# Serial Attached SCSI Technical Overview

by Rob Elliott
Based on T10/02-157r0
Revision 0 - 29 April 2002
Revision 1 - 6 May 2002 (minor corrections)

#### **Outline**

- Introduction
- General (devices, domains, ...)
- Physical layer (cables, connectors, electrical specs, ...)
- Phy layer (8b10b, OOB, ...)
- Link layer (primitives, connections, ...)
- Transport layer (SSP, STP, and SMP frames)
- Application layer (SCSI mode pages)
- Further information

### Introduction

- Serial Attached SCSI (SAS)
  - Serial SCSI Protocol (SSP)
    - SCSI over Serial ATA physical layer
  - Serial ATA Tunneling Protocol (STP)
    - Enhancement to Serial ATA adding addressing
  - Serial Management Protocol (SMP)
    - Expander management

## **Introduction - General**

## Expanders

- Simple virtual circuit switches
- STP to SATA protocol conversion
- edge expanders simple subtractive decode
- fanout expanders routing table max. one per domain
- 64 devices per expander
- 4096 total devices in a SAS domain

# Introduction - Physical layer

#### Connectors

- Disk drive/backplane Based on SATA connectors
  - Dual port extra port on other side of SATA signals, between signal and power
  - SATA or SAS disk drive can plug into SAS backplane
- External Based on InfiniBand™ 4-wide connector (SFF-8470)
  - Special keying for SAS
- Being standardized in SFF

#### Electrical specs

- 1.5 Gbps, 3.0 Gbps
- Based on SATA 1.0 and XAUI

# **Introduction - Phy layer**

- 8b10b like all other serial protocols
- OOB compatible with Serial ATA

# **Introduction - Link layer**

- SAS primitives use K28.5; SATA use K28.3
- Address frames
- WWN addressing
- Connections
- Scrambling

# **Introduction - Transport layer**

#### SSP

- SCSI frames are based on FCP
- COMMAND, XFER\_RDY, DATA, RESPONSE
- TASK, AEN, and AEN\_RESPONSE added

#### STP

#### SMP

Functions for expanders

# **Introduction - Application layer**

#### SCSI

- Disconnect-Reconnect mode page
- Protocol-Specific mode page

#### ATA

Addressing added

## **General outline**

- SCSI standards
- ATA standards
- Serial ATA overview
- Protocol layers
- SSP (SCSI), STP (ATA), and SMP
- Initiators, targets, and expanders
- Phy
- Ports and wide links
- Domains
- Sample topologies

- Possible configurations
- Pathways
- Device names
- Transmit data path
- Resets
- Expander model

## **General - SCSI standards**

SCSI Architecture Model (SAM-2)

Device-type specific command sets (e.g., SBC-2, SSC-2, MMC-3)

Primary command set (shared for all device types) (SPC-3)

Protocols (e.g., SPI-4, FCP-2, SSP in this standard)

Interconnects (e.g., SPI-4, Fibre Channel, this standard)

## **General - ATA standards**

ATA registerdelivered command set (ATA/ATAPI-6) Device-type specific command sets (e.g., MMC-3)

Primary command set (shared for all device types) (SPC-3)

ATA (Register-delivery for ATA commands) ATAPI (Packet-delivery for SCSI commands)

ATA/ATAPI Register set (ATA/ATAPI-6)

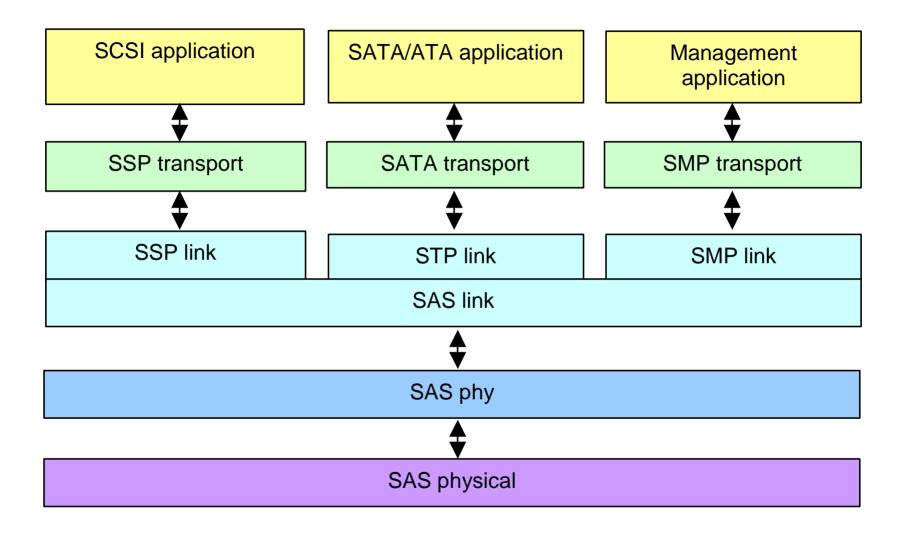
Protocols (STP in this standard, SATA)

Interconnects (this standard, SATA)

### **General - Serial ATA overview**

#### Physical

- Point-to-point links
- 1.5 Gbit/sec transfer rate; 3.0 Gbit/sec and 6.0 Gbit/sec in the future
- spread-spectrum clocking
- Device connector, cables, backplane connectors

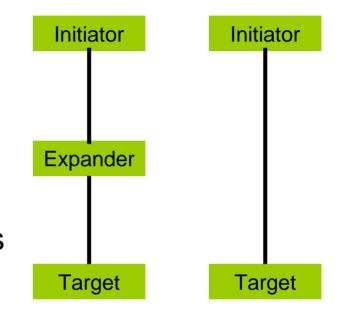

#### Link

- Out-of-band (OOB) reset sequence (includes speed negotiation)
- 8b10b coding, repeated primitive scrambling, frame data scrambling, power management, half duplex

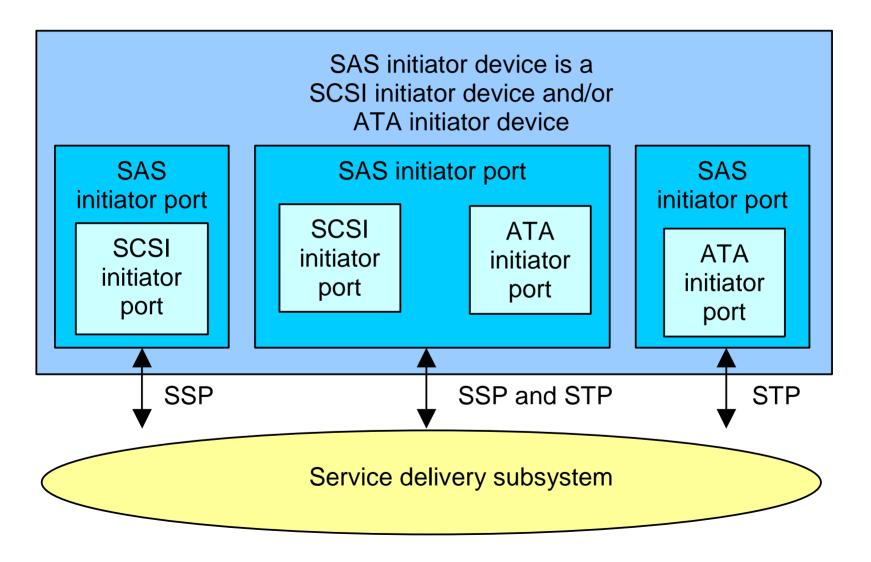
#### Transport

- ATA/ATAPI-6 transport protocol PIO, DMA, DMA queuing, PACKET
- Frame Information Structure (FIS) with CRC-32
- No addressing; little-endian

