
Annex D Error detection and recovery action examples
(Informative) [Draft, based on T10/00-137r5]

D.1Introduction
This annex diagrams various error detection and recovery procedures for SCSI devices conforming to this profile.

Table D.1 - Diagram Drawing Conventions

Drawing Convention Meaning

Acknowledged or
Unacknowledged Frame

Acknowledgement Frame

Time-out value
exceeded, caused

transmission of IU or ELS

IU or ELS received is
processed to transmit IU

or ELS

Frame lost or dropped

Error detection complete.
Operation continues with
specified Error Recovery.

X

Continue
00-313r0 Page 1 of 31

Figure D.1 - Lengthy FCP_CMND

Status Detection
Unacknowledged Classes Acknowledged Classes

No Error Recovery

The REC ACC indicates the Exchange is open and the target holds Sequence Initiative.
No error recovery is required.

FCP_CMND

REC

ACC

REC_TOV
FCP_CMND

REC

ACK

ACK

Init Targ

Init Targ

ACC

ACK

REC can be optionally used at any time to ascertain status of an Exchange. It can also be used
in conjunction with ABTS(Sequence) to obtain additional information useful in the Error Recovery
process.

Continue

Continue

REC_TOV
00-313r0 Page 2 of 31

Figure D.2 - FCP_CMND Lost, Unacknowledged Classes

Error Detection

Error Recovery

Upon receipt of the LS_RJT for the REC (indicates the Exchange is unknown) the initiator per-
forms error recovery.

FCP_CMND (crn=a, oxid=x)

REC

LS_RJT

REC_TOV x

FCP_CMND (crn=a, oxid=y)

Init Targ

Init Targ

The FCP_CMND is retransmitted in a new Exchange using the same CRN.

The initiator establishes a Recovery Qualifier. The value of R_A_TOV* for in-order topologies is 0.

R_A_TOV*

Reclaim
Recovery
Qualifier

Continue
00-313r0 Page 3 of 31

Figure D.3 - FCP_CMND Lost, Acknowledged Classes

Error Detection

Upon expiration of E_D_TOV, the initiator performs error recovery.

The use of REC to determine status for error recovery shall not be used.

FCP_CMND (crn=a, oxid=x)
E_D_TOV x

Init Targ

Continue

Error Recovery

ABTS (retry) (oxid=x)

BA_ACC (LS=1)

FCP_CMND (retry) (crn=a, oxid=y)

Init Targ

ACK

ACK

ACK

The initiator sends an ABTS(retry) requesting the Exchange be retried. The FCP_CMND is
retransmitted in a new Exchange using the same CRN.

Both initiator and target establish Recovery Qualifiers. The value of R_A_TOV* for in-order
topologies is 0.

R_A_TOV*

Reclaim
Recovery
Qualifier
00-313r0 Page 4 of 31

Figure D.4 - FCP_CMND Acknowledgement Lost, Acknowledged Classes

Error Detection

FCP_CMND (crn=a, oxid=x)

E_D_TOV ACKX

Init Targ

Continue

Upon expiration of E_D_TOV, the initiator performs error recovery. Although it is possible for the
Exchange to continue when the ACK is lost, in the interest of simplicity, error recovery is
performed.

The use of REC to determine status for error recovery shall not be used.

It was not decided how to proceed if the exchange “continues” or “completes” before the
E_D_TOV expires.

Error Recovery

ABTS (retry) (oxid=x)

BA_ACC (LS=1)

FCP_CMND (retry) (crn=a, oxid=y)

Init Targ

ACK

ACK

ACK

The initiator sends an ABTS(retry) requesting the Exchange be retried. The FCP_CMND is
retransmitted in a new Exchange using the same CRN.

Both initiator and target establish Recovery Qualifiers. The value of R_A_TOV* for in-order
topologies is 0.

R_A_TOV*

Reclaim
Recovery
Qualifier

FCP_RSP
00-313r0 Page 5 of 31

Figure D.5 - FCP_XFER_RDY Lost, Unacknowledged Classes

Error Detection

Error Recovery

FCP_CMND (crn=a, oxid=x)

REC

ACC

REC_TOV

ABTS (retry) (oxid=x)

x FCP_XFER_RDY

BA_ACC (LS=1)

FCP_CMND (retry) (crn=a, oxid=y)

Init Targ

Init Targ

REC_TOV*

Continue

The REC ACC indicates the initiator holds Sequence Initiative and the Exchange is open.

