CONFIG_SPARE: indicates the physical drive is part of this RAID set as a hot
swap spare.

j) Configuration.Drives[n].bReserved: This field shall be set to 0.

6.7.4 Structure Definitions

The following data structures are used:

typedef
_u8
_u8
_u8
_u8
_u8
_u8
_u8
_u8

struct _SDI_RAID_DRIVES {
bModel [40];
bFirmware[8];
bSerialNumber[40];
bSASAddress[8];
bSASLun[8];
bDriveStatus;
bDriveUsage;
bReserved[22];

} SDI_RAID_DRIVES, *PSDI_RAID_DRIVES;

typedef

struct _SDI_RAID_CONFIG {

__u32 uRaidSetlIndex;
__u32 uCapacity;
__u32 uStripeSize;

_u8
_u8
_u8
_u8
_u8

bRaidType;
bStatus;
bInformation;
bDriveCount;
bReserved[20];

SDI_RAID_DRIVES Drives[1];
} SDI_RAID_CONFIG, *PSDI_RAID_CONFIG;

typedef struct _SDI_RAID_CONFIG_BUFFER {
I0CTL_HEADER loctlHeader;
SD1_RAID_CONFIG Configuration;

} SDI_RAID_CONFIG_BUFFER, *PSDI_RAID_CONFIG_BUFFER;

Working Draft Serial Attached SCSI Driver Interface (SDI) 31

04-284r1 (T10/1740-D) Revision 0 17 January 2005

6.8 CC_SDI_GET_PHY_INFO

6.8.1 Behavior

The CC_SDI_GET_PHY_INFO SDI function requests information about the physical characteristics and
interconnect to the SATA or SAS domain.

6.8.2 Input
This function accepts a SDI_PHY_INFO_BUFFER data structure containing the following fields:

a) loctlHeader: see the IOCTL_HDR definition in 4.2.3, 4.3.2, and 4.4.4; and
b) Information: All fields shall be set to to 0.

6.8.3 Output
This function shall return a SDI_PHY_INFO_BUFFER data structure with the following fields:

a) loctlIHeader.ReturnCode: Return codes are defined in 5.1;

b) Information.obNumberOfPhys: Contains the number of phys (real or virtual) supported by this
controller. It is possible for a controller and/or driver to contain a virtual phy that supports one or more
of the SAS protocols. A management or test application should not assume that all phys are real,

¢) Information.bReserved: This field shall be set to O;

d) Information.Phy[O - 31]: Contains 32 SDI_PHY_ENTITY data structures each of which defines the
physical characteristics and provides information on the device attached to each interconnect;

e) Information.Phy[n].Identify: Contains a data structure with information that will be transferred to the
attached device during a link reset sequence as defined in the SAS specification. If the controller is a
SATA implementation, then the link reset sequence is not transmitted, but the content of this data
structure will define this controller as a SATA solution;

f) Information.Phy[n].Identify.bDeviceType: Contains the SAS device type. Should be one of the
following:

A) SDI_PHY_UNUSED: indicates that the phy cannot be attached to a physical device;
B) SDI_END_DEVICE: indicates that the phy will have the characteristics of a SAS end device. A
SATA controller would define a SATA device as an end device;

Editor’'s Note 40: reword above.

g) Information.Phy[n].Identify.bInitiatorPortProtocol: Contains information on which SAS initiator

protocols are supported by this initiator on this phy. Should be one or more of the following:

A) SDI_PROTOCOL_SATA: indicates the controller may support a directly attached SATA device.
This protocol bit is used to notify the management or test application about the SATA capabilities
of a controller, it will be masked out from the data provided during a SAS link reset sequence. A
SAS controller may support this protocol. A SATA controller shall support this protocol;

B) SDI_PROTOCOL_SMP: indicates the controller may support connection to a SAS expander
device. A SAS controller shall support this protocol. A SATA controller may support this protocol,

C) SDI_PROTOCOL_STP: indicates the controller may support connection to a tunneled SATA
device. A SAS or SATA controller may support this protocol,

D) SDI_PROTOCOL_SSP: indicates the controller may support connection to a SAS end device. A
SAS controller shall support this protocol. If a SATA controller supports this protocol, then it is by
definition a SAS controller;

Editor’s Note 41: This really returns the full byte containing the Initiator Port bits

h) Information.Phy[n].ldentify.bTargetPortProtocol: Contains information on which SAS target protocols
are supported by this initiator on this phy. Initiators are not required to support any target protocols, so

32 Working Draft Serial Attached SCSI Driver Interface

17 January 2005 04-284r1 (T10/1740-D) Revision 0

this field would typically be 0. However an initiator may have target capabilities and in that event, this

field should be one or more of the following:

A) SDI_PROTOCOL_SATA: indicates the controller may respond as a SATA device. This protocol
bit is used to notify the management or test application about the SATA capabilities of a
controller, it will be masked out from the data provided during a SAS link reset sequence. A SAS
or SATA controller may support this protocol;

B) SDI_PROTOCOL_SMP: indicates the controller may respond as a SAS expander device. A SAS
or SATA controller may support this protocol;

C) SDI_PROTOCOL_STP: indicates the controller may respond as a tunneled SATA device. A SAS
or SATA controller may support this protocol;

D) SDI_PROTOCOL_SSP: indicates the controller may respond as a SAS end device. A SAS
controller may support this protocol;

i) Information.Phy[n].Identify.bSASAddress: Contains the SAS address in MSB order. A SATA
controller, or a SAS controller with a SATA drive directly attached, shall return a O for this field;

i) Information.Phy[n].Identify.bPhyldentifier: Contains the phy identifier of this phy. The range of the
value must be from 0 to (bNumberOfPhys — 1). This value is restricted to a maximum of 254 (FEh),
because FFh is a reserved identifier used to indicate a “don’t care” for other SDI functions;

k) Information.Phy[n].bPortldentifier. Contains the port identifier associated with this phy. The range of
the value shall be from 0 to (bNumberOfPhys - 1). Multiple phys may be associated with the same
port, because of wide links in SAS. For example, a 4 wide link (phys 0 - 3) from an initiator to an
expander all reference one port (port 0);

[) Information.Phy[n].bNegotiatedLinkRate: Contains the current link rate of this phy. Should be one of
the following:

A) SDI_LINK_RATE_UNKNOWN: indicates the link may currently be unconnected, or that a link rate
does not apply, as is the case with a virtual phy;

B) SDI_PHY_DISABLED: indicates the phy has been disabled;

C) SDI_LINK_RATE_FAILED: indicates that a link rate negotiation has failed. In this case, there
appears to be a device connected, because the link reset sequence has been initiated, but
communication was not established;

D) SDI_SATA_SPINUP_HOLD: indicates that a link has detected a SATA device attached and is in
a wait state to release a spin-up hold. A SATA drive will use this mechanism to stage the power
surges associated with spin-up;

E) SDI_SATA_PORT_SELECTOR: indicates that a link has detected a SATA port selector device is
attached;

F) SDI_LINK_RATE_1 5 GBPS: indicates that a link was established at 1.5 Gbps;

G) SDI_LINK_RATE_3_0_GBPS: indicates that a link was established at 3.0 Gbps;

H) SDI_LINK_VIRTUAL: indicates that a link is available to a virtual device;

m) Information.Phy[n].bMinimumLinkRate: Contains the minimum link rate for this phy. This field
incorporates information for both the programmed and hardware link rate. Should be one of the
following:

A) SDI_LINK_RATE_1 5 GBPS: indicates the minimum link rate for this phy is 1.5 Gbps; or

B) SDI_LINK_RATE_3_0_GBPS: indicates the minimum link rate for this phy is 3.0 Gbps;

In combination with one of the following:

A) SDI_PROGRAMMED_LINK_RATE_1 5 GBPS: indicates the minimum link rate programmed for
this phy is 1.5 Gbps; or

B) SDI_PROGRAMMED_LINK_RATE_3_0_GBPS: indicates the minimum link rate programmed for
this phy is 3.0 Gbps;

n) Information.Phy[n].bMaximumLinkRate: Contains the maximum link rate for this phy. This field
incorporates information for both the programmed and hardware link rate. Should be one of the
following:

A) SDI_LINK_RATE_1 5 GBPS: indicates the maximum link rate for this phy is 1.5 Gb/s;
B) SDI_LINK_RATE_3_0_GBPS: indicates the maximum link rate for this phy is 3.0 Gb/s;

In combination with one of the following:

A) SDI_PROGRAMMED_LINK_RATE_1 5 GBPS: indicates the maximum link rate programmed
for this phy is 1.5 Gbps;

Working Draft Serial Attached SCSI Driver Interface (SDI) 33

04-284r1 (T10/1740-D) Revision 0 17 January 2005

p)

a)

r

B) SDI_PROGRAMMED_LINK_RATE_3 0 GBPS: indicates the maximum link rate programmed
for this phy is 3.0 Gbps;

Information.Phy[n].bPhyChangeCount: Contains the current count of BROADCAST(CHANGE)

primitives received on this phy. This count needs to be updated according to the SAS specfication. A

SATA controller should update this count anytime a hotplug event is detected. If the SATA controller

does not support hotplug detection, then this value should remain 0;

Information.Phy[n].bAutoDiscover: Contains the current state of the discover process for the SAS

Domain. The auto-discover process may begin at power on or may be initiated by an OS platform

specific method. For example, an IOCTL_SCSI_RESCAN_BUS 1/O control function on Windows will

initiate auto-discover. Auto-discovery can only be interrupted in a vendor specific manner. Set to:

A) SDI_DISCOVER_NOT_SUPPORTED: indicates that auto-discover is not supported. A SATA
controller should set this value;

B) SDI_DISCOVER_NOT_STARTED: indicates that auto-discover is supported, but has not begun;

C) SDI_DISCOVER_IN_PROGRESS: indicates that the auto-discover process is in progress. Any
address translation or routing errors that occur during this period should be retried;

D) SDI_DISCOVER_COMPLETE: indicates that the auto-discover process has completed
successfully; or

E) SDI_DISCOVER_ERROR: indicates that the auto-discover process has completed with a vendor
unique or topology error. The driver may have a vendor unique mechanism to determine where
the error occurred. A management or test application may need to examine the topology to
determine the cause of the error. Address translation, routing errors, or command errors may
result if this state is entered,;

Information.Phy[n].Attached: Contains a SDI_IDENTIFY data structure with information that defines

the attached device. If the attached device is a SATA device, then the controller will generate a

pseudo representation of the information;

Information.Phy[n].Attached.bDeviceType: Contains the SAS device type attached to this phy (i.e.,

byte O of the IDENTIFY address frame). This field should contain one of the following:

A) SDI_NO_DEVICE_ATTACHED: indicates that the phy is not currently attached to a device. A
SATA controller shall use this value if no device is attached;

B) SDI_END_DEVICE: indicates that the phy is connected to a SAS target or a SATA device. A
SATA controller shall use this value if a SATA device is attached;

C) SDI_EDGE_EXPANDER_DEVICE: indicates that the phy is connected to a SAS edge expander;
or

D) SDI_FANOUT_EXPANDER_DEVICE: indicates that the phy is connected to a SAS fanout
expander;

Editor’s Note 42: need an AND mask to properly validate the field contents. Cannot use == or | or
|| since there are other fields in the byte.

s)

Information.Phy[n].Attached.bRestricted_Bytel: Contains byte 1 of the IDENTIFY address frame. If
the attached device is a SATA device, then this field shall be set to 0;

Editor’s Note 43: rename all such fields with their byte numbers

34

B

Information.Phy[n].Attached.blnitiatorPortProtocol: Contains information on which SAS initiator

protocols are supported by the attached device (i.e., byte 2 of the IDENTIFY address frame). This

field may contain one or more of the following:

A) SDI_PROTOCOL_SATA: indicates the attached device is a directly attached SATA host device. If
this bit is set it indicates a topology error;

B) SDI_PROTOCOL_SMP: indicates the attached device supports generating SMP requests;

C) SDI_PROTOCOL_STP: indicates the attached device supports generating STP commands;

D) SDI_PROTOCOL_SSP: indicates the attached device supports generating SSP commands;

Working Draft Serial Attached SCSI Driver Interface

17 January 2005 04-284r1 (T10/1740-D) Revision 0

u)

v)

Information.Phy[n].Attached.bTargetPortProtocol: Contains information on which SAS target
protocols are supported by the attached device (i.e., byte 3 of the IDENTIFY address frame). This
field should contain one or more of the following:

A) SDI_PROTOCOL_SATA: indicates the attached device is a directly attached SATA device;

B) SDI_PROTOCOL_SMP: indicates the attached device supports receiving SMP requests;

C) SDI_PROTOCOL_STP: indicates the attached device supports receiving STP commands; and/or
D) SDI_PROTOCOL_SSP: indicates the attached device supports receiving SSP commands;
Information.Phy[n].Attached.bRestricted_Bytes4toll: Contains bytes 4 through 11 of the IDENTIFY
address frame. If the attached device is a SATA device, then this field shall be set to 0;

Editor’'s Note 44: better named Restricted4to11

y)
z)

Information.Phy[n].Attached.bSASAddress: Contains the SAS address of the attached device (i.e.,
bytes 12 through 19 of the IDENTIFY address frame). If the attached device is a SATA device, then
this field shall be set to 0;

Information.Phy[n].Attached.bPhyldentifier: Contains the phy identifier of the attached device (i.e.,
byte 20 of the IDENTIFY address frame). If the attached device is a SATA device, then this field shall
be set to 0O;

Information.Phy[n].Attached.bSignalClass: Contains byte 21 of the IDENTIFY address frame. If the
attached device is a SATA device, then this field shall be set to 0; and
Information.Phy[n].Attached.bReserved_Bytes22to27: Contains bytes 22 through 27 of the IDENTIFY
address frame. If the attached device is a SATA device, then this field shall be set to 0.

Editor’'s Note 45: better names Reserved22to27

6.8.4 Structure Definitions

The following data structures are used:
typedef struct _SDI_IDENTIFY {

__u8 bDeviceType;

__u8 bRestricted Bytel;

__u8 biInitiatorPortProtocol;
__u8 bTargetPortProtocol;

__u8 bRestricted Bytes4toll[8];
__u8 bSASAddress[8];

__u8 bPhyldentifier;

__u8 bSignalClass;

__u8 bReserved_Bytes22to27[6];

} SDI_IDENTIFY, *PSDI_IDENTIFY;

typedef struct _SDI_PHY_ENTITY {

SDI_IDENTIFY ldentify;
__u8 DbPortldentifier;
__u8 bNegotiatedLinkRate;
__u8 bMinimumLinkRate;
__u8 bMaximumLinkRate;
__u8 bPhyChangeCount;
__u8 DbAutoDiscover;

__u8 bReserved[2];
SDI_IDENTIFY Attached;

} SDI_PHY_ENTITY, *PSDI_PHY_ENTITY;

typedef struct _SDI_PHY_INFO {

Working Draft Serial Attached SCSI Driver Interface (SDI) 35

04-284r1 (T10/1740-D) Revision 0 17 January 2005

__u8 bNumberOfPhys;
__u8 bReserved[3];
SDI_PHY_ENTITY Phy[32];

} SDI_PHY_INFO, *PSDI_PHY_INFO;

typedef struct _SDI_PHY_ INFO _BUFFER {
I10CTL_HEADER loctlHeader;
SD1_PHY_INFO Information;

} SDI_PHY_INFO_BUFFER, *PSDI_PHY_INFO_BUFFER;

6.9 CC_SDI_SET_PHY_INFO

6.9.1 Behavior
The CC_SDI_SET_PHY_INFO SDI function requests that the physical characteristics of a phy be changed.

Even though this SDI function is required, the changing of physical characteristics is not required. If the driver
does not supporting changing any characteristics, it shall return an loctiHeader.ReturnCode field set to
SDI_PHY_INFO_NOT_CHANGEABLE and not perform any further behavior.

Upon completion of a phy characteristic change, the driver shall return an loctiHeader.ReturnCode field set to
SDI_PHY_INFO_CHANGED and shall initiate a link reset sequence.

6.9.2 Input
This function accepts a SDI_SET_PHY_INFO_BUFFER data structure containing the following fields:

a) loctlHeader: see the IOCTL_HDR definition in 4.2.3, 4.3.2, and 4.4.4;

b) Information.bPhyldentifier: Contains the phy identifier of the phy to modify;

c) Information.bNegotiatedLinkRate: Contains the directive to negotiate a new link rate or to disable the
phy. Should be one of the following:

A) SDI_LINK_RATE_NEGOTIATE: specifies that controller shall negotiate a new link rate
constrained by the Information.bProgrammedMinimumLinkRate and
Information.bProgrammedMaximumLinkRate values provided,;

B) SDI_LINK_RATE_PHY_DISABLED: indicates that the phy should be disabled. The values for
Information.bProgrammedMinimumLinkRate and Information.bProgrammedMaximumLinkRate
will be updated after the phy has been disabled. A link reset sequence will not occur;

d) Information.bProgrammedMinimumLinkRate: Contains the value used to update the minimum
programmed link rate for this phy. If the value is outside the range of the hardware minimum and
maximum link rates or greater than Information.bProgrammedMaximumLinkRate then the SDI
function shall return the loctiHeader.ReturnCode field set to SDI_LINK_RATE_OUT_OF RANGE.
Should be one of the following:

A) SDI_PROGRAMMED_LINK_RATE_UNCHANGED: specifies that the programmed minimum link
rate shall not be changed,;

B) SDI_PROGRAMMED_LINK_RATE_1 5 GBPS: specifies that the programmed minimum link
rate shall be updated to 1.5 Gbps;

C) SDI_PROGRAMMED_LINK_RATE_3 0 _GBPS: specifies that the programmed minimum link
rate shall be updated to 3.0 Gbps;

e) Information.bProgrammedMaximumLinkRate: Contains the value used to update the maximum
programmed link rate for this phy. If the value is outside the range of the hardware minimum and
maximum link rates or less than bProgrammedMinimumLinkRate then the SDI function shall return
the loctiHeader.ReturnCode field set to SDI_LINK_RATE_OUT_OF_RANGE. Should be one of the
following:

A) SDI_PROGRAMMED_LINK_RATE_UNCHANGED: specifies that the programmed maximum link
rate shall not be changed,;

B) SDI_PROGRAMMED_LINK_RATE_1 5 GBPS: specifies that the programmed maximum link
rate shall be updated to 1.5 Gbps;

C) SDI_PROGRAMMED_LINK_RATE_3 0_GBPS: specifies that the programmed maximum link
rate shall be updated to 3.0 Gbps;

36 Working Draft Serial Attached SCSI Driver Interface

17 January 2005 04-284r1 (T10/1740-D) Revision 0

f) Information.bSignalClass: This field shall be set to 0; and
g) Information.bReserved: This field shall be set to 0.

