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Effects of Periodic Structures on
Transmission Lines
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Why examine periodic structures?

� Periodic structures - a definition
• Transmission lines loaded at periodic intervals with identical reactive

elements
� The following are examples of periodic structures:

• A backplane loaded with SCSI devices
• A ribbon cable loaded with SCSI devices
• A bare twisted - flat ribbon cable with or without connectors
• Periodic stubs on a microstrip line.

� The theory of periodic structures:
• Provides insight into the behavior of backplanes and cables
• Explains this behavior quantitatively
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Periodic structures

� Are characterized by a uniform distribution of reactive elements
� Have pass-band and stop-band properties
� Have slow wave properties
� Can exhibit significant impedance shifts
� Can be described mathematically through the use of voltage

and current transfer functions
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An equivalent circuit
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Some definitions

� Propagation constant or wavenumber

� Complex propagation constant

� Phase constant

� Attenuation constant

µε=k

µεωγ j=

)Im(γβ =

)Re(γα =
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Characteristics

� Unloaded line:
• Has a propagation constant of k
• Has a characteristic impedance of Z0

� Structure consists of a number of unit cells
• Consist of a length d of transmission line
• Have a shunt susceptance b across the midpoint of the cell
• The susceptance is normalized to Z0

• Can be represented by a cascade of identical 2-port networks
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Network representation

� Structure is a cascade of identical 2 port networks
� Each cell is represented by an identical ABCD matrix
� The ABCD matrix represents

• Section of transmission line of length d/2
• A shunt susceptance of b
• Another section of transmission line of length d/2

� Voltage and currents on either side of each cell are represented
by
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ABCD Matrix

� θ = k •  d  where k is the propagation constant of the
unloaded line
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Current and voltage phase

� The voltage and current phase only  differ by the propagation
factor

� Resulting in the following  representation
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Solution of matrix

� The former equation reduces to the following

� Since
• We have the following

• And since the right-hand side of the equation must be purely real, either
� α = 0, and β ≠ 0

or
� β = 0 or π, and α ≠ 0

( ) 02 =−+−+ BCeDAeAD dd γγ

βαγ j+=

θθβαβαγ sin
2

cossinsinhcoscoshcosh bddjddd −=+=
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Solution case αααα    ====    0,0,0,0, and ββββ    ≠≠≠≠    0000

� Corresponds to non-attenuating propagating wave
� Defines a passband
� Solved for β if magnitude of right-hand side is less than unity
� Infinite number of values of β

θθβ sin
2

coscos bd −=
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Solution case αααα ≠≠≠≠ 0, ββββ = 0, ππππ

� Wave is attenuated
� Defines stopband of structure
� Causes reflections back to input
� Has only one solution for positively traveling waves

• α > 0 for positively traveling waves
• α < 0 for negatively traveling waves

� For β = π  then Z0 is same as if β = 0

1sin
22

coscosh ≥−= θθα bd
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Bloch impedance

� Defined as the characteristic impedance of waves on the
structure:

• impedance is normally less than the impedance of the structure
•  can be as little as 0.3  Z0

� Impedance shift causes attenuation and reflection issues
� Can be calculated from the ABCD matrix
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Attenuation and impedance example

Attenuation,  Twisted  Pair  Ribbon,  25 meter sample,
WITHOUT  ANY  FLATS and  WITH  FLATS  on 9.85  inch  Centers
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Terminated periodic structures

� Are similar to SCSI backplanes
� Have a propagation velocity much slower than light

• Velocity can be as little as 0.4 c
� Have reflected waves

• Γ is a function of the Bloch impedance
• Bloch impedance can be as little  as 0.3  Z0

� For no reflections, Bloch impedance must equal the feeding
transmission line impedance

• Achieved through matching sections
• Achieved by raising backplane impedance
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Conclusions

� Periodic structure analysis applies to SCSI elements
• Backplanes with connectors,  w/wo drives
• Ribbon cable with connectors, w/wo drives
• Flat sections of twisted-flat cable

� Period structures have the following properties
• Decreased impedance
• Comb filter characteristics
• Decreased propagation velocity

� SCSI backplane and cable performance can be analyzed
mathematically through use of periodic structures.
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