Wait REC_TOV* before performing error recovery. If FCP_XFER_RDY is received before
REC_TOV* expires, continue with the Exchange (REC ACC arrived before FCP_XFER_RDY,
out of order). Otherwise continue recovery. For in-order topologies, the value of REC_TOV* is 0.

The initiator sends an ABTS(retry) requesting the Exchange be retried. The FCP_CMND is
retransmitted in a new Exchange using the same CRN.

Both initiator and target establish Recovery Qualifiers. The value of R_A_TOV* for in-order
topologies is 0.

R_A_TOV*

Reclaim
Recovery
Qualifier
00-313r0 Page 6 of 31

Figure D.6 - FCP_XFER_RDY Lost, Acknowledged Classes

Error Detection

After receiving the ABTS, the initiator performs error recovery. Does the initiator send BA_ACC or
go directly to recovery and send ABTS(retry)?

The use of REC to determine status for error recovery shall not be used.

FCP_CMND (crn=a, oxid=x)

ACK

x FCP_XFER_RDY
E_D_TOV

Init Targ

ABTS (seq)

BA_ACC (LS=0)

ACK

ACK

Continue

Error Recovery

ABTS (retry) (oxid=x)

BA_ACC (LS=1)

FCP_CMND (retry) (crn=a, oxid=y)

Init Targ

ACK

ACK

ACK

The initiator sends an ABTS(retry) requesting the Exchange be retried. The FCP_CMND is
retransmitted in a new Exchange using the same CRN.

Both initiator and target establish Recovery Qualifiers. The value of R_A_TOV* for in-order
topologies is 0.

R_A_TOV*

Reclaim
Recovery
Qualifier
00-313r0 Page 7 of 31

Figure D.7 - FCP_XFER_RDY Received, ACK Lost, Acknowledged Classes

Error Detection

Although it is possible for the Exchange to continue when the ACK is lost, in the interest of sim-
plicity, error recovery is performed when the initiator receives the ABTS.

It was not decided how to proceed when the target receives the FCP_DATA before the E_D_TOV
expires (initiator does not know ACK was lost and sends the FCP_DATA). Will the target send an
ACK for the data? Will it send FCP_RSP? Does the initiator send BA_ACC or go directly to recov-
ery and send ABTS(retry)? If BA_ACC is sent, target might send FCP_RSP.

FCP_CMND (crn=a, oxid=x)

ACK

x
FCP_XFER_RDY

E_D_TOV

Init Targ

ABTS (seq)

BA_ACC (LS=0)

ACK

ACK

ACK

FCP_DATA

Continue

Error Recovery
ABTS (retry) (oxid=x)

BA_ACC (LS=1)

FCP_CMND (retry) (crn=a, oxid=y)

Init Targ

ACK

ACK

ACK

The initiator sends an ABTS(retry) requesting the Exchange be retried. The FCP_CMND is
retransmitted in a new Exchange using the same CRN.

Both initiator and target establish Recovery Qualifiers. The value of R_A_TOV* for in-order
topologies is 0.

R_A_TOV*

Reclaim
Recovery
Qualifier

R_A_TOV*

Reclaim
Recovery
Qualifier
00-313r0 Page 8 of 31

Figure D.8 - FCP_RSP Lost, FCP_CONF not requested, Unacknowledged Classes

Error Detection

The REC ACC indicates the initiator holds Sequence Initiative and the Exchange is complete. The
target must keep the context of this Exchange until the OX_ID value is reused in a new command
(implicitly validating the receipt of FCP_RSP), or for at least RR_TOV in order to preserve the
FCP_RSP information. This long time-out can be avoided by using FCP_CONF.

Wait REC_TOV* before performing error recovery. If FCP_RSP is received before REC_TOV* ex-
pires, continue with the Exchange (REC ACC arrived before FCP_RSP, out of order). Otherwise
perform error recovery.

FCP_CMND

REC

ACC

REC_TOV

x FCP_RSP

Init Targ

RR_TOV

REC_TOV*

Continue

Error Recovery

ABTS (retry) (oxid=x)

BA_ACC (LS=1)

FCP_CMND (retry) (crn=a, oxid=y)

Init Targ

The initiator sends an ABTS(retry) requesting the Exchange be retried. The FCP_CMND is
retransmitted in a new Exchange using the same CRN.