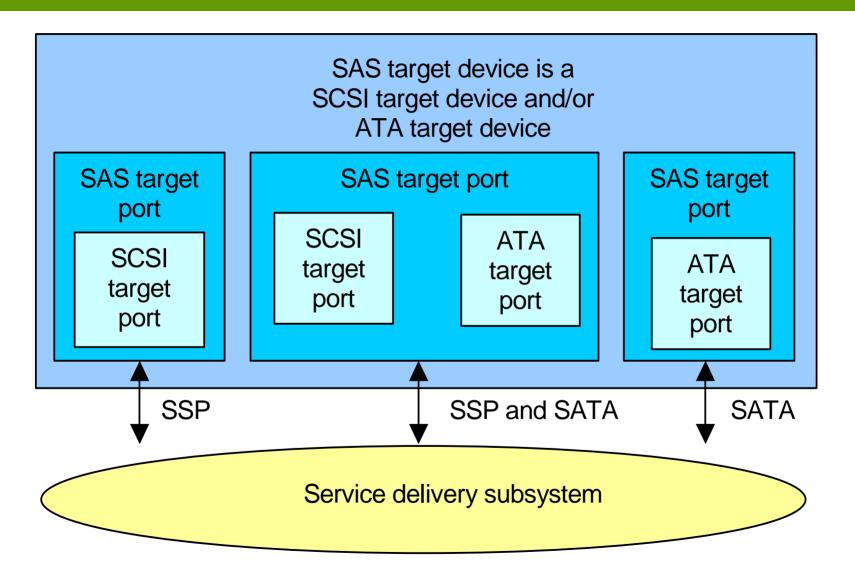
# **General - Protocol layers**



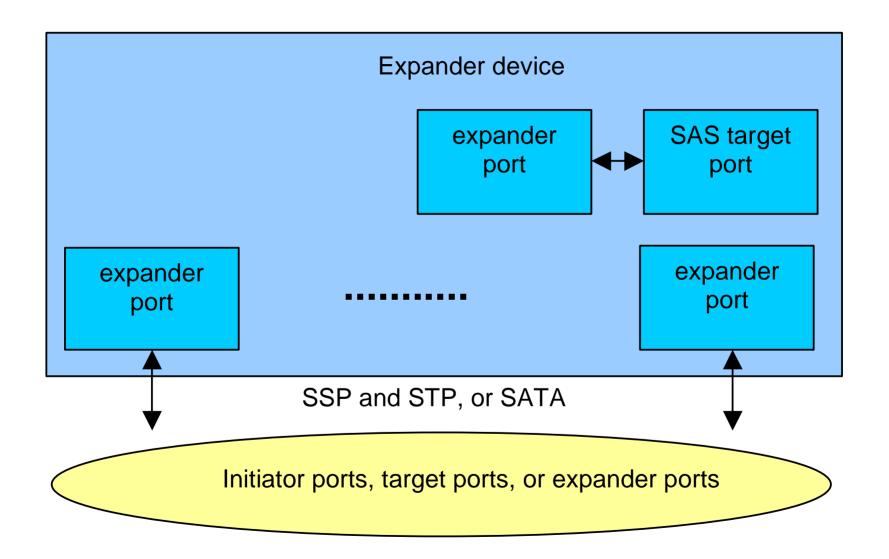

## **General - Initiators, targets, and expanders**


- Initiator (HBA) protocols
  - SSP (SCSI)
  - STP (ATA)
  - SMP
  - SATA (ATA)
- Target (disk or tape drive) protocols
  - SSP (SCSI)
  - SATA (ATA)
  - SMP
- Expander protocols
  - Initiator side
    - SSP (SCSI)
    - STP (ATA)

Slide 15 - SMP


- Target side
  - SSP (SCSI)
  - SATA (ATA)
  - SMP




## **General - Initiator device**



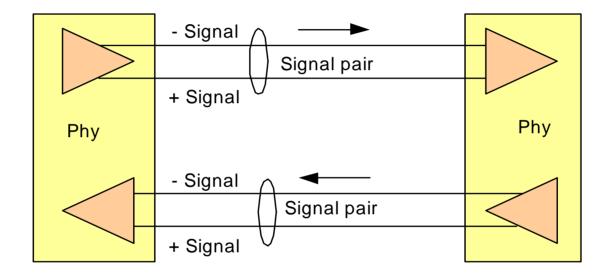
# **General - Target device**



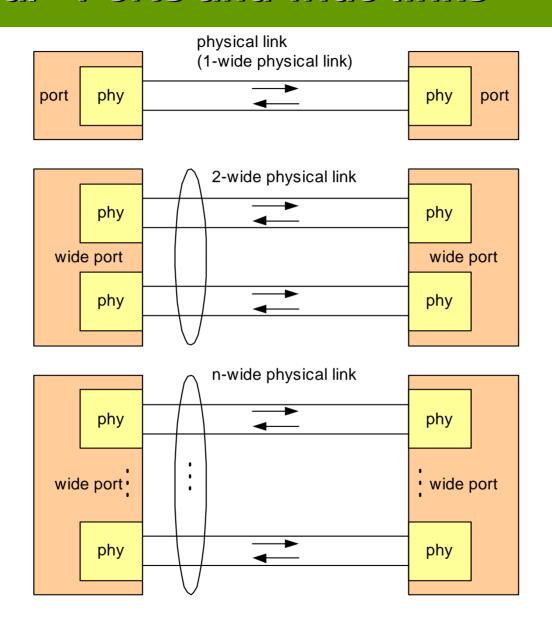
# **General - Expander device**



# **General - Expander types**


## Fanout expander

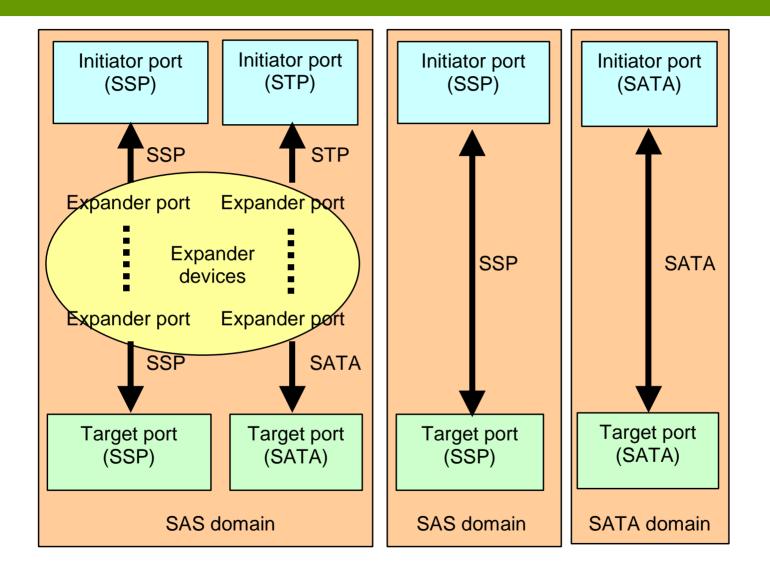
- Up to 64 phys
- One per domain
- Maintains routing table for whole domain
- Attaches to edge expanders, initiators, and targets


### Edge expanders

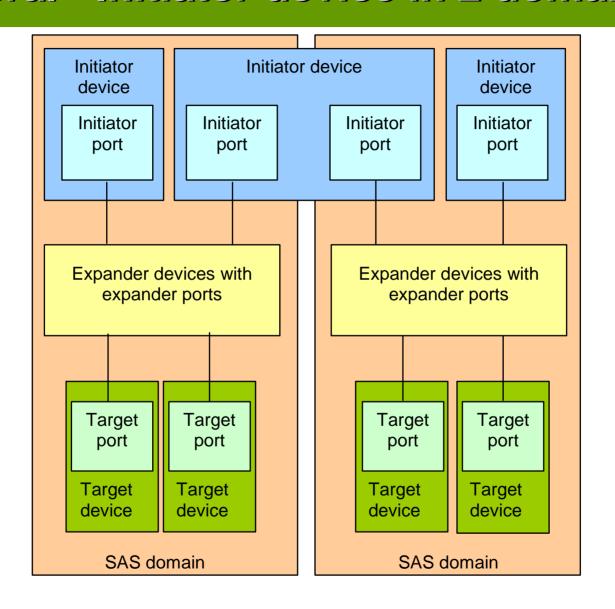
- Up to 64 phys
- Subtractive routing
- Attaches to initiators, and targets, and one other expander

# **General - Phy**

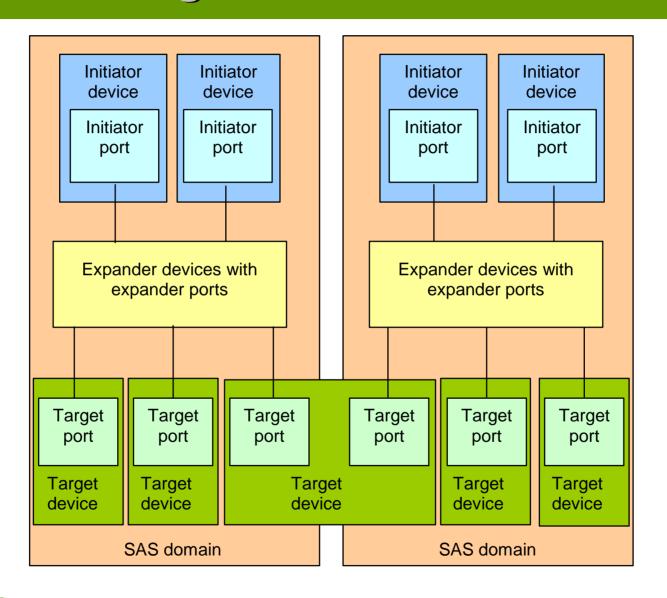



## **General - Ports and wide links**

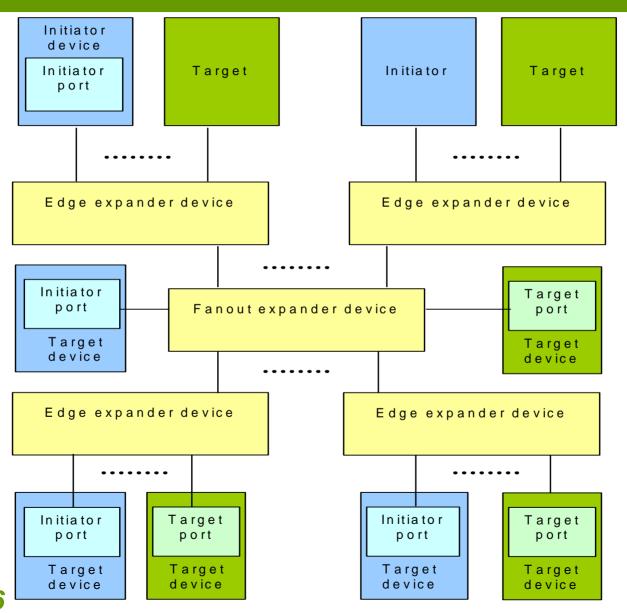



#### **General - Wide links**

- Aggregates bandwidth
- Different connection may be open on different link
- Expected usage
  - Common: Wide HBA to wide expander
    - External 4-wide cables common
  - Possible: Wide HBA to wide RAID controller
  - Unlikely: Wide disk drives
    - Dual ports only for use in separate domains, not more bandwidth