6.9.3 Output
This function shall return a SDI_SET_PHY_INFO_BUFFER data structure with the following fields:

a) loctlIHeader.ReturnCode: Return codes are defined in 5.1;

b) Information.bPhyldentifier: Same as input;

c) Information.bNegotiatedLinkRate: Same as input;

d) Information.bProgrammedMinimumLinkRate: Same as input;
e) Information.bProgrammedMaximumLinkRate: Same as input;
f) Information.bSignalClass: Same as input; and

g) Information.bReserved: Same as input.

6.9.4 Structure Definitions
The following data structures are used:

typedef struct _SDI_SET _PHY_INFO {
__u8 bPhyldentifier;
__u8 bNegotiatedLinkRate;
__u8 bProgrammedMinimumLinkRate;
__u8 bProgrammedMaximumLinkRate;
__u8 bSignalClass;
__u8 bReserved[3];

} SDI_SET_PHY_INFO, *PSDI_SET_PHY_INFO;

typedef struct _SDI_SET_PHY_INFO_BUFFER {
I0CTL_HEADER loctlHeader;
SDI_SET_PHY_INFO Information;

} SDI_SET_PHY_INFO_BUFFER, *PSDI1_SET_PHY_INFO_BUFFER;

6.10 CC_SDI_GET_LINK_ERRORS

6.10.1 Behavior

The CC_SDI_GET_LINK_ERRORS SDI function requests information on the link errors associated with a
specific phy. If the controller cannot support tracking of one or more of the errors indicated, then the
associated error counter should contain 0. If the controller can track one or more of the errors indicated, then
the reset flag must be supported. If the controller does not support any of the link error counters, then it shall
return an loctiHeader.ReturnCode field set to SDI_STATUS_ FAILED.

6.10.2 Input
This function accepts a SDI_LINK_ERRORS_BUFFER data structure containing the following fields:

a) loctlHeader: see the IOCTL_HDR definition in 4.2.3, 4.3.2, and 4.4.4;

b) Information.bPhyldentifier: Specifies the phy identifier of the phy for which link error information shall
be returned. If the phy identifier specified is to an unsupported or non-existing phy, then the SDI
function shall return the loctiHeader.ReturnCode field set to SDI_PHY_ DOES NOT_EXIST;

¢) Information.bResetCounts: Contains a flag to reset the error counts on return. Should be set to one of
the following:

A) SDI_LINK_ERROR_DONT_RESET_COUNTS: specifies that the error counts shall not be reset;
or
B) SDI_LINK_ERROR_RESET_COUNTS: specifies that the error counts shall be reset;

d) Information.bReserved: This field shall be set to O;

e) Information.ulnvalidDwordCount: This field shall be set to O;

f) Information.uRunningDisparityErrorCount: This field shall be set to 0;

0) Information.uLossOfDwordSyncCount: This field shall be set to 0; and

Working Draft Serial Attached SCSI Driver Interface (SDI) 37

04-284r1 (T10/1740-D) Revision 0 17 January 2005

h) Information.uPhyResetProblemCount: This field shall be set to 0.

6.10.3 Output
This function shall return a SDI_LINK_ERRORS_BUFFER data structure with the following fields:

a) loctlIHeader.ReturnCode: Return codes are defined in 5.1;

b) Information.bPhyldentifier: Same as input;

c) Information.bResetCounts: Same as input;

d) Information.ulnvalidDwordCount: Indicates the number of invalid dwords received by the phy (see the
SMP REPORT PHY ERROR LOG function in SAS);

e) Information.uRunningDisparityErrorCount: Indicates the number of dwords with disparity errors
received by the phy (see the SMP REPORT PHY ERROR LOG function in SAS);

f) Information.uLossOfDwordSyncCount: Indicates the number of loss of dword synchronizations
detected by the phy (see the SMP REPORT PHY ERROR LOG function in SAS); and

g) Information.uPhyResetProblemCount: Indicates the number of phy reset problems detected by the
phy (see the SMP REPORT PHY ERROR LOG function in SAS).

6.10.4 Structure Definitions
The following data structures are used:

typedef struct _SDI_LINK _ERRORS {
__u8 bPhyldentifier;
__u8 bResetCounts;
__u8 bReserved[2];
__u32 ulnvalidDwordCount;
__u32 uRunningDisparityErrorCount;
__u32 ulLossOfDwordSyncCount;
__u32 uPhyResetProblemCount;
} SDI_LINK_ERRORS, *PSDI_LINK_ERRORS;

typedef struct _SDI_LINK ERRORS BUFFER {
I0CTL_HEADER loctlHeader;
SDI_LINK _ERRORS Information;

} SDI_LINK_ERRORS_BUFFER, *PSDI_LINK_ERRORS_BUFFER;

6.11 CC_SDI_SMP_PASSTHROUGH

6.11.1 Behavior

The CC_SDI_SMP_PASSTHROUGH SDI function provides a method of sending generic SMP requests to a
specific SAS address. Any driver that implements this specification and supports the SMP protocol shall
support this SDI function; otherwise the driver must respond to this function code with a generic IO error (see
Submitting Control Codes).

6.11.2 Security

A driver shall return the loctrlHeader.ReturnCode field set to SDI_SECURITY_VIOLATION if the security level
is insufficient to perform the requested function.

SMP function codes 00h to 7Fh (i.e., the read functions) shall always be allowed. SMP function codes 80h to
FFh (i.e., the write functions) shall be allowed only if the security level is FULL.

6.11.3 Input

This function accepts a SDI_SMP_PASSTHROUGH_BUFFER data structure containing the following fields:

a) loctlHeader: see the IOCTL_HDR definition in 4.2.3, 4.3.2, and 4.4.4;
b) Parameters.bPhyldentifier: Specifies the phy identifier of the phy that should be used to issue the
SMP request. The value shall be in the range of 0x00 to OXFE representing phy identifiers, or shall be

38 Working Draft Serial Attached SCSI Driver Interface

17 January 2005 04-284r1 (T10/1740-D) Revision 0

c)

d)

e)

9)

i)
)

setto SDI_USE_PORT _IDENTIFIER (i.e., OXFF) specifying that the Parameters.bPortldentifier field

be used instead. The driver may generate an error due to the phy identifier for the following reasons:

A) If the driver does not support sending SMP requests to a phy identifier and only supports sending
SMP requests to a bPortldentifier, it shall return the loctiHeader.ReturnCode field set to
SDI_PHY_CANNOT_BE_SELECTED;

B) If the phy identifier is out of the range of valid phys, the driver shall return the
loctiHeader.ReturnCode field set to SDI_PHY_DOES_NOT_EXIST;

C) The phy identifier cannot be associated with bPortldentifier. If bPhyldentifier is intended to
reference the phy and the bPortldentifier value is not SDI_IGNORE_PORT, then the
bPhyldentifier and bPortldentifier must have the proper association. The driver shall return the
loctiHeader.ReturnCode field set to SDI_PHY_DOES_NOT_MATCH_PORT,

D) The phy identifier has a value of SDI_USE_PORT_IDENTIFIER and the bPortldentifier has a
value of SDI_IGNORE_PORT. The driver cannot determine where to send the SMP request.
Either bPhyldentifier should reference a valid phy or bPortldentifier must reference a valid port.
The driver shall return the loctiHeader.ReturnCode field set to SDI_SELECT_PHY_OR_PORT;

Parameters.bPortldentifier: Specifies the port identifier of the port that should be used to issue the

SMP request. The value shall be in the range of 0x00 to OxFEh representing port identifiers, or shall

be set to SDI_IGNORE_PORT (i.e., OXFF). The driver may generate an error due to the port identifier

for the following reasons:

A) If the driver does not support sending SMP requests to a port identifier and only supports sending
SMP requests to a bPhyldentifier, it shall return the loctiHeader.ReturnCode field set to
SDI_PORT_CANNOT_BE_SELECTED;

B) If the port identifier is out of range of valid ports, the driver shall return the
loctiIHeader.ReturnCode field set to SDI_ PORT_DOES_NOT_EXIST;

C) The port identifier cannot be associated with bPhyldentifier. If bPortldentifier is intended to
reference the port and the bPhyldentifier value is not SDI_USE_PORT_IDENTIFIER, then the
bPortldentifier and bPhyldentifier must have the proper association. The driver shall return the
loctiHeader.ReturnCode field set to SDI_PHY _DOES NOT_MATCH_PORT;

D) The port identifier has a value of SDI_IGNORE_PORT and the bPhyldentifier has a value of
SDI_USE_PORT_IDENTIFIER. The driver cannot determine where to send the SMP request.
Either bPhyldentifier should reference a valid phy or bPortldentifier must reference a valid port.
The driver shall return the loctiHeader.ReturnCode field set to SDI_SELECT _PHY_OR_PORT;

Parameters.bConnectionRate: Specifies the connection rate directive for the driver connection

manager. The field shall be set to one of the following:

A) SDI_LINK_RATE_NEGOTIATED: specifies that the connection should be opened at the highest
allowable negotiated rate for the destination device. The resulting rate will be the lowest common
denominator of link rates along a connection pathway;

B) SDI_LINK_RATE_1 5 GBPS: specifies that the connection should be attempted at 1.5 Gbps; or

C) SDI_LINK_RATE_3_0_GBPS: specifies that the connection should be attempted at 3.0 Gbps.
This connection rate may not succeed if an intermediate physical link is less than 3.0 Gbps;

Parameters.bDestinationSASAddress: Specifies the SAS address of the destination device in MSB

order;

Parameters.uRequestLength: Specifies the length of the function specific content in

Parameters.Request: The length should be in LSB order and should not include the CRC bytes. The

driver will be responsible for appending the proper CRC to the request at the uRequestLength offset

using the function specific content;

Parameters.Request: Specifies the function specific content for the SMP request;

Parameters.Request.bFrameType: Specifies the SMP frame type (e.g., 40h)(see SAS);

Parameters.Request.bFunction: Specifies the SMP function to request (see SAS); and

Parameters.Request.bAdditionalRequestBytes: Specifies the payload bytes for the SMP function

requested. Any unused bytes shall be set to 0x00.

6.11.4 Output
This function shall return a SDI_SMP_PASSTHROUGH_BUFFER data structure with the following fields:

a)
b)

loctiHeader.ReturnCode: Return codes are defined in 5.1;
Parameters.bPhyldentifier: Same as input;

Working Draft Serial Attached SCSI Driver Interface (SDI) 39

04-284r1 (T10/1740-D) Revision 0 17 January 2005

c)
d)
e)
f)

)
h)
i)

Parameters.bPortldentifier: Same as input;

Parameters.bConnectionRate: Same as input;

Parameters.bReserved: Same as input;

Parameters.bDestinationSASAddress: Same as input;

Parameters.uRequestLength: Same as input;

Parameters.Request: Same as input;

Parameters.bConnectionStatus: Contains the results of the connection request:

A) SDI_OPEN_ACCEPT: indicates the connection response was OPEN_ACCEPT and the SMP
request was submitted;

B) SDI_OPEN_REJECT_BAD_DESTINATION:indicates the connection response was
OPEN_REJECT (BAD DESTINATION). No request was submitted;

C) SDI_OPEN_REJECT_ RATE_NOT_SUPPORTED: indicates the connection response was
OPEN_REJECT (CONNECTION RATE NOT SUPPORTED). No request was submitted,;

D) SDI_OPEN_REJECT_NO_DESTINATION: indicates the connection response was
OPEN_REJECT (NO DESTINATION). No request was submitted;

E) SDI_OPEN_REJECT_PATHWAY_BLOCKED: indicates the connection response was
OPEN_REJECT (PATHWAY BLOCKED). No request was submitted,;

F) SDI_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED: indicates the connection response was
OPEN_REJECT (PROTOCOL NOT SUPPORTED). No request was submitted,;

G) SDI_OPEN_REJECT_RESERVE_ABANDON: indicates the connection response was
OPEN_REJECT (RESERVED ABANDON 0), OPEN_REJECT (RESERVED ABANDON 1),
OPEN_REJECT (RESERVED ABANDON 2), or OPEN_REJECT (RESERVED ABANDON 3).
No request was submitted;

H) SDI_OPEN_REJECT_RESERVE_CONTINUE: indicates the connection response was
OPEN_REJECT (RESERVED CONTINUE 0), or OPEN_REJECT (RESERVED CONTINUE 1).
No request was submitted;

) SDI_OPEN_REJECT_RESERVE_INITIALIZE: indicates the connection response was
OPEN_REJECT (RESERVED INITIALIZE 0) or OPEN_REJECT (RESERVED INITIALIZE 1). No
request was submitted;

J) SDI_OPEN_REJECT_RESERVE_STOP: indicates the connection response was
OPEN_REJECT (RESERVED STOP 0) or OPEN_REJECT (RESERVED STOP 1). No request
was submitted;

K) SDI_OPEN_REJECT_RETRY: indicates the connection response was OPEN_REJECT
(RETRY). No request was submitted;

L) SDI_OPEN_REJECT_STP_RESOURCES_BUSY: indicates the connection response was
OPEN_REJECT (STP RESOURCES BUSY). No request was submitted; or

M) SDI_OPEN_REJECT_WRONG_DESTINATION: indicates the connection response was
OPEN_REJECT (WRONG DESTINATION). No request was submitted,;

Parameters.bReserved2: Same as input;

Parameters.bResponseBytes: Contains the number of valid bytes in the Parameters.Response data

structure. The CRC bytes of the response may be included in the count;

Parameters.Response: Contains the function specific response. See the SAS specification;

Parameters.Response.bFrameType: Contains the SMP response type (i.e., byte 0). Should be 41h;

Parameters.Response.bFunction: Contains the SMP function (i.e., byte 1);

Parameters.Response.bFunctionResult: Contains the SMP function result (i.e., byte 2); and

Parameters.Response.bReserved: Contains the SMP function response byte 3; and

Parameters.Response.bAdditionalRequestBytes: Contains the payload bytes for the SMP function

response. Any trailing unused bytes shall be set to 0x00.

6.11.5 Structure Definitions

The following data structures are used:

typedef struct _SDI_SMP_REQUEST {

40

__u8 bFrameType;

__u8 bFunction;

__u8 bReserved[2];

__u8 bAdditionalRequestBytes[1016];

Working Draft Serial Attached SCSI Driver Interface

17 January 2005 04-284r1 (T10/1740-D) Revision 0

} SDI_SMP_REQUEST, *PSDI_SMP_REQUEST;

typedef struct _SDI_SMP_RESPONSE {

__u8 DbFrameType;

__u8 bFunction;

__u8 bFunctionResult;

__u8 bReserved;

__u8 bAdditionalResponseBytes[1016];
} SDI_SMP_RESPONSE, *PSDI_SMP_RESPONSE;

typedef struct _SDI_SMP_PASSTHROUGH {
__u8 bPhyldentifier;
__u8 bPortldentifier;
__u8 bConnectionRate;
__u8 bReserved;
__u8 bDestinationSASAddress[8];
__u32 uRequestlLength;
SDI_SMP_REQUEST Request;
__u8 bConnectionStatus;
__u8 bReserved2[3];
__u32 uResponseBytes;
SDI_SMP_RESPONSE Response;

} SDI_SMP_PASSTHROUGH, *PSDI1_SMP_PASSTHROUGH;

typedef struct _SDI_SMP_PASSTHROUGH_BUFFER {
I0CTL_HEADER loctlHeader;

SDI_SMP_PASSTHROUGH Parameters;
} SDI1_SMP_PASSTHROUGH_BUFFER, *PSDI_SMP_PASSTHROUGH_ BUFFER;

6.12 CC_SDI_SSP_PASSTHROUGH

6.12.1 Behavior

The CC_SDI_SSP_PASSTHROUGH SDI function provides a method of sending generic SSP requests to a

specific SAS address. Any driver that implements this specification and supports the SSP protocol shall

support this SDI function; otherwise the driver may respond to this function code with a generic 1O error (see

Submitting Control Codes).

Working Draft Serial Attached SCSI Driver Interface (SDI)

41

04-284r1 (T10/1740-D) Revision 0

6.12.2 Security

17 January 2005

A driver shall return the loctrlHeader.ReturnCode field set to SDI_SECURITY_VIOLATION if the security level
is insufficient to process the requested function. Only the SCSI commands listed in table 9 shall be allowed if

the security level is not FULL.

Table 9 — SCSI commands allowed without full security access

SCSI command Reference
INQUIRY SPC-3
LOG SENSE SPC-3
MODE SENSE (6)/(10) SPC-3
READ BUFFER SPC-3
READ CAPACITY SBC-2
READ DEFECT DATA SBC-2
READ (6)/(10)/(12)/(16) SBC-2
REPORT LUNS SPC-3
REQUEST SENSE SPC-3
TEST UNIT READY SPC-3
VERIFY (6)/(10)/(12)/(16) SBC-2
WRITE BUFFER 2 SPC-3
8 To support download of microcode and for link validation, the WRITE BUFFER command
requires Limited access. The end device is responsible for ensuring that any download
microcode operation performed is validated with proper vendor, model and checksum
associations.