Both initiator and target establish Recovery Qualifiers. The value of R_A_TOV* for in-order
topologies is 0.

R_A_TOV*

Reclaim
Recovery
Qualifier
00-313r0 Page 9 of 31

Figure D.9 - FCP_RSP Lost, FCP_CONF not requested, Acknowledged Classes

Error Detection

FCP_CMND

ACK

x FCP_RSP
E_D_TOV

Init Targ

ABTS (seq)

BA_ACC (LS=0)

ACK

ACK

Continue

After receiving the ABTS, the initiator performs error recovery. Does the initiator send BA_ACC or
go directly to recovery and send ABTS(retry)?

The use of REC to determine status for error recovery shall not be used.

Error Recovery

ABTS (retry) (oxid=x)

BA_ACC (LS=1)

FCP_CMND (retry) (crn=a, oxid=y)

Init Targ

ACK

ACK

ACK

The initiator sends an ABTS(retry) requesting the Exchange be retried. The FCP_CMND is
retransmitted in a new Exchange using the same CRN.

Both initiator and target establish Recovery Qualifiers. The value of R_A_TOV* for in-order
topologies is 0.

R_A_TOV*

Reclaim
Recovery
Qualifier
00-313r0 Page 10 of 31

Figure D.10 - FCP_RSP Lost after Read Command, FCP_CONF not requested, Acknowledged Classes

Error Detection

x FCP_RSP
E_D_TOV

Init Targ

ABTS (seq)

BA_ACC (LS=0)

ACK

FCP_DATA

ACK

FCP_CMND

ACK

ACK

Continue

After receiving the ABTS, the initiator performs error recovery. Does the initiator send BA_ACC or
go directly to recovery and send ABTS(retry)?

The use of REC to determine status for error recovery shall not be used.

Error Recovery

ABTS (retry) (oxid=x)

BA_ACC (LS=1)

FCP_CMND (retry) (crn=a, oxid=y)

Init Targ

ACK

ACK

ACK

The initiator sends an ABTS(retry) requesting the Exchange be retried. The FCP_CMND is
retransmitted in a new Exchange using the same CRN.

Both initiator and target establish Recovery Qualifiers. The value of R_A_TOV* for in-order
topologies is 0.

R_A_TOV*

Reclaim
Recovery
Qualifier
00-313r0 Page 11 of 31

Figure D.11 - FCP_RSP Received, ACK Lost, Acknowledged Classes, Example 1

Error Detection

No Error Recovery
If the OX_ID value is reused in a new command before E_D_TOV expires, this implicitly validates
the initiator received the FCP_RSP (no need to send ABTS). If E_D_TOV expires, the target
sends ABTS and the receipt of BA_RJT indicates the Exchange is unknown and therefore
complete. No error recovery is required.

The target establishes a Recovery Qualifier. The issuance of the RRQ is optional, as no Recovery
Qualifier was established by the initiator. For in-order topologies, the value of R_A_TOV* is 0.

E_D_TOV

Init Targ

ABTS (seq)

BA_RJT

FCP_CMND

ACK

FCP_RSP

xACK

ACK

ACK
R_A_TOV*

Reclaim
Recovery
Qualifier
00-313r0 Page 12 of 31

Figure D.12 - FCP_RSP Received, ACK Lost, Acknowledged Classes, Example 2

Error Detection

E_D_TOV* Timer stops

If the OX_ID value is reused in a new command before E_D_TOV expires, this implicitly validates
the initiator received the FCP_RSP (no need to send ABTS). If E_D_TOV expires, the target
sends ABTS and the receipt of BA_RJT indicates the Exchange is unknown and therefore
complete. No error recovery is required.

The target establishes a Recovery Qualifier. The issuance of the RRQ is optional, as no Recovery
Qualifier was established by the initiator. For in-order topologies, the value of R_A_TOV* is 0.

For out-of-order topologies, if the initiator sent a FCP_CMND with the same OX_ID as the one in
the received ABTS, the initiator takes no action on the ABTS until the ACK to the outstanding
FCP_CMND Sequence has been received or E_D_TOV* expires, allowing the analysis to take
into consideration the RX_ID to eliminate ambiguity.