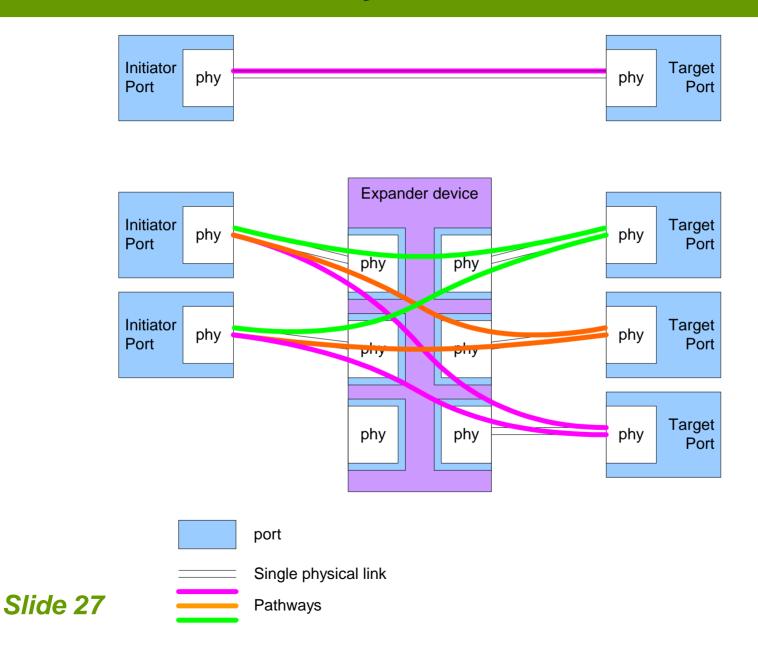

## **General - Domains**



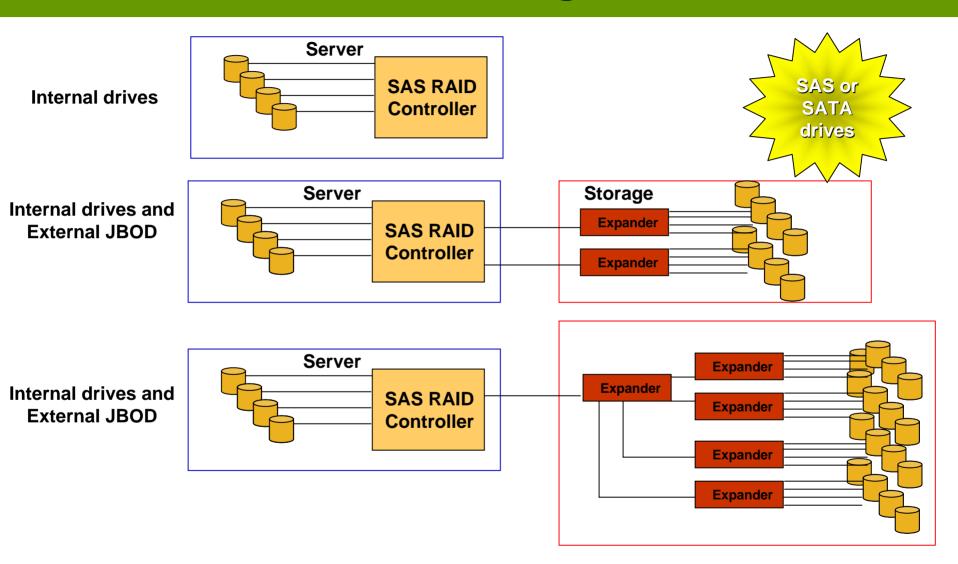

## **General - Initiator device in 2 domains**



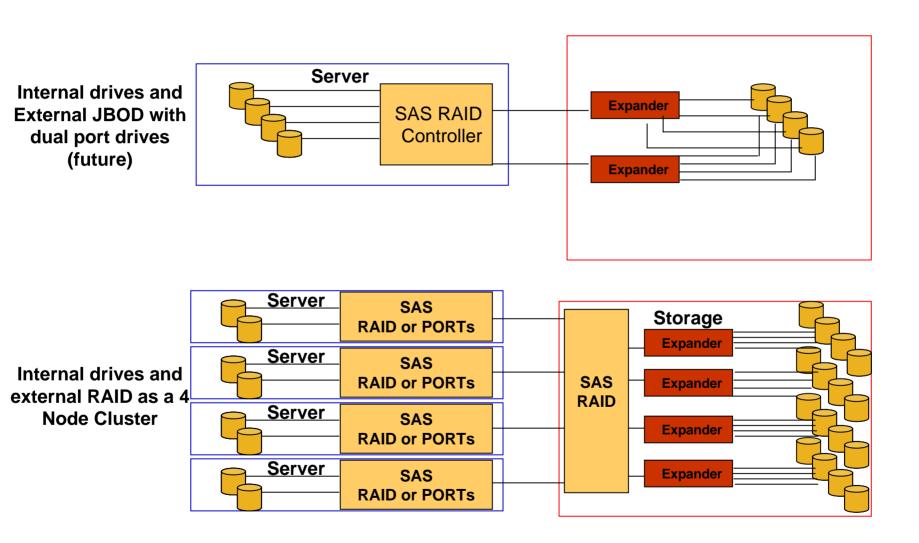
# **General - Target device in 2 domains**




# **General - Maximum configuration**




Slide 26

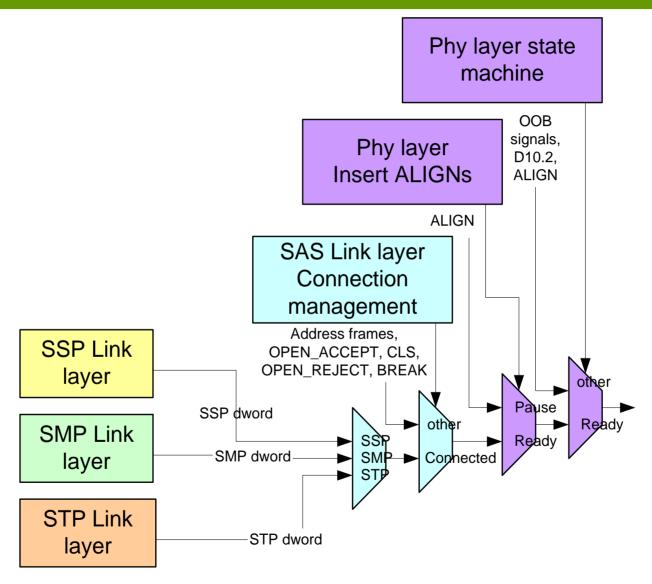

# **General - Pathways**



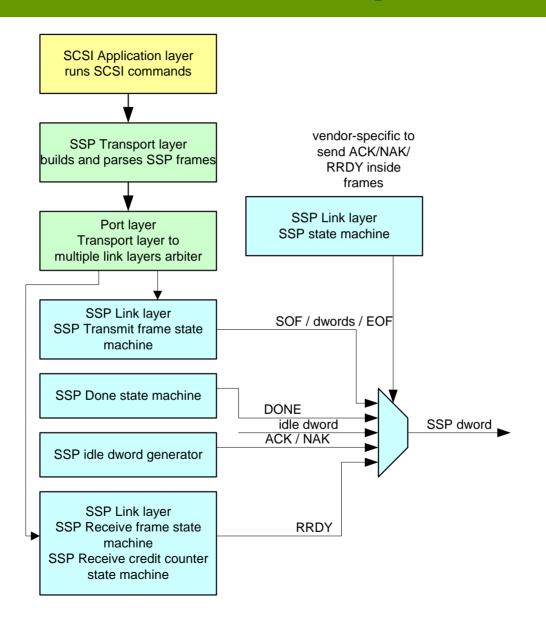
# **General - Possible configurations 1**



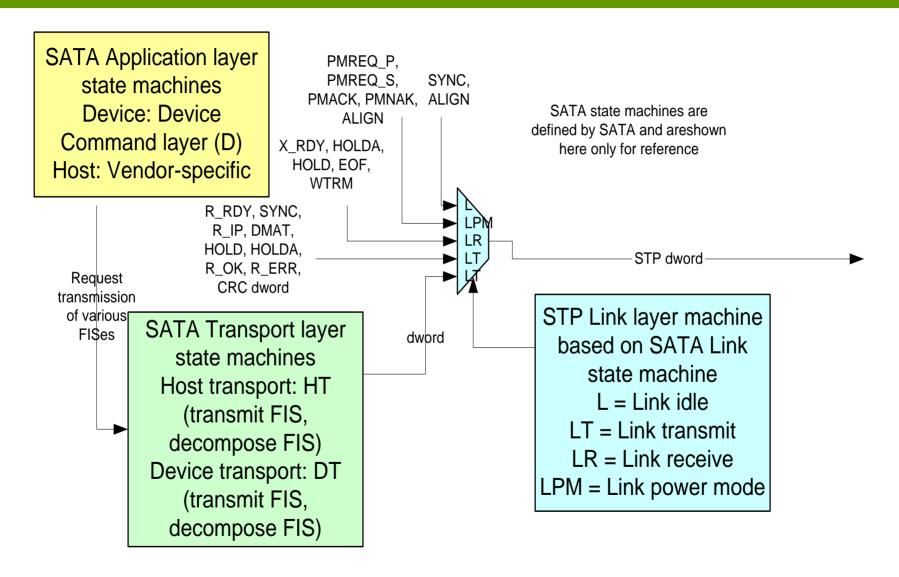
# **General - Possible configurations 2**



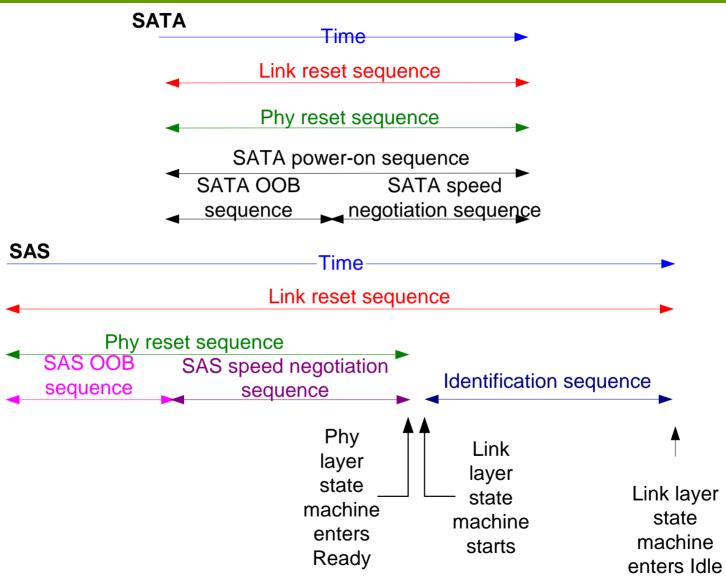

## **General - Device names**


Each device has a 64-bit FC style Worldwide
 Name (WWN), used for addressing

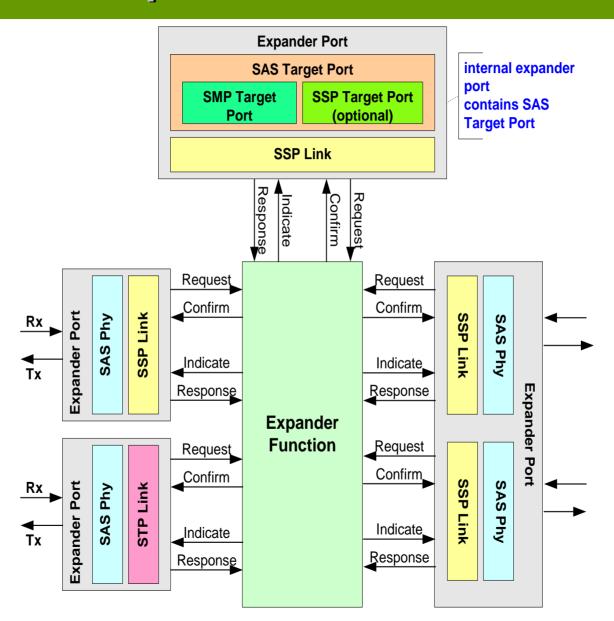
|   | 7                                    | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|---|--------------------------------------|---|---|---|---|---|---|---|
| 0 | NAA (5h)                             |   |   |   |   |   |   |   |
| 1 | IEEE Common (D (24 bits)             |   |   |   |   |   |   |   |
| 2 | IEEE Company ID (24 bits)            |   |   |   |   |   |   |   |
| 3 |                                      |   |   |   |   |   |   |   |
| 4 |                                      |   |   |   |   |   |   |   |
| 5 | Vandor Chasifia Identifiar (40 hita) |   |   |   |   |   |   |   |
| 6 | Vendor-Specific Identifier (40 bits) |   |   |   |   |   |   |   |
| 7 |                                      |   |   |   |   |   |   |   |


# **General - Transmit data path SAS portion**




# **General - Transmit data path - SSP portion**




# **General - Transmit data path - STP portion**

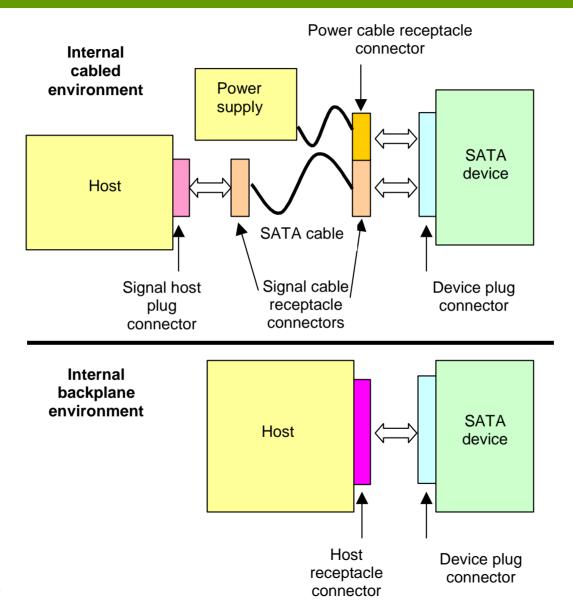


# General - Reset terminology

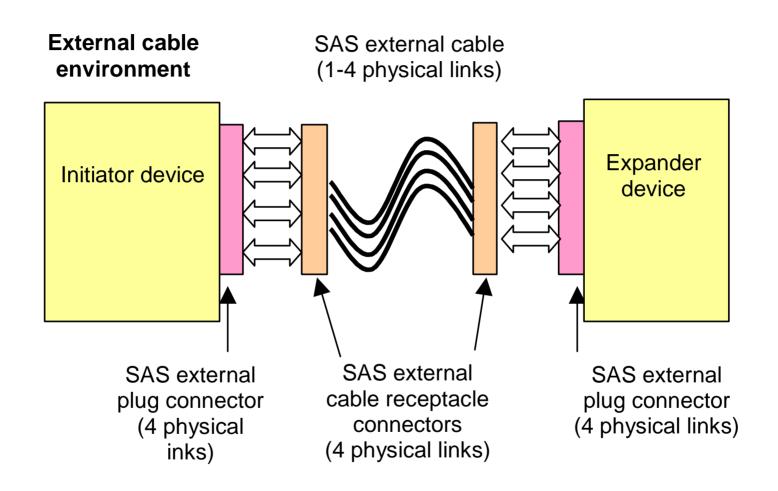


# **General - Expander model**

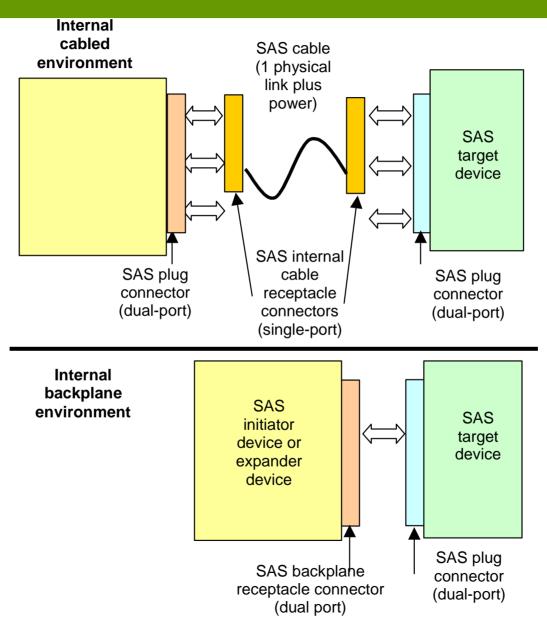



#### ...Outline...

- Introduction
- General (devices, domains, ...)
- Physical layer (cables, connectors, electrical specs, ...)
- Phy layer (8b10b, OOB, ...)
- Link layer (primitives, connections, ...)
- Transport layer (SSP, STP, and SMP frames)
- Application layer (SCSI mode pages)
- Further information


### Physical layer outline

- SATA cables and connectors
- SAS external environment
- SAS internal environments
- Cables and connectors
- Compliance points
- Electrical characteristics
- Eye diagrams
- Transmit and receive electrical characteristics
- Other highlights


### Physical - SATA cables and connectors



#### Physical - SAS external environment



### Physical - SAS internal environments



## **Physical - Connectors**

| Connector                     | Attaches to                    |
|-------------------------------|--------------------------------|
| SAS plug                      | SAS internal cable receptacle  |
|                               | SAS backplane receptacle       |
| SAS internal cable receptacle | SAS plug                       |
|                               | SATA device plug (single-port) |
| SAS backplane receptacle      | SAS plug                       |
|                               | SATA device plug (single-port) |
| SAS external cable receptacle | SAS external plug              |
| SAS external plug             | SAS external cable receptacle  |

### **Physical - Cables and connectors**

- READY LED pin added to device connector
  - Disk drive output indicating activity
- InfiniBand<sup>™</sup> connectors and cables for the external environment
- 10 meter external cable length
- 500 plug events on device connector

### Physical - Compliance points

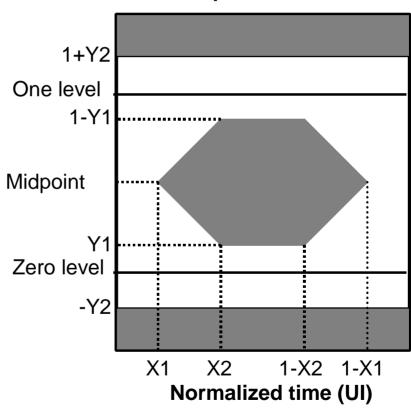
#### Compliance points

- Dt, Dr SAS disk drive connector
  - Attaches to backplane connector leading to SAS initiator or SAS expander ASIC
- Ct, Cr SAS external connector
  - Attaches to other external connectors

