T10/00-153r0

Ultra320 SCSI with Receiver Equalization, 25 meters into a Backplane with 6 loads

Russ Brown
Quantum Corporation

SCSI Physical Working Group Meeting 07 March 2000 Dallas, TX

U320 25 Meter Cable Test Overview

- Quantum's goal for Ultra 320 SCSI is to have a solution that is so robust it could be extensible to Ultra 640.
- In order to demonstrate that our Receiver Equalization scheme is extremely robust, we want to test it at conditions beyond the specified limits of Ultra 160.
- The first of these was to test U320 using a 25 meter round cable into a fully loