DOC: T10/03-274r0
Use of non-XOR/CRC Guardsin RAID Applications
From: Walter Rassbach

This document describes the advantages and extra protection provided by a non-XOR/CRC based
guard calculation method in aRAID (or RAID-like) context. This document discusses a particul at
checksum based block guard cal culation method but but the overall discussion actually appliesto
any other block guard calculation method which is no based on XOR (or CRC).

The document primarily discusses a set of simplified, fairly concrete example because the crux of
the claimed advantage is the result of the way the actual calculationswork out. The calclationsin
the general case work out similarly due to the mathematical relationships. In particular, the fact
that an XOR/CRC-based guard is subject to the “corner-sum” characteristics described is the
result of the mathematical associativity and commutivity of XOR while the claimed advantages of
the checksum method (or other non-X OR/CRC methods) arise directly from the fact that those
mathematical properties do not hold between XOR and “addition”.

First, it must be recognized that a CRC (against afixed size block) isreally just afancy way of
specifying a set of XOR trees. Each bit in the CRC-value calculated for a block of datais simply
the XOR of a selected subset of the bitsin the data block. Looking at it from the other side, each
bit position in the data is associated with a specific signature in the CRC field and the CRC-value
calculated for agiven block of datais simply the XOR of the signatures of each active data bit,
with the seed-signature (if the calculation is seeded) which consists of the seed-value “ clocked
through” the CRC the appropriate number of times. In particular, the following relationship holds

for any two blocks of data, A and B:

crc(A)dcrc(B) = crc(A & B) & <seed-signature>
The*extra’ seed-signature on the right-hand side is due to the fact that both terms on the left-hand
side contain the seed-signature. For simplicity in the remainder of the discussion, we will presume
that the seed (and thus, the seed-signature) is zero -- The adjustments to deal with non-zero seeds
are straightforward. In addition, for ease of presentation, we will useasimple LRC (whichis
really just aCRC using a polynomial of the form x16 + 1) in the examples -- The examples are
valid with any form of CRC, the calculations are just harder to follow and verify.

We will assume that we are working with aRAID-5 (or RAID-4) stripe consisting of data blocks
A, B, C, and D, and parity block P. Each data block consists of the actual data(e.g., dataA), which
isnominaly 512 byteslong, and a check value (e.g., chkA) which is 2 bytes and is calculated
from dataA. Both fields are saved on the media. The data part of the parity block, P, issimply the
XOR of the data parts of the datablocks, i.e., dataA & ... & dataD . The goal of thisdiscussion is
to describe a method of cal culating the check field value, chkP, to be stored on the mediawith the
parity data, dataP, in such away asto provide certain protections for the whole stripe.

If an XOR-based guard calculation method (e.g., LRC or CRC) is used for the data guard on the
data blocks, the guard value calculated for the parity block can be taken to be either the guard
value calculated directly from the parity block or it can be the XOR of the guard values of the data
blocks -- The two values differ by afixed amount which can be determined from the seeding
method and does not depend on any of the actual data. The reason that this occursisthat al of the
(actual) operationsinvolved use XOR and XOR is both commutative and associative. If the value

used to seed the guard calculations is zero or the seeding method is designed appropriately, the
difference between the two possible choices can be eliminated and the method used to calculate
the check-value for the parity block does not matter. In this case, the check-value for the parity
block is essentially equivalent to a corner-sum used to cross-check row-and-column additions.
Thisisillustrated in the following example, which uses LRC, no seeding, and 4-bit “words”:

bik A blk B blkC | blkD | Parity
nib 0 9 4 8 C 9
nib 1 0 F A 3 6 Initial “stripe”
nib 2 8 F B 2 E using an LRC
nib 3 6 1 0 7 0
nib 4 1 5 D 4 D
LRC 6 0) E C

The LRC/Parity value can be obtained by X ORing by rows then columns or columns then rows.
If an update-writeto (say) block A of the stripeis done, the old value of block A and the old parity
block are read, the new parity block is constructed, and both the new block A and the new parity
block are written to disk. For purposes of the discussion, we will ignore the possibility of any
independent recovery methods (e.g., based on non-volatile memory or transaction logging).