#### Optional compliance points

- Xt, Xr SAS expander ASIC
- It, Ir SAS initiator ASIC
  - May be attached to SATA drives or SAS drives

#### **Physical - General electrical characteristics**


| Characteristic                                                                            | 1.5 Gbps          | 3.0 Gbps          |
|-------------------------------------------------------------------------------------------|-------------------|-------------------|
| Data rate                                                                                 | 150 Mbps          | 300 Mbps          |
| Unit interval (UI)                                                                        | 666.667 ps        | 333.333 ps        |
| Frequency stability for initiator ASICs and expanders supporting SATA 1.0 device with SSC | +350/-5150<br>ppm | +350/-5150<br>ppm |
| Frequency stability for SAS-only compliance points (SAS drives, external connectors)      | +100/-100 ppm     | +100/-100<br>ppm  |
| Media impedance                                                                           | 100 ohm           | 100 ohm           |

### Physical - Eye diagrams

Amplitude and time based on eye diagrams

# **Absolute amplitude B**1 **A1** 0 V **A2 B2**

#### Normalized amplitude



X1

X2

Normalized time (UI)

1-X2 1-X1

#### **Physical - Transmit signal characteristics**

| Compliance point                | Characteristic                 | SATA   | 1.5 Gbps | 3.0 Gbps |
|---------------------------------|--------------------------------|--------|----------|----------|
| Drive                           | Maximum drive strength (B1-B2) | N/A    | 1200 mV  | 1600 mV  |
| connector                       | Minimum drive strength (A1-A2) | N/A    | 600 mV   | 800 mV   |
| External                        | Maximum drive strength (B1-B2) | N/A    | 1600 mV  | 1600 mV  |
| connector                       | Minimum drive strength (A1-A2) | N/A    | 800 mV   | 800 mV   |
| Initiator or                    | Maximum drive strength (B1-B2) | 900 mV | 1200 mV  | 1600 mV  |
| expander<br>attached to<br>SATA | Minimum drive strength (A1-A2) | 600 mV | 600 mV   | 800 mV   |

### Physical - Receive signal characteristics

| Compliance point                | Characteristic                 | SATA   | 1.5 Gbps | 3.0 Gbps |
|---------------------------------|--------------------------------|--------|----------|----------|
| Drive                           | Maximum drive strength (B1-B2) | N/A    | 1200 mV  | 1600 mV  |
| connector                       | Minimum drive strength (A1-A2) | N/A    | 325 mV   | 275 mV   |
| External                        | Maximum drive strength (B1-B2) | N/A    | 1600 mV  | 1600 mV  |
| connector                       | Minimum drive strength (A1-A2) | N/A    | 275 mV   | 275 mV   |
| Initiator or                    | Maximum drive strength (B1-B2) | 600 mV | 1200 mV  | 1600 mV  |
| expander<br>attached to<br>SATA | Minimum drive strength (A1-A2) | 225 mV | 325 mV   | 275 mV   |

### Physical - Other highlights

- Jitter specs
- 10<sup>-12</sup> system bit error rate
- Impedance requirements
- AC coupled
- No spread spectrum clocking (SSC)
  - SSC slightly varies the frequency of the transmit clock
  - This reduces EMI at one peak frequency but spreads the emissions over multiple frequencies
  - expander and initiator must tolerate a SATA drive transmitting with SSC, but no SAS component will transmit with SSC
- Non-tracking clock architecture
  - Each device runs off its own internal PLL

#### ...Outline...

- Introduction
- General (devices, domains, ...)
- Physical layer (cables, connectors, electrical specs, ...)
- Phy layer (8b10b, OOB, ...)
- Link layer (primitives, connections, ...)
- Transport layer (SSP, STP, and SMP frames)
- Application layer (SCSI mode pages)
- Further information

## Phy layer outline

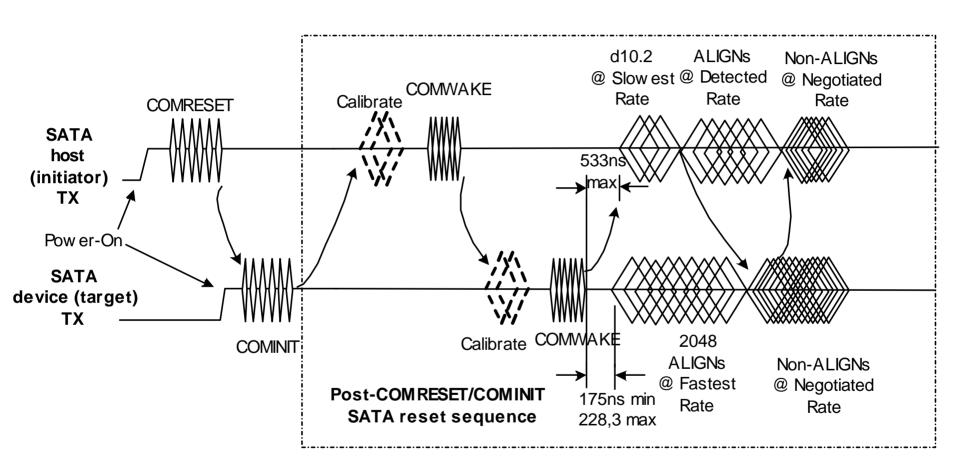
- Encoding
- Out-of-band (OOB) signaling
- Reset sequences
- State machines
- Spin-up

### Phy - Encoding

#### 8b10b coding

- As used in SATA, Fibre Channel, et al.
- Character = 10 bits as transmitted on the wire
- Control characters Kxx.y special uses
- Data characters Dxx.y represent 8 bit data bytes
- Running disparity
- Dword = 4 characters
  - Everything in SAS is based on dwords
- Primitive = dword starting with a control character

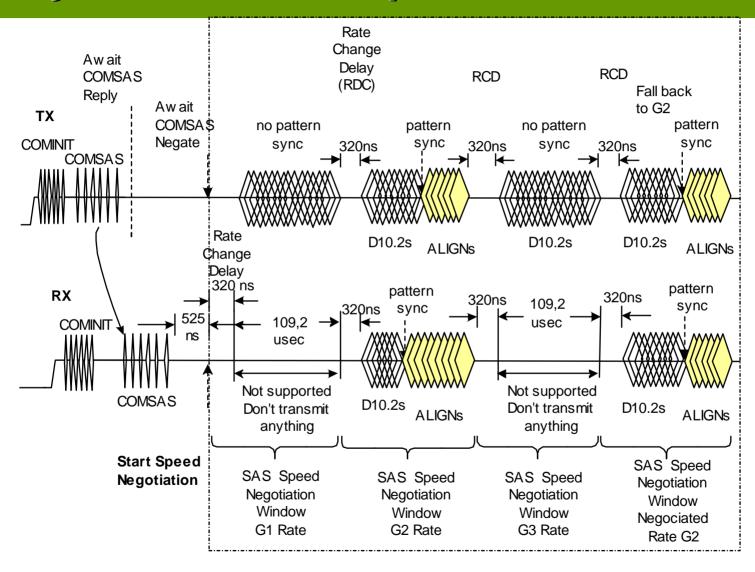
### Phy - Out-of-band (OOB) signaling


- SATA out of band (OOB) special patterns ("signals")
  - Signals are sent after power-up to initialize the link
  - Signal is a burst of ALIGN primitives, then idle time; repeated 6 times
  - Detected by squelch detector and frequency comparators
- SATA's COMRESET/COMINIT, and COMWAKE signals are unchanged
- COMSAS signal added for SAS devices
  - Inserted after calibration sequence before COMWAKE
- If both sides assert COMSAS, then the link is a SAS link rather than a SATA link

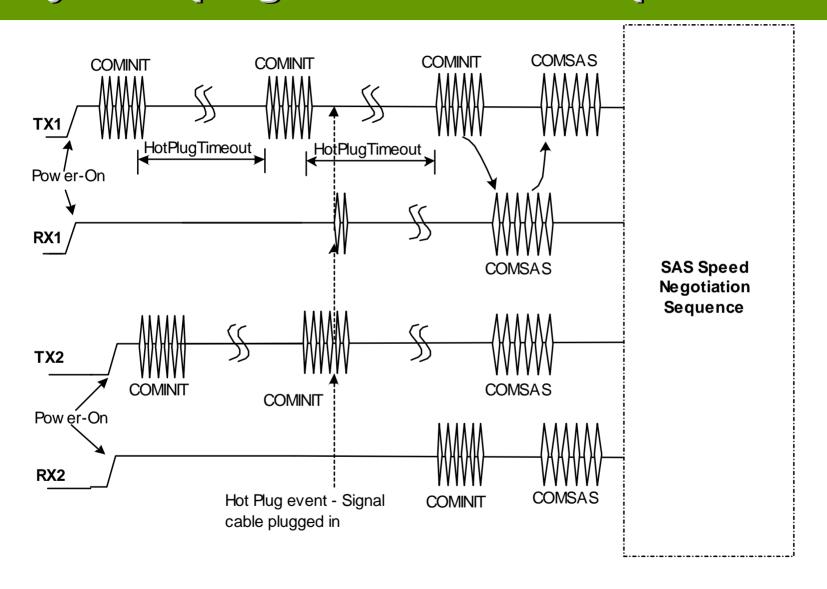
### Phy - OOB signals


#### **OOB** signals

| Signal   | Nominal burst time | Nominal idle time |  |
|----------|--------------------|-------------------|--|
| COMINIT/ | 107 ns             | 320 ns            |  |
| COMRESET | 107 115            |                   |  |
| COMWAKE  | 107 ns             | 106.7 ns          |  |
| COMSAS   | 214 ns             | 320 ns            |  |