FCP_CMND (crn=a, oxid=j, rxid=ffffh)

ACK (oxid=j, rxid=b)

BA_RJT (Logical Error, Invalid OX_ID-RX_ID)

FCP_RSP (oxid=j, rxid=b)

ACK x

ACK

FCP_CMND (crn=b, oxid=j, rxid=ffffh)

ABTS (seq) (oxid=j, rxid=b)

E_D_TOV

ACK (oxid=j, rxid=c)

ACK

E_D_TOV*

R_A_TOV*

Reclaim
Recovery
Qualifier

Init Targ
00-313r0 Page 13 of 31

Figure D.13 - Lost Write Data, Last Frame of Sequence, Unacknowledged Classes

Error Detection

Error Recovery

The REC ACC indicates the target does not hold Sequence Initiative and the Exchange is open.
The initiator performs error recovery.

FCP_CMND (crn=a, oxid=x)

FCP_DATA (seq=1, cnt=0)

ACC

REC_TOV

ABTS (retry) (oxid=x)

x

BA_ACC (LS=1)

FCP_CMND (retry) (crn=a, oxid=y)

FCP_XFER_RDY

FCP_DATA (seq=1, cnt=1)

REC

Init Targ

Init Targ

The initiator sends an ABTS(retry) requesting the Exchange be retried. The FCP_CMND is
retransmitted in a new Exchange using the same CRN.

Both initiator and target establish Recovery Qualifiers. The value of R_A_TOV* for in-order
topologies is 0.

R_A_TOV*

Reclaim
Recovery
Qualifier

Continue
00-313r0 Page 14 of 31

Figure D.14 - Lost Write Data, Last Frame of Sequence, Acknowledged Classes

Error Detection

FCP_CMND (crn=a, oxid=x)

E_D_TOV

ACK

FCP_XFER_RDY

ACK

FCP_DATA (seq=1, cnt=0)

xFCP_DATA (seq=1, cnt=1)

Upon expiration of E_D_TOV, the initiator performs error recovery.

The use of REC to determine status for error recovery shall not be used.

Init Targ

Continue

Error Recovery

ABTS (retry) (oxid=x)

BA_ACC (LS=1)

FCP_CMND (retry) (crn=a, oxid=y)

Init Targ

ACK

ACK

ACK

The initiator sends an ABTS(retry) requesting the Exchange be retried. The FCP_CMND is
retransmitted in a new Exchange using the same CRN.

Both initiator and target establish Recovery Qualifiers. The value of R_A_TOV* for in-order
topologies is 0.

R_A_TOV*

Reclaim
Recovery
Qualifier
00-313r0 Page 15 of 31

Figure D.15 - Lost Write Data, Not Last Frame of Sequence, Unacknowledged Classes

Error Detection

FCP_CMND (crn=a, oxid=x)

FCP_DATA (seq=1, cnt=1)

ACC

REC_TOV

x

FCP_XFER_RDY

FCP_DATA(seq=1, cnt=0)

REC

Init Targ

Error Recovery

The REC ACC indicates the target does not hold Sequence Initiative and the Exchange is open.
The initiator performs error recovery.

ABTS (retry) (oxid=x)

BA_ACC (LS=1)

FCP_CMND (retry) (crn=a, oxid=y)

Init Targ

The initiator sends an ABTS(retry) requesting the Exchange be retried. The FCP_CMND is
retransmitted in a new Exchange using the same CRN.

Both initiator and target establish Recovery Qualifiers. The value of R_A_TOV* for in-order
topologies is 0.

R_A_TOV*

Reclaim
Recovery
Qualifier

Continue
00-313r0 Page 16 of 31

Figure D.16 - Lost Write Data, Not Last Frame of Sequence, Acknowledged Classes

Error Detection

(Sequence Error Detected)
If sequence recipient de-

tects sequence error due to
out of order frames or

E_D_TOV expiration, it may
send ACK (abort sequence)

FCP_CMND (crn=a, oxid=x)

E_D_TOV

ACK

FCP_XFER_RDY

ACK

FCP_DATA (seq=1, cnt=1)
xFCP_DATA (seq=1, cnt=0)

ACK (abort sequence)

Upon expiration of E_D_TOV or the receipt of ABTS, the initiator performs error recovery. If ABTS
is received, does the initiator send BA_ACC or go directly to recovery and send ABTS(retry)?

The use of REC to determine status for error recovery shall not be used.

Init Targ

Continue

Error Recovery

ABTS (retry) (oxid=x)

BA_ACC (LS=1)

FCP_CMND (retry) (crn=a, oxid=y)

Init Targ

ACK

ACK

ACK

The initiator sends an ABTS(retry) requesting the Exchange be retried. The FCP_CMND is
retransmitted in a new Exchange using the same CRN.

Both initiator and target establish Recovery Qualifiers. The value of R_A_TOV* for in-order
topologies is 0.

R_A_TOV*

Reclaim
Recovery
Qualifier
00-313r0 Page 17 of 31

Figure D.17 - Lost Read Data, Last Frame of Sequence, Unacknowledged Classes

Error Detection

After receiving the FCP_RSP, the initiator waits REC_TOV* before performing error recovery to
wait for possible out of order FCP_DATA frames. For in-order topologies, the value of REC_TOV*
is 0.

REC_TOV*

FCP_CMND (crn=a, oxid=x)

FCP_RSP

x

FCP_DATA (seq=1, cnt=0

FCP_DATA(seq=1, cnt=1)

Init Targ

Continue

Error Recovery

ABTS (retry) (oxid=x)

BA_ACC (LS=1)

FCP_CMND (retry) (crn=a, oxid=y)

Init Targ

The initiator sends an ABTS(retry) requesting the Exchange be retried. The FCP_CMND is
retransmitted in a new Exchange using the same CRN.

Both initiator and target establish Recovery Qualifiers. The value of R_A_TOV* for in-order
topologies is 0.

R_A_TOV*

Reclaim
Recovery
Qualifier
00-313r0 Page 18 of 31

Figure D.18 - Lost Read Data, Last Frame of Sequence, Acknowledged Classes

Error Detection

FCP_CMND (crn=a, oxid=x)

E_D_TOV

ABTS (abort seq)

ACK

BA_ACC (LS=0)

FCP_DATA (seq=1, cnt=0)

x FCP_DATA (seq=1, cnt=1)

ACK

ACK

(Sequence Error Detected)
If sequence is using ACK_1
model, and sequence recip-
ient detects sequence error
due to E_D_TOV expiration,
it may send ACK (abort se-

quence)

ACK (abort seq)

Init Targ

After receiving the ABTS, the initiator performs error recovery. Does the initiator send BA_ACC or
go directly to recovery and send ABTS(retry)?

The use of REC to determine status for error recovery shall not be used.

Continue

Error Recovery

ABTS (retry) (oxid=x)

BA_ACC (LS=1)

FCP_CMND (retry) (crn=a, oxid=y)

Init Targ

ACK

ACK

ACK

The initiator sends an ABTS(retry) requesting the Exchange be retried. The FCP_CMND is
retransmitted in a new Exchange using the same CRN.

Both initiator and target establish Recovery Qualifiers. The value of R_A_TOV* for in-order
topologies is 0.

R_A_TOV*

Reclaim
Recovery
Qualifier
00-313r0 Page 19 of 31

Figure D.19 - Lost Read Data, Not Last Frame of Sequence, Unacknowledged Classes

Error Detection

REC_TOV*

FCP_CMND (crn=a, oxid=x)

FCP_RSP

x
FCP_DATA (seq=1, cnt=1

FCP_DATA(seq=1, cnt=0)

Init Targ

After receiving the FCP_RSP, the initiator waits REC_TOV* before performing error recovery to
wait for possible out of order FCP_DATA frames. For in-order topologies, the value of REC_TOV*
is 0.

Error Recovery

ABTS (retry) (oxid=x)

BA_ACC (LS=1)

FCP_CMND (retry) (crn=a, oxid=y)

Init Targ

The initiator sends an ABTS(retry) requesting the Exchange be retried. The FCP_CMND is
retransmitted in a new Exchange using the same CRN.

Both initiator and target establish Recovery Qualifiers. The value of R_A_TOV* for in-order
topologies is 0.

