
T10/03-337r1 SPC-3 Third party persistent reservations

Page 1 of 23

To: T10 Technical Committee
From: Rob Elliott, HP (elliott@hp.com)
Date: 16 October 2003
Subject: T10/03-337r1 SPC-3 Third party persistent reservations

Revision History
Revision 0 (3 October 2003) first revision
Revision 1 (16 October 2003) Changed from adding a GIVE bit to REGISTER to a new service

action called REGISTER AND MOVE. Changed from adding a TAKE bit to REGISTER to
adding Specify Initiator Ports support to PREEMPT.

Related Documents
spc3r15 SCSI Primary Commands – 3 revision 15
03-231 Two Persistent Reservations problems - latest information (Roger Cummings, Veritas)
03-233 New PR Out Service Action Proposal (Roger Cummings, Veritas)
03-321 Persistent Reservations Proposals (Roger Cummings, Veritas)
03-342 SPC-3 Persistent reservations read full status (Rob Elliott, HP)
03-344 SPC-3 Report all target port identifiers (Rob Elliott, HP)
03-353 SPC-3 Report initiator port identifiers (Rob Elliott, HP)
03-354 SPC-3 Specific initiator ports in EXTENDED COPY target descriptors (Rob Elliott, HP)

Overview
Classic RESERVE/RELEASE reservations included a third-party reservation feature that let one
initiator port hand over its reservation to another initiator port. This is useful for third party copy
managers (EXTENDED COPY). However, this feature is not available in persistent reservations.

2.
Rea

d

Figure 1. Third-party copy

T10/03-337r1 SPC-3 Third party persistent reservations

Page 2 of 23

03-233 proposed a MOVE service action, specifying the key to move. However, this isn’t precise
enough if more than one I_T is registered with the same key. The Specify Initiator ports feature
can be used to fix this.

Also, it requires the copy manager to register ahead of time. There is an EXTENDED COPY
descriptor that directs the recipient to register with a specified key. However, this is an extra step
that can be eliminated.

Proposal
Add a REGISTER and MOVE service actions to both register a specified I_T nexus and move the
existing reservation to it, all in one step. Add Specify Initiator Ports functionality to PREEMPT to
take back the reservation from a specific I_T nexus.

Initiator device
(Host system)

Initiator device
(Copy manager)

Target device
(e.g. a disk drive)

Initiator port

Target port

Initiator port

Target portBackup
application

Copy
manager

Service
delivery

subsystem

Logical
unit

Copy manager steps:
5a. Receive EXTENDED COPY command
5b. Copy manager reads from one logical unit (e.g. a disk drive)
5c. Copy manager writes to the reserved logical unit (e.g. a tape drive)
5d. Return status for EXTENDED COPY

Target device
(e.g. a tape drive)

Target port
Logical
unit

5c. Write

5.
EXTENDED

COPY

1, 2, 3, 4, 6

Backup application steps
1. Register self with the destination (e.g. tape drive) with PR OUT/REGISTER
2. Reserve with PR OUT/RESERVE
3. Prepare destination (LOAD, REWIND, etc.)
4. Register copy manager and give reservation with PR OUT/REGISTER AND MOVE/
SPEC_I_PT
5. Send EXTENDED COPY to copy manager; wait for completion
6. Unregister copy manager and take back reservation with PR OUT/PREEMPT/SPEC_I_PT

5b
. R

ea
d

Figure 2. Third party persistent reservation

After it has become a reservation holder through an I_T, the backup application uses a
PERSISTENT RESERVE OUT command REGISTER AND MOVE service action with:

• SPEC_I_PT bit set to 1
• parameter data specifying the copy manager’s initiator port (exactly one TransportID)

T10/03-337r1 SPC-3 Third party persistent reservations

Page 3 of 23

• SERVICE ACTION RESERVATION KEY set to a key for the copy manager
• RESERVATION KEY set to its own key (normal rules for these service actions)

to move its current persistent reservation to the specified initiator port.

It is an error to use this service action if the initiator is not a reservation holder or if more than one
initiator port is specified in the parameter list.

The copy manager becomes registered with the specified key and becomes a reservation holder
in place of (or in addition to, depending on the reservation type) the backup application. The
application should use the same key as the backup application, so if the key is preempted, both
the copy manager and the backup application are preempted together.

When it wants to revoke the handover, the backup application uses a PERSISTENT RESERVE
OUT command PREEMPT or PREEMPT AND ABORT service action with:

• SPEC_I_PT bit set to 1
• parameter data specifying the copy manager’s initiator port
• SERVICE ACTION RESERVATION KEY set to the copy manager’s key
• RESERVATION KEY set to its own key (normal rules for these service actions)

to unregister the copy manager and make the backup application the reservation holder.

The service actions are subject to all their normal rules about which I_T nexus is allowed to be
used to send them and what the RESERVATION KEY must be.

Suggested Changes
5.6 Reservations
5.6.1 Reservations overview
Reservations may beare used to allow a device server to execute process commands from a
selected set of I_T nexuses (i.e., combinations of initiator ports accessing target ports) and reject
commands from I_T nexuses outside the selected set. The device server uniquely identifies I_T
nexuses using protocol specific mechanisms.

Application clients may add or remove I_T nexuses from the selected set using reservation
commands. If the application clients do not cooperate in the reservation protocol, data may be
unexpectedly modified and deadlock conditions may occur.

Reservations on one logical unit have no relationship with reservations on any other logical unit.

The scope of a reservation shall be one of the following:

a) Logical unit reservations - a logical unit reservation restricts access to the entire logical
unit; and

b) Element reservations - an element reservation restricts access to a specified element
within a medium changer.

Reservations may beare further qualified by restrictions on types of access (e.g., read, write). :

a) Write Exclusive: reads shared, writes exclusive;
b) Exclusive Access: reads exclusive, writes exclusive;
c) Write Exclusive - Registrants Only: reads shared, writes exclusive;
d) Exclusive Access - Registrants Only: reads exclusive, writes exclusive;
e) Write Exclusive - All Registrants: reads shared, writes exclusive; and
f) Exclusive Access - All Registrants: reads exclusive, writes exclusive.

See table 102 in 6.11.4.3 for more information on types of reservations. However, aAny
restrictions based on the type of reservation are independent of the scope of the reservation.

Reservation restrictions are placed on commands as a result of access qualifiers associated with
the type of reservation.

The details of which commands are allowed under what types of reservations are described in
table 31. If any element is reserved within a logical unit, that logical unit shall be considered

T10/03-337r1 SPC-3 Third party persistent reservations

Page 4 of 23

reserved for the commands listed in table 31 and the allowed/conflict information in table 31 shall
apply.

In table 31 and table 32 the following key words are used:

allowed: Commands received from I_T nexuses not holding the reservationthat are not persistent
reservation holders (see 5.6.2.6) or from I_T nexuses not registered when a registrants only or all
registrants type persistent reservation is present should complete normally.

conflict: Commands received from I_T nexuses not holding the reservation that are not
persistent reservation holders or from I_T nexuses not registered when a registrants only or all
registrants type persistent reservation is present shall not be performed and the device server
shall terminate the command with a RESERVATION CONFLICT status.

Commands from I_T nexuses holding a reservation that are persistent reservation holders
should complete normally. The behavior of commands from registered I_T nexuses when a
registrants only or all registrants type persistent reservation is present is specified in table 31 and
table 32.

An unlinked command shall be checked for reservation conflicts before the task containing that
command enters the enabled task state. The reservation state as it exists when the first
command in a group of linked commands enters the enabled task state shall be used in checking
for reservation conflicts for all the commands in the task.

Once a task has entered the enabled task state, the command or commands comprising that task
shall not be terminated with a RESERVATION CONFLICT due to a subsequent reservation. Any
command in a group of linked commands that changes the reservation state shall be the last
command in the group.

For each command, this standard or a related command standard (see 3.1.17) defines the
conditions that result in RESERVATION CONFLICT. Command standards define the conditions
either in the device model (preferred) or in the descriptions each specific command.

[Table 31 - SPC commands that are allowed in the presence of various reservations]

Table 32 — PERSISTENT RESERVE OUT service actions that are allowed in the presence
of various reservations

Addressed LU has a persistent reservation held by another
I_T nexus

Command service action
Command is from a
registered I_T nexus

Command is from a not
registered I_T nexus

CLEAR allowed conflict

PREEMPT allowed conflict

PREEMPT AND ABORT allowed conflict

REGISTER allowed allowed

REGISTER AND IGNORE
EXISTING KEY

allowed allowed

REGISTER AND MOVE allowed conflict

RELEASE allowed (a) conflict

RESERVE conflict conflict

(a) The reservation is not released (see 5.6.2.7.2).

The time at which a reservation is established with respect to other tasks being managed by the
device server is vendor specific. Successful completion of a reservation command indicates that
the new reservation is established.

T10/03-337r1 SPC-3 Third party persistent reservations

Page 5 of 23

A reservation may apply to some or all of the tasks in the task set before the completion of the
reservation command. The reservation shall apply to all tasks received by the device server after
successful completion of the reservation command. Any persistent reserve service action shall be
performed as a single indivisible event.

Multiple persistent reserve service actions may be present in the task set at the same time. The
order of execution of such service actions is defined by the tagged queuing restrictions, if any, but
each is executed as a single indivisible command without any interleaving of actions that may be
required by other reservation commands.

5.6.2 The Persistent Reservations management method

5.6.2.1 Overview of the Persistent Reservations management method

The persistent reservations management method is the mechanism specified by this standard for
use by multiple initiator ports application clients communicating through multiple I_T nexuses that
require operations to be protected across SCSI initiator device failures, which usually involve
logical unit resets and involve I_T nexus losses. Persistent reservations persist across recovery
actions, to provide application clients with more detailed control over reservations recovery.
Persistent reservations are not reset by hard reset, logical unit reset, or I_T nexus loss.

The persistent reservation held by a failing I_T nexus may be preempted by another I_T nexus as
part of the recovery process. Persistent reservations shall be retained by the device server until
released, preempted, or cleared by mechanisms specified in this standard. Optionally, persistent
reservations may be retained when power to the target is removed.

The PERSISTENT RESERVE OUT and PERSISTENT RESERVE IN commands provide the
basic mechanism for dynamic contention resolution in systems with multiple initiator ports using
logical units with SCSI multiple target ports. Before a persistent reservation may be established,
an application client shall register each I_T Nnexus with a device server using a reservation key.
Reservation keys are necessary to allow:

a) Authentication of subsequent PERSISTENT RESERVE OUT commands;

b) Identification of other I_T nexuses that are registered;

c) Identification of the reservation key(s) that have an associated persistent reservation;

d) Preemption of a persistent reservation from a failing or uncooperative I_T nexus; and

e) Multiple I_T nexuses to participate in a persistent reservation.

The reservation key provides a method for the application client to associate a protocol-
independent identifier with a registered I_T nexus. The reservation key is used in the
PERSISTENT RESERVE IN command to identify which I_T nexuses are registered and which
I_T nexuses, if any, holds the persistent reservation. The reservation key is used in the
PERSISTENT RESERVE OUT command to register an I_T nexus, to verify the I_T nexus issuing
being used for the PERSISTENT RESERVATION OUT command is registered, and to specify
which registrations or persistent reservation to preempt.

Reservation key values may be used by application clients to identify registered I_T nexuses,
using application specific methods that are outside the scope of this standard. This standard
provides the ability to register no more than one key per I_T_L nexus. Multiple I_T nexuses may
use the same key for a logical unit accessed through the same target port. Multiple initiator ports
may use the same key value for a logical unit accessed through the same target ports. An initiator
port may use the same key value for a logical unit accessed through different target ports.

A separate key shall be maintained for each I_T nexus, regardless of the key’s value.

An I_T nexus may establish registrations for multiple logical units in a SCSI target device using
any combination of unique or duplicate keys. These rules provide the ability for an application
client to preempt multiple I_T nexuses with a single PERSISTENT RESERVE OUT command,
but they do not provide the ability for the application client to uniquely identify the I_T nexuses
using the PERSISTENT RESERVE commands.

T10/03-337r1 SPC-3 Third party persistent reservations

Page 6 of 23

[the above paragraph seems to hint that a single PR OUT might affect more than one LU.]

The persistent reservation commands and service actions are summarized in table xx.

Table xx. Persistent reservations commands and service actions

Command Service action Description Reference(s)

READ KEYS Report reservation
keys

5.6.2.3.2, 6.11.2.2, and
6.11.3

READ RESERVATION Report persistent
reservations

5.6.2.3.3, 6.11.2.3, and
6.11.4

READ CAPABILITIES Report capabilities 6.11.2.4 and 6.11.5

PERSISTENT
RESERVE IN

READ FULL STATUS Report full status 5.6.2.3.x and 6.11.6

REGISTER
Register

Unregister

5.6.2.4

5.6.2.7.3

REGISTER AND IGNORE
EXISTING KEY

Register

Unregister

5.6.2.4

5.6.2.7.3

REGISTER AND MOVE Register and move
the reservation 5.6.2.x

RESERVE Reserve 5.6.2.5

RELEASE Release 5.6.2.7.2

PREEMPT Preempt 5.6.2.7.4

PREEMPT AND ABORT Preempt and abort 5.6.2.7.5

PERSISTENT
RESERVE OUT

CLEAR Clear 5.6.2.7.6

[Editor’s note: READ FULL STATUS is proposed in 03-342. That proposal also requests the
6.11.2 subsections be rearranged, which would change these references.]

5.6.2.2 Preserving persistent reservations and registrations

The application client may request activation of the persist through power loss device server
capability to preserve the persistent reservation and registrations across power cycles by setting
the APTPL bit to one in the PERSISTENT RESERVE OUT parameter data sent with a REGISTER,
or REGISTER AND IGNORE EXISTING KEY, or REGISTER AND MOVE service action.

After the application client enables the persist through power loss capability the device server
shall preserve all current and future registrations and persistent reservations associated with the
logical unit to which the REGISTER or the REGISTER AND IGNORE EXISTING KEY service
action was addressed until an application client disables the persist through power loss capability.
The APTPL value from the most recent successfully completed REGISTER or, REGISTER AND
IGNORE EXISTING KEY, or REGISTER AND MOVE service action from any application client
shall determine the logical unit’s behavior in the event of a power loss.

The device server shall preserve the following information for each existing registration across
any hard reset, logical unit reset, or I_T nexus loss, and if the persist through power loss
capability is enabled, across any power cycle:

a) On SCSI protocols where initiator port names (see 3.1.46) are required, the initiator port
name; otherwise, the initiator port identifier (see 3.1.45);

b) Reservation key; and
c) Indication of the target port to which the registration was applied.

T10/03-337r1 SPC-3 Third party persistent reservations

Page 7 of 23

The device server shall preserve the following information about the existing persistent
reservation across any hard reset, logical unit reset, or I_T nexus loss, and if the persist through
power loss capability is enabled, across any power cycle:

a) On SCSI protocols where initiator port names are required, the initiator port name;
otherwise, the initiator port identifier;

b) Reservation key;
c) Scope;
d) Type; and
e) Indication of the target port through which the reservation was established.
NOTE 9 - For an all registrants type persistent reservation, only the scope and type need to be

preserved.
The capability of preserving persistent reservations and registrations across power cycles
requires the use of a nonvolatile memory within the SCSI device. Any SCSI devicelogical unit that
supports the persist through power loss capability of persistent reservation and has nonvolatile
memory that is not ready shall allow the following commands into the task set:

a) INQUIRY;
b) LOG SENSE;
c) READ BUFFER;
d) REPORT LUNS;
e) REQUEST SENSE;
f) START/ STOP UNIT (with the START bit set to one and POWER CONDITIONS field value of

0h); and
g) WRITE BUFFER.