If, during an update-write, afailure (e.g., loss of power) occurs where one of the new blocksis
written but the other is not (often called a*“write hole”), the stripe is no longer consistent since the
parity block does not match the other blocks in the stripe. There are two cases:

1. Thenew block A iswritten but the parity is not. In this case, aread of block A will normally
fetch the new value, but areconstruction will result in the old value.

2. If the parity block iswritten but the new value of block A is not written, aread of block A will
normally get the old value of block A but a reconstruction will result in the new value.

Most good RAID implementations provide mechanismsto locate and repair such inconsistent
stripes. Following the repair, the value stored for block A may be either the old value or the new
value, but thisis generally not an issue since (assuming that there is no fast or cache write policy)
status would not have been presented for the failed write. Moreover, if either the drive containing
block A or the parity block fails before the repair, there is still no problem since the recovery
mechanisms will produce either the old or new value for block A.

However, thereis aproblem if the drive containing block B should fail before the repair is made,
and this problem is severe because block B was not supposed to be affected or at risk during the
failed update-write operation. Moreover, unless the implementation provides some ‘ sideband”
mechanism for remembering that the stripeis at risk, it does not have any way of detecting the
inconsistent stripeif it uses an XOR-based guard calculation method like a CRC, because the
value reconstructed for block B from the inconsistent stripe will always have avalid guard value
(after any adjustments due to the seeding methods). The result, in most implementation, is that
block B will be randomly altered and the implementation will present it as“good data’.

Note that thisis adirect mathematical consequence of the use of an XOR-based guard calculation
method, such as an LRC or CRC. Such an implementation simply cannot detect this problem by
the use of the block guards, and “sideband” methods for detecting such problems are generally
expensive and/or complex and error-prone.

For example, using the stripe above, if the new value for block A is4, A, 8, 7, 3, with aguard
value of 2, and the new block A iswritten but the parity block is not, the reconstruction is:

bikA | [DIkB] | DIKC | BIkD || Paity | bIkB

nib 0 4 [4] 8 C 9 9 pB I(-)tc “ AtUpd;;e:d

. arity not u y
n!b 1 A [F] A 3 6 ° Blgck B rgbuilt
nfb 2 8 [F] B 2 E F incorrectly (on right)
nib 3 7 [1] 0 7 0 0 using an LRC
nib 4 3 5] D 4 D !
LRC 2 [0] 7 E c 4

If the parity iswritten but block A is not written, the reconstruction is:
blkA | [DIkB] | BIkC | DKD | Parity | bkB

nib 0 5 7] g C Z 9 Block A not updated,
bl [0 | | A | 3 | C |5 | ey
n!b 2 8 [F] B 2 E F incorrectly (on right)
nib 3 6 [1] 0 7 1 0 using an LRC
nib 4 1 [5] D 4 F 7

LRC 5 0] 7 E 8 7

Note that the reconstructed block B isthe same in both instances -- This is because the value
which results from the reconstruction is the correct value for block B X ORed with the old and
new valuesfor block A. The reconstructed guard value for the erroneously reconstructed block B
corresponds to the reconstructed data due to corner-sum characteristics and no error is detected.

If a check-sum based (or some other non-X OR-based) guard cal culation method is used, the
reconstructed block will generally fail to correspond to the reconstructed data. This holds because
addition and XOR are incompatible operations and the corner-sum characteristics are eliminated.
If a check-sum based guard method is used, the check value stored with the parity block should be
the XOR of the check values for the data blocks and not the check-sum of the parity block. This
means that the parity block cannot be independently validated (since its guard value generally is
not the value calculated using the check-sum based method against the parity block), but, in
return, it provides a“synchronization” check across the whole stripe.