R_A_TOV*

Reclaim
Recovery
Qualifier

Continue
00-313r0 Page 20 of 31

Figure D.20 - Lost Read Data, Not Last Frame of Sequence, Acknowledged Classes

Error Detection

FCP_CMND (crn=a, oxid=x)

E_D_TOV
If sequence error is
not detected, se-

quence timeout will
be detected with

same result

ABTS (seq)

ACK

BA_ACC (LS=0)

FCP_DATA (seq=1, cnt=1)

x FCP_DATA (seq=1, cnt=0)

ACK

ACK

(Sequence Error Detected)
If sequence recipient de-

tects sequence error due to
out of order frames or

E_D_TOV expiration, it may
send ACK (abort sequence)

ACK (abort seq)

Init Targ

After receiving the ABTS, the initiator performs error recovery. Does the initiator send BA_ACC or
go directly to recovery and send ABTS(retry)?

The use of REC to determine status for error recovery shall not be used.

Continue

Error Recovery

ABTS (retry) (oxid=x)

BA_ACC (LS=1)

FCP_CMND (retry) (crn=a, oxid=y)

Init Targ

ACK

ACK

ACK

The initiator sends an ABTS(retry) requesting the Exchange be retried. The FCP_CMND is
retransmitted in a new Exchange using the same CRN.

Both initiator and target establish Recovery Qualifiers. The value of R_A_TOV* for in-order
topologies is 0.

R_A_TOV*

Reclaim
Recovery
Qualifier
00-313r0 Page 21 of 31

Figure D.21 - ACK Lost on Read (Acknowledged Classes)

Error Detection

FCP_CMND (crn=a, oxid=x)

E_D_TOV

ABTS (abort seq)

ACK

BA_ACC (LS=0)

FCP_DATA (seq=1, cnt=1)

ACK

ACK

ACK

FCP_DATA (seq=1, cnt=0)

x

Init Targ

Although it is possible for the exchange to continue when the ACK is lost, in the interest of sim-
plicity, error recovery is performed when the initiator receives the ABTS. Does the initiator send
BA_ACC or go directly to recovery and send ABTS(retry)? If BA_ACC is sent, target might send
FCP_RSP.

Continue

Error Recovery

ABTS (retry) (oxid=x)

BA_ACC (LS=1)

FCP_CMND (retry) (crn=a, oxid=y)

Init Targ

ACK

ACK

ACK

The initiator sends an ABTS(retry) requesting the Exchange be retried. The FCP_CMND is
retransmitted in a new Exchange using the same CRN.

Both initiator and target establish Recovery Qualifiers. The value of R_A_TOV* for in-order
topologies is 0.

R_A_TOV*

Reclaim
Recovery
Qualifier
00-313r0 Page 22 of 31

Figure D.22 - ACK Lost on Write (Acknowledged Classes)

FCP_CMND (crn=a, oxid=x)

ACK

FCP_XFER_RDY

ACK

FCP_DATA (seq=1, cnt=0)

FCP_DATA (seq=1, cnt=1)

Error Detection

x ACK
E_D_TOV

FCP_RSP

Init Targ

ACK

Upon expiration of E_D_TOV, the initiator performs error recovery. It was not decided how to pro-
ceed if FCP_RSP is received before the E_D_TOV expires.

The use of REC to determine status for error recovery shall not be used.

Continue

Error Recovery

ABTS (retry) (oxid=x)

BA_ACC (LS=1)

FCP_CMND (retry) (crn=a, oxid=y)

Init Targ

ACK

ACK

ACK

The initiator sends an ABTS(retry) requesting the Exchange be retried. The FCP_CMND is
retransmitted in a new Exchange using the same CRN.

Both initiator and target establish Recovery Qualifiers. The value of R_A_TOV* for in-order
topologies is 0.

R_A_TOV*

Reclaim
Recovery
Qualifier
00-313r0 Page 23 of 31

Figure D.23 - FCP_CONF Lost, Unacknowledged Classes

Error Detection

No Error Recovery

The LS_RJT for the REC indicates the Exchange is unknown. That implicitly indicates that the ini-
tiator received FCP_RSP and sent FCP_CONF.

The context for the Exchange in the target must be preserved for another R_A_TOV to prevent
possible aliasing. If FCP_CONF is received before LS_RJT received, it is accepted and the con-
text for the Exchange can be purged. For in-order topologies, the value of R_A_TOV* = 0.