When nonvolatile memory has not become ready since a power cycle, commands other than
those listed above shall return CHECK CONDITION status. The sense key shall be set to NOT
READY and the additional sense code shall be set as described in table 165 (see 6.29).

5.6.2.3 Finding persistent reservations and reservation keys

5.6.2.3.1 Summary of commands for finding persistent reservations and reservation keys

The application client may obtain information about the persistent reservation and the reservation
keys (i.e., registrations) that are present within a device server by issuing PERSISTENT
RESERVE IN commands with READ RESERVATION or READ KEYS service action.

5.6.2.3.2 Reporting reservation keys

An application client may issue a PERSISTENT RESERVE IN command with READ KEYS
service action to determine if any I_T nexuses have been registered with a logical unit through
any target port.

In response to a PERSISTENT RESERVE IN with READ KEYS service action the device server
shall report the following:

a) The current PRgeneration value (see 6.11.3); and
b) The reservation key for every I_T nexus that is currently registered regardless of the

target port through which the registration occurred.
The PRgeneration value allows the application client to verify that the configuration of the I_T
nexuses registered with a logical unit has not been modified.

The application client may examine the reservation keys to identify relationships between I_T
nexuses based on mechanisms that are outside the scope of this standard. Duplicate keys shall
be reported if multiple I_T nexuses are registered using the same reservation key.

5.6.2.3.3 Reporting persistent reservations

An application client may issue a PERSISTENT RESERVE IN command with READ
RESERVATION service action to receive the persistent reservation information.

T10/03-337r1 SPC-3 Third party persistent reservations

Page 8 of 23

In response to a PERSISTENT RESERVE IN command with READ RESERVATION service
action the device server shall report the following as an uninterrupted series of actions:

a) The current PRgeneration value (see 6.11.3);
b) The registered reservation key, if any, associated with the I_T nexus that holds the

persistent reservation;
c) The scope and type of each persistent reservation, if any; and
d) The scope-specific address, if any (see 6.11.4.1).

If an application client uses a different reservation key for each I_T_L nexus the application client
may use the reservation key to associate the persistent reservation with the initiator port that
holds the persistent reservation.

This association is done using techniques that are outside the scope of this standard.

 5.6.2.4 Registering

[Editor’s note: this model section still assumes the I_T nexus used for PR OUT is the one being
registered. With Specify Initiator Ports, that is no longer true. Since this proposal relies on Specify
Initiator Ports, this section needs to be redone.]

To establish a persistent reservation the application client shall first register an I_T nexus with a
logical unit. An application client registers with a logical unit by issuing a PERSISTENT
RESERVE OUT command with REGISTER or REGISTER AND IGNORE EXISTING KEY service
action.

The PERSISTENT RESERVE OUT command REGISTER, REGISTER AND IGNORE EXISTING
KEY, and REGISTER AND MOVE service actions are used to create, modify, or remove a
registration for specified I_T nexus(es). The specified I_T nexus(es) are based on the SPEC_I_PT
bit and ALL_TG_PT bits as described in table xx.

Table xx. SPEC_I_PT and ALL_TG_PT bits for REGISTER, REGISTER AND IGNORE EXISTING
KEY, and REGISTER AND MOVE service actions

SPEC_I_PT
bit

ALL_TG_PT
bit Specified I_T nexus(es)

0 0 The I_T nexus used for the PERSISTENT RESERVE OUT command

0 1 All I_T nexuses with:

a) the same initiator port as that used for the PERSISTENT RESERVE
OUT command; and

b) all target ports

1 0 All I_T nexuses with:

a) the initiator port(s) specified in additional parameter data; and

b) the same target port as that used for the PERSISTENT RESERVE
OUT command

1 1 All I_T nexuses with:

a) the initiator port(s) specified in additional parameter data; and

b) all target ports

Table xxx describes the REGISTER and REGISTER AND IGNORE EXISTING KEY service
action behaviors based on the RESERVATION KEY field and the SERVICE ACTION RESERVATION KEY
fields. The REGISTER AND MOVE service action behavior is described in 5.6.2.x.

T10/03-337r1 SPC-3 Third party persistent reservations

Page 9 of 23

Table xx. REGISTER and REGISTER AND IGNORE EXISTING KEY behaviors

I_T nexus
used for the
PERSISTENT

RESERVE
OUT

command

Service
action

RESERVATION
KEY field

SERVICE
ACTION

RESERVATION
KEY field

Result

other than the
current key any Return RESERVATION

CONFLICT status

the current key zero Unregister (see 5.6.2.7.1)

REGISTER

the current key non-zero

Change the reservation
key(s) of the specified I_T
nexus(es) to the value
specified in the SERVICE
ACTION RESERVATION KEY field

any any Return RESERVATION
CONFLICT status

any zero Unregister (see 5.6.2.7.1)

Registered

REGISTER
AND

IGNORE
EXISTING

KEY any non-zero

Change the reservation
key(s) of the specified I_T
nexus(es) to value specified
in the SERVICE ACTION
RESERVATION KEY field

zero zero Return GOOD status

zero non-zero

Register the specified I_T
nexus(es) with the value
specified in the SERVICE
ACTION RESERVATION KEY field

REGISTER

non-zero any Return RESERVATION
CONFLICT status

any zero Return GOOD status

Not
registered

REGISTER
AND

IGNORE
EXISTING

KEY
any non-zero

Register the specified I_T
nexus(es) with the value
specified in the SERVICE
ACTION RESERVATION KEY field

If the I_T nexus has not yet established a reservation key or the reservation key and registration
have been removed, the registration is accomplished by issuing a PERSISTENT RESERVE OUT
command with REGISTER service action with the following parameters:

a) APTPL bit optionally set to one;
b) RESERVATION KEY field set to zero; and
c) SERVICE ACTION RESERVATION KEY field set to a non-zero value.

If the I_T nexus has an established registration it may change its reservation key. This is
accomplished by issuing a PERSISTENT RESERVE OUT command with REGISTER service
action with the following parameters:

a) APTPL bit optionally set to one;
b) RESERVATION KEY field set to the value of the reservation key that is registered for the

I_T_L nexus; and

T10/03-337r1 SPC-3 Third party persistent reservations

Page 10 of 23

c) SERVICE ACTION RESERVATION KEY field set to a non-zero value.
If the SERVICE ACTION RESERVATION KEY field is set to zero, the registration shall be removed (see
5.6.2.7.1).

Alternatively, an application client may establish a reservation key for an I_T nexus without regard
for whether one has previously been established by issuing a PERSISTENT RESERVE OUT
command with REGISTER AND IGNORE EXISTING KEY service action and the following
parameters:

a) APTPL bit optionally set to one; and
b) SERVICE ACTION RESERVATION KEY field set to a non-zero value.

If the SERVICE ACTION RESERVATION KEY field is set to zero and the I_T_L nexus is registered, the
registration shall be removed (see 5.6.2.7.1).

If a PERSISTENT RESERVE OUT command with REGISTER AND IGNORE EXISTING KEY
service action is sent when an established registration exists, that registration shall be
superseded with the specified service action reservation key. If a PERSISTENT RESERVE OUT
command with REGISTER AND IGNORE EXISTING KEY service action is sent when there is no
established registration, a new registration shall be established.

If a registration fails for any specified I_T nexus (e.g., if a specified I_T nexus is invalid, or if the
SCSI target device does not have enough resources available to hold the registration
information), none of the registrations shall be made.

If a PERSISTENT RESERVE OUT command with REGISTER or a, REGISTER AND IGNORE
EXISTING KEY, or REGISTER AND MOVE service action is attempted, but there are insufficient
device server resources to complete the operation, the device server shall return a CHECK
CONDITION status. The sense key shall be set to ILLEGAL REQUEST and the additional sense
code shall be set to INSUFFICIENT REGISTRATION RESOURCES.