6.12.3 Input
This function accepts a SDI_SSP_PASSTHROUGH_BUFFER data structure containing the following fields:

loctiHeader: see the IOCTL_HDR definition in 4.2.3, 4.3.2, and 4.4.4;

Status: Initialized to 0's;

Parameters.bPhyldentifier: Specifies the phy identifier of the phy that should be used to issue the
request. The value shall be in the range of 0 to 254 (0x00 to OxFE) or be the directive
SDI_USE_PORT_IDENTIFIER. The driver may generate an error due to the phy identifier for the
following reasons:

42

a)
b)
c)

d)

A)

B)

C)

D)

The phy identifier cannot be selected because the driver does not support sending SMP requests
to a phy identifier. The driver may support sending SMP requests to a bPortldentifier only. The
driver shall return the loctiHeader.ReturnCode field set to SDI_PHY_CANNOT_BE_SELECTED;
The phy identifier is out of range of valid phys. The driver shall return the loctiHeader.ReturnCode
field set to SDI_PHY_DOES_NOT_EXIST;,

The phy identifier cannot be associated with bPortldentifier. If bPhyldentifier is intended to
reference the phy and the bPortldentifier value is not SDI_IGNORE_PORT, then the
bPhyldentifier and bPortldentifier must have the proper association. The driver shall return the
loctiHeader.ReturnCode field set to SDI_PHY_DOES_NOT_MATCH_PORT,

The phy identifier has a value of SDI_USE_PORT_IDENTIFIER and the bPortldentifier has a
value of SDI_IGNORE_PORT. The driver cannot determine where to send the SMP request.
Either bPhyldentifier should reference a valid phy or bPortldentifier must reference a valid port.
The driver shall return the loctiHeader.ReturnCode field set to SDI_SELECT_PHY_OR_PORT;

Parameters.bPortldentifier: Contains the port identifier that specifies which port should be used to
issue the request. The value must be in the range of 0 to 254 (0 to FEh) or be the directive

Working Draft Serial Attached SCSI Driver Interface

17 January 2005 04-284r1 (T10/1740-D) Revision 0

SDI_IGNORE_PORT. The driver may generate an error due to the port identifier for the following

reasons:

A) The port identifier cannot be selected because the driver does not support sending SMP requests
to a port identifier. The driver may support sending SMP requests to a bPhyldentifier only. The
driver shall return the loctiHeader.ReturnCode field set to
SDI_PORT_CANNOT_BE_SELECTED;

B) The port identifier is out of range of valid ports. The driver shall return the
loctiHeader.ReturnCode field set to SDI_PORT_DOES_NOT_EXIST;

C) The port identifier cannot be associated with bPhyldentifier. If bPortldentifier is intended to
reference the port and the bPhyldentifier value is not SDI_USE_PORT_IDENTIFIER, then the
bPortldentifier and bPhyldentifier must have the proper association. The driver shall return the
loctiHeader.ReturnCode field set to SDI_PHY_DOES_NOT_MATCH_PORT,

D) The port identifier has a value of SDI_IGNORE_PORT and the bPhyldentifier has a value of
SDI_USE_PORT_IDENTIFIER. The driver cannot determine where to send the SMP request.
Either bPhyldentifier should reference a valid phy or bPortldentifier must reference a valid port.
The driver shall return the loctiHeader.ReturnCode field set to SDI_SELECT_PHY_OR_PORT;

e) Parameters.bConnectionRate: Contains the connection rate directive for the driver connection
manager. Should be one of the following:

A) SDI_LINK_RATE_NEGOTIATED: specifies that the connection should be opened at the highest
allowable negotiated rate for the destination device. The resulting rate will be the lowest common
denominator of link rates along a connection pathway;

B) SDI_LINK _RATE_1 5 GBPS: specifies that the connection should be attempted at 1.5 Gbps;

C) SDI_LINK_RATE_3_0_GBPS: specifies that the connection should be attempted at 3.0 Gbps.
This connection rate may not succeed if an intermediate physical link is less than 3.0 Gbps;

f) Parameters.bReserved: This field shall be set to O;

g) Parameters.bDestinationSASAddress: Contains the SAS address of the destination device in MSB
order;

h) Parameters.bLun: Contains the LUN of the target physical device to address. Equivalent to the SSP

LOGICAL UNIT NUMBER field in an SSP information unit;

i) Parameters.bCDBLength: Contains the length of the CDB in Parameters.bCDB;

j) Parameters.bAdditionalCDBLength: Contains the length of valid dwords in
Parameters.bAdditionalCDB. Shall be in the range of 0 to 6;

k) Parameters.bReserved2 This field shall be set to 0;

[) Parameters.bCDB: Contains the CDB bytes for the specific SCSI command to send;

m) Parameters.uFlags: Contains the directive that tells the SSP link and transport layers whether the
command is expected to send or receive data. Should be one or more of the following:

A) SDI_SSP_READ: specifies that the data transfer will be from the destination device;

B) SDI_SSP_WRITE: specifies that the data transfer will be to the destination device;

C) SDI_SSP_UNSPECIFIED: specifies that there will be no data transfer, or the data transfer
direction is unknown and any data received until the ITL nexus is completed should be retained;

D) SDI_SSP_TASK_ATTRIBUTE_SIMPLE: specifies that the Task attribute for the SSP command
information unit should be set to SIMPLE;

E) SDI_SSP_TASK_ATTRIBUTE_HEAD_OF_QUEUE: specifies that the Task attribute for the SSP
command information unit should be set to HEAD OF QUEUE;

F) SDI_SSP_TASK_ATTRIBUTE_ORDERED: specifies that the Task attribute for the SSP
command information unit should be set to ORDERED;

G) SDI_SSP_TASK_ATTRIBUTE_ACA:specifies that the Task attribute for the SSP command
information unit should be set to ACA;

NOTE 4 - Only one of the Task attribute flags may be included in Parameters.uFlags. If more than one is
specified, then all are ignored and the result equivalent to SDI_SSP_TASK_ATTRIBUTE_SIMPLE.

n) Parameters.bAdditionalCDB: Specifies the additional CDB bytes, if any;

o) Parameters.uDatal ength: Specifies the length of bDataBuffer in LSB order; and

p) bDataBuffer: Specifies any data that is being written to the device (for write commands) or provides a
memory space for any data that is being read from the device (for read commands).

Working Draft Serial Attached SCSI Driver Interface (SDI) 43

04-284r1 (T10/1740-D) Revision 0 17 January 2005

Editor’s Note 46: there should be two data pointers to support bidirectional transfers, with two
length fields. Or, use one big field with part for read data and part for write data. first length field
would cover either read or write data for unidirectional commands, and would cover write data for
bidirectional commands. Second length field would cover read data for bidirectional commands.

6.12.4 Output
This function shall return a SDI_SSP_PASSTHROUGH_BUFFER data structure with the following fields:

a)
b)
c)
d)
e)
f)

)
h)

p)
a)
r

loctiHeader.ReturnCode: Return codes are defined in 5.1;

Parameters.bPhyldentifier: Same as input;

Parameters.bPortldentifier: Same as input;

Parameters.bConnectionRate: Same as input;

Parameters.bDestinationSASAddress: Same as input;

Parameters.bLun: Same as input;

Parameters.bCDBLength: Same as input;

Parameters.bAdditionalCDBLength: Same as input;

Parameters.bCDB: Same as input;

Parameters.uFlags: Same as input;

Parameters.bAdditionalCDB: Same as input;

Parameters.uDatal ength: Same as input;

Status: Contains the SSP status structure for the SSP command;

Status.bConnectionStatus: Contains the results of the connection request. See the
Status.bConnectionStatus field in the SDI_SMP_PASSTHROUGH command (see 6.11.4);
Status.bDataPresent: Contains the directives that indicate what has been returned in bResponse.
Should be one of the following:

A) SDI_SSP_NO_DATA_ PRESENT: see SCSI specification;

B) SDI_SSP_RESPONSE_DATA_PRESENT: see SCSI specification;

C) SDI_SSP_SENSE_DATA_PRESENT: see SCSI specification;

Status.bStatus: Contains the SCSI status code;

Status.bResponseLength: Contains the number of valid bytes in the bResponse field in MSB order;
Status.bResponse: Contains the response bytes in MSB order. The interpretation of the data depends
on the directive in the bDataPresent field,;

Editor’'s Note 47: this is intended to carry either sense data or response data (or both) - whatever is
in the RESPONSE frame (based on the DataPres field). Change names bResponseLength and
bResponse. Note that the Task Management function also uses this structure but only to return
response data, not sense data.

Editor’s Note 48: italicize bResponse, etc. above

s)

uDataBytes: Contains the number of valid bytes in bDataBuffer, in LSB order; and

Editor’'s Note 49: uDataBytes should hame something like Length or Num in its name

B

44

bDataBuffer: Contains any data that has been written to the device (write commands) or contains any
data that has been read from the device (read commands).

Working Draft Serial Attached SCSI Driver Interface

17 January 2005 04-284r1 (T10/1740-D) Revision 0

6.12.5 Structure Definitions
The following data structures are used:

typedef struct _SDI_SSP_PASSTHROUGH {
__u8 bPhyldentifier;
__u8 DbPortldentifier;
__u8 bConnectionRate;
__u8 bReserved;
__u8 bDestinationSASAddress[8];
__u8 bLun[8];
__u8 bCDBLength;
__u8 bAdditionalCDBLength;
__u8 bReserved2[2];
__u8 bCDB[16];
__u32 uFlags;
__u8 bAdditionalCDB[24];
__u32 ubDatalength;
} SDI_SSP_PASSTHROUGH, *PSDI1_SSP_PASSTHROUGH;

typedef struct _SDI_SSP_PASSTHROUGH_STATUS {
__u8 bConnectionStatus;
__u8 bReserved[3];
__u8 bbataPresent;
__u8 bStatus;
__u8 bReponselLength[2];
__u8 bResponse[256];
} SDI_SSP_PASSTHROUGH_STATUS, *PSDI_SSP_PASSTHROUGH_STATUS;

typedef struct _SDI_SSP_PASSTHROUGH_BUFFER {
I0CTL_HEADER loctlHeader;
SDI_SSP_PASSTHROUGH Parameters;
SD1_SSP_PASSTHROUGH_STATUS Status;
__u32 ubDataBytes;
__u8 bbDbataBuffer[1];
} SD1_SSP_PASSTHROUGH_BUFFER, *PSDI_SSP_PASSTHROUGH_ BUFFER;

Editor’s Note 50: fix indenting above

6.13 CC_SDI_STP_PASSTHROUGH

6.13.1 Behavior

The CC_SDI_STP_PASSTHROUGH SDI function provides a method of sending generic STP or SATA
commands to a specific SAS address. Any driver that implements this specification and supports the STP or
SATA protocols shall support this function; otherwise the driver may respond to this function code with a
generic 10 error (see Submitting Control Codes). A driver that emulates STP or SATA devices as SCSI
devices may require that commands directed to STP or SATA devices be directed to the SCSI link and
transport layer. To facilitate sending generic STP or SATA commands with that restriction an alternative
mechanism using a special SCSI command to wrap SATA commands may be provided (see Error! Reference
source not found.). A driver may direct the upper level application to use the alternative method by returning
the loctrlHeader.ReturnCode field set to SDI_SCSI_EMULATION.

Working Draft Serial Attached SCSI Driver Interface (SDI) 45

04-284r1 (T10/1740-D) Revision 0

6.13.2 Security

A driver shall return the loctrlHeader.ReturnCode field set to SDI_SECURITY_VIOLATION if the security level
is insufficient to complete the requested function. Only the ATA commands listed in table 10 shall be allowed
if the security level is not FULL.

Table 10 — ATA commands allowed without full security access

17 January 2005

ATA command

Reference

CHECK POWER MODE

ATA/ATAPI-7 V1

DOWNLOAD MICROCODE 2

ATA/ATAPI-7 V1

EXECUTE DEVICE DIAGNOSTICS

ATA/ATAPI-7 V1

FLUSH CACHE/FLUSH CACHE EXT

ATA/ATAPI-7 V1

IDENTIFY DEVICE/IDENTIFY PACKET DEVICE

ATA/ATAPI-7 V1

NOP

ATA/ATAPI-7 V1

PACKET P

ATA/ATAPI-7 V1

READ BUFFER

ATA/ATAPI-7 V1

READ DMA/READ DMA EXT/READ DMA QUEUED/READ DMA QUEUED EXT

ATA/ATAPI-7 V1

READ LOG EXT

ATA/ATAPI-7 V1

READ MULTIPLE/READ MULTIPLE EXT

ATA/ATAPI-7 V1

READ NATIVE MAX ADDRESS/READ NATIVE MAX ADDRESS EXT

ATA/ATAPI-7 V1

READ SECTOR(S)/READ SECTOR(S) EXT

ATA/ATAPI-7 V1

READ VERIFY SECTOR(S)/READ VERIFY SECTOR(S) EXT

ATA/ATAPI-7 V1

SMART

ATA/ATAPI-7 V1

WRITE BUFFER ¢

ATA/ATAPI-7 V1

8 To support download of microcode, the DOWNLOAD MICROCODE command requires Limited
access. The end device is responsible for ensuring that any download operation performed is

validated with proper vendor, model and checksum associations.

b The SCSI command being sent with PACKET shall be processed according to the SCSI command

security access (see table 9 in 6.12).
¢ For link verification.

6.13.3 Input
This function accepts a SDI_STP_PASSTHROUGH_BUFFER data structure containing the following fields:

46

a) loctlHeader: see the IOCTL_HDR definition in 4.2.3, 4.3.2, and 4.4.4;

b) Parameters.bPhyldentifier: Contains the phy identifier that specifies which phy should be used to
issue the request. The value must be in the range of 0 to 254 (0 to FEh) or be the directive
SDI_USE_PORT_IDENTIFIER. The driver may generate an error due to the phy identifier for the

following reasons:

A) The phy identifier cannot be selected because the driver does not support sending SMP requests
to a phy identifier. The driver may support sending SMP requests to a bPortldentifier only. The
driver shall return the loctiHeader.ReturnCode field set to SDI_PHY_CANNOT_BE_SELECTED;

B) The phy identifier is out of range of valid phys. The driver shall return the loctiHeader.ReturnCode

field set to SDI_PHY_DOES_NOT_EXIST:

C) The phy identifier cannot be associated with bPortldentifier. If bPhyldentifier is intended to
reference the phy and the bPortldentifier value is not SDI_IGNORE_PORT, then the
bPhyldentifier and bPortldentifier must have the proper association. The driver shall return the

loctiHeader.ReturnCode field set to SDI_PHY _DOES NOT_MATCH_PORT,

Working Draft Serial Attached SCSI Driver Interface

17 January 2005 04-284r1 (T10/1740-D) Revision 0

D) The phy identifier has a value of SDI_USE_PORT_IDENTIFIER and the bPortldentifier has a
value of SDI_IGNORE_PORT. The driver cannot determine where to send the SMP request.
Either bPhyldentifier should reference a valid phy or bPortldentifier must reference a valid port.
The driver shall return the loctiHeader.ReturnCode field set to SDI_SELECT_PHY_OR_PORT,

c) Parameters.bPortldentifier: Contains the port identifier that specifies which port should be used to
issue the request. The value must be in the range of 0 to 254 (0 to FEh) or be the directive

SDI_IGNORE_PORT. The driver may generate an error due to the port identifier for the following

reasons:

A) The port identifier cannot be selected because the driver does not support sending SMP requests
to a port identifier. The driver may support sending SMP requests to a bPhyldentifier only. The
driver shall return the loctiHeader.ReturnCode field set to
SDI_PORT_CANNOT_BE_SELECTED;

B) The port identifier is out of range of valid ports. The driver shall return the
loctiHeader.ReturnCode field set to SDI_ PORT_DOES_NOT_EXIST;

C) The port identifier cannot be associated with bPhyldentifier. If bPortldentifier is intended to
reference the port and the bPhyldentifier value is not SDI_USE_PORT_IDENTIFIER, then the
bPortldentifier and bPhyldentifier must have the proper association. The driver shall return the
loctiHeader.ReturnCode field set to SDI_PHY _DOES NOT_MATCH_PORT;

D) The port identifier has a value of SDI_IGNORE_PORT and the bPhyldentifier has a value of
SDI_USE_PORT_IDENTIFIER. The driver cannot determine where to send the SMP request.
Either bPhyldentifier should reference a valid phy or bPortldentifier must reference a valid port.
The driver shall return the loctlHeader.ReturnCode field set to SDI_SELECT _PHY_OR_PORT;

d) Parameters.bConnectionRate: Contains the connection rate directive for the driver connection
manager. Should be one of the following:

A) SDI_LINK_RATE_NEGOTIATED: specifies that the connection shall be opened at the highest
allowable negotiated rate for the destination device. The resulting rate will be the lowest common
denominator of link rates along a connection pathway;

B) SDI_LINK _RATE_1 5 GBPS: specifies that the connection shall be attempted at 1.5 Gbps;

C) SDI_LINK_RATE_3_0_GBPS: specifies that the connection shall be attempted at 3.0 Gbps. This
connection rate may not succeed if an intermediate link is less than 3.0 Gbps;

e) Parameters.bDestinationSASAddress: Contains the SAS address of the destination device in MSB
order;

f) Parameters.oCommandFIS: Contains the SATA command FIS (27h). See the SATA specification;

g) Parameters.uFlags: Contains the directive that tells the STP and/or SATA link and transport layers
whether the command is expected to send or receive data. Should be one or more of the following:

A) SDI_STP_READ: specifies that the data transfer will be from the destination device;

B) SDI_STP_WRITE: specifies that the data transfer will be to the destination device;

C) SDI_STP_UNSPECIFIED: specifies that there will be no data transfer, or the data transfer
direction is unknown and any data received should be retained;

D) SDI_STP_PIO: specifies the command follows the SATA PIO state machine for completion;

E) SDI_STP_DMA: specifies the command follows the SATA DMA state machine for completion;

F) SDI_STP_PACKET: specifies the command follows the SATA packet state machine for
completion;

G) SDI_STP_DMA_QUEUED: specifies the command follows the SATA DMA queued state machine
for completion;

H) SDI_STP_EXECUTE_DIAG: specifies the command follows the SATA execute diagnostic state
machine for completion; and/or

) SDI_STP_RESET_DEVICE: specifies that a soft reset is being performed,;

and

h) bDataBuffer: Contains any data that is being written to the device (write commands) or provides a
memory space for any data that is being read from the device (read commands).