To extend the examples above, the check-sum based guard will use asimple 4-bit “word” 1's
compliment check-sum (i.e., a carry from the top bit will be wrapped to the bottom bit), with a
seed value of F (equivalent to a0, but this ensures that the calculated value will never be 0) -- In
actual practice, a dlightly more complicated method (described below) should be used to provide
the guard with certain additional desirable characteristics. The initial stripe would be:

blk A blk B blk C blk D Parity

nib0 9 4 8 C 9 N .
nib 1 0 F A 3 6 I_nltlal stripe

ib using a checksum
nib2 8 i B 2 E (4 bt wrapped carry)
nib 3 6 1 0 7 0
nib 4 1 5 D 4 D

sum 9 A C D || 2 |

Note that the value of the check-sum of the parity block is C, but the value stored with the parity
block isthe XOR of the guard values for the data blocks, i.e., 9 A & CHD.

The guard value for the new block A (4,A,8,7,3) works out as 2 again. In the case where block A
iswritten but the parity block is not written, the reconstruction exampleis:

blk A [bIkB] | blk C blk D Parity blk B Block A Undated

_ ock A up ,
n?b 0 4 [4] 8 c 9 9 Parity not updated,
nib 1 A [F] A 3 6 > Block B rebuilt
nib 2 8 [F] B 2 E F incorrectly (on right)
nib 3 7 [0 7 0 0 using a checksum
nib 4 3 & D 7 D 7 The checksum does

not crosscheck!

sum 2 [A] C D 2 1/8

Where the reconstructed guard valueis 2 &> C &b D &b 2 which works out to 1, while the guard
value calculated for the reconstructed block is 8. As aresult, this block will fail the guard check
and be recognized as an invalid block. The implementation may not be able to determine the exact
cause of the failure, but it will at least be able to avoid presenting incorrect data as if it were the
correct and valid data.

In the second case, where the parity block iswritten but the new value for block A is not written,
the reconstruction exampleis similar:

blk A [blk B] blk C blk D Parity blk B Block A ot undated
) oc not up ,
n?b 0 9 [4] 8 C 4 9 Parity updated,
nib 1 0 [F] A 3 c 5 Block B rebuilt
nib 2 8 [F] B 2 E F incorrectly (on right)
nib 3 6 [1] 0 7 1 0 using a checksum
nib 4 1 5] D 2 = 7 The checksum does
not crosscheck!
sum 9 [A] C D 9 1/8

The guard value stored in the updated parity block reflects the guard value for the new block A
andis 2 A £ C & D which works out to 9 (the actual check-sum for the new parity block is 1).
Once again, the reconstructed block will fail the guard checks and be recognized as invalid.

As these examples show, an XOR based guard does not provide any kind of protection across a
stripe because of the corner-sum characteristics while using a check-sum based guard calcul ation
method with the XOR of the data block guards stored with the parity block (rather than using the
check-sum calculation of the parity block itself) provides a“ synchonrization” check across the
stripe during a reconstruction operation.

This check is essentially as strong as the guard itself, e.q., if the guard is 16 bits (i.e., a 1-in-216
strength), the cross stripe “synchronization check” strength will also be 1-in-216.

A check-sum based calculation should use 1's compliment addition (i.e., carries from the top bit
of the accumulation should be wrapped to the bottom bit). This ensures that all bitsin the guarded

data are treated similarly rather than providing essentially stronger protection for the low order
bits which would be the result of not wrapping the carries. In addition, if the calculation is seeded

with anon-zero value (all 1'sis apossible choice, which has the same effect as a zero seed), the
resulting value will always be non-zero. This allows a value of zero to be used as a special
“marker” value when stored in place of the normal guard value.

Mathematically, such a check-sum is quite similar to what a CRC is. In the check-sum case the
value calculated is the remainder of adivision of the data block as asingle (large) integer by a

value of 216-1. In the case of a CRC, the value calculated is the remainder of adivision of the data
block, as a polynomia over GF(2), by the CRC polynomial.