#### Phy - SATA reset sequence




#### Phy - SAS reset sequence



#### Phy - SAS reset sequence 2



#### Phy - Hot plug and the reset sequence



### Phy - State machines

- Phy state machine
  - SATA and SAS reset sequence
- Dword synchronization state machine
  - Determines when link is gone bad

### Phy - Spin-up

- Desktop (ATA) goal boot quickly, spin-up ASAP
  - ATA Power Up in Standby feature rarely implemented
- Enterprise goal stagger spin-up to avoid excessive power drain
  - Delayed start feature with SCA-2 connector
- Rack of SATA drives may overwhelm power supplies
- SAS rules/recommendations:
  - SAS-capable SATA devices shall spin-up only after reset sequence
  - SATA devices should spin-up only after reset sequence
  - SAS devices shall not spin-up until START STOP UNIT is run

#### ...Outline...

- Introduction
- General (devices, domains, ...)
- Physical layer (cables, connectors, electrical specs, ...)
- Phy layer (8b10b, OOB, ...)
- Link layer (primitives, connections, ...)
- Transport layer (SSP, STP, and SMP frames)
- Application layer (SCSI mode pages)
- Further information

### Link layer outline

- Primitives
- Idle links
- Power management
- SATA loopback tests
- Tests
- Wide links
- Domain management
- Rate matching

- Elasticity buffers
- Scrambling
- Fabric management
- Connections
- Frame transmission
- Flow control
- SSP flow control
- STP flow control
- Asynchronous event notification

#### **Link - Primitives**

- Primitive is a dword starting with a control character
- Primitives have no endianness; just first, second, third, and last bytes
- ALIGN starts with K28.5
- All other SATA primitives start with K28.3
- All SAS primitives start with K28.5
- Primitives may start/end with any disparity

### **Link - SAS primitives**

#### SAS primitives

- AIP
- ALIGN()
- BREAK
- CHANGE
- CLOSE
- EOAF
- HARD\_RESET
- OPEN\_ACCEPT
- OPEN\_REJECT()
- SOAF

#### SSP/SMP primitives

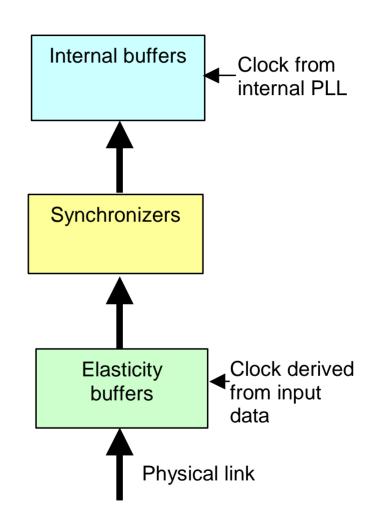
- ACK
- DONE()
- EOF
- NAK()
- RRDY
- SOF

#### **Link - SATA primitives**

#### SATA primitives

- SATA\_CONT
- SATA\_DMAT
- SATA\_EOF
- SATA\_HOLD
- SATA\_HOLDA
- SATA\_PMACK
- SATA\_PMNAK
- SATA\_PMREQ\_P
- SATA\_PMREQ\_S

- SATA\_R\_ERR
- SATA\_R\_IP
- SATA\_R\_OK
- SATA\_R\_RDY
- SATA\_SOF
- SATA\_SYNC
- SATA\_WTRM
- SATA\_X\_RDY


#### **Link - Primitive sequences**

- Some primitives are sent more than one for more reliable delivery - tolerate single bit errors
- "Repeated" is for SATA primitives

| Туре      | Send | Detect |
|-----------|------|--------|
| Single    | 1    | 1      |
| Repeated  | 2    | 1      |
| Triple    | 3    | 3      |
| Redundant | 6    | 3      |

### Link - Clock skew management

- Input data clock does not exactly match the internal clock
  - Overflow = sender faster than receiver
  - Underflow = Sender slower than receiver
- ALIGN primitives added to data stream
  - Receiver throws them out
  - 1 per 2048 dwords
  - 2 per 256 extra for STP



#### Link - Idle links

- Between connections, or within an SSP or SMP connection between frames, idle dwords are sent
  - Idle dword = random scrambled data
- During an idle STP connection, SATA\_SYNC is sent
  - Usually followed by SATA\_CONT and random scrambled data

#### **Link - IDENTIFY address frames**

■ IDENTIFY address frame sent after reset sequence

|    | 7           | 6        | 5      | 4       | 3       | 2       | 1        | 0     |
|----|-------------|----------|--------|---------|---------|---------|----------|-------|
| 0  |             | Res      | served |         |         | FRAME 1 | YPE (0h) |       |
| 1  |             |          |        | PHY IDE | NTIFIER |         |          |       |
| 2  |             | Res      | served |         |         | MAX LIN | IK RATE  |       |
| 3  | DEV         | TYPE     | SSP_I  | STP_T   | SSP_I   | SSP_T   | SMP_I    | SMP_T |
| 4  |             |          |        |         |         |         |          |       |
| 19 |             | Reserved |        |         |         |         |          |       |
| 20 | DEVICE NAME |          |        |         |         |         |          |       |
| 27 | DEVICE NAME |          |        |         |         |         |          |       |
| 28 | CDC         |          |        |         |         |         |          |       |
| 31 |             | CRC      |        |         |         |         |          |       |

#### **Link - OPEN address frame**

|    | 7    | 6                       | 5                       | 4      | 3         | 2               | 1 | 0  |
|----|------|-------------------------|-------------------------|--------|-----------|-----------------|---|----|
| 0  | INIT |                         | PROT                    | OCOL   | F         | FRAME TYPE (1h) |   | ٦) |
| 1  |      | Rese                    | erved                   |        |           | LINK RATE       |   |    |
| 2  |      |                         | INIITIAT                | OR CON | INICATION | N TAC           |   |    |
| 3  |      |                         | INITIAT                 | OR CON | NINECTIC  | JN TAG          |   |    |
| 4  |      |                         |                         | Door   | am rod    |                 |   |    |
| 9  |      |                         |                         | Rese   | erved     |                 |   |    |
| 10 |      |                         |                         |        |           |                 |   |    |
| 11 |      | ARBITRATION WAIT TIME   |                         |        |           |                 |   |    |
| 12 |      | DESTINATION DEVICE NAME |                         |        |           |                 |   |    |
| 19 |      |                         | DESTINATION DEVICE NAME |        |           |                 |   |    |
| 20 |      | SOURCE DEVICE NAME      |                         |        |           |                 |   |    |
| 27 |      |                         |                         |        |           |                 |   |    |
| 28 |      |                         | 000                     |        |           |                 |   |    |
| 31 |      |                         | CRC                     |        |           |                 |   |    |

#### **Link - Power management**

#### SAS support for power management

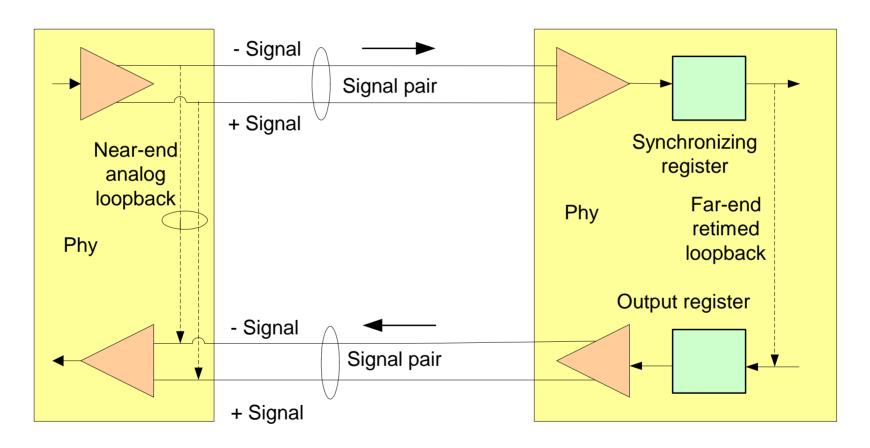
| ATA<br>device power<br>management | SATA interface power management | SCSI<br>power conditions |
|-----------------------------------|---------------------------------|--------------------------|
| Idle (yes)                        | Partial (no)                    | ldle (yes)               |
| Standby (yes)                     | Slumber (no)                    | Standby (yes)            |
| Sleep (no)                        |                                 | Sleep (no)               |

### Link - Power management 2

#### ATA device power management

- Idle, Standby, Sleep
- SAS: Idle and Standby supported; Sleep shall not be requested

#### SATA interface power management


- Partial, Slumber states
- PMREQ P, PMREQ S, PMACK, PMNAK
- SAS: Initiator shall not request interface power management
- SAS: Initiator shall reply with PMNAK to PMREQ\_P and PMREQ\_S

#### SCSI power management

- Idle, Standby, Sleep
- SAS: Idle and Standby supported; Sleep not supported

### Link - SAS loopback test modes

#### Invoked with SMP



# **Link - Domain changes**

- Expander broadcasts CHANGE primitive to notify initiators and expanders that
  - Phy has lost dword sync
  - Reset sequence completed on a phy
  - CHANGE received
- Initiators perform level-order traversal of domain
- Fanout expanders run DISCOVER function to fetch routing tables from edge expanders

# Link - Scrambling

#### Scrambling tries to randomize data

- XOR data with the contents of a linear feedback shift register at both sender and receiver
- changes constant 000000... and 111111... patterns into pseudorandom patterns of 1s and 0s
- Constant patterns occur more often than other patterns, including the worst case pattern that undoes the scrambling effect