In response to a PERSISTENT RESERVE OUT command with REGISTER or a, REGISTER
AND IGNORE EXISTING KEY, or REGISTER AND MOVE service action the device server shall
perform a registration by doing the following as an uninterrupted series of actions:

a) Process the registration request regardless of any persistent reservations;
b) Process the APTPL bit;
c) Ignore the contents of the SCOPE and TYPE fields;
d) Map the reservation key to the registering I_T nexus using the indication of the target

port associated with the registration and either the initiator port name (see 3.1.46) on
SCSI protocols where port names are required or the initiator port identifier (see 3.1.45)
on SCSI protocols where port names are not required;

e) Register the reservation key without changing any persistent reservation that may exist;
and

f) Retain the reservation key and associated information.
After the registration request has been processed, the device server shall then allow other
PERSISTENT RESERVE OUT commands from the registered I_T nexus to execute. For each
I_T nexus that is the source a PERSISTENT RESERVE OUT command with REGISTER or a
REGISTER AND IGNORE EXISTING KEY service action, the device server shall retain the
reservation key until the key is changed by a new PERSISTENT RESERVE OUT command with
the REGISTER or the REGISTER AND IGNORE EXISTING KEY service action from the same
I_T nexus or until the registration is removed (see 5.6.2.7).

Any PERSISTENT RESERVE OUT command service action received from an unregistered I_T
nexus, other than the REGISTER or the REGISTER AND IGNORE EXISTING KEY service
action, shall be rejected with a RESERVATION CONFLICT status.

It is not an error for an I_T nexus that is registered to be registered again with the same
reservation key or a new reservation key. A registration shall have no effect on any other
registrations (e.g., when more than one I_T nexus is registered with the same reservation key
and one of those I_T nexuses registers again it has no effect on the other I_T nexus’

T10/03-337r1 SPC-3 Third party persistent reservations

Page 11 of 23

registrations). A registration that contains a non-zero value in the SERVICE ACTION RESERVATION
KEY field shall have no effect on any persistent reservations (i.e., the reservation key for an I_T
nexus may be changed without affecting any previously created persistent reservation).

Multiple I_T nexuses may be registered with the same reservation key. An application client may
use the same reservation key for other I_T nexuses and logical units.

5.6.2.x Registering and moving the reservation

The PERSISTENT RESERVE OUT command REGISTER AND MOVE service action is used to
register a specified I_T nexus and move a reservation from one I_T nexus to another.

The REGISTER AND MOVE service action shall be processed the same as the REGISTER
service action (see 5.6.2.4), except as described in this subclause.

If:

a) the SERVICE ACTION RESERVATION KEY field is non-zero (i.e., it does not specify an
unregistration);

b) the I_T nexus used for the PERSISTENT RESERVE OUT command is a reservation
holder and the RESERVATION KEY field is set to the reservation key of that I_T nexus; and

c) a single I_T nexus is specified that is different than the I_T nexus used for the
PERSISTENT RESERVE OUT command (i.e., the SPEC_I_PT bit is set to one, the
additional parameter data contains exactly one TransportID, the TransportID does not
describe the initiator port sending the command, and the ALL_TG_PT bit is set to zero or
there is only one target port);

then the device server shall:

1) register the specified I_T nexus as described in 5.6.2.4;
2) remove the persistent reservation from the I_T nexus used for the PERSISTENT

RESERVE OUT command; and
3) establish a persistent reservation for the specified I_T nexus using the same scope and

type as the previous persistent reservation.
NOTE: The I_T nexus that sent the PERSISTENT RESERVE OUT command remains
registered. If the type of reservation is All Registrants, then the I_T nexus still remains a
reservation holder. If the type of reservation is Registrants Only, then the I_T nexus still
maintains access.

If any of the aforementioned conditions is not met, the command shall be rejected with
RESERVATION CONFLICT status.

5.6.2.5 Reserving

An application client creates a persistent reservation by issuing a PERSISTENT RESERVE OUT
command with RESERVE service action through a registered I_T nexus with the following
parameters:

a) RESERVATION KEY set to the value of the reservation key that is registered for the I_T_L
nexus; and

b) TYPE and SCOPE fields set to the persistent reservation being created.
Only one persistent reservation with a scope of logical unit is allowed at a time per logical unit.
Multiple persistent reservations with a scope of element may be created in a logical unit that
contains multiple elements. However, there shall only be one persistent reservation per element.

If the device server receives a PERSISTENT RESERVE OUT command from an I_T nexus other
than a persistent reservation holder (see 5.6.2.6) that attempts to create a persistent reservation
when a persistent reservation already exists for the logical unit, then the command shall be
rejected with a RESERVATION CONFLICT status.

[above “for the logical unit” is not true if element reservations are considered]

T10/03-337r1 SPC-3 Third party persistent reservations

Page 12 of 23

If a persistent reservation holder attempts to modify the TYPE or SCOPE of an existing persistent
reservation, then the command shall be rejected with a RESERVATION CONFLICT status.

If the device server receives a PERSISTENT RESERVE OUT command with RESERVE service
action where the TYPE and SCOPE are the same as the existing TYPE and SCOPE from a persistent
reservation holder, it shall not make any change to the existing persistent reservation and shall
return a GOOD status.

See 5.6.1 for information on when a persistent reservation takes effect.

5.6.2.6 Persistent reservation holder

The persistent reservation holder is determined by the type of persistent reservation as follows:

a) For a persistent reservation of the type Write Exclusive – All Registrants or Exclusive
Access – All Registrants, the persistent reservation holder is any all registered I_T
nexus(es) are persistent reservation holders; or

b) For all other persistent reservation types, the persistent reservation holder is the I_T
nexus that was granted the reservation from which the a PERSISTENT RESERVE OUT
command with REGISTER AND MOVE, RESERVE, PREEMPT, or PREEMPT AND
ABORT service actions was received.

A persistent reservation holder has its reservation key returned in the parameter data from a
PERSISTENT RESERVE IN command with READ RESERVATIONS service action as follows:

a) For a persistent reservation of the type Write Exclusive – All Registrants or Exclusive
Access – All Registrants, the reservation key shall be set to zero; or

b) For all other persistent reservation types, the reservation key shall be set to the
registered reservation key for the I_T nexus that holds the persistent reservation.

It is not an error for a persistent reservation holder to send a PERSISTENT RESERVE OUT
command with RESERVE service action to the reserved logical unit with TYPE and SCOPE fields
that match those of the persistent reservation (see 5.6.2.5).

A persistent reservation holder is allowed to release the persistent reservation using the
PERSISTENT RESERVE OUT command with RELEASE service action.

If the registration of the persistent reservation holder is removed (see 5.6.2.7.1), the reservation is
automatically released. When the persistent reservation holder is more than one I_T nexus, the
reservation is not automatically released until the registrations for all persistent reservation
holders I_T nexuses are removed.

5.6.2.7 Releasing persistent reservations and removing registrations
5.6.2.7.1 Overview of releasing persistent reservations and removing registrations
An application client may release or preempt persistent reservations by issuing one of the
following commands through a registered I_T nexus with the RESERVATION KEY field set to the
reservation key value that is registered for the I_T_L nexus:

a) A PERSISTENT RESERVE OUT command with RELEASE service action from a
persistent reservation holder (see 5.6.2.7.2);

aa) If the persistent reservation is not an all registrants type and the I_T nexus is the
persistent reservation holder, a PERSISTENT RESERVE OUT command with
REGISTER or REGISTER AND IGNORE EXISTING KEY service action with the SERVICE
ACTION RESERVATION KEY field set to zero (see 5.6.2.7.3);

b) A PERSISTENT RESERVE OUT command with PREEMPT service action specifying the
reservation key of the persistent reservation holder or holders (see 5.6.2.7.4);

c) A PERSISTENT RESERVE OUT command with PREEMPT AND ABORT service action
specifying the reservation key of the persistent reservation holder or holders (see
5.6.2.7.5); and

d) A PERSISTENT RESERVE OUT command with CLEAR service action (see 5.6.2.7.6).;
or

T10/03-337r1 SPC-3 Third party persistent reservations

Page 13 of 23

e) If the I_T nexus is the persistent reservation holder and the persistent reservation is not
an all registrants type, a PERSISTENT RESERVE OUT command with REGISTER
service action or REGISTER AND IGNORE EXISTING KEY service action with the
SERVICE ACTION RESERVATION KEY field set to zero (see 5.6.2.7.3).