However, a CRC provides protection against certain types of swaps and displacements of the data
that the basic check-sum does not provide. A check-sum based guard (even with rotation) is also
subject to some “ pattern errors’ involving changes to only afew bits and/or bits that are not very
far appart (short span errors). To provide such protection characteristics with a check-sum based
guard, certain adjustments must be built into the calculation.

One basic adjustment is to multiply the accumulated value by 2 (using 1's complement arith-
metic) at each step of the calculation -- Due to the use of 1's complement arithmetic, this amount
to aleft rotation of 1 bit. If the guard is 16 bits, this provides protection against displacements or
swaps which are not a multiple of 32 bytesin distance. Providing protection against such swaps or
displacement distancesis abit harder but not difficult: Inserting a multiplication by afactor of 7
every eighth step will protect against such displacements (Note: The multiplier here should not be

adivisor of 216-1. Applying it every eighth step simplifies calculationsin code and correl ates with

16 byte boundaries). Alternatively, a uniform multiply by 7 modulo 216-1 every step (rather than
multiplying by 2 on most steps) would protect against swaps or displacements that are not a step
distance multiple of 512 bytes.

A simple multiply-bu-2 approach is also suject to some pattern errors. There are two main cases
that could be worrisome:

1. Caseswhere one bit isflipped from 0 to 1 and another bit is flipped from 1 to O, with the bits
separated by a particular distance. The distanceis generally amultiple of 17 bits, but it may be
adjacent hitsif they are in separate (adjacent) 16-bit “words’.

2. Aninversion of an aligned 16-bit word from an all 0'svalueto an all 1’svalue or vice-versa.

There are ways to address these problems, although they make the agorithms more complicated.

The use of a (properly selected) multiplier other than 2 (modulo 216-1) will eliminate the cases
where a change in just two bits (case 1 above) is undetected. For example, using amultiplier of 7
ensures that aminimum of 4 bits-in-error isrequired before similar cases occur. Other multipliers
can increase the required number of bit-in-error slightly. Addressing the second problem (case 2)
is somewhat more difficult. Simply XORing in a constant 16-bit value to each data word before
adding in each word of datawill shift the problem situation to adifferent pair of values.

However, there is a question about whether such measures are required in this particular context.
In actual usages, the data blocks are generally already protected against such errors by other
mechanisms, e.g., disk ECC, memory parity or ECC, or packet CRCson serial trnasmission links.
In such contexts, the correct question to be asking is: “whether errors undetected by such methods
are dso undetected by the guard”. In other words, the question of the kinds of pattern error that
are an issue cannot be independently examined, it must be examined in the context of any other
protection mechanism that isin use.

The suggested code to cal cul ate the suggested check-sum based guard is as follows:

regi ster u32 accum
regi ster ulé *d_buf_p;
register int ctr;

accum = OxFFFF;
d_buf _p = buffer_p;
ctr = 256;

do {
accum <<= 1;
accum += *d_buf p++;
if((--ctr) &7)
conti nue;

[* Optionally multiply by 7 here:
accum = (accum <<3) - accum
*/

/* Wap carries for the |last 8 adds: */
accum = (accum & OxFFFF)
+ (accum >> 16);

if(tectr)
br eak;
} while(TRUE);

[* Finish carry wrapping: */
accum = (accum & OxFFFF)
+ (accum >> 16);

Thisisthe calculation for a512 byte block. The algorithm can easily be extended to deal with
blocks of arbitrary size. A guard value calculated this way provides essentially the same level of
protection provided by a CRC and also provides a guard mechanism that provides the cross stripe
“synchronization/consistency” check capability. The computation method can be elaborated in
hardware to deal with the datain larger “chunks’ that 2 bytes at atime. In code, this calculation is
more than twice as fast as a calculation of a CRC.

For protection equivalent to an LRC, the simple wrapped carry check-sum can be used. The value
can be accumulated in a 32-bit register with the carriesal wrapped at the end. thisisessentially as
fast asthe LRC calculation.