FCP_CMND

FCP_CONF

FCP_RSP
REC_TOV

x

Init Targ

REC

LS_RJT
R_A_TOV*
00-313r0 Page 24 of 31

Figure D.24 - FCP_CONF Lost, Acknowledged Classes

Error Detection

FCP_CMND

ACK

E_D_TOV

FCP_RSP

Init Targ

ACK

FCP_CONF x

Continue

Upon expiration of E_D_TOV, the initiator performs error recovery.

The use of REC to determine status for error recovery shall not be used.

Error Recovery

ABTS (retry) (oxid=x)

BA_ACC (LS=1)

FCP_CMND (retry) (crn=a, oxid=y)

Init Targ

ACK

ACK

ACK

The initiator sends an ABTS(retry) requesting the Exchange be retried. The FCP_CMND is
retransmitted in a new Exchange using the same CRN.

Both initiator and target establish Recovery Qualifiers. The value of R_A_TOV* for in-order
topologies is 0.

R_A_TOV*

Reclaim
Recovery
Qualifier
00-313r0 Page 25 of 31

Figure D.25 - ACK lost on FCP_CONF, Acknowledged Classes

Error Detection

BA_RJT is the response to the ABTS, since no context exists for this Exchange and the ABTS
was not issued on the first sequence of a new Exchange.

The initiator establishes a Recovery Qualifier. The issuance of the RRQ is optional, as no Recov-
ery Qualifier was established by the target. For in-order topologies, the value of R_A_TOV* = 0.

FCP_CMND

ACK

E_D_TOV

FCP_RSP

Init Targ

ACK

FCP_CONF

x ACK

Continue

Upon expiration of E_D_TOV, the initiator performs error recovery.

The use of REC to determine status for error recovery shall not be used.

Error Recovery

ABTS (retry) (oxid=x)

BA_RJT (logical error, Invalid OX_ID-RX_ID

Init Targ

ACK

ACK
R_A_TOV*

Reclaim
Recovery
Qualifier
00-313r0 Page 26 of 31

Figure D.26 - REC or REC Response Lost, Unacknowledged Classes

Initiator and target establish Recovery Qualifiers. For in-order topologies, the value of R_A_TOV*
is 0.

The initiator re-issues the REC in a new Exchange.

REC (oxid=r)

xREC (oxid=r)

or

x ACC

2 * R_A_TOV

Init Targ

Error Detection

Error Recovery

ABTS (exchange, oxid=r)

ACC

BA_ACC (LS=1)

Init Targ

REC (oxid=s)

R_A_TOV*

Reclaim
Recovery
Qualifier

Continue

Upon expiration of 2 times R_A_TOV, the initiator performs error recovery.
00-313r0 Page 27 of 31

Figure D.27 - REC Lost, Acknowledged Classes

Initiator and target establish Recovery Qualifiers. For in-order topologies, the value of R_A_TOV*
is 0.

The initiator re-issues the REC in a new Exchange.

xREC (oxid=r)
E_D_TOV

Init Targ

Error Detection

Error Recovery

ABTS (exchange, oxid=r)

ACC

BA_ACC (LS=1)

Init Targ

REC (oxid=s)

R_A_TOV*

Reclaim
Recovery
Qualifier

Continue

Upon expiration of E_D_TOV, the initiator performs error recovery.

ACK

ACK

ACK

ACK
00-313r0 Page 28 of 31

Figure D.28 - REC ACC Lost, Acknowledged Classes

ACCx

REC (oxid=r)

E_D_TOV

Init Targ

Error Detection

ACK

ACK

ABTS (exchange, oxid=r)

Continue

Upon receipt of ABTS, the initiator performs error recovery.

Error Recovery

ACC

BA_ACC (LS=1)

Init Targ

REC (oxid=s)

R_A_TOV*

Reclaim
Recovery
Qualifier

ACK

ACK

ACK

Initiator and target establish Recovery Qualifiers. For in-order topologies, the value of R_A_TOV*
is 0.

The initiator re-issues the REC in a new Exchange.
00-313r0 Page 29 of 31

Figure D.29 - Two RECs Lost, Unacknowledged Classes, Abort the original exchange

The BA_ACC payloads indicate that the RECs were not received by the target. The failure of two
RECs issued against the same Exchange indicates a “double error” and causes all associated Ex-
changes to be aborted.

The initiator transmits ABTS for the original FCP exchnage with Bit 0 = 0 set in the Parameter field
(abort exchange).