An application client may remove registrations by issuing one of the following commands through
a registered I_T nexus with the RESERVATION KEY field set to the reservation key value that is
registered for the I_T_L nexus:

aa) A PERSISTENT RESERVE OUT command with REGISTER or REGISTER AND
IGNORE EXISTING KEY service action with the SERVICE ACTION RESERVATION KEY field
set to zero (see 5.6.2.7.3);

a) A PERSISTENT RESERVE OUT command with PREEMPT service action with the
SERVICE ACTION RESERVATION KEY field set to the reservation key (see 5.6.2.7.4) to be
removed;

b) A PERSISTENT RESERVE OUT command with PREEMPT AND ABORT service action
with the SERVICE ACTION RESERVATION KEY field set to the reservation key (see 5.6.2.7.5)
to be removed;

c) A PERSISTENT RESERVE OUT command with CLEAR service action (see 5.6.2.7.6).;
or

 d) A PERSISTENT RESERVE OUT command with REGISTER service action or
REGISTER AND IGNORE EXISTING KEY service action with the SERVICE ACTION
RESERVATION KEY field set to zero (see 5.6.2.7.3).

When a reservation key (i.e, registration) has been removed, no information shall be reported for
that an unregistered I_T nexus in subsequent READ KEYS service action(s) until the I_T nexus is
registered again (see 5.6.2.4). As shown in table 33, the handling of any persistent reservation
whose persistent reservation holder or holders become unregistered depends on the reservation
type.

Table 33 — Handling for released persistent reservations

Reservation type Reference
Write Exclusive – Registrants Only or
Exclusive Access – Registrants Only

5.6.2.7.1.1

Write Exclusive – All Registrants or
Exclusive Access – All Registrants

5.6.2.7.1.2

Write Exclusive or Exclusive Access 5.6.2.7.1.3

Registrations and persistent reservations may also be released by a loss of power, if the persist
through power loss capability is not enabled. When the most recent APTPL value received by the
device server is zero (see 6.12.3), a power cycle:

a) Releases all persistent reservations; and
b) Removes all registered reservation keys (see 5.6.2.4).

[5.6.2.7.1.1 Handling for released registrants only persistent reservations]
[5.6.2.7.1.2 Handling for released all registrants persistent reservations]
[5.6.2.7.1.3 Handling for other released persistent reservations]
[5.6.2.7.2 Releasing]
5.6.2.7.3 Unregistering
An application client may remove a registration for an I_T nexus by issuing a PERSISTENT
RESERVE OUT command with REGISTER service action or a REGISTER AND IGNORE
EXISTING KEY service action with the SERVICE ACTION RESERVATION KEY field set to zero through
that I_T nexus.

If the I_T nexus is a reservation holder, the persistent reservation is of an all registrants type, and
the I_T nexus was the last registered initiator, the device server shall also release the persistent
reservation.

T10/03-337r1 SPC-3 Third party persistent reservations

Page 14 of 23

If the I_T nexus is the reservation holder and the persistent reservation is of a type other than all
registrants, the device server shall also release the persistent reservation. If the persistent
reservation is a registrants only type, the device server shall generate a unit attention condition
for every initiator port associated with a registered I_T nexus. The additional sense code shall be
set to RESERVATIONS RELEASED.

5.6.2.7.4 Preempting
5.6.2.7.4.1 Overview of preempting
A PERSISTENT RESERVE OUT command with PREEMPT service action or PREEMPT AND
ABORT service action is used to:

a) Preempt (i.e., replace) a persistent reservation and remove registrations; or
b) Remove registrations.

Table 34 lists the actions taken based on the current persistent reservation type and the SERVICE
ACTION RESERVATION KEY field in the PERSISTENT RESERVE OUT command.

Table 34 — Preempting actions

Reservation
type

Service action
reservation key

Action Reference

Zero Preempt persistent reservations and remove
registrations.

5.6.2.7.4.3 All registrants

Any reservation
keyNon-zero

Remove registrations.

5.6.2.7.4.4

Zero Return CHECK CONDITION status, setting the sense
key to ILLEGAL REQUEST and the additional sense
code to INVALID FIELD IN PARAMETER LIST.

Reservation
holder’s
reservation key

Preempt persistent reservations and remove
registrations.

5.6.2.7.4.3

All other
types

Any other
reservation
keyvalue

Remove registrations. 5.6.2.7.4.4

See figure 3 for a description of how a device server interprets a PREEMPT service action to
determine its actions (e.g., preempt persistent reservation, remove registration, or both preempt
persistent reservation and remove registration).

[Figure 3]

Figure 3 — Device server interpretation of PREEMPT service action with SPEC_I_PT and
ALL_TG_PT set to zero

The PERSISTENT RESERVE OUT command PREEMPT and PREEMPT AND ABORT service
actions affect specified I_T nexus(es). The specified I_T nexus(es) are based on the SERVICE
ACTION RESERVATION KEY field, SPEC_I_PT bit, and ALL_TG_PT bits as described in table xx.

T10/03-337r1 SPC-3 Third party persistent reservations

Page 15 of 23

Table xx. SPEC_I_PT and ALL_TG_PT bits for PREEMPT and PREEMPT AND ABORT

SPEC_I_PT
bit

ALL_TG_PT
bit

SERVICE
ACTION

RESERVATION
KEY set to

zero and All
Registrants

type?

Specified I_T nexus(es)

no All registered I_T nexus(es) with the key specified
by the SERVICE ACTION RESERVATION KEY field. 0 any (1)

yes All registered I_T nexus(es).

no

All registered I_T nexus(es) with the key specified
by the SERVICE ACTION RESERVATION KEY field
involving:

a) the initiator port(s) specified in additional
parameter data; and

b) the target port used for the PERSISTENT
RESERVE OUT command. 1 0

yes

All registered I_T nexus(es) involving:

a) the initiator port(s) specified in additional
parameter data; and

b) the target port used for the PERSISTENT
RESERVE OUT command.

no

All registered I_T nexuses with the key specified by
the SERVICE ACTION RESERVATION KEY field involving:

a) the initiator port(s) specified in additional
parameter data; and

b) any target port. 1 1

yes

All registered I_T nexuses involving:

a) the initiator port(s) specified in additional
parameter data; and

b) any target port.

(1) the ALL_TG_PT bit has no effect for these service actions unless SPEC_I_PT bit is set to one

[Editor’s note: Alternative: make ALL_TG_PT unused for PREEMPT, or invert the ALL_TG_PT
meaning for PREEMPT so both 00 and 10 mean all target ports while 01 and 11 mean only target
port of the I_T nexus used by the PR OUT]

5.6.2.7.4.2 Failed persistent reservation preempt

If the preempting I_T nexus’ PREEMPT service action or PREEMPT AND ABORT service action
fails (e.g., repeated TASK SET FULL status, repeated BUSY status, SCSI protocol time-out, or
time-out due to the queue being blocked due to failed initiator port or failed SCSI initiator device),
the application client may issue a LOGICAL UNIT RESET task management function to the failing
logical unit to remove blocking tasks and then reissue the preempting service action.

5.6.2.7.4.3 Preempting persistent reservations and registration handling

An application client may preempt any persistent reservation with another persistent reservation
by issuing a PERSISTENT RESERVE OUT command with PREEMPT service action or

T10/03-337r1 SPC-3 Third party persistent reservations

Page 16 of 23

PREEMPT AND ABORT service action through a registered I_T nexus with the following
parameters:

a) RESERVATION KEY field set to the value of the reservation key that is registered for the
I_T_L nexus;

b) SERVICE ACTION RESERVATION KEY field set to the value of the reservation key of the
persistent reservation(s) to be preempted;

bb) the SPEC_I_PT bit and ALL_TG_PT bit optionally selecting a subset of I_T nexuses to be
preempted; and

c) TYPE and SCOPE fields set to define a new persistent reservation. The SCOPE and TYPE of
the persistent reservation created by the preempting I_T nexus may be different than
those of the persistent reservation being preempted.