6.13.4 Output
This function shall return a SDI_STP_PASSTHROUGH_BUFFER data structure with the following fields:

a) loctlIHeader.ReturnCode: Return codes are defined in 5.1;

Working Draft Serial Attached SCSI Driver Interface (SDI) 47

04-284r1 (T10/1740-D) Revision 0 17 January 2005

b)
c)
d)
e)
f)
)
h)
i)
)
K)
)

m)
n)
0)

p)
a)

Parameters.bPhyldentifier: Same as input;

Parameters.bPortldentifier: Same as input;

Parameters.bConnectionRate: Same as input;

Parameters.bReserved: Same as input;

Parameters.bDestinationSASAddress: Same as input;

Parameters.bReserved2: Same as input;

Parameters.boCommandFIS: Same as input;

Parameters.uFlags: Same as input;

Parameters.uDatalLength: Same as input;

Status: Contains the STP status structure for the STP or SATA command,;
Status.bConnectionStatus: Contains the results of the connection request. See the
Status.bConnectionStatus field in the SDI_SMP_PASSTHROUGH command (see 6.11.4);
Status.bReserved: This field shall be set to 0;

Status.bStatusFIS: Contains the SATA status FIS (34h). See SATA specification;

Status.uSCR: Contains the status control registers. The contents of uSCR are be updated at the
completion of the command. Register level polling is not intended;

uDataBytes: Contains the number of valid bytes in bDataBuffer, in LSB order; and

bDataBuffer: Contains any data that has been written to the device (write commands) or contains any
data that has been read from the device (read commands).

6.13.5 Structure Definitions

The following data structures are used:

typedef struct _SDI_STP_PASSTHROUGH {

__u8 bPhyldentifier;

__u8 DbPortldentifier;

__u8 bConnectionRate;

__u8 bReserved;

__u8 bDestinationSASAddress[8];
__u8 bReserved2[4];

__u8 bCommandFIS[20];

__u32 uFlags;

__u32 uDatalength;

} SDI_STP_PASSTHROUGH, *PSDI1_STP_PASSTHROUGH;

typedef struct _SDI_STP_PASSTHROUGH_STATUS {

__u8 bConnectionStatus;
__u8 bReserved[3];

__u8 bStatusFIS[20];
__u32 uSCR[16];

} SDI_STP_PASSTHROUGH_STATUS, *PSDI_STP_PASSTHROUGH_STATUS;

typedef struct _SDI_STP_PASSTHROUGH_BUFFER {

I0CTL_HEADER loctlHeader;
SDI_STP_PASSTHROUGH Parameters;
SD1_STP_PASSTHROUGH_STATUS Status;
u32 uDataBytes;
u8 bDataBuffer[1];

} SDI_STP_PASSTHROUGH_BUFFER, *PSDI_STP_PASSTHROUGH_BUFFER;

Editor’s Note 51: fix indenting above

48

Working Draft Serial Attached SCSI Driver Interface

17 January 2005 04-284r1 (T10/1740-D) Revision 0

6.14 CC_SDI_GET_SATA_SIGNATURE

6.14.1 Behavior

The CC_SDI_GET_SATA_SIGNATURE SDI function provides a method of obtaining the initial SATA
signature (i.e., the initial Register Device to Host FIS) from a directly attached SATA device. The signature
may be used to identify whether a SATA device supports the PACKET command set or whether it is a unique
SATA device (like a port multiplier). Any driver that implements this specification and supports directly
attached SATA devices shall support this SDI function; otherwise the driver may respond to this function code
with a generic 10 error (see Submitting Control Codes).

6.14.2 Input
This function accepts a SDI_SATA_SIGNATURE_BUFFER data structure containing the following fields:

a) loctiHeader: see the IOCTL_HDR definition in 4.2.3, 4.3.2, and 4.4.4;
b) Signature.bPhyldentifier: Contains the phy identifier that is being queried for a SATA signature. The
driver may generate an error due to the phy identifier for the following reasons:

A) If the phy does not have a SATA device directly attached or the phy has not completed the link
reset sequence, the driver shall return the loctiHeader.ReturnCode field set to
SDI_NO_SATA_DEVICE;

B) If the phy has not received the initial register device to host FIS from the SATA device, the driver
shall return the loctiHeader.ReturnCode field set to SDI_NO_SATA_SIGNATURE; and

C) If the phy does not exist, the driver shall return the loctiHeader.ReturnCode field set to
SDI_PHY_DOES_NOT_EXIST,

c) Signature.bReserved: This field shall be set to 0; and
d) Signature.bSignatureFIS: This field shall be set to 0.

6.14.3 Output
This function shall return a SDI_SATA_SIGNATURE_BUFFER data structure with the following fields:

a) loctlIHeader.ReturnCode: Return codes are defined in 5.1;

b) Signature.bPhyldentifier: Same as input; and

c) Signature.bReserved: Same as input; and

d) Signature.bSignatureFIS: Contains the initial register device to host FIS (34h) from the SATA device.
Only the signature bytes are required to be valid, the remainder of the FIS may be O filled. If the FIS
type is valid, (i.e. 34h) then the entire FIS is assumed to be valid (i.e. as returned from the device).

6.14.4 Structure Definitions
The following data structures are used:

typedef struct _SDI_SATA SIGNATURE {
__u8 bPhyldentifier;
__u8 bReserved[3];
__u8 bSignatureFIS[20];
} SDI_SATA_SIGNATURE, *PSDI_SATA_SIGNATURE;

typedef struct _SDI_SATA SIGNATURE_BUFFER {
I0CTL_HEADER loctlHeader;
SD1_SATA_SIGNATURE Signature;
} SDI_SATA SIGNATURE_BUFFER, *PSDI1_SATA SIGNATURE_BUFFER;

6.15 CC_SDI_GET_SCSI_ADDRESS

6.15.1 Behavior

The CC_SDI_GET_SCSI_ADDRESS SDI function provides a method of obtaining the OS specific platform
address for a SAS address.

Working Draft Serial Attached SCSI Driver Interface (SDI) 49

04-284r1 (T10/1740-D) Revision 0 17 January 2005

The driver may generate an error on this request for the following reasons:

a) Ifthe SAS address is to an expander device, the driver shall return the loctriHeader.ReturnCode field
set to SDI_NOT_AN_END_DEVICE; and

b) Ifthe SAS address does not have an associated OS specific address, the driver shall return the
loctriHeader.ReturnCode field set to SDI_NO_SCSI_ADDRESS.

6.15.2 Input
This function accepts a SDI_GET_SCSI_ADDRESS BUFFER data structure containing the following fields:

a) loctlHeader: see the IOCTL_HDR definition in 4.2.3, 4.3.2, and 4.4.4;

b) bSASAddress: Specifies the SAS address of the device, in MSB order;

c) bSASLun: Specifies the SCSI logical unit number of the device, in MSB order;
d) bHostindex: This field shall be set to 0;

e) bPathld: This field shall be set to O;

f) bTargetld: This field shall be set to 0; and

g) bLun: This field shall be set to 0.

Editor’s Note 52: path 0, target 0, lun 0 is valid which could be misleading in the Output. However,
the caller is not supposed to use the results in these fields if an error is returning.

This function shall return a SDI_GET_SCSI_ADDRESS_ BUFFER data structure with the following fields:

a) loctlIHeader.ReturnCode: Return codes are defined in 5.1;

b) bSASAddress: Same as input;

c) bSASLun: Same as input;

d) bHostindex: Indicates the enumerated index of the driver instance (for example, the n value in
“SCSIn” under Windows). An FFh indicates the value is invalid;

e) bPathld: Indicates the path (i.e., bus or port) identifier of the device;

f) bTargetld: Indicates the target identifier of the device; and

g) bLun: Indicates the logical unit number of the device.

6.15.3 Structure Definitions
The following data structures are used:

typedef struct _SDI_GET_SCSI_ADDRESS BUFFER {
I0CTL_HEADER loctlHeader;
__u8 bSASAddress[8];
__u8 DbSASLun[8];
__u8 bHostlIndex;
__u8 bPathld;
__u8 bTargetld;
__u8 bLun;
} SDI_GET_SCSI_ADDRESS_BUFFER, *PSDI_GET_SCSI1_ADDRESS BUFFER;

6.16 CC_SDI_GET_DEVICE_ADDRESS

6.16.1 Behavior

The CC_SDI_GET_DEVICE_ADDRESS SDI function provides a method of obtaining the SAS address of a
device from an OS specific platform address.

Editor’s Note 53: use of “DEVICE” is problematic since that term has specific meanings in SCSI.
SCSI and even Windows use the term “peripheral device” to represent a logical unit (different from
the target device, that can contain many different logical units each with a different peripheral

50 Working Draft Serial Attached SCSI Driver Interface

17 January 2005 04-284r1 (T10/1740-D) Revision 0

device type).Would SDI_GET_PERIPHERAL_DEVICE_ADDRESS or
SDI_GET_SAS_ADDRESS_LUN be better?

The driver may generate an error on this request for the following reasons:

a) The OS specific platform address does not have a SAS address. The driver shall return the
loctriHeader.ReturnCode field set to SDI_NO_DEVICE_ADDRESS.

6.16.2 Input

This function accepts a SDI_GET_DEVICE_ADDRESS BUFFER data structure containing the following
fields:

a) loctlHeader: see the IOCTL_HDR definition in 4.2.3, 4.3.2, and 4.4.4;

b) bHostindex: Specifies the enumerated index of the driver instance (for example, the n value in
“SCSIn” under Windows). An FFh indicates the value is invalid;

c) bPathld: Specifies the path (i.e., bus or port) identifier of the device;

d) bTargetld: Specifies the target identifier of the device;

e) bLun: Specifies the logical unit number of the device;

f) bSASAddress: This field shall be set to to 0; and

g) bSASLun: This field shall be set to to 0.

6.16.3 Output
This function shall return a SDI_GET_DEVICE_ADDRESS_ BUFFER data structure with the following fields:

a) loctlIHeader.ReturnCode: Return codes are defined in 5.1;

b) bHostindex: Same as input;

c) bPathld: Same as input;

d) bTargetld: Same as input;

e) bLun: Same as input;

f) bSASAddress: Indicates the SAS address of the device, in MSB order; and
g) bSASLun: Indicates the SAS logical unit number of the device, in MSB order.

6.16.4 Structure Definitions
The following data structures are used:

typedef struct _SDI_GET_DEVICE_ADDRESS BUFFER {
I0CTL_HEADER loctlHeader;
__u8 bHostlIndex;
__u8 bPathld;
__u8 bTargetld;
__u8 bLun;
__u8 bSASAddress[8];
__u8 DbSASLun[8];
} SDI_GET_DEVICE_ADDRESS BUFFER, *PSDI_GET_DEVICE_ADDRESS BUFFER;

6.17 CC_SDI_TASK_MANAGEMENT

6.17.1 Behavior

The CC_SDI_TASK_MANAGEMENT SDI function provides a method of sending a hard reset sequence or a
TASK frame to the specified OS specific platform address.

Editor’s Note 54: if the device has a wide target port, which phy of the HBA or expander is used to
send a hard reset sequence? Lowest, highest, any, all? Move HARD_RESET_SEQUENCE into its

Working Draft Serial Attached SCSI Driver Interface (SDI) 51

04-284r1 (T10/1740-D) Revision 0 17 January 2005

own SDI function which includes a phy number. Task management functions are different beasts.

6.17.2 Security

The driver shall return the loctriHeader.ReturnCode field set to SDI_SECURITY_VIOLATION if the security
level is not FULL.

6.17.3 Input
This function accepts a SDI_SSP_TASK_IU_BUFFER data structure containing the following fields:

a) loctlHeader: see the IOCTL_HDR definition in 4.2.3, 4.3.2, and 4.4.4;

b) Parameters.bHostindex: Specifies the enumerated index of the driver instance (for example, the n
value in “SCSIn” under Windows). An FFh indicates the value is invalid;

c) Parameters.bPathld: Specifies the path (i.e., bus or port) identifier of the device;

d) Parameters.bTargetld: Specifies the target identifier of the device;

e) Parameters.bLun: Specifies the logical unit number of the device;

f) Parameters.uFlags: Specifies one or more of the following:

A) SDI_TASK_IU: When set, the Parameters.uTagOfTaskToBeManaged and
Parameters.bTaskManagementFunction fields contain the information to be provided in a TASK
frame. If set, the SDI_ HARD RESET SEQUENCE shall not be set;

B) SDI_HARD_RESET_SEQUENCE: When set, the driver shall issue a hard reset sequence to the
OS specific platform address. If the device is directly attached, the HBA does this; if the device is
attached to an expander, the driver sends an SMP PHY CONTROL function to that expander
requesting a HARD_RESET phy operation. There should no delay inserted by the driver after
issuing the hard reset sequence (i.e., it should not wait for the sequence to complete). If set, the
SDI_TASK_IU shall not be set;

C) SDI_SUPPRESS_RESULT: Optional flag when set, the OS low-level driver shall suppress
reporting the task management event to the upper level driver;

g) Parameters.uTagOfTaskToBeManaged: Specifies the tag of the task to be managed. If the task
management function does not use tag value, then this field shall be set to zero;

Editor’s Note 55: Some TMFs don't care about the LUN (formerly TARGET RESET; upcoming |_T
NEXUS RESET). Need to require this be passed in as 0 or just make it a don’t care?

h) Parameters.bTaskManagementFunction: Specifies the contents of the TASK MANAGEMENT FUNCTION
field of the TASK frame (see SAS). This should be set to one of the following:
A) SDI_SSP_ABORT_TASK;
B) SDI_SSP_ABORT_TASK_SET;
C) SDI_SSP_CLEAR_TASK_SET,
D) SDI_SSP_LOGICAL_UNIT_RESET;
E) SDI_SSP_CLEAR_ACA; or
F) SDI_SSP_QUERY_TASK;
i) Parameters.ulnformation: Specifies application-specific information about why this task management
function is being sent. May be set to one of the following:
A) SDI_SSP_TEST: Specifies that the task management request was sent as part of a general test
procedure;
B) SDI_SSP_EXCEEDED: Specifies that the task management request was sent to terminate an
outstanding command that has exceeded a time limit;
C) SDI_SSP_DEMAND: Specifies that the task management request was sent on demand from an
application; or
D) SDI_SSP_TRIGGER: Specifies that the task management request is being used as a trigger
event by an application;

and

52 Working Draft Serial Attached SCSI Driver Interface

17 January 2005 04-284r1 (T10/1740-D) Revision 0

)

Status: This field shall be set to 0.

6.17.4 Output
This function shall return a SDI_SSP_TASK_IU_BUFFER data structure with the following fields:

a)
b)
C)
d)
e)
f)

)
h)
i)

)

K)

1)

m)

n)

0)

loctiHeader.ReturnCode: Return codes are defined in 5.1;

Parameters.bHostIndex: Same as input;

Parameters.bPathld: Same as input;

Parameters.bTargetld: Same as input;

Parameters.bLun: Same as input;

Parameters.uFlags: Same as input;

Parameters.uTagOfTaskToBeManaged: Same as input;

Parameters.bTaskManagementFunction. Same as input;

Parameters.ulnformation: Same as input;

Status: Contains the SSP status structure for the SSP command;

Status.bConnectionStatus: Indicates the results of the connection request. See the
Status.bConnectionStatus field in the SDI_SMP_PASSTHROUGH command (see 6.11.4);
Status.bDataPresent: Indicates the contents of byte 10 of the RESPONSE information unit (i.e., the
DATAPRES field)(see SAS). This field should be set to one of the following:

A) SDI_SSP_NO_DATA_ PRESENT: Neither response data nor sense data is present;

B) SDI_SSP_RESPONSE_DATA_PRESENT: Response data is present;

C) SDI_SSP_SENSE_DATA_PRESENT: Sense data is present;

Status.bStatus: Indicates the SCSI status code;

Status.bResponselLength: Indicates the number of valid bytes in the Status.bResponse field in MSB
order; and

Status.bResponse: Contains the response data bytes in MSB order. The interpretation of the data
depends on the directive in the bDataPresent field.

6.17.5 Structure Definitions

The following data structures are used:

typedef struct _SDI_SSP_TASK IU {

__u8 bHostlIndex;

__u8 bPathld;

__u8 bTargetld;

__u8 bLun;

__u32 uFlags;

__u32 uTagOfTaskToBeManaged;
__u32 uReserved;

__u8 bTaskManagementFunction;
__u8 bReserved[7];

__u32 ulnformation;

} SDI_SSP_TASK_IU, *PSDI_SSP_TASK_1U;

typedef struct _SDI_SSP_TASK_ IU_BUFFER {

I0CTL_HEADER loctlHeader;
SDI_SSP_TASK_1U Parameters;
SD1_SSP_PASSTHROUGH_STATUS Status;

} SDI_SSP_TASK_IU_BUFFER, *PSDI_SSP_TASK_IU_BUFFER;

Editor’s Note 56: should this reuse SDI_SSP_PASSTHROUGH_STATUS or should it have its own
structure?

Working Draft Serial Attached SCSI Driver Interface (SDI) 53

04-284r1 (T10/1740-D) Revision 0 17 January 2005

6.18 CC_SDI_PHY_CONTROL

6.18.1 Behavior

The CC_SDI_PHY_CONTROL SDI function provides a method of determining and setting the phy
characteristics of the controller. The phy control features include: low level reset control, SATA port selection
control, phy signal control, and phy pattern generation. Since this function supports functions that are tightly
coupled with hardware implementations, full support for every phy signal control is not required. If the
hardware is capable of supporting a specific phy signal control then the associated function should be
supported.