Initiator and target establish Recovery Qualifiers. The value of R_A_TOV* for in-order topologies
is 0.

FCP_CMND (oxid=x)

ABTS (exchange, oxid=r)

BA_ACC (LS=1)

xREC (oxid=r)
2 * R_A_TOV

Init Targ

Error Detection

R_A_TOV*

Reclaim
Recovery
Qualifier

ABTS (exchange, oxid=s)

BA_ACC (LS=1)

xREC (oxid=s)

ABTS (original exchange, oxid=x)

BA_ACC (LS=1)

2 * R_A_TOV*

Error Recovery
00-313r0 Page 30 of 31

Figure D.30 - ACK to REC ACC Lost, Acknowledged Classes

ACC

REC (oxid=r)

E_D_TOV

Init Targ

Error Detection

ACK

ACK

ABTS (exchange, oxid=r)

Continue

Upon receipt of ABTS, the initiator performs error recovery.

Error Recovery

BA_ACC (LS=1)

Init Targ

R_A_TOV*

Reclaim
Recovery
Qualifier

ACK

Initiator and target establish Recovery Qualifiers. For in-order topologies, the value of R_A_TOV*
is 0.

ISSUE: If after the ACC to the original REC is received, the initiator sends another REC using the
same OX_ID (it does not know that the ACK was lost), the E_D_TOV timer on the target could
expires and send the ABTS against the new REC Exchange.

xACK
00-313r0 Page 31 of 31

	Annex D Error detection and recovery action examples
	D.1 Introduction
	Table D.1 - Diagram Drawing Conventions
	Figure D.1 - Lengthy FCP_CMND
	Figure D.2 - FCP_CMND Lost, Unacknowledged Classes
	Figure D.3 - FCP_CMND Lost, Acknowledged Classes
	Figure D.4 - FCP_CMND Acknowledgement Lost, Acknowledged Classes
	Figure D.5 - FCP_XFER_RDY Lost, Unacknowledged Classes
	Figure D.6 - FCP_XFER_RDY Lost, Acknowledged Classes
	Figure D.7 - FCP_XFER_RDY Received, ACK Lost, Acknowledged Classes
	Figure D.8 - FCP_RSP Lost, FCP_CONF not requested, Unacknowledged Classes
	Figure D.9 - FCP_RSP Lost, FCP_CONF not requested, Acknowledged Classes
	Figure D.10 - FCP_RSP Lost after Read Command, FCP_CONF not requested, Acknowledged Classes
	Figure D.11 - FCP_RSP Received, ACK Lost, Acknowledged Classes, Example 1
	Figure D.12 - FCP_RSP Received, ACK Lost, Acknowledged Classes, Example 2
	Figure D.13 - Lost Write Data, Last Frame of Sequence, Unacknowledged Classes
	Figure D.14 - Lost Write Data, Last Frame of Sequence, Acknowledged Classes
	Figure D.15 - Lost Write Data, Not Last Frame of Sequence, Unacknowledged Classes
	Figure D.16 - Lost Write Data, Not Last Frame of Sequence, Acknowledged Classes
	Figure D.17 - Lost Read Data, Last Frame of Sequence, Unacknowledged Classes
	Figure D.18 - Lost Read Data, Last Frame of Sequence, Acknowledged Classes
	Figure D.19 - Lost Read Data, Not Last Frame of Sequence, Unacknowledged Classes
	Figure D.20 - Lost Read Data, Not Last Frame of Sequence, Acknowledged Classes
	Figure D.21 - ACK Lost on Read (Acknowledged Classes)
	Figure D.22 - ACK Lost on Write (Acknowledged Classes)
	Figure D.23 - FCP_CONF Lost, Unacknowledged Classes
	Figure D.24 - FCP_CONF Lost, Acknowledged Classes
	Figure D.25 - ACK lost on FCP_CONF, Acknowledged Classes
	Figure D.26 - REC or REC Response Lost, Unacknowledged Classes
	Figure D.27 - REC Lost, Acknowledged Classes
	Figure D.28 - REC ACC Lost, Acknowledged Classes
	Figure D.29 - Two RECs Lost, Unacknowledged Classes, Abort the original exchange
	Figure D.30 - ACK to REC ACC Lost, Acknowledged Classes