#### Reduces EMI peaks and helps DC balance

- Spread spectrum clocking addresses EMI for all patterns
- 8b10b coding addresses DC balance

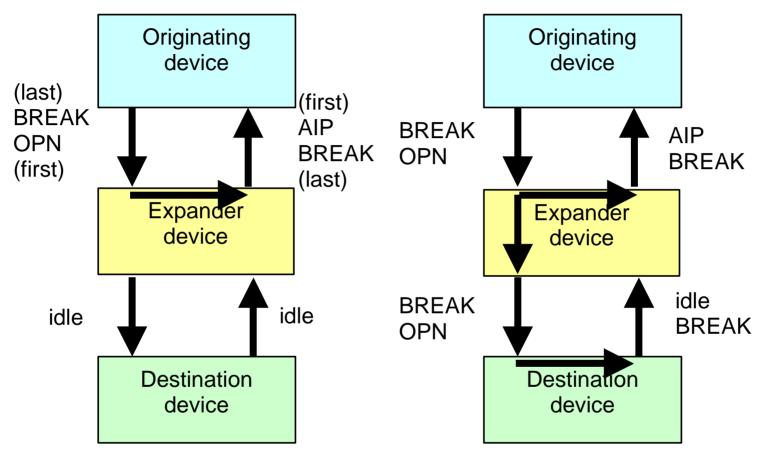
# Link - Scrambling 2

- Repeated primitives (STP)
  - Replaces repeated primitives
  - <prim>, <prim>, ... SATA\_CONT, <random data>, <random data>, ..., <new prim>
  - ALIGNs may be inserted inside random data
  - Exit with any primitive except ALIGN
- Idle dwords (SAS, SSP)
- Frame data (SAS address frames, SSP, SMP, and STP frames)
  - All data dwords in frames are scrambled (between SOF and EOF)
  - Primitives inside frames are NOT scrambled
  - Polynomial reset every SOF or SATA\_SOF
- SAS big-endian, SATA little-endian polynomial
  - Doesn't matter for random/idle data, does matter for frame data

### **Link - Connections**

- All I\_T communication occurs within an SSP, SMP or STP connection
- Establishing connection through an expander involves arbitration
- OPEN address frame to make connection request
- Open timeout timer
- OPEN\_ACCEPT means connection is active

# Link - Opening a connection


### Responses to open request

- Arbitration in progress AIP
  - reset open timeout timer and keep waiting
- Cross on wire OPEN address frame
  - Arbitration fairness dictates who wins
- Accepted OPEN\_ACCEPT
- Rejected OPEN\_REJECT
  - Numerous reasons Retry, bad protocol, deadlock avoidance, etc.
- Cancel BREAK
- No response timeout and send BREAK

# Link - Breaking a connection

- BREAK primitive signals a unilateral close of the connection
- BREAK response allowed but not required
- Expander tears down connection when it sees BREAK

# Link - Breaking a connection 2



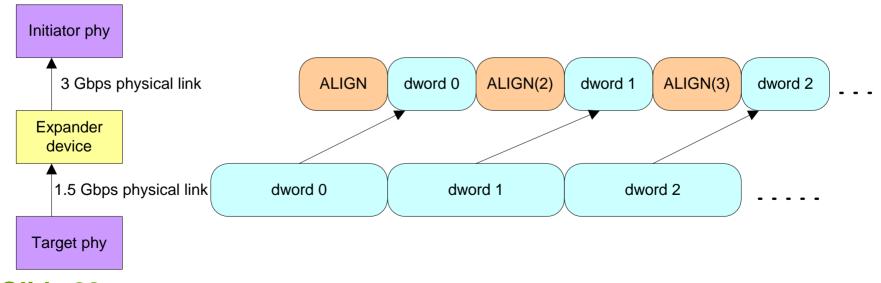
(if expander device has not forwarded the OPN to the destination)

(if expander device has forwarded the OPN to the destination)

# Link - Closing a connection

- After no more data is being sent on the connection, it may be closed by either side
- CLOSE primitive sent; CLOSE received
- Expander tears down the connection when it sees
   CLOSE in both directions

# **Link - Closing an SSP connection**


- Before sending CLOSE, must guarantee that the SSP traffic is finished
- DONE primitive indicates sender is done originating frames
- Works like FC-AL DHD (dynamic half duplex)
- Back channel may still be active
  - sender may send ACK, NAK, RRDY after DONE to keep the other direction active
- When both sides have sent DONE, the connection is idle and CLOSE can be exchanged

### **Link - State machines**

- SAS endpoint connection management state machine (SL)
- SAS expander connection management state machines (XL)

### **Link - Rate matching**

- When initiator port and target port are separated by an expander, their link rates may differ
  - E.g. Initiator to expander 3 Gbit/sec; expander to target 1.5 Gbit/sec
- Solution: insert ALIGNs on the faster links
  - E.g. every other dword is used



Slide 83

# Link - SSP (SCSI)

- Full duplex
- SOF, frame dwords, CRC, EOF
- Each frame acknowledged with ACK, NAK
- Credit with RRDY
- SSP link layer state machine

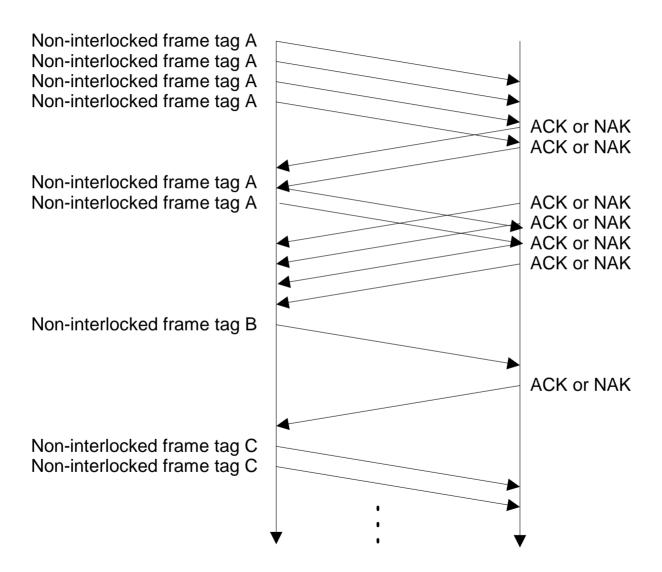


### **Link - SSP flow control**

#### Credit maintained by each connected port

- Initialized to 0
- Receive RRDY -> increase by 1
- Transmit frame -> decrease by 1
- Maximum 255

#### Interlocked frames


- COMMAND, TASK, XFER\_RDY, RESPONSE, AEN, AEN\_RESPONSE frames with different tags
- Must receive ACK or NAK before sending another, regardless of credit

#### Non-interlocked frames

- DATA frames
- If same tag, may send without waiting for ACK or NAK, provided credit is available

#### Slide 85

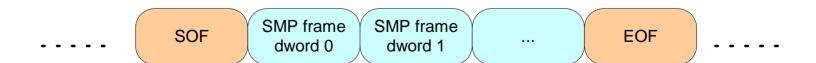
# Link - SSP interlocking



# Link - STP (ATA)

### STP (ATA) connection

- STP from initiator to last expander
- SATA from the expander to the SATA device
- After an STP connection is opened, follow SATA rules
- Frame sent as: SATA\_SOF, SATA frame, SATA\_EOF
- Each frame receives SATA\_R\_OK or SATA\_R\_ERR
- SATA\_X\_RDY/SATA\_R\_RDY for permission to send another frame


```
SATA_SOF SATA frame dward 1 ... SATA_EOF ....
```

### **Link - STP flow control**

- During an STP connection, SATA flow control operates as defined by SATA
  - SATA\_HOLD and SATA\_HOLDA primitives
- SATA targets accept 20 dwords after HOLD
- STP initiators shall accept 128 dwords after HOLD
- Expanders must insert HOLD/HOLDA themselves if they add latency
  - Must guarantee the 20 dword/128 dword rules

### Link - SMP

- Simplified version of SSP
- No ACK, NAK, RRDY, or DONE
- Initiator opens and closes connection
- Send one SMP\_REQUEST
- Receive one SMP\_RESPONSE
- SMP link layer state machine



### **Outline**

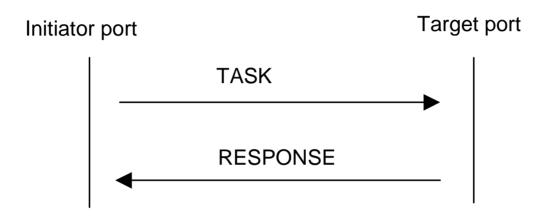
- Introduction
- General (devices, domains, ...)
- Physical layer (cables, connectors, electrical specs, ...)
- Phy layer (8b10b, OOB, ...)
- Link layer (primitives, connections, ...)
- Transport layer (SSP, STP, and SMP frames)
- Application layer (SCSI mode pages)
- Further information