If there is no persistent reservation, the device server shall return GOOD status without modifying
any registrations or persistent reservations.

If the SERVICE ACTION RESERVATION KEY field, SPEC_I_PT bit, and ALL_TG_PT bit identifyies a
persistent reservation holder one or more persistent reservation holders (see 5.6.2.6), the device
server shall perform a preempt by doing the following as an uninterrupted series of actions:

a) Release the persistent reservation for the persistent reservation holder(s) identified by
the SERVICE ACTION RESERVATION KEY;

b) Remove the registrations for all I_T nexuses identified by the SERVICE ACTION
RESERVATION KEY, field, SPEC_I_PT bit, and ALL_TG_PT bit, except the I_T nexus that
issued processed the PERSISTENT RESERVE OUT command. If an all registrants
persistent reservation is present and the SERVICE ACTION RESERVATION KEY field is set to
zero then all registrations shall be removed except for the initiator portthat of the I_T
nexus that issued processed the PERSISTENT RESERVE OUT command;

c) Establish a persistent reservation for the preempting I_T nexus using the contents of the
SCOPE and TYPE fields;

d) Process tasks as defined in 5.6.1; and
e) Establish a unit attention condition for every initiator port associated with an every I_T

nexus that lost its persistent reservation and/or registration. The sense key shall be set to
UNIT ATTENTION and the additional sense code shall be set to REGISTRATIONS
PREEMPTED.

After GOOD status has been returned for the PERSISTENT RESERVE OUT command, new
tasks are subject to the persistent reservation restrictions established by the preempting I_T
nexus.

The following tasks shall be subjected in a vendor specific manner either to the restrictions
established by the persistent reservation being preempted or to the restrictions established by the
preempting I_T nexus:

a) A task received after the arrival, but before the completion of the PERSISTENT
RESERVE OUT command with the PREEMPT service action or the PREEMPT AND
ABORT service action; or

b) A task in the dormant, blocked, or enable state at the time the PERSISTENT RESERVE
OUT command with the PREEMPT service action or the PREEMPT AND ABORT service
action is received.

Completion status shall be returned for each task unless it was aborted with PREEMPT AND
ABORT and the task aborted status is not enabled (see 7.4.6).

A PERSISTENT RESERVE OUT with a PREEMPT service action or a PREEMPT AND ABORT
service action with the SERVICE ACTION RESERVATION KEY value equal to the persistent reservation
holder’s reservation key is not an error. In that case the device server shall establish the new
persistent reservation and maintain the registration.

5.6.2.7.4.4 Removing registrations

T10/03-337r1 SPC-3 Third party persistent reservations

Page 17 of 23

When a registered reservation key does not identify a persistent reservation holder (see 5.6.2.6),
an An application client may remove the registration(s) without affecting any persistent
reservations by issuing a PERSISTENT RESERVE OUT command with PREEMPT service
action through a registered I_T nexus with the following parameters:

a) RESERVATION KEY field set to the value of the reservation key that is registered for the
I_T_L nexus; and

b) SERVICE ACTION RESERVATION KEY field set to match the reservation key of the
registration(s) being to be removed.

If there is no persistent reservation, the device server shall return GOOD status without modifying
any registrations or persistent reservations.

If there is a persistent reservation and if the SERVICE ACTION RESERVATION KEY field does not
identify a persistent reservation holder the device server shall perform a preempt by doing the
following in an uninterrupted series of actions:

a) Remove the registration for the I_T nexus orall I_T nexuses identified specified by the
SERVICE ACTION RESERVATION KEY field, SPEC_I_PT bit, and ALL_TG_PT bit;

b) Ignore the contents of the SCOPE and TYPE fields;
c) Process tasks as defined in 5.6.1; and
d) Establish a unit attention condition for any every initiator port associated with an every

I_T nexus that lost its registration other than the initiator port that sent the PERSISTENT
RESERVE OUT command. The sense key shall be set to UNIT ATTENTION and the
additional sense code shall be set to REGISTRATIONS PREEMPTED.

If a PERSISTENT RESERVE OUT with a PREEMPT service action or a PREEMPT AND ABORT
service action sets the SERVICE ACTION RESERVATION KEY field to a value that does not match any
registered reservation key specifies no I_T nexuses, the device server shall return a
RESERVATION CONFLICT status.

It is not an error for a PERSISTENT RESERVE OUT with a PREEMPT service action or a
PREEMPT AND ABORT service action to set the RESERVATION KEY and the SERVICE ACTION
RESERVATION KEY to the same value and specify only the I_T nexus used for the PERSISTENT
RESERVE OUT command, h. However, no unit attention condition is established for the initiator
port that sent the PERSISTENT RESERVE OUT command.

5.6.2.7.5 Preempting and aborting

The application client’s request for and the device server’s responses to a PERSISTENT
RESERVE OUT command PREEMPT AND ABORT service action are identical to the responses
to a PREEMPT service action (see 5.6.2.7.4) except for the following additions. If no reservation
conflict occurred, the device server shall perform the following uninterrupted series of actions:

a) If the TST field is 000b (see 7.4.6) and an ACA condition exists for initiator ports other
than the initiator port associated with the I_T nexus that is being preempted, the
PERSISTENT RESERVE OUT command shall be terminated prior to processing with a
status of ACA ACTIVE if the NACA bit equals one in the CDB CONTROL byte (see SAM-2)
or BUSY if the NACA equals zero. If the TST field contains 001b, then the ACA condition for
initiator ports other than the initiator port associated with the I_T nexuses that are being
preempted shall not prevent the processing of the PERSISTENT RESERVE OUT
command;

b) Perform the uninterrupted series of actions described for the PREEMPT service action
(see 5.6.2.7.4);

c) All tasks from the initiator port(s) associated with the preempted I_T nexuses (called
preempted tasks) except the task containing the PERSISTENT RESERVE OUT
command itself shall be terminated. Application client notification shall be provided, as
specified by the TAS bit in the Control mode page (see 7.4.6) that applies to the initiator
port associated with the preempted I_T nexus (called the preempted initiator port), as
follows:

T10/03-337r1 SPC-3 Third party persistent reservations

Page 18 of 23

A) If the TAS bit is set to zero then all preempted tasks shall be terminated as if an
ABORT TASK SET task management function had been performed by each
preempted initiator port; or
B) If the TAS bit is set to one then all preempted tasks from initiator ports other than
the initiator port that sent the PREEMPT AND ABORT service action shall be
terminated with a TASK ABORTED status (see SAM-2). Any preempted tasks from
the initiator port that sent the PREEMPT AND ABORT service action shall be
terminated as if an ABORT TASK SET task management function had been
performed by that initiator port.

If a terminated task is a command that causes the device server to generate additional
commands and data transfers (e.g., EXTENDED COPY), all commands and data
transfers generated by the command shall be terminated before the ABORT TASK SET
task management function is considered completed.

After the ABORT TASK SET function has completed, all new tasks are subject to the
persistent reservation restrictions established by the preempting initiator port;

d) The device server shall clear any ACA condition associated with an initiator port being
preempted and shall clear any tasks with an ACA attribute from that initiator port; and

e) For logical units that implement the PREVENT ALLOW MEDIUM REMOVAL command,
the device server shall perform an action equivalent to the execution of a PREVENT
ALLOW MEDIUM REMOVAL command with the PREVENT field equal to zero for the
initiator port or initiator ports associated with the I_T nexus or I_T nexus(es) being
preempted (see 6.13).

The actions described in the preceding list shall be performed for all specified I_T nexuses that
are registered with the SERVICE ACTION RESERVATION KEY value, without regard for whether the
preempted I_T nexuses hold the persistent reservation. If an all registrants persistent reservation
is present and the SERVICE ACTION RESERVATION KEY value is set to zero the device server shall
abort all tasks for all registered I_T nexuses.