6.18.2 Security

The driver shall return the loctriHeader.ReturnCode field set to SDI_SECURITY_VIOLATION if the security
level is not FULL.

6.18.3 Spinup behavior model

This SDI function supports controls that may affect the spinup behavior of devices. The programming model
used to define this function assumes that the device spinup window is global for the controller. This means
that when end devices are directly connected to the controller across the controller phys there is only one
window of opportunity to spinup a device. This prevents power supply overload conditions caused by multiple
devices spinning up at the same time. The model further assumes that the spinup window is enabled by a
token that is passed from phy to phy starting with phy 0 and wrapping around from the last phy back to phy 0.
The spinup rate defined in this SDI function is intended to specify the time the token wait before being passed
to the next phy in the loop. As an example if a controller has 4 phys and the spinup rate is set for 3 seconds,
then;

1) At 0 seconds:
A) Phy 0 outputs a NOTIFY(SPINUP) primitive for SAS or send a COMWAKE in response to a
COMINIT for SATA;
B) Phy 1 remains idle;
C) Phy 2 remains idle; and
D) Phy 3 remains idle;
2) At 3seconds:
A) Phy 0 remains idle;
B) Phy 1 output a NOTIFY(SPINUP) primitive for SAS or send a COMWAKE in response to a
COMINIT for SATA;
C) Phy 2 remains idle; and
D) Phy 3 remains idle;
3) At 6 seconds:
A) Phy 0 remains idle;
B) Phy 1 remains idle;
C) Phy 2 outputs a NOTIFY(SPINUP) primitive for SAS or send a COMWAKE in response to a
COMINIT for SATA; and
D) Phy 3, remains idle;
4) At 9 seconds:
A) Phy 0 remains idle;
B) Phy 1 remains idle;
C) Phy 2 remains idle; and
D) Phy 3 outputs a NOTIFY(SPINUP) primitive for SAS or send a COMWAKE in response to a
COMINIT for SATA;
5) At 12 seconds, repeat from step 1

From this example a 3 second rate translates into a minimum 9 second waiting period for all devices to be
given an opportunity to spinup.

A model that is not global in nature should also be supported by this SDI function, but may have a different
interaction between the spinup rate provided and the actual device ready times.

54 Working Draft Serial Attached SCSI Driver Interface

17 January 2005 04-284r1 (T10/1740-D) Revision 0

6.18.4 Phy signal control behavior model
The SDI function supports controls that may affect communication with end devices.

The driver should limit the possible range of controls to ensure excessive voltages are not generated by the
phy.

The programming model assumes that any signal level changes will occur when the phy is in an inactive state
and will be followed by either a link reset sequence or a hard link reset sequence.

The pattern generation behavior assumes that the controller receivers will ignore any input from the end
device (if any) and simply provide a constant stream of data based on the pattern requested.

If the controller has any active 10 outstanding at the time a pattern generation behavior is requested The
driver shall return the loctiHeader.ReturnCode field set to SDI_STATUS_FAILED and the requested function
shall not be performed.

6.18.5 Input
This function accepts a SDI_PHY_CONTROL_BUFFER data structure containing the following fields:

a) loctlHeader: see the IOCTL_HDR definition in 4.2.3, 4.3.2, and 4.4.4;
b) uFunction: Specifies the function to perform and may be one of the following:

A) SDI_PC_LINK_RESET: Specifies that the specified phy should perform a link reset sequence.
The phy identifier (see bPhyldentifier) specifies which phy should participate in this function.
Depending on the remaining parameters in the structure one of the following behaviors is
performed:

a) If the length of control (see bLengthOfControl), number of controls (see bNumberOfControls)
and control structure (see Control) properly define one or more phy controls, then after going
to the common mode state and prior to initiating the first COMRESET the phy control(s)
should be used to update the current phy settings;

b) If the length of control, number of controls, and control structure do not properly define one or
more phy controls, then the driver shall return the loctiHeader.ReturnCode field set to
SDI_STATUS_INVALID_PARAMETER and the link reset sequence shall not be performed;

c) If the length of control, number of controls and control structure are all O filled, then a link
reset sequence is performed without altering the current phy settings;

B) SDI_PC_HARD_RESET: Specifies that the specified phy should perform a hard link reset
sequence. The phy identifier specified by the bPhyldentifier field specifies which phy should
participate in this function. Depending on the remaining parameters in the structure one of the
following behaviors shall be performed:

a) If the length of the control structure specified by the usLengthOfControl field, the number of
controls specified by the bNumberOfControls field, and the control structure specified by the
Control field properly define one or more phy controls, then after going to the common mode
state and prior to initiating the first COMRESET the phy control(s) should be used to update
the current phy settings;

b) If the length of the control structure, the number of controls, and the control structure do not
properly define one or more phy controls, then the driver shall return the
loctiHeader.ReturnCode fieldset to SDI_ STATUS INVALID_PARAMETER and the link reset
sequence shall not be performed,;

c) Ifthe length of control, the number of controls, and the control structure are all O filled, then a
hard link reset sequence shall be performed without altering the current phy settings;

C) SDI_PC_PHY_DISABLE: Specifies that the specified phy should be disabled. The phy identifier
(see bPhyldentifier) specifies which phy should participate in this function. The length of control
(see bLengthOfControl) the number of controls (see bNumberOfControls) and control (see
Control) structures should all be 0 filled;

D) SDI_PC_GET_PHY_SETTINGS: Specifies that the necessary number of SDI_PHY_CONTROL
structures should be updated to reflect the current phy settings for each control type (see bType)
and rate (see bRate) supported. For example if the SAS controller supports SATA and SAS
devices at 1.5 Gbps and 3.0 Gbps link rates, then 4 SDI_PHY_CONTROL structures should be
returned. The order of the structures returned is not defined. The phy identifier (see

Working Draft Serial Attached SCSI Driver Interface (SDI) 55

04-284r1 (T10/1740-D) Revision 0 17 January 2005

56

c)
d)

h)

i)
)

k)

bPhyldentifier) specifies which phy should participate in this function. The length of control (see
bLengthOfControl) the number of controls (see bNumberOfControls) and control (see Control)
structures should all be 0 filled on input;

bPhyldentifier: Contains the phy identifier of the phy to control or query;

usLengthOfControl: Contains the length of the phy control structure. If the length is required for the

function and is incorrect then The driver shall return the loctiHeader.ReturnCode field set to

SDI_STATUS_INVALID_PARAMETER and the value shall be updated to reflect the correct length on

return;

bNumberOfControls: Contains the number of SDI_PHY_CONTROL elements in the Control array. If

the number of controls is required for the function and is incorrect then the driver shall return the

loctiHeader.ReturnCode field set to SDI_STATUS INVALID_PARAMETER and the value shall be
updated to reflect the correct number of controls on return;

bReserved: This field shall be set to 0;

uLinkFlags: Contains flags that define basic link behavior and may be one or more of the following:

A) SDI_PHY_ACTIVATE_CONTROL: specifies that the link behavior provided should be performed.
If this flag is not set, then the link behavior will not be modified during input or are not active during
output.;

B) SDI_PHY_UPDATE_SPINUP_RATE: specifies that the spinup rate (see uSpinupRate) should be
used to alter the repetition rate of NOTIFY(SPINUP) primitives for SAS or the release interval of
COMWAKE in response to a COMINIT for SATA. The notify spinup rate may be global in nature
across all phys, so the application must compensate for this by validating the resulting value by
using the SDI_PC_GET_PHY_SETTINGS after updating all phys. If this flag is not supported,
then the driver shall return the loctiHeader.ReturnCode field set to
SDI_STATUS_INVALID_PARAMETER and no change shall occur; or

C) SDI_PHY_AUTO_COMWAKE: specifies that there is no release interval for COMWAKE in
response to a COMINIT for SATA. This means that a SATA drive will be released to spinup
immediately. If set in conjunction with SDI_PHY_UPDATE_SPINUP_RATE, then The driver shall
return the loctiHeader.ReturnCode field set to SDI_STATUS INVALID_PARAMETER and no
change shall occur. If this flag is not supported, then the driver shall return the
loctiHeader.ReturnCode field set to SDI_STATUS_INVALID_PARAMETER and no change shall
occur;

bSpinupRate: Contains the repetition rate at which the NOTIFY(SPINUP) primitive is generated on

this phy for SAS devices or the release interval of COMWAKE in response to a COMINIT for SATA..

The value is in seconds. A 0 value indicates that the NOTIFY(SPINUP) primitive generation is

disabled for SAS or COMWAKE is not released in response to a COMINIT for SATA. The result is that

a device should stay in the non-spinup state indefinitely. If the value is out of range, then the driver

shall return the loctlHeader.ReturnCode field set to SDI_STATUS_INVALID PARAMETER and the

maximum value of the spinup rate shall be set;

bLinkReserved: This field shall be set to O;

uVendorUnique[8]: Contains vendor unique information. Vendor is responsible for positively detecting

the validity of the data provided. Each dword shall be initialized to 0 when not providing vendor unique

information;

Control[]: The elements of this SDI_PHY_CONTROL data structure contain phy signal controls. If the

control structure is required for the function and is incorrect then the driver shall return the

loctiHeader.ReturnCode field set to SDI_ STATUS INVALID_ PARAMETER;

Control[].bType: Specifies the device type of the control and may be one of the following:

A) SDI_SATA: Specifies that the phy settings should be applied when a SATA device is attached to
the phy; or

B) SDI_SAS: Specifies that the phy settings should be applied when a SAS device is attached to the
phy;

Control[].bRate: Contains the link rate for which the setting or control applies and may be one of the

following:

A) SDI_LINK_RATE_UNKNOWN: Specifies that the structure content is unknown on input or invalid
on output;

B) SDI_LINK_RATE_1 5 GPBS: Specifies that the structure content is valid for a 1.5 Gbps link rate;

C) SDI_LINK_RATE_3_0_GBPS: Specifies that the structure content is valid for a 3.0 Gbps link rate;

Control[].bReserved: This field shall be set to O;

Working Draft Serial Attached SCSI Driver Interface

17 January 2005 04-284r1 (T10/1740-D) Revision 0

0)

p)

a)

r

s)

B
u)

y)
z)

Control[].uVendorUnique: Contains vendor unique information. Vendor is responsible for positively
detecting the validity of the data provided. Should be initialized to 0 when not providing vendor unique
information;

Control[].uTransmitterFlags: Contains flags that define the transmitter characteristics or link

characteristics. The value may be one of the following:

A) SDI_PHY_PREEMPHASIS DISABLED: Specifies that preemphasis on the transmitter should be
disabled during input or is disabled during output;

Control[].bTransmitterAmplitude: Specifies the step offset from the default setting that the transmitter

shall use to establish the transmitter driver voltage amplitude. The field value should be treated as a

2's-complement signed value that can range from —128 to +127. If the step requested is out of range

of the transmitter capability, the driver shall return the loctiHeader.ReturnCode field set to

SDI_STATUS_INVALID_PARAMETER. A value of 0 should always be accepted, even if the control is

not supported;

Control[].bTransmitterPreemphasis: Specifies the step offset from the default setting that the

transmitter shall use to establish the transmitter driver voltage preemphasis. The field value should be

treated as a 2's-complement signed value that can range from —128 to +127. If the step requested is
out of range of the transmitter capability, the driver shall return the loctiHeader.ReturnCode field set to

SDI_STATUS_INVALID_PARAMETER. A value of 0 should always be accepted, even if the control is

not supported;

Control[].bTransmitterSlewRate: Specifies the step offset from the default setting that the transmitter

shall use to establish the transmitter driver voltage slew rate. The field value should be treated as a

2's-complement signed value that can range from —128 to +127. If the step requested is out of range

of the transmitter capability, the driver shall return the loctiHeader.ReturnCode field set to

SDI_STATUS_INVALID_PARAMETER. A value of 0 should always be accepted, even if the control is

not supported;

Control[].bTransmitterReserved: This field shall be set to 0O;

Control[].bTransmitterVendorUnique: Specifies vendor unique information. Vendor is responsible for

positively detecting the validity of the data provided. Should be initialized to O when not providing

vendor unique information;

Control[].bReceiverFlags: Specifies flags that define the receiver characteristics or link

characteristics. The value may be one or more of the following:

A) SDI_PHY_ACTIVATE_CONTROL: Specifies that the receiver controls provided should be
updated to the current settings. If this flag is not set, then the receiver controls will not be modified
during input or are not active during output; or

B) SDI_PHY_EQUALIZATION_DISABLED: Specifies that any receiver equalization should be
disabled during input or is disabled during output;

Control[].bReceiverThreshold: Contains the step offset from the default setting that the receiver shall

use to establish the receiver signal detection threshold. The field value should be treated as a

2's-complement signed value that can range from —128 to +127. If the step requested is out of range

of the receiver capability, the driver shall return the loctiHeader.ReturnCode field set to

SDI_STATUS_INVALID_PARAMETER. A value of 0 should always be accepted, even if the control is

not supported;

Control[].bReceiverEqualizationGain: Specifies the step offset from the default setting that the

receiver shall use to establish the receiver signal equalization gain. The field value should be treated

as a 2's-complement signed value that can range from —128 to +127. If the step requested is out of
range of the receiver capability, the driver shall return the loctiHeader.ReturnCode field set to

SDI_STATUS_INVALID_PARAMETER. A value of 0 should always be accepted, even if the control is

not supported;

Control[].bReceiverReserved: This field shall be set to O;

Control[].bReceiverVendorUnique: Specifies vendor unique information. Vendor is responsible for

positively detecting the validity of the data provided. Should be initialized to O when not providing

vendor unique information;

aa) Control[].uPatternFlags: Specifies flags that define whether the phy should enter a pattern generation

mode. The value may be one or more of the following:

A) SDI_PHY_ACTIVATE_CONTROL: Specifies that the pattern generation mode should be
activated. If this flag is not set, then the pattern generation mode is not activited during input or is
not active during output. If this flag is set, then the phy will remain in pattern generation mode until

Working Draft Serial Attached SCSI Driver Interface (SDI) 57

04-284r1 (T10/1740-D) Revision 0 17 January 2005

another link reset is initiated. Only a single phy control may have this bit set at any one time. If
multiple phy controls have this bit set, the driver shall return the loctiHeader.ReturnCode field set
to SDI_STATUS_ INVALID_PARAMETER and pattern generation shall be aborted;

B) SDI_PHY_FIXED_PATTERN: Specifies that the fixed pattern should be used in pattern
generation. This bit may not be used in conjunction with the SDI_PHY_USER_PATTERN bit. If
both are set to one, the driver shall return the loctiHeader.ReturnCode field set to
SDI_STATUS_INVALID_PARAMETER and pattern generation shall be aborted;

C) SDI_PHY_USER_PATTERN: Specifies that the user pattern should be used in pattern
generation. This bit may not be used in conjunction with the SDI_PHY_FIXED_PATTERN bit. If
both are set then the driver shall return the loctiHeader.ReturnCode field set to
SDI_STATUS_INVALID_PARAMETER and pattern generation shall be aborted;

D) SDI_PHY_DISABLE_SCRAMBLING: Specifies that the phy should disable data scrambling
during input or data scrambling is disabled during output;

E) SDI_PHY_DISABLE_ALIGN: Specifies that the phy should disable ALIGN and/or NOTIFY
insertion during input, or ALIGN and/or NOTIFY insertion is disabled during output; or

F) SDI_PHY DISABLE_SSC: Specifies that the phy should disable spread spectrum clocking during
input or spread spectrum clocking is disabled during output;

ab) Control[].bFixedPattern: Contains the SAS or SATA specification pattern and may be one of the
following:

A) SDI_PHY_CJPAT: specifies that the pattern used should be the CJPAT as defined in the SATA
and/or SAS specification; or

B) SDI_PHY_ALIGN: specifies that the pattern used should be the ALIGN[1] repeated value;

ac) Control[].bUserPatternLength: Contains the length in bytes of the user pattern buffer (see
bUserPattern). The value must be less than the number of elements in the user pattern buffer;

ad) Control[].UserPatternBuffer[]: Contains an array of SDI_CHARACTER elements that define the user
data pattern. If the user pattern length and SDI_PHY_USER_PATTERN bit are not set then this array
should be 0 filled. If the type flags (see bTypeFlags) for the user pattern are not supported or the user
pattern is not supported, the driver shall return the loctiHeader.ReturnCode field set to

SDI_STATUS_INVALID_PARAMETER and pattern generation shall be aborted;

ae) Control[].UserPatternBuffer[].bTypeFlags: Contains flags that define the type of character to generate
and may be one or more of the following:

A) SDI_PHY_POSITIVE_DISPARITY: Specifies that the character should have a running disparity
that is positive;

B) SDI_PHY_NEGATIVE_DISPARITY: Specifies that the character should have a running disparity
that is negative; or

C) SDI_PHY_CONTROL_CHARACTER: Specifies that the character should be encoded as a
control character;

and

af) Control[].UserPatternBuffer[].bValue: Specifies the base value used to generate the character.

6.18.6 Output
This function shall return a SDI_PHY_CONTROL_BUFFER data structure with the following fields:

58

a) loctiHeader: see the IOCTL_HDR definition in 4.2.3, 4.3.2, and 4.4.4;
b) uFunction: Same as input;

c) bPhyldentifier: Same as input;

d) bLengthOfControl: See input definition;

e) bNumberOfControls: See input definition;

f) uVendorUnique: Contains vendor unique information;

g) Control[].bType: See input definition;

h) Control[].bRate: See input definition;

i) Control[].uVendorUnique: Contains vendor unique information;
j) Control[].uTransmitterFlags: See input definition;

k) Control[].bTransmitterAmplitude: See input definition;

[) Control[].bTransmitterPreemphasis: See input definition;

m) Control[].bTransmitterSlewRate: See input definition;

Working Draft Serial Attached SCSI Driver Interface

17 January 2005 04-284r1 (T10/1740-D) Revision 0

n) Control[].bTransmitterReserved: Same as input;

0) Control[].bTransmitterVendorUnique: Contains vendor unique information;
p) Control[].bReceiverFlags: See input definition;

g) Control[].bReceiverThreshold: See input definition;

r) Control[].bReceiverEqualizationGain: See input definition;

s) Control[].bReceiverReserved: Same as input;

t) Control[].bReceiverVendorUnique: Contains vendor unique information;
u) Control[].uPatternFlags: See input definition;

v) Control[].bFixedPattern: See input definition;

w) Control[].bUserPatternLength: See input definition; and

x) Control[].bUserPatternBuffer: See input definition.