# Transport layer outline

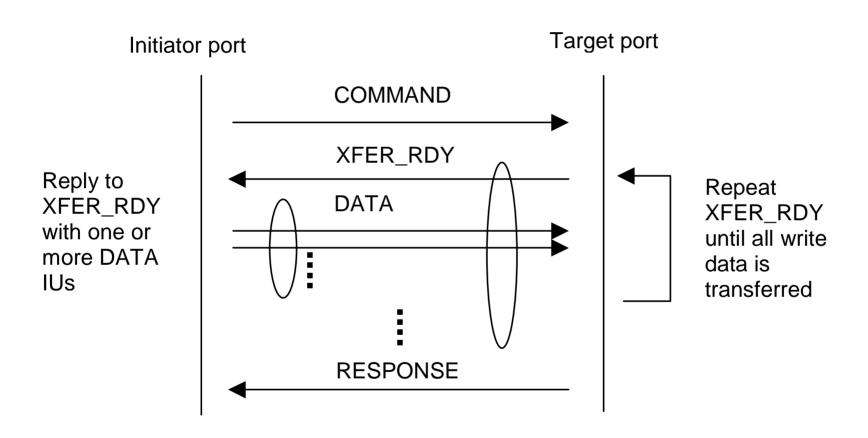
- SSP (SCSI) frame format
- SSP information units
- SSP information unit sequences
- SSP TASK IU notes
- SSP information unit notes
- STP (ATA)
- SMP
- Port Control state machine

# **Transport - SSP frame format**

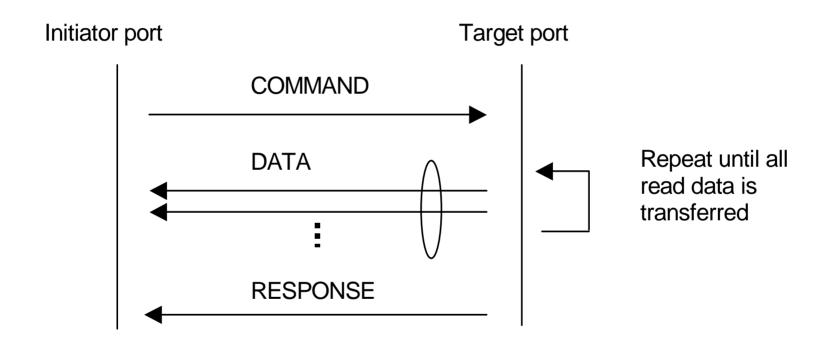
- Based on Fibre Channel and FCP-2
- Lots of reserved fields
  - No exchanges
  - No sequences
  - Ack, Nak, etc. handled with primitives, not frames
- The *only* fields used in the outer frame:
  - Frame type (FCP calls this R\_CTL)
  - Fill bytes
  - Tag (FCP calls this OX\_ID)
  - CRC
  - Maybe the Source\_ID and Destination\_ID (TBD)
- Frame payload carries information units


# **Transport - SSP frame format 2**

| _        |                                                                   |                |      |  |  |
|----------|-------------------------------------------------------------------|----------------|------|--|--|
|          | INFORMATION UNIT TYPE                                             |                |      |  |  |
|          | HASHED DESTINATION DEVICE NAME                                    |                |      |  |  |
|          | Reserved                                                          |                |      |  |  |
|          | HASHED SOURCE DEVICE NAME                                         |                |      |  |  |
|          | Reserved                                                          |                |      |  |  |
|          | Danamad                                                           | TIMEOUT        | Rsvd |  |  |
|          | Reserved                                                          | NUM FILL BYTES |      |  |  |
|          | COMMAND ID                                                        |                |      |  |  |
|          | TAG TARGET PORT TRANSFER TAG Reserved INFORMATION UNIT Fill bytes |                |      |  |  |
|          |                                                                   |                |      |  |  |
|          |                                                                   |                |      |  |  |
|          |                                                                   |                |      |  |  |
|          |                                                                   |                |      |  |  |
|          |                                                                   |                |      |  |  |
| Slide 93 | CRC                                                               |                |      |  |  |


# Transport - SSP information units

| IU           | Originator              |
|--------------|-------------------------|
| COMMAND      | Initiator port          |
| TASK         | Initiator port          |
| XFER_RDY     | Target port             |
| DATA         | Initiator port (writes) |
|              | or target port (reads)  |
| RESPONSE     | Target port             |
| AEN          | Target port             |
| AEN_RESPONSE | Initiator port          |

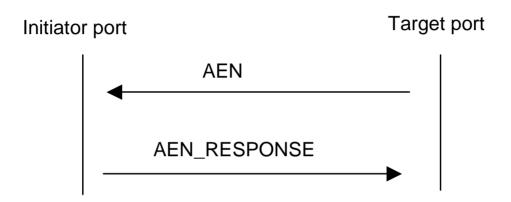

### **Transport - SSP Task Management sequence**



# **Transport - SSP Write sequence**



# **Transport - SSP Read sequence**




### Transport - SSP Bidirectional sequence

Initiator port Target port **COMMAND** Repeat XFER\_RDY until all write data is transferred XFER\_RDY Reply to DATA XFER\_RDY Read (DATA) and with one or write (XFER\_RDY more DATA and DATA) IUs may be interleaved in any **DATA** order Repeat DATA until all read data is transferred **RESPONSE** 

IUs

# Transport - SSP AEN sequence



# Transport - SSP TASK IU rationale

- ABORT TASK references the tag of the task to be aborted
  - No other task management functions reference tags
- FCP uses Abort Sequence to implement ABORT TASK so didn't face this issue
  - SAS does not have Sequences
- The ABORT TASK itself could be rejected or have errors; needs its own tag
- Two tags don't fit in COMMAND IU cleanly
- Separate IU implemented like iSCSI and SRP

# Transport - SSP Information unit notes

- Only COMMAND and TASK contain the LUN
  - Tag must be target-wide, no reused for different LUNs
- No residuals in RESPONSE
- COMMAND supports bidirectional commands and variable length CDBs
- No TARGET RESET or WAKEUP task management functions
  - HARD RESET primitive is the low-level debug reset

### Transport - SSP Asynchronous event notification

- SCSI asynchronous events
  - Initialization complete unit attentions (after power on) NOT
     SUPPORTED
  - All other unit attentions (e.g. SMART events)
  - Deferred errors (e.g. cached write failed)
- Target port sends AEN to all initiators it knows when an asynchronous event occurs
  - Contains LUN optional for initiator to use
  - REPORT LUNS enhanced to identify which logical units have asynchronous events pending if LUN is ignored
- REQUEST SENSE to retrieve the sense data

### Transport - SSP Asynchronous event notification 2

- The "official" way in pSCSI and FCP:
  - disk drive becomes an initiator
  - HBA becomes a target with a "processor" device type
  - Disk drive uses SEND command to send sense data
  - Nobody implements this
  - Workarounds
    - Leave a vendor-specific command outstanding forever
    - Run unnecessary commands that can carry the sense data
- AEN and REPORT LUNs much more efficient

# Transport - STP (ATA)

#### SATA Target sends frame

- Expander detects SATA\_X\_RDY
- Expander arbitrates and generates OPN to initiator
- Expander passes through SATA until it sees SATA\_WTRM in one direction and SATA\_IDLE/SATA\_SYNC in the other
- Expander may close connection

#### STP initiator sends frame

- Wraps frame in OPN/CLS
- May leave connection open to send more frames

# **Transport - SMP**

- SMP\_REQUEST frame
- SMP\_RESPONSE frame
- SMP state machine

# **Transport - SMP functions**

| Function                 | Description                        |  |
|--------------------------|------------------------------------|--|
| DISCOVER                 | Used by fanout expander            |  |
| REPORT GENERAL           | General info                       |  |
| REPORT SATA CAPABILITIES | STP/SATA support info              |  |
| REPORT PHY               | Phy-related info                   |  |
| REPORT PHY ERROR LOG     | Counters of # errors detected      |  |
| REPORT PHY SATA          | STP/SATA phy-specific state        |  |
| REPORT PHY DEVICE NAMES  | Topology management                |  |
| PHY CONTROL              | Request loopback test modes, reset |  |
|                          | sequence, HARD RESET               |  |

### Transport - Port control state machine

- Port control (PC) state machine
- Sits between multiple transport layer state machines (e.g. SSP, STP, and SMP) and multiple link layer state machines (e.g. for wide links)

#### ...Outline...

- Introduction
- General (devices, domains, ...)
- Physical layer (cables, connectors, electrical specs, ...)
- Phy layer (8b10b, OOB, ...)
- Link layer (primitives, connections, ...)
- Transport layer (SSP, STP, and SMP frames)
- Application layer (SCSI mode pages)
- Further information

# **Application layer outline**

- SCSI
- ATA

# **Application - SCSI**

- Disconnect-reconnect mode page protocol-specific fields
  - Supported fields
    - Bus inactivity limit n \* 100ms
    - Maximum connect time limit n \* 100 ms
    - Maximum burst size n \* 512 bytes devices may burst this much
    - First burst size n \* 512 bytes implicit XFER\_RDY for each new command
  - Not supported
    - Buffer full/empty ratios no devices decide on their own
    - Enable modify data pointers no all transfers must be in order

# **Application - SCSI**

- Protocol-specific mode page
  - I\_T Nexus loss time
- No protocol-specific log pages
- No protocol-specific commands

# **Application - ATA**

- SATA targets must work without changes
- STP initiators add the concept of addressing to ATA
  - Initiator may present a standard ATA register interface over PCI X, one per target
  - Alternate interfaces are also possible

### **Further information**

- INCITS T10 (SCSI)
  - http://www.t10.org
  - Home of the SAS standard
- INCITS T13 (ATA)
  - http://www.t13.org
- Serial ATA Working Group
  - http://www.serialata.org
- SCSI Trade Association
  - http://www.scsita.org
- Original Serial Attached SCSI Working Group
  - http://www.serialattachedscsi.com

### **End of technical overview**