5.6.2.7.6 Clearing

Any application client may release a persistent reservation and remove all registrations from a
device server by issuing a PERSISTENT RESERVE OUT command with CLEAR service action
through a registered I_T nexus with the following parameter:

a) RESERVATION KEY field set to the value of the reservation key that is registered for the
I_T_L nexus.

In response to this request the device server shall perform a clear by doing the following as part
of an uninterrupted series of actions:

a) Release any persistent reservation;
b) Remove all registration(s) (see 5.6.2.4);
c) Ignore the contents of the SCOPE and TYPE fields;
d) Continue normal execution of any tasks from any I_T nexus that have been accepted by

the device server as allowed (i.e., nonconflicting); and
e) Establish a unit attention condition for every initiator port associated with every registered

I_T nexuses other than the initiator port that sent the PERSISTENT RESERVE OUT
command with CLEAR service action, if any, for the cleared logical unit. The sense key
shall be set to UNIT ATTENTION and the additional sense code shall be set to
RESERVATIONS PREEMPTED.

Application clients should not use the CLEAR service action except during recoveries that are
associated with initiator port or system reconfiguration, since the effect of the CLEAR service
action is to remove the persistent reservation management conventions that protect data integrity.

5.6.2.8 Third party persistent reservations
Persistent reservations may be used to give temporary access to another initiator port (e.g., a
copy manager supporting the EXTENDED COPY command).

The recommended steps are:

T10/03-337r1 SPC-3 Third party persistent reservations

Page 19 of 23

1. Backup application uses the REGISTER service action to register an I_T nexus with a
logical unit (e.g., a tape drive logical unit);

2. Backup application uses the RESERVE service action to establish a persistent
reservation with the Exclusive Access type;

3. Backup application prepares the logical unit for access (e.g., ensures the tape is loaded
and rewound);

4. Backup application uses the REGISTER AND MOVE service action to register the I_T
nexus that the copy manager will use with the same reservation key it is using and move
the persistent reservation to that I_T nexus;

5. Backup application sends the EXTENDED COPY command to the copy manager;
6. Copy manager accesses the logical unit (e.g., writes to the tape); and
7. When the EXTENDED COPY command completes, backup application uses the

PREEMPT service action to regain ownership of the persistent reservation.
[Editor’s note: this list may be too useful to go into the standard]

If the same key is used, a preempt specifying only that key while the copy manager owns the
persistent reservation affects both the backup application’s registration and the copy manager’s
registration, so the preempting application need not be aware that a copy manager is being used.

[6.11 PERSISTENT RESERVE IN command]
6.12 PERSISTENT RESERVE OUT command

6.12.1 PERSISTENT RESERVE OUT command introduction

The PERSISTENT RESERVE OUT command (see table 105) is used to request service actions
that reserve a logical unit or element for the exclusive or shared use of a particular I_T nexus.
The command uses other service actions to manage and remove such persistent reservations.

I_T nexuses performing PERSISTENT RESERVE OUT service actions are identified by a
registered reservation key provided by the application client. An application client may use the
PERSISTENT RESERVE IN command to obtain the reservation key, if any, for the I_T nexus
holding a persistent reservation and may use the PERSISTENT RESERVE OUT command to
preempt that persistent reservation.

[Table 105 — PERSISTENT RESERVE OUT command]

If a PERSISTENT RESERVE OUT command is attempted, but there are insufficient device
server resources to complete the operation, the device server shall return a CHECK CONDITION
status. The sense key shall be set to ILLEGAL REQUEST and the additional sense code shall be
set to INSUFFICIENT REGISTRATION RESOURCES.

The PERSISTENT RESERVE OUT command contains fields that specify a persistent reservation
service action, the intended scope of the persistent reservation, and the restrictions caused by
the persistent reservation. The TYPE and SCOPE fields are defined in 6.11.4.2 and 6.11.4.3. If a
SCOPE field specifies a scope that is not implemented, the device server shall return a CHECK
CONDITION status. The sense key shall be set to ILLEGAL REQUEST and additional sense
code shall be set to INVALID FIELD IN CDB.

Fields contained in the PERSISTENT RESERVE OUT parameter list specify the information
required to perform a particular persistent reservation service action.

If the SPEC_I_PT bit (see 6.12.3) is zero, the parameter list shall be 24 bytes in length and the
PARAMETER LIST LENGTH field shall contain 24 (18h). If the SPEC_I_PT bit is set to zero and the
parameter list length is not 24, the device server shall return a CHECK CONDITION status. The
sense key shall be set to ILLEGAL REQUEST and the additional sense code shall be set to
PARAMETER LIST LENGTH ERROR. If the SPEC_I_PT bit is set to one, the PARAMETER LIST
LENGTH field specifies the number of bytes of parameter data for the PERSISTENT RESERVE
OUT command.

T10/03-337r1 SPC-3 Third party persistent reservations

Page 20 of 23

6.12.2 PERSISTENT RESERVE OUT Sservice Aactions

When processing the PERSISTENT RESERVE OUT service actions, the device server shall
increment the PRgeneration value as specified in 6.11.3.

The PERSISTENT RESERVE OUT command service actions are defined in table 106.

Table 106 — PERSISTENT RESERVE OUT service action codes

Code Name Description PRGENERATION
FIELD

INCREMENTED

00h REGISTER Register a reservation key with the device server
(see 5.6.2.4) or unregister a reservation key (see
5.6.2.7.3).

yes

01h RESERVE Creates a persistent reservation having a
specified SCOPE and TYPE (see 5.6.2.5). The
SCOPE and TYPE of a persistent reservation are
defined in 6.11.4.2 and 6.11.4.3.

no

02h RELEASE Releases the selected persistent reservation
(see 5.6.2.7.2).

no

03h CLEAR Clears all reservation keys (i.e., registrations)
and all persistent reservations (see 5.6.2.7.6).

yes

04h PREEMPT Preempts persistent reservations and/or
removes registrations (see 5.6.2.7.4).

yes

05h PREEMPT
AND ABORT

Preempts persistent reservations and/or
removes registrations and aborts all tasks for all
preempted I_T nexuses (see 5.6.2.7.4 and
5.6.2.7.5).

yes

06h REGISTER
AND IGNORE

EXISTING
KEY

Register a reservation key with the device server
(see 5.6.2.4) or unregister a reservation key (see
5.6.2.7.3).

yes

07h REGISTER
AND MOVE

Register a reservation key with the device server
and move a persistent reservation (see 5.6.2.x).

yes

078h - 1Fh Reserved

The parameter list values for each service action are specified in 6.12.3.

6.12.3 PERSISTENT RESERVE OUT parameter list

The parameter list required to perform the PERSISTENT RESERVE OUT command is defined in
table 107. All fields shall be sent on all PERSISTENT RESERVE OUT commands, even if the
field is not required for the specified service action and scope values.

T10/03-337r1 SPC-3 Third party persistent reservations

Page 21 of 23

Table 107 — PERSISTENT RESERVE OUT parameter list
Byte\Bit 7 6 5 4 3 2 1 0

0 (MSB)
7 RESERVATION KEY (LSB)
8 (MSB)
15 SERVICE ACTION RESERVATION KEY (LSB)
16 (MSB)
19 SCOPE-SPECIFIC ADDRESS (LSB)
20 Rsvd Rsvd Rsvd Rsvd SPEC_I_PT ALL_TG_PT Rsvd APTPL
21 Reserved
22
23 Obsolete
24
n Additional parameter data

The obsolete field in Bytes 22 and 23 was defined in a previous standard for use with an obsolete
scope (see table 101). If the obsolete scope is not supported Bytes 22 and 23 should be zero.