6.18.7 Structure Definitions
The following data structures are used:

typedef struct _SDI_CHARACTER {
__u8 bTypeFlags;
__u8 bvValue;

} SDI_CHARACTER, *PSDI_CHARACTER;

typedef struct _SDI_PHY_CONTROL {
__u8 bType;
__u8 bRate;
__u8 bReserved[6];
__u32 uVendorUnique[8];
__u32 uTransmitterFlags;
__ 18 DbTransmitterAmplitude;
18 DbTransmitterPreemphasis;
18 DbTransmitterSlewRate;
18 DbTransmitterReserved[13];
__u8 bTransmitterVendorUnique[64];
__u32 uReceiverFlags;
18 DbReceiverThreshold;
__ 18 DbReceiverEqualizationGain;
__ 18 DbReceiverReserved[14];
__u8 bReceiverVendorUnique[64];
__u32 uPatternFlags;
__u8 DbFixedPattern;
__u8 bUserPatternLength;
__u8 bPatternReserved[6];
SD1___SAS CHARACTER UserPatternBuffer[16];

} SDI_PHY_CONTROL, *PSDI_PHY_CONTROL;

typedef struct _SDI_PHY_CONTROL_BUFFER {
I0CTL_HEADER loctlHeader;
__u32 uFunction;
__u8 DbPhyldentifier;
__ul6 usLengthOfControls;
__u8 bNumberOfControls;
__u8 bReserved[4];
__u32 uLinkFlags;
___u8 bSpinupRate;
__u8 bLinkReserved[7];
__u32 uVendorUnique[8];
SDI_PHY_CONTROL Control[1];
} SDI_PHY_CONTROL_BUFFER, *PSDI_PHY_CONTROL_BUFFER;

Working Draft Serial Attached SCSI Driver Interface (SDI) 59

04-284r1 (T10/1740-D) Revision 0 17 January 2005

6.19 CC_SDI_GET_CONNECTOR_INFO

6.19.1 Behavior

The CC_SDI_GET_CONNECTOR_INFO SDI function provides a method for obtaining the connector
information for a controller.

6.19.2 Input

This function accepts a SDI_GET_CONNECTOR_INFO_BUFFER data structure containing the following
fields:

a) loctlHeader: see the IOCTL_HDR definition in 4.2.3, 4.3.2, and 4.4.4; and
b) Reference[0 - 31]: Each field shall be set to 0.

6.19.3 Output
This function shall return a SDI_GET_CONNECTOR_INFO_BUFFER data structure with the following fields:

a) loctlIHeader.ReturnCode: Return codes are defined in 5.1;
b) Reference[0 - 31]: Contains the reference structure for up to 32 phys. The number of valid reference
structures corresponds to the number of phys defined in the CC_SDI_GET_PHY_INFO function;
¢) Reference.bConnector[16]: Contains a null terminated ASCII string that is the reference designator
for the component that provides physical connectivity for the phy;
d) Reference.uPinout: Contains the pinout identifier for the phy in the connector component and shall be
one or move of the following:
A) SDI_CON_UNKNOWN: indicates that the phy pinout is unknown;
B) SDI_CON_SFF _8482: indicates that the phy is pinned out as a single lane SFF-8482 connector;
C) SDI_CON_SFF_8470 LANE_1: indicates that the phy is attached to physical link 0 in a SAS
external connector (i.e., an SFF-8470 connector);
D) SDI_CON_SFF_8470_LANE_2: indicates that the phy is attached to physical link 1 in a SAS
external connector;
E) SDI_CON_SFF 8470 LANE_3: indicates that the phy is attached to physical link 2 in a SAS
external connector;
F) SDI_CON_SFF 8470 _LANE_4: indicates that the phy is attached to physical link 3 in a SAS
external connector;
G) SDI_CON_SFF_8484 LANE_1: indicates that the phy is pinned out as lane 1 in a SAS internal
wide connector (i.e., an SFF-8484 connector);
H) SDI_CON_SFF 8484 LANE_2: indicates that the phy is pinned out as lane 2 in a SAS internal
wide connector;
) SDI_CON_SFF_8484 LANE_3: indicates that the phy is pinned out as lane 3 in a SAS internal
wide connector; or
J) SDI_CON_SFF_8484 L ANE_4: indicates that the phy is pinned out as lane 4 in a SAS internal
wide connector;
e) Reference.bLocation: Contains the location identifier for the connector and will be one or more of the
following:
A) SDI_CON_UNKNOWN: indicates that the connector location is unknown;
B) SDI_CON_INTERNAL: indicates that the connector is positioned for connecting to devices
internal to a system;
C) SDI_CON_EXTERNAL: indicates that the connector is positioned for connecting to devices
external to a system;
D) SDI_CON_SWITCHABLE: indicates that the phy is switchable between an internal or external
connector;
E) SDI_CON_AUTO: indicates that the phy will auto detect activity on an internal or external
connector and switch;
F) SDI_CON_NOT_PRESENT: indicates that the phy is not physically present, as is the case with a
virtual phy; or
G) SDI_CON_NOT_CONNECTED: indicates that the phy is not physically connected to a connector
of any type;

60 Working Draft Serial Attached SCSI Driver Interface

17 January 2005

and

f) Reference.bReserved: This field shall be set to 0.

6.19.4 Structure Definitions
The following data structures are used:

typedef struct _SDI_GET_CONNECTOR_INFO {
__u32 uPinout;
__u8 bConnector[16];
__u8 blLocation;
__u8 bReserved[15];
} SDI_CONNECTOR_INFO, *PSDI_CONNECTOR_INFO;

typedef struct _SDI_CONNECTOR_INFO_BUFFER {
I0CTL_HEADER loctlHeader;
SD1_CONNECTOR_INFO Reference[32];

} SDI_CONNECTOR_INFO_BUFFER, *PSDI_CONNECTOR_INFO_BUFFER;

Working Draft Serial Attached SCSI Driver Interface (SDI)

04-284r1 (T10/1740-D) Revision 0

61

04-284r1 (T10/1740-D) Revision 0 17 January 2005

Annex A
(normative)

Header file

A.1 Header file

This is the C language header file defining all the SDI data structures and constants.

Editor's Note 57: header file lacks NetWare content

Editor’s Note 58: need a separate header file for each OS. Linux kernel won't accept Windows &
Netware overhead even ifdef'd out.

Editor’'s Note 59: check use of decimal vs hex numbers in constants

Editor’s Note 60: drop typedef struct and just use struct _SDI_XYZ everywhere

62

/**

Module Name:

SDI.H

Abstract:

This file contains constants and data structure definitions used by
drivers

that support the SAS Driver Interface specification for

SAS or SATA in either the Windows or Linux.

This should be considered as a reference implementation only. Changes may
be necessary to accommodate a specific build environment or target OS.

**/

#ifndef _SDI _H_
#define _SDI _H_

// SDI Specification Revision, the intent is that all versions of the
// specification will be backward compatible after the 1.00 release.
// Major revision number, corresponds to xxxx. of SDI specification
// Minor revision number, corresponds to .xxxx of SDI specification
#define SDI_MAJOR_REVISION O

#define SDI_MINOR_REVISION 82

Working Draft Serial Attached SCSI Driver Interface

17 January 2005

04-284r1 (T10/1740-D) Revision 0

Y Selaiaiaiaiaiaiaisiaiaiaiaiaiaiaiaitiaiaiaiaiaiaiaisiaiaiaiaiaiaiaiaiaialaiaiaiaiaiaiaiaiaiaiaiaialel /
/* TARGET OS LINUX SPECIFIC CODE */
Y Salaiaiaiaiaiaiaisiaiaiaiaiaiaiaiaisiaiaiaiaiaiaiaisiaiaiaiaiaiaiaiaioiaiaiaiaiaiaiaiaiaiaiaiaiaialel /
#ifdef _linux
// Linux base types
#include <linux/types.h>
// pack definition
#define SDI_BEGIN_PACK(x) pack(x)
#define SDI_END_ PACK pack(
// 10CTL Control Codes
// used as the ioctl() request parameter
// Control Codes requiring SDI_ALL_SIGNATURE
#define CC_SDI_GET_DRIVER_INFO 0xCC770001
#define CC_SDI_GET_CNTLR_CONFIG 0OxCC770002
#define CC_SDI_GET_CNTLR_STATUS 0xCC770003
#define CC_SDI_FIRMWARE_DOWNLOAD 0xCC770004
// Control Codes requiring SDI_RAID_SIGNATURE
#define CC_SDI_GET_RAID_INFO 0xCC77000A
#define CC_SDI_GET_RAID_CONFIG 0xCC77000B
// Control Codes requiring SDI_SIGNATURE
#define CC_SDI_GET_PHY_INFO 0xCC770014
#define CC_SDI_SET_PHY_INFO 0xCC770015
#define CC_SDI_GET_LINK_ERRORS 0xCC770016
#define CC_SDI_SMP_PASSTHROUGH 0xCC770017
#define CC_SDI_SSP_PASSTHROUGH 0xCC770018
#define CC_SDI_STP_PASSTHROUGH 0xCC770019
#define CC_SDI_GET_SATA_SIGNATURE 0xCC770020
#define CC_SDI_GET_SCSI_ADDRESS 0xCC770021
#define CC_SDI_GET_DEVICE_ADDRESS 0xCC770022
#define CC_SDI_TASK_MANAGEMENT 0xCC770023
#define CC_SDI_GET_CONNECTOR_INFO 0OxCC770024
// Control Codes requiring SDI_PHY_ SIGNATURE
#define CC_SDI_PHY_CONTROL 0xCC77003C
#pragma SDI_BEGIN_PACK(8)
// 10CTL_HEADER
typedef struct _I0CTL_HEADER {
__u32 10ControllerNumber;// FIXFIX add a space

__u32 Length;
__u32 ReturnCode;
_u32 Timeout;
__ul6 Direction;
} IOCTL_HEADER, *PIOCTL_HEADER;
#pragma SDI_END_PACK

Working Draft Serial Attached SCSI Driver Interface (SDI) 63

04-284r1 (T10/1740-D) Revision 0

64

#endif # linux

17 January 2005

#ifdef _WIN32

// windows IOCTL definitions
#ifndef NTDDSCSIH_
#include <ntddscsi.h>
#endi

// pack definition

#iT defined _MSC_VER

#define SDI_BEGIN_PACK(x) pack(push,x)
#define SDI_END_ PACK pack(pop)

#elif defined _ BORLANDC
#define SDI_BEGIN_PACK(x) op
#define SDI_END PACK op

#else

#error “SDISAS.H - Must externally define a pack compiler designhator.

#endif
// base types

#define __u8 unsigned char
#define _ u32 unsigned long
#define _ ul6 unsigned short

#define __i8 char

// 10CTL Control Codes
// (loctlHeader._ControlCode)

// Control Codes requiring SDI_ALL
#define CC_SDI_GET_DRIVER_INFO
#define CC_SDI_GET_CNTLR_CONFIG
#define CC_SDI_GET_CNTLR_STATUS
#define CC_SDI_FIRMWARE_DOWNLOAD

// Control Codes requiring SDI_RAI
#define CC_SDI_GET_RAID_INFO
#define CC_SDI_GET_RAID_CONFIG

// Control Codes requiring SDI_SIG
#define CC_SDI_GET_PHY_INFO
#define CC_SDI_SET_PHY_INFO
#define CC_SDI_GET_LINK_ERRORS
#define CC_SDI_SMP_PASSTHROUGH
#define CC_SDI_SSP_PASSTHROUGH
#define CC_SDI_STP_PASSTHROUGH
#define CC_SDI_GET_SATA_SIGNATURE
#define CC_SDI_GET_SCSI_ADDRESS
#define CC_SDI_GET_DEVICE_ADDRESS

tion -a##x
tion -a.

_SIGNATURE
1
2
3
4

D_SIGNATURE
10
11

NATURE
20
21
22
23
24
25
26
27
28

Working Draft Serial Attached SCSI Driver Interface

17 January 2005 04-284r1 (T10/1740-D) Revision 0

#define CC_SDI_TASK_MANAGEMENT 29
#define CC_SDI_GET_CONNECTOR_INFO 30

// Control Codes requiring SDI_PHY_ SIGNATURE
#define CC_SDI_PHY_CONTROL 60

#define 10CTL_HEADER SRB_10_CONTROL
#define PIOCTL_HEADER PSRB_10_CONTROL

#endif # WIN32

A A A KA A KA AR /
/* TARGET 0S NOT DEFINED ERROR */
A R KA A KA A A A /

#i1T (1_WIN32 && !_linux)
#error “Unknown target 0S.”
#endif

/***/

/* 0S INDEPENDENT CODE */

/***/

[/* * * * * %k x * % % Class Independent IOCTL Constants * * * * * * * % x x/

// Return codes for all I0CTL’s regardless of class
// (loctlHeader_ReturnCode)

#define SDI_STATUS_SUCCESS

#define SDI_STATUS_FAILED

#define SDI_STATUS_BAD_CNTL_CODE
#define SDI_STATUS_INVALID_ PARAMETER
#define SDI_STATUS_WRITE_ATTEMPTED

A WNPFO

// Signature value
// (loctlHeader.Signature)

#define SDI_ALL_SIGNATURE “SDIALL”

// Timeout value default of 60 seconds
// (loctlHeader.Timeout)

#define SDI_ALL_TIMEOUT 60

// Direction values for data flow on this I0CTL
// (loctlHeader.Direction, Linux only)

#define SDI_DATA_READ 0

#define SDI_DATA WRITE 1

// 1/0 Bus Types

// 1SA and EISA bus types are not supported

// (bloBusType)

#define SDI_BUS_TYPE_PCI 3
#define SDI_BUS_TYPE_PCMCIA 4

// Controller Status

Working Draft Serial Attached SCSI Driver Interface (SDI) 65

04-284r1 (T10/1740-D) Revision 0

66

// (uStatus)

#define SDI_CNTLR_STATUS_GOO
#define SDI_CNTLR_STATUS_FAI
#define SDI_CNTLR_STATUS_OFF
#define SDI_CNTLR_STATUS_POW

// Offline Status Reason
// (uOfflineReason)

#define SDI_OFFLINE_REASON_N

#define SDI_OFFLINE_REASON_INITIALIZING

D 1
LED 2
LINE 3
EROFF 4

0_REASON

0]
1

#define SDI_OFFLINE_REASON_BACKSIDE_BUS_DEGRADED 2
#define SDI_OFFLINE_REASON_BACKSIDE_BUS_FAILURE 3

// Controller Class
// (bControllerClass)

#define SDI_CNTLR_CLASS_ HBA

// Controller Flag bits
// (uControllerFlags)

#define SDI_CNTLR_SAS_HBA
#define SDI_CNTLR_SAS_RAID
#define SDI_CNTLR_SATA_HBA

5

0x00000001
0x00000002
0x00000004

#define SDI_CNTLR_SATA_RAID 0x00000008

// Tor firmware download
#define SDI_CNTLR_FWD_SUPPORT
#define SDI_CNTLR_FWD_ONLINE
#define SDI_CNTLR_FWD SRESET
#define SDI_CNTLR_FWD HRESET
#define SDI_CNTLR_FWD_RROM

// Download Flag bits

// (ubownloadFlags)
#define SDI_FWD_VALIDATE
#define SDI_FWD_SOFT_RESET
#define SDI_FWD_HARD_RESET

// Firmware Download Status
// (usStatus)

#define SDI_FWD_ SUCCESS
#define SDI_FWD_FAILED
#define SDI_FWD_USING_RROM
#define SDI_FWD_REJECT
#define SDI_FWD_DOWNREV

// Firmware Download Severity
// (usSeverity>

#define SDI_FWD_INFORMATION
#define SDI_FWD_WARNING
#define SDI_FWD_ERROR

#define SDI_FWD_FATAL

/* * x x Kk x % % % % GAS RAID Class I0CTL Constants

0x00010000
0x00020000
0x00040000
0x00080000
0x00100000

0x00000001
0x00000002
0x00000004

A WNPEFO

WNPEFkO

17 January 2005

*********/

Working Draft Serial Attached SCSI Driver Interface

17 January 2005 04-284r1 (T10/1740-D) Revision 0

// Return codes for the RAID IOCTL’s regardless of class
// (loctlHeader.ControlCode)

#define SDI_RAID_SET_OUT_OF RANGE 1000

// Signature value
// (loctlHeader.Signature)

#define SDI_RAID_SIGNATURE “SDIARY”

// Timeout value default of 60 seconds
// (loctlHeader.Timeout)

#define SDI_RAID_TIMEOUT 60

// RAID Types

// (bRaidType)

#define SDI_RAID_TYPE_NONE
#define SDI_RAID_TYPE_O
#define SDI_RAID_TYPE_1
#define SDI_RAID_TYPE_10
#define SDI_RAID_TYPE_5
#define SDI_RAID_TYPE_15
#define SDI_RAID_TYPE_6
#define SDI_RAID_TYPE_OTHER

NOOAWNEO

[6)}
a1

// RAID Status

// (bStatus)

#define SDI_RAID_SET STATUS OK
#define SDI_RAID_SET STATUS DEGRADED
#define SDI_RAID _SET STATUS REBUILDING
#define SDI_RAID_SET STATUS FAILED

WNPEFkO

// RAID Drive Status

// (bDriveStatus)