The RESERVATION KEY field contains an 8-byte value provided by the application client to the
device server to identify the I_T nexus that is the source of the PERSISTENT RESERVE OUT
command. The device server shall verify that the contents of the RESERVATION KEY field in a
PERSISTENT RESERVE OUT command parameter data matches the registered reservation key
for the I_T nexus from which the task was received, except for:

a) The REGISTER AND IGNORE EXISTING KEY service action where the RESERVATION
KEY field shall be ignored; and

b) The REGISTER service action for an unregistered I_T nexus where the RESERVATION KEY
field shall contain zero.

Except as noted above, when a PERSISTENT RESERVE OUT command specifies a
RESERVATION KEY field other than the reservation key registered for the I_T nexus the device
server shall return a RESERVATION CONFLICT status. Except as noted above, the reservation
key of the I_T nexus shall be verified to be correct regardless of the SERVICE ACTION and SCOPE
field values.

The SERVICE ACTION RESERVATION KEY field contains information needed for four service actions:
the REGISTER, REGISTER AND IGNORE EXISTING KEY, REGISTER AND MOVE,
PREEMPT, and PREEMPT AND ABORT service actions. The SERVICE ACTION RESERVATION KEY
field is ignored for all other service actions.

For the REGISTER and, REGISTER AND IGNORE EXISTING KEY, and REGISTER AND
MOVE service actions, the SERVICE ACTION RESERVATION KEY field contains:

a) The new reservation key to be registered in place of the registered reservation key
specified in the RESERVATION KEY field; or

b) Zero to unregister the registered reservation key specified in the RESERVATION KEY field.
For the PREEMPT and PREEMPT AND ABORT service actions, the SERVICE ACTION
RESERVATION KEY field contains the reservation key of:

a) The registrations to be removed; and
b) If the SERVICE ACTION RESERVATION KEY field identifies and any specify initiator ports

parameter data identify a persistent reservation holder (see 5.6.2.6), persistent
reservations that are to be preempted.

If the scope is an ELEMENT_SCOPE persistent reservation, the SCOPE-SPECIFIC ADDRESS field
shall contain the element address, zero filled in the most significant bits to fit the field. If the
service action is REGISTER, REGISTER AND IGNORE EXISTING KEY, REGISTER AND
MOVE, or CLEAR, or if the scope is a LU_SCOPE persistent reservation, the SCOPE-SPECIFIC
ADDRESS field shall be set to zero.

T10/03-337r1 SPC-3 Third party persistent reservations

Page 22 of 23

If the SPEC_I_PT (Specify Initiator Ports) bit is set to zero, the device server shall ignore the
additional parameter data.

If the SPEC_I_PT bit is set to one, the additional parameter data shall include a list of transport IDs
(see table 108).

For the REGISTER, REGISTER AND IGNORE EXISTING KEY, REGISTER AND MOVE service
actions, the SPEC_I_PT bit usage is described in 5.6.2.4. For the PREEMPT and PREEMPT AND
ABORT service actions, the SPEC_I_PT bit usage is described in 5.6.2.7.4.1.

and shall apply the registration only to the I_T nexus that sent the PERSISTENT RESERVE OUT
command. If the SPEC_I_PT bit is set to one for the REGISTER or REGISTER AND IGNORE
EXISTING KEY service actions, the additional parameter data shall include a list of transport IDs
(see table 108) and the device server shall apply the registration to the I_T nexus for each
initiator port specified by a TransportID. If a registration fails for any initiator port (e.g., if the SCSI
target device does not have enough resources available to hold the registration information),
none of the other registrations shall be made.

[Table 108 — PERSISTENT RESERVE OUT specify initiator ports additional parameter
data]

The TRANSPORTID PARAMETER DATA LENGTH field specifies the number of bytes of TransportIDs
that follow.

The command shall be terminated with a CHECK CONDITION status and the sense key set to
ILLEGAL REQUEST:

a) If the value in the parameter list length field in the CDB does not include all of the
additional parameter list bytes specified by the TRANSPORTID PARAMETER DATA LENGTH
field; or

b) If the value in the TRANSPORTID PARAMETER DATA LENGTH field results in the truncation of a
TransportID.

The format of a TransportID is specified in 7.5.4.

The ALL_TG_PT (All Target Ports) bit is valid only for the REGISTER, and REGISTER AND
IGNORE EXISTING KEY, REGISTER AND MOVE, PREEMPT, and PREEMPT AND ABORT
service actions, and shall be ignored for all other service actions. Support for the ALL_TG_PT bit is
optional. For the REGISTER, REGISTER AND IGNORE EXISTING KEY, REGISTER AND
MOVE service actions, the ALL_TG_PT bit usage is described in 5.6.2.4. For the PREEMPT and
PREEMPT AND ABORT service actions, the ALL_TG_PT bit usage is described in 5.6.2.7.4.1.

 If the device server receives a REGISTER or REGISTER AND IGNORE EXISTING KEY service
action with the ALL_TG_PT bit set to one, it shall create the specified registration on all target ports
in the target device (i.e., as if the same registration request had been received individually
through each target port). If the device server receives a REGISTER or REGISTER AND
IGNORE EXISTING KEY service action with the ALL_TG_PT bit set to zero, it shall apply the
registration only to the target port through which the PERSISTENT RESERVE OUT command
was received.

The APTPL (Activate Persist Through Power Loss) bit is valid only for the REGISTER, and
REGISTER AND IGNORE EXISTING KEY, and REGISTER AND MOVE service actions, and
shall be ignored for all other service actions. Support for an APTPL bit equal to one is optional. If a
device server that does not support an APTPL bit set to one receives that value in a REGISTER or
a REGISTER AND IGNORE EXISTING KEY service action, the device server shall return a
CHECK CONDITION status. The sense key shall be set to ILLEGAL REQUEST and additional
sense code shall be set to INVALID FIELD IN PARAMETER LIST. Usage of the APTPL bit is
described in 5.6.2.2.

If the last valid APTPL bit value received by the device server is zero, the loss of power in the SCSI
target device shall release the persistent reservation for the logical unit and remove all registered
reservation keys (see 5.6.2.4).

T10/03-337r1 SPC-3 Third party persistent reservations

Page 23 of 23

If the last valid APTPL bit value received by the device server is one, the logical unit shall retain
any persistent reservation(s) that may be present and all reservation keys (i.e., registrations) for
all I_T nexuses even if power is lost and later returned (see 5.6.2.2).

[Editor’s note: the preceding two paragraphs are more precisely covered in the model section]

Table 109 summarizes which fields are set by the application client and interpreted by the device
server for each service action and scope value.

Table 109 — PERSISTENT RESERVE OUT service actions and valid parameters (part 1 of 2)
Service
action

Allowed SCOPE TYPE RESERVATION
KEY

SERVICE
ACTION

RESERVATION
KEY

SCOPE-SPECIFIC
ADDRESS

REGISTER ignored ignored valid valid ignored

REGISTER
AND IGNORE
EXISTING
KEY

ignored ignored ignored valid ignored

REGISTER
AND MOVE

ignored ignored valid valid ignored

RESERVE LU_SCOPE

ELEMENT_SCOPE

valid valid ignored ignored
valid (element)

RELEASE ignored valid valid ignored ignored
valid (element)

CLEAR LU_SCOPE

ELEMENT_SCOPE

ignored valid ignored ignored

PREEMPT LU_SCOPE

ELEMENT_SCOPE

valid valid valid ignored
valid (element)

PREEMPT
AND ABORT

LU_SCOPE

ELEMENT_SCOPE

valid valid valid ignored
valid (element)

Table 109 — PERSISTENT RESERVE OUT service actions and valid parameters (part 2 of 2)
Service action Allowed SCOPE APTPL ALL_TG_PT SPEC_I_PT

REGISTER ignored valid valid valid

REGISTER AND
IGNORE

EXISTING KEY

ignored valid valid valid

REGISTER AND
MOVE

ignored valid valid valid

RESERVE all ignored ignored ignored

RELEASE all ignored ignored ignored

CLEAR ignored ignored ignored ignored

PREEMPT all ignored ignoredvalid ignoredvalid

PREEMPT AND
ABORT

all ignored ignoredvalid ignoredvalid