#define SDI_DRIVE_STATUS OK
#define SDI_DRIVE_STATUS REBUILDING
#define SDI_DRIVE_STATUS FAILED
#define SDI_DRIVE_STATUS DEGRADED

WNPEFO

// RAID Drive Usage

// (bDriveUsage)

#define SDI_DRIVE_CONFIG_NOT_USED O
#define SDI_DRIVE_CONFIG_MEMBER 1
#define SDI_DRIVE_CONFIG_SPARE 2

/* * Kk x Kk x %k k% x GAS HBA Class IOCTL Constants * * * * * * * *x % x/

// Return codes for SAS I0CTL’s
// (loctlHeader_ReturnCode)

#define SDI_PHY_INFO_CHANGED SDI_STATUS_SUCCESS
#define SDI_PHY_INFO_NOT_CHANGEABLE 2000
#define SDI_LINK_RATE_OUT_OF RANGE 2001
#define SDI_PHY_DOES_NOT_EXIST 2002
#define SDI_PHY_DOES_NOT_MATCH_PORT 2003

Working Draft Serial Attached SCSI Driver Interface (SDI) 67

04-284r1 (T10/1740-D) Revision 0

68

#define SDI_PHY_CANNOT_BE_SELECTED
#define SDI_SELECT_PHY_OR_PORT
#define SDI_PORT_DOES_NOT_EXIST
#define SDI_PORT_CANNOT_ BE_SELECTED
#define SDI_CONNECTION_FAILED

#define SDI_NO_SATA_DEVICE
#define SDI_NO_SATA_SIGNATURE
#define SDI_SCSI_EMULATION
#define SDI_NOT_AN_END_DEVICE
#define SDI_NO_SCSI_ADDRESS
#define SDI_NO_DEVICE_ADDRESS

// Signature value
// (loctlHeader.Signature)
#define SDI_SIGNATURE “SDISAS”

// Timeout value default of 60 second
// (loctlHeader.Timeout)

#define SDI_TIMEOUT 60

// Device types

// (bDeviceType)

#define SDI_PHY_UNUSED

#define SDI_NO_DEVICE_ATTACHED
#define SDI_END_DEVICE

#define SDI_EDGE_EXPANDER_DEVICE
#define SDI_FANOUT_EXPANDER_DEVICE

// Protocol options

// (binitiatorPortProtocol, bTargetPortProtocol)

#define SDI_PROTOCOL_SATA 0x01
#define SDI_PROTOCOL_SMP 0x02
#define SDI_PROTOCOL_STP 0x04
#define SDI_PROTOCOL_SSP 0x08

// Negotiated and hardware link rates

// (bNegotiatedLinkRate, bMinimumLinkRate, bMaximumLinkRate)

#define SDI_LINK_RATE_UNKNOWN 0x00
#define SDI_PHY_DISABLED 0x01
#define SDI_LINK_RATE_FAILED 0x02
#define SDI_SATA_SPINUP_HOLD Ox03
#define SDI_SATA_PORT_SELECTOR 0x04
#define SDI_LINK_RATE_1_5 GBPS 0x08
#define SDI_LINK_RATE_3 0 _GBPS 0x09

#define SDI_LINK_VIRTUAL 0x10

// Discover state

// (bAutoDiscover)

#define SDI_DISCOVER_NOT_SUPPORTED
#define SDI_DISCOVER_NOT_STARTED
#define SDI_DISCOVER_IN_PROGRESS
#define SDI_DISCOVER_COMPLETE
#define SDI_DISCOVER_ERROR

// Programmed link rates

2004
2005
2006
2007
2008

2009
2010
2011
2012
2013
2014

S

0x00
0x00
0x10
0x20
0x30

0x00
0x01
0x02
0x03
0x04

17 January 2005

Working Draft Serial Attached SCSI Driver Interface

17 January 2005 04-284r1 (T10/1740-D) Revision 0

// (bMinimumLinkRate, bMaximumLinkRate)

// (bProgrammedMinimumLinkRate, bProgrammedMaximumLinkRate)
#define SDI_PROGRAMMED_L INK_RATE_UNCHANGED 0x00

#define SDI_PROGRAMMED_LINK_RATE_1 5 GBPS 0x08

#define SDI_PROGRAMMED_LINK_RATE_3_0_GBPS 0x09

// Link rate

// (bNegotiatedLinkRate in SDI_SET_PHY_INFO)
#define SDI_LINK_RATE_NEGOTIATE 0x00
#define SDI_LINK_RATE_PHY_DISABLED 0x01

// Signal class
// (bSignalClass in SDI_SET_PHY_INFO)

#define SDI_SIGNAL_CLASS_UNKNOWN 0x00
#define SDI_SIGNAL_CLASS_DIRECT 0x01
#define SDI_SIGNAL_CLASS_SERVER 0x02

#define SDI_SIGNAL_CLASS_ENCLOSURE 0x03

// Link error reset

// (bResetCounts)

#define SDI_LINK_ERROR_DONT_RESET COUNTS 0x00
#define SDI_LINK_ERROR_RESET COUNTS 0x01

// Phy identifier
// (bPhyldentifier)
#define SDI_USE_PORT_IDENTIFIER OxFF

// Port identifier
// (bPortldentifier)
#define SDI_IGNORE_PORT OxFF

// Programmed link rates

// (bConnectionRate)

#define SDI_LINK_RATE_NEGOTIATED 0x00
#define SDI_LINK RATE_1_5 GBPS 0x08
#define SDI_LINK_RATE_3_0_GBPS 0x09

// Connection status

// (bConnectionStatus)

#define SDI_OPEN_ACCEPT

#define SDI_OPEN_REJECT BAD DESTINATION
#define SDI_OPEN_REJECT RATE_NOT_SUPPORTED
#define SDI_OPEN _REJECT NO DESTINATION

#define SDI_OPEN_REJECT PATHWAY_ BLOCKED
#define SDI_OPEN_REJECT PROTOCOL_NOT_SUPPORTED
#define SDI_OPEN_REJECT RESERVE ABANDON
#define SDI_OPEN_REJECT RESERVE_ CONTINUE
#define SDI_OPEN_REJECT RESERVE INITIALIZE
#define SDI_OPEN_REJECT RESERVE_ STOP

#define SDI_OPEN_REJECT_ RETRY 10
#define SDI_OPEN_REJECT_ STP_RESOURCES BUSY 11
#define SDI_OPEN_REJECT WRONG_DESTINATION 12

©Co~NOOUDMWNEO

// SSP Flags

// (uFlags)

#define SDI_SSP_READ 0x00000001
#define SDI_SSP_WRITE 0x00000002

Working Draft Serial Attached SCSI Driver Interface (SDI) 69

04-284r1 (T10/1740-D) Revision 0

70

#define

#define
#define
#define
#define

SDI_SSP_UNSPECIFIED

0x00000004

SDI_SSP_TASK_ATTRIBUTE_SIMPLE

SDI_SSP_TASK_ATTRIBUTE_HEAD_OF_QUEUE

SDI_SSP_TASK_ATTRIBUTE_ORDERED
SDI_SSP_TASK_ATTRIBUTE_ACA

// SSP Data present
// (bDataPresent)

#define

#define SDI_SSP_RESPONSE_DATA_PRESENT
#define SDI_SSP_SENSE_DATA_PRESENT

SDI_SSP_NO_DATA_PRESENT

// STP Flags
// (uFlags)

#define
#define
#define
#define
#define
#define
#define
#define
#define

// Task

SDI_STP_READ
SDI_STP_WRITE
SDI_STP_UNSPECIFIED
SDI_STP_PI0O
SDI_STP_DMA
SDI_STP_PACKET
SDI_STP_DMA_QUEUED
SDI_STP_EXECUTE_DIAG
SDI_STP_RESET_DEVICE

Management Flags

// (uFlags)

#define
#define
#define

// Task

SDI_TASK_1U
SDI_HARD_RESET_SEQUENCE
SDI_SUPPRESS_RESULT

Management Functions

// (bTaskManagement)

#define
#define
#define
#define
#define
#define

// Task

SDI_SSP_ABORT_TASK
SDI_SSP_ABORT_TASK_SET
SDI_SSP_CLEAR_TASK_SET
SDI_SSP_LOGICAL_UNIT_RE
SDI_SSP_CLEAR_ACA
SDI_SSP_QUERY_TASK

Management Information

// (uinformation)

#define
#define
#define
#define

SDI_SSP_TEST
SDI_SSP_EXCEEDED
SDI_SSP_DEMAND
SDI_SSP_TRIGGER

// Connector Pinout Information
// (uPinout)

#define
#define
#define
#define
#define
#define
#define
#define

SDI_CON_UNKNOWN
SDI_CON_SFF_8482

SDI_CON_SFF_8470_LANE_1
SDI_CON_SFF_8470_LANE_2
SDI_CON_SFF_8470_LANE_3
SDI_CON_SFF_8470_LANE_4
SDI_CON_SFF_8484 LANE_1
SDI_CON_SFF_8484 LANE_2

0x00
0x01
0x02

0x00000001
0x00000002
0x00000004
0x00000010
0x00000020
0x00000040
0x00000080
0x00000100
0x00000200

0x00000001
0x00000002
0x00000004

0x01
0x02
0x04
SET 0x08
0x40
0x80

A WN P

0x00000000
0x00000010
0x00000020
0x00000040

0x00000001
0x00000002
0x00000100
0x00000200
0x00000400
0x00000800
0x00010000
0x00020000

17 January 2005

Working Draft Serial Attached SCSI Driver Interface

17 January 2005

#define
#define

SDI_CON_SFF_8484 LANE_3
SDI_CON_SFF_8484_LANE_4

// Connector Location Information
// (blLocation)

// same

as uPinout above...

/7 #define SDI_CON_UNKNOWN

#define
#define
#define
#define
#define
#define

[/* * * * * * x % GAS Phy Control Class IOCTL Constants * * * * * * * x *x/

// Return codes for SAS Phy Control

SDI_CON_INTERNAL
SDI_CON_EXTERNAL
SDI_CON_SWITCHABLE
SDI_CON_AUTO
SDI_CON_NOT_PRESENT
SDI_CON_NOT_CONNECTED

// (loctlHeader_ReturnCode)

// Signature value
// (loctlHeader.Signature)

#define

SDI1_PHY_SIGNATURE “SDIPHY”

// Phy Control Functions
// (bFunction)

0x00040000
0x00080000

0x01
0x02
0x04
0x08
0x10
0x20
0x80

IOCTL”s

04-284r1 (T10/1740-D) Revision 0

// values 0x00 to OxFF are consistent in definition with the SMP PHY CONTROL

// Tunction defined in the SAS spec

#define
#define
#define
#define
// 0x04
#define

// Link
#define
#define
#define

SD1_PC_NOP

SD1_PC_LINK RESET
SD1_PC _HARD_ RESET
SD1_PC_PHY_DISABLE

to OxFF reserved...
SD1_PC_GET_PHY_SETTINGS

Flags
SDI_PHY_ACTIVATE_CONTROL
SDI_PHY_UPDATE_SPINUP_RATE
SDI_PHY_AUTO_COMWAKE

// Device Types for Phy Settings

// (bType)

#define SDI_UNDEFINED 0x00
#define SDI_SATA 0x01
#define SDI_SAS 0x02

// Transmitter Flags
// (uTransmitterFlags)

#define SDI_PHY_PREEMPHASIS_DISABLED

// Receiver Flags
// (uReceiverFlags)

#define SDI_PHY_EQUALIZATION_DISABLED

// Pattern Flags
// (uPatternFlags)

0x00000000
0x00000001
0x00000002
0x00000003

0x00000100

0x00000001

0x00000002
0x00000004

0x00000001

0x00000001

Working Draft Serial Attached SCSI Driver Interface (SDI)

71

04-284r1 (T10/1740-D) Revision 0

// #define SDI_PHY_ACTIVATE_CONTROL
#define SDI_PHY DISABLE_SCRAMBLING
#define SDI_PHY DISABLE_ALIGN
#define SDI_PHY DISABLE_SSC

#define
#define

SDI_PHY_FIXED_PATTERN
SDI_PHY_USER_PATTERN

// Fixed Patterns
// (bFixedPattern)
#define SDI_PHY_ CJPAT
#define SDI_PHY_ALIGN

// Type Flags

// (bTypeFlags)

#define SDI_PHY_POSITIVE_DISPARITY
#define SDI_PHY_NEGATIVE_DISPARITY
#define SDI_PHY_CONTROL_CHARACTER

// Miscellaneous
#define SLOT_NUMBER_UNKNOWN

17 January 2005

0x00000001
0x00000002
0x00000004
0x00000008

0x00000010
0x00000020

0x00000001
0x00000002

0x01
0x02
0x04

OXFFFF

/***/

/* DATA STRUCTURES

*/

/***/

[* * * * * %k x * % % Class Independent Structures * * * * * * * % x x/

#pragma SDI_BEGIN_PACK(8)

// CC_SDI_DRIVER_INFO
typedef struct _SDI_DRIVER _INFO {
__u8 szName[81];
__u8 szDescription[81];
__ul6 usMajorRevision;
__ul6 usMinorRevision;
__ul6 usBuildRevision;
__ul6 usReleaseRevision;
__ul6 usSDIMajorRevision;
__ul6 usSDIMinorRevision;
} SDI_DRIVER_INFO,

*PSDI_DRIVER_INFO;

typedef struct _SDI_DRIVER_INFO_BUFFER {

I0CTL_HEADER loctlHeader;
SDI_DRIVER_INFO Information;
} SDI_DRIVER_INFO_BUFFER,

// CC_SDI_CNTLR_CONFIGURATION
typedef struct _SDI_PCI_BUS_ADDRESS
__u8 bBusNumber;
__u8 bbDeviceNumber;
__u8 bFunctionNumber;
__u8 bReserved;
} SDI_PCI_BUS_ADDRESS,

typedef union _SDI_10_BUS_ADDRESS {
SDI_PCI_BUS_ADDRESS PciAddress;

72

*PSDI_DRIVER_INFO_BUFFER;

{

*PSDI_PCI_BUS_ADDRESS;

Working Draft Serial Attached SCSI Driver Interface

17 January 2005 04-284r1 (T10/1740-D) Revision 0

__u8 bReserved[32];
} SDI_10_BUS_ADDRESS, *PSDI_10_BUS_ADDRESS;

typedef struct SDI_CNTLR_CONFIG {

___u32 uBaseloAddress;
struct {

__u32 uLowPart;

__u32 uHighPart;
} BaseMemoryAddress;
__u32 uBoardlID;
__ul6 usSlotNumber;
__u8 bControllerClass;
__u8 bloBusType;
SD1_10_BUS_ADDRESS BusAddress;
__u8 szSerialNumber[81];
___ul6 usMajorRevision;
__ul6 usMinorRevision;
__ul6 usBuildRevision;
__ul6 usReleaseRevision;
__ul6 usBIOSMajorRevision;
__ul6 usBIOSMinorRevision;
__ul6 usBIOSBuildRevision;
__ul6 usBIOSReleaseRevision;
__u32 uControllerFlags;
__ul6 usRromMajorRevision;
__ul6 usRromMinorRevision;
__ul6 usRromBuildRevision;
__ul6 usRromReleaseRevision;
__ul6 usRromBlOSMajorRevision;
__ul6 usRromBIOSMinorRevision;
~ul6 usRromBIOSBuildRevision;
_ul6 usRromBIOSReleaseRevision;
__u8 bReserved[7];

} SDI_CNTLR_CONFIG, *PSDI_CNTLR_CONFIG;

typedef struct _SDI_CNTLR_CONFIG_BUFFER {
I0CTL_HEADER loctlHeader;
SD1_CNTLR_CONFIG Configuration;
} SDI_CNTLR_CONFIG_BUFFER, *PSDI_CNTLR_CONFIG_BUFFER;

// CC_SDI_CNTLR_STATUS

typedef struct _SDI_CNTLR_STATUS {
__u32 uStatus;
__u32 uOfflineReason;
__u8 bReserved[28];

} SDI_CNTLR_STATUS,
*PSD1_CNTLR_STATUS;

typedef struct _SDI_CNTLR_STATUS BUFFER {
I0CTL_HEADER loctlHeader;
SDI_CNTLR_STATUS Status;
} SDI_CNTLR_STATUS_BUFFER, *PSDI_CNTLR_STATUS_ BUFFER;

// CC_SDI_FIRMWARE_DOWNLOAD

typedef struct _SDI_FIRMWARE_DOWNLOAD {
__u32 uBufferLength;
__u32 ubownloadFlags;

Working Draft Serial Attached SCSI Driver Interface (SDI) 73

04-284r1 (T10/1740-D) Revision 0

74

__u8 bReserved[32];
___ul6 usStatus;
__ul6 usSeverity;
} SDI_FIRMWARE_DOWNLOAD, *PSDI_FIRMWARE_DOWNLOAD;

typedef struct _SDI_FIRMWARE_DOWNLOAD_BUFFER {
I10CTL_HEADER loctlHeader;
SD1_FIRMWARE_DOWNLOAD Information;
__u8 bbataBuffer[1];

17 January 2005

} SDI_FIRMWARE_DOWNLOAD_BUFFER, *PSDI_FIRMWARE_DOWNLOAD_BUFFER;

// CC_SDI_RAID_INFO

typedef struct _SDI_RAID_INFO {
__u32 uNumRaidSets;
__u32 uMaxDrivesPerSet;
__u8 bReserved[92];

} SDI_RAID_INFO, *PSDI_RAID_INFO;

typedef struct _SDI_RAID_INFO BUFFER {
I0CTL_HEADER loctlHeader;
SDI_RAID_INFO Information;

} SDI_RAID_INFO_BUFFER, *PSDI_RAID_INFO_BUFFER;

// CC_SDI_GET_RAID_CONFIG
typedef struct _SDI_RAID DRIVES {
__u8 bModel[40];
__u8 bFirmware[8];
__u8 bSerialNumber[40];
__u8 bSASAddress[8];
__u8 DbSASLun[8];
__u8 bDriveStatus;
__u8 bDriveUsage;
__u8 bReserved[30];
} SDI_RAID_DRIVES, *PSDI_RAID_DRIVES;

typedef struct _SDI_RAID_CONFIG {
__u32 uRaidSetlIndex;
__u32 uCapacity;
__u32 uStripeSize;
__u8 bRaidType;
__u8 bStatus;
__u8 biInformation;
__u8 bDriveCount;
__u8 bReserved[20];
SDI_RAID_DRIVES Drives[1];
} SDI_RAID_CONFIG, *PSDI_RAID_CONFIG;

typedef struct _SDI_RAID_CONFIG_BUFFER {
I0CTL_HEADER loctlHeader;
SD1_RAID_CONFIG Configuration;

} SDI_RAID_CONFIG_BUFFER, *PSDI_RAID_CONFIG_BUFFER;

[* * *x ok x ok ok ok x x GAS HBA Class Structures * * * * * * % % % %/

// CC_SDI_GET_PHY_INFO
typedef struct _SDI_IDENTIFY {

Working Draft Serial Attached SCSI Driver Interface

17 January 2005 04-284r1 (T10/1740-D) Revision 0

__u8 bDeviceType;

__u8 DbRestricted Bytel;

__u8 blInitiatorPortProtocol;

__u8 bTargetPortProtocol;

__u8 bRestricted Bytes4toll[8];

__u8 bSASAddress[8];

__u8 bPhyldentifier;

__u8 bSignalClass;

__u8 bReserved Bytes22to27[6];
} SDI_IDENTIFY, *PSDI_IDENTIFY;

typedef struct _SDI_PHY _ENTITY {
SDI_IDENTIFY ldentify;
__u8 DbPortldentifier;
__u8 bNegotiatedLinkRate;
__u8 bMinimumLinkRate;
_u8 bMaximumLinkRate;
__u8 bPhyChangeCount;
__u8 DbAutoDiscover;
__u8 bReserved[2];
SDI_IDENTIFY Attached;

} SDI_PHY_ENTITY, *PSDI_PHY _ENTITY;

typedef struct _SDI_PHY_INFO {
__u8 bNumberOfPhys;
__u8 bReserved[3];
SDI_PHY_ENTITY Phy[32];

} SDI_PHY_INFO, *PSDI_PHY_INFO;

typedef struct _SDI_PHY_INFO_BUFFER {
I0CTL_HEADER loctlHeader;
SDI_PHY_INFO Information;

} SDI_PHY_INFO_BUFFER, *PSDI_PHY_INFO_BUFFER;

// CC_SDI_SET_PHY_INFO

typedef struct _SDI_SET _PHY_INFO {
__u8 bPhyldentifier;
__u8 bNegotiatedLinkRate;
__u8 bProgrammedMinimumLinkRate;
__u8 bProgrammedMaximumLinkRate;
__u8 bSignalClass;
__u8 bReserved[3];

} SDI_SET_PHY_INFO, *PSDI_SET_PHY_INFO;

typedef struct _SDI_SET_PHY_INFO_BUFFER {
I0CTL_HEADER loctlHeader;
SDI_SET_PHY_INFO Information;
} SDI_SET_PHY_INFO_BUFFER, *PSDI_SET_ PHY_INFO_BUFFER;

// CC_SDI_GET_LINK_ERRORS

typedef struct _SDI_LINK _ERRORS {
__u8 DbPhyldentifier;
__u8 bResetCounts;
__u8 bReserved[2];
__u32 ulnvalidDwordCount;
__u32 uRunningDisparityErrorCount;
__u32 uLossOfDwordSyncCount;

Working Draft Serial Attached SCSI Driver Interface (SDI) 75

04-284r1 (T10/1740-D) Revision 0 17 January 2005

__u32 uPhyResetProblemCount;
} SDI_LINK_ERRORS, *PSDI_LINK_ERRORS;

typedef struct _SDI_LINK_ERRORS_BUFFER {
I0CTL_HEADER loctlHeader;
SD1_LINK _ERRORS Information;

} SDI_LINK_ERRORS_BUFFER, *PSDI_LINK_ERRORS_BUFFER;

// CC_SDI_SMP_PASSTHROUGH
typedef struct _SDI_SMP_REQUEST {

__u8 DbFrameType;

__u8 bFunction;

__u8 bReserved[2];

__u8 bAdditionalRequestBytes[1016];
} SDI_SMP_REQUEST, *PSDI_SMP_REQUEST;

typedef struct _SDI_SMP_RESPONSE {

__u8 bFrameType;

__u8 bFunction;

__u8 DbFunctionResult;

__u8 bReserved;

__u8 bAdditionalResponseBytes[1016];
} SDI_SMP_RESPONSE, *PSDI_SMP_RESPONSE;

typedef struct _SDI_SMP_PASSTHROUGH {
__u8 bPhyldentifier;
__u8 DbPortldentifier;
__u8 bConnectionRate;
__u8 bReserved;
__u8 bDestinationSASAddress[8];
__u32 uRequestlLength;
SDI_SMP_REQUEST Request;
__u8 bConnectionStatus;
__u8 bReserved2[3];
__u32 uResponseBytes;
SDI_SMP_RESPONSE Response;

} SDI_SMP_PASSTHROUGH, *PSDI_SMP_PASSTHROUGH;

typedef struct _SDI_SMP_PASSTHROUGH_BUFFER {
I0CTL_HEADER loctlHeader;
SDI_SMP_PASSTHROUGH Parameters;
} SD1_SMP_PASSTHROUGH_BUFFER, *PSDI_SMP_PASSTHROUGH_BUFFER;

// CC_SDI_SSP_PASSTHROUGH
typedef struct _SDI_SSP_PASSTHROUGH {
__u8 bPhyldentifier;
__u8 DbPortldentifier;
__u8 bConnectionRate;
__u8 bReserved;
__u8 bDestinationSASAddress[8];
__u8 bLun[8];
__u8 bCDBLength;
__u8 bAdditionalCDBLength;
__u8 bReserved2[2];
__u8 bCDB[16];
__u32 uFlags;
__u8 bAdditionalCDB[24];

76 Working Draft Serial Attached SCSI Driver Interface

17 January 2005

__u32 ubDatalength;

} SDI_SSP_PASSTHROUGH, *PSDI_SSP_PASSTHROUGH;

typedef struct _SDI_SSP_PASSTHROUGH_ STATUS {

__u8 bConnectionStatus;
__u8 bReserved[3];

__u8 bDataPresent;

__u8 bStatus;

__u8 bResponselLength[2];
___u8 bResponse[256];

04-284r1 (T10/1740-D) Revision 0

} SDI_SSP_PASSTHROUGH_STATUS, *PSDI_SSP_PASSTHROUGH_STATUS;

typedef struct _SDI_SSP_PASSTHROUGH_BUFFER {

I0CTL_HEADER loctlHeader;
SDI_SSP_PASSTHROUGH Parameters;
SD1_SSP_PASSTHROUGH_STATUS Status;
__u32 ubDataBytes;

__u8 bbataBuffer[1];

} SDI_SSP_PASSTHROUGH_BUFFER, *PSDI_SSP_PASSTHROUGH_BUFFER;

// CC_SDI_STP_PASSTHROUGH
typedef struct _SDI_STP_PASSTHROUGH {
__u8 bPhyldentifier;
__u8 DbPortldentifier;
__u8 bConnectionRate;
__u8 bReserved;
__u8 bDestinationSASAddress[8];
__u8 bReserved2[4];
__u8 bCommandFIS[20];
__u32 uFlags;
__u32 ubDatalength;

} SDI_STP_PASSTHROUGH, *PSDI_STP_PASSTHROUGH;

typedef struct _SDI_STP_PASSTHROUGH_STATUS {

__u8 bConnectionStatus;
__u8 bReserved[3];
__u8 bStatusFIS[20];
__u32 uSCR[16];

} SDI_STP_PASSTHROUGH_STATUS, *PSDI_STP_PASSTHROUGH_STATUS;

typedef struct _SDI_STP_PASSTHROUGH_BUFFER {

I0CTL_HEADER loctlHeader;
SDI_STP_PASSTHROUGH Parameters;
SD1_STP_PASSTHROUGH_STATUS Status;
__u32 ubDataBytes;

__u8 bbataBuffer[1];

} SDI_STP_PASSTHROUGH_BUFFER, *PSDI_STP_PASSTHROUGH_BUFFER;

// CC_SDI_GET_SATA_SIGNATURE
typedef struct _SDI_SATA SIGNATURE {
__u8 bPhyldentifier;
__u8 bReserved[3];
__u8 bSignatureFIS[20];

} SDI_SATA_SIGNATURE, *PSDI_SATA_SIGNATURE;

typedef struct _SDI_SATA_SIGNATURE_BUFFER {

I0CTL_HEADER loctlHeader;

Working Draft Serial Attached SCSI Driver Interface (SDI)

77

04-284r1 (T10/1740-D) Revision 0 17 January 2005

SD1_SATA SIGNATURE Signature;
} SDI_SATA_SIGNATURE_BUFFER, *PSDI_SATA_ SIGNATURE_BUFFER;

// CC_SDI_GET_SCSI_ADDRESS
typedef struct _SDI_GET_SCSI_ADDRESS_BUFFER {
I10CTL_HEADER loctlHeader;
__u8 bSASAddress[8];
__u8 DbSASLun[8];
__u8 bHostlIndex;
__u8 bPathld;
__u8 bTargetld;
__u8 blLun;
} SDI_GET_SCSI1_ADDRESS_BUFFER, *PSDI_GET_SCSI1_ADDRESS_BUFFER;

// CC_SDI_GET_DEVICE_ADDRESS
typedef struct _SDI_GET _DEVICE_ADDRESS BUFFER {
I0CTL_HEADER loctlHeader;
__u8 bHostlIndex;
__u8 bPathld;
__u8 bTargetld;
__u8 bLun;
__u8 bSASAddress[8];
__u8 DbSASLun[8];
} SDI_GET_DEVICE_ADDRESS BUFFER, *PSDI_GET_DEVICE_ADDRESS BUFFER;

// CC_SDI_TASK_MANAGEMENT
typedef struct _SDI_SSP_TASK IU {
__u8 bHostlIndex;
__u8 bPathld;
__u8 bTargetld;
__u8 bLun;
__u32 uFlags;
__u32 uQueueTag;
__u32 uReserved;
__u8 bTaskManagementFunction;
__u8 bReserved[7];
__u32 ulnformation;
} SDI_SSP_TASK_1U, *PSDI_SSP_TASK 1U;

typedef struct _SDI_SSP_TASK_ IU_BUFFER {
I0CTL_HEADER loctlHeader;
SDI_SSP_TASK_1U Parameters;
SD1_SSP_PASSTHROUGH_STATUS Status;

} SDI_SSP_TASK_1U_BUFFER, *PSDI_SSP_TASK_IU_BUFFER;

// CC_SDI_GET_CONNECTOR_INFO

typedef struct _SDI_GET_CONNECTOR_INFO {
_u32 uPinout;
__u8 bConnector[16];
__u8 bLocation;
__u8 bReserved[15];
} SDI_CONNECTOR_INFO, *PSDI_CONNECTOR_INFO;

typedef struct _SDI_CONNECTOR_INFO_BUFFER {

I0CTL_HEADER loctlHeader;
SD1_CONNECTOR_INFO Reference[32];

78 Working Draft Serial Attached SCSI Driver Interface

17 January 2005 04-284r1 (T10/1740-D) Revision 0

} SDI_CONNECTOR_INFO_BUFFER, *PSDI_CONNECTOR_INFO_BUFFER;

// CC_SDI_PHY_CONTROL

typedef struct _SDI_CHARACTER {
__u8 bTypeFlags;
__u8 bvValue;

} SDI_CHARACTER, *PSDI_CHARACTER;

typedef struct _SDI_PHY CONTROL {
__u8 bType;
__u8 bRate;
__u8 bReserved[6];
__u32 uVendorUnique[8];
__u32 uTransmitterFlags;
18 bTransmitterAmplitude;
18 bTransmitterPreemphasis;
18 DbTransmitterSlewRate;
__ 18 DbTransmitterReserved[13];
__u8 bTransmitterVendorUnique[64];
__u32 uReceiverFlags;
18 DbReceiverThreshold;
__ 18 DbReceiverEqualizationGain;
__ 18 DbReceiverReserved[14];
__u8 bReceiverVendorUnique[64];
__u32 uPatternFlags;
__u8 DbFixedPattern;
__u8 bUserPatternLength;
__u8 bPatternReserved[6];
SD1_CHARACTER UserPatternBuffer[16];
} SDI_PHY_CONTROL, *PSDI_PHY_CONTROL;

typedef struct _SDI_PHY_CONTROL_BUFFER {
I0CTL_HEADER loctlHeader;
__u32 uFunction;
__u8 bPhyldentifier;
__ul6 uslLengthOfControl;
__u8 bNumberOfControls;
__u8 bReserved[4];
__u32 uLinkFlags;
__u8 bSpinupRate;
__u8 bLinkReserved[7];
__u32 uVendorUnique[8];
SDI_PHY_CONTROL Control[1];
} SDI_PHY_CONTROL_BUFFER, *PSDI_PHY_CONTROL_BUFFER;

#pragma SDI_END_PACK

#endif // _SDI_H_

Working Draft Serial Attached SCSI Driver Interface (SDI)

79

	Points of contact
	Revision Information
	Contents
	Tables
	Figures
	Foreword (This foreword is not part of this standard)
	Introduction
	1 Scope
	2 Normative References
	2.1 Normative references overview
	2.2 Approved references
	2.3 References under development
	2.4 Other references

	3 Definitions, symbols, abbreviations, keywords, and conventions
	3.1 Definitions
	3.2 Symbols and abbreviations
	3.3 Keywords
	3.4 Conventions

	4 General
	4.1 General overview
	4.2 Microsoft® Windows®
	4.2.1 Platform requirements
	4.2.2 Function invocation
	4.2.3 Input
	4.2.4 Output
	4.2.5 Structure Definitions
	4.2.6 Security

	4.3 Linux®
	4.3.1 Function invocation
	4.3.2 Input
	4.3.3 Output
	4.3.4 Structure Definitions
	4.3.5 Security

	4.4 Novell® NetWare®
	4.4.1 Platform requriements
	4.4.2 Function invocation
	4.4.3 HACB Usage
	4.4.4 Input
	4.4.5 Output
	4.4.6 Structure Definitions
	4.4.7 Security

	5 Return codes
	5.1 Return codes

	6 SDI functions
	6.1 SDI functions overview
	6.2 CC_SDI_GET_DRIVER_INFO
	6.2.1 Behavior
	6.2.2 Input
	6.2.3 Output
	6.2.4 Structure Definitions

	6.3 CC_SDI_GET_CNTLR_CONFIG
	6.3.1 Behavior
	6.3.2 Input
	6.3.3 Output
	6.3.4 Structure Definitions

	6.4 CC_SDI_GET_CNTLR_STATUS
	6.4.1 Behavior
	6.4.2 Input
	6.4.3 Output
	6.4.4 Structure Definitions

	6.5 CC_SDI_FIRMWARE_DOWNLOAD
	6.5.1 Behavior
	6.5.2 Input
	6.5.3 Output
	6.5.4 Structure Definitions

	6.6 CC_SDI_GET_RAID_INFO
	6.6.1 Behavior
	6.6.2 Input
	6.6.3 Output
	6.6.4 Structure Definitions

	6.7 CC_SDI_GET_RAID_CONFIG
	6.7.1 Behavior
	6.7.2 Input
	6.7.3 Output
	6.7.4 Structure Definitions

	6.8 CC_SDI_GET_PHY_INFO
	6.8.1 Behavior
	6.8.2 Input
	6.8.3 Output
	6.8.4 Structure Definitions

	6.9 CC_SDI_SET_PHY_INFO
	6.9.1 Behavior
	6.9.2 Input
	6.9.3 Output
	6.9.4 Structure Definitions

	6.10 CC_SDI_GET_LINK_ERRORS
	6.10.1 Behavior
	6.10.2 Input
	6.10.3 Output
	6.10.4 Structure Definitions

	6.11 CC_SDI_SMP_PASSTHROUGH
	6.11.1 Behavior
	6.11.2 Security
	6.11.3 Input
	6.11.4 Output
	6.11.5 Structure Definitions

	6.12 CC_SDI_SSP_PASSTHROUGH
	6.12.1 Behavior
	6.12.2 Security
	6.12.3 Input
	6.12.4 Output
	6.12.5 Structure Definitions

	6.13 CC_SDI_STP_PASSTHROUGH
	6.13.1 Behavior
	6.13.2 Security
	6.13.3 Input
	6.13.4 Output
	6.13.5 Structure Definitions

	6.14 CC_SDI_GET_SATA_SIGNATURE
	6.14.1 Behavior
	6.14.2 Input
	6.14.3 Output
	6.14.4 Structure Definitions

	6.15 CC_SDI_GET_SCSI_ADDRESS
	6.15.1 Behavior
	6.15.2 Input
	6.15.3 Structure Definitions

	6.16 CC_SDI_GET_DEVICE_ADDRESS
	6.16.1 Behavior
	6.16.2 Input
	6.16.3 Output
	6.16.4 Structure Definitions

	6.17 CC_SDI_TASK_MANAGEMENT
	6.17.1 Behavior
	6.17.2 Security
	6.17.3 Input
	6.17.4 Output
	6.17.5 Structure Definitions

	6.18 CC_SDI_PHY_CONTROL
	6.18.1 Behavior
	6.18.2 Security
	6.18.3 Spinup behavior model
	6.18.4 Phy signal control behavior model
	6.18.5 Input
	6.18.6 Output
	6.18.7 Structure Definitions

	6.19 CC_SDI_GET_CONNECTOR_INFO
	6.19.1 Behavior
	6.19.2 Input
	6.19.3 Output
	6.19.4 Structure Definitions

	Annex A
	Header file
	A.1 Header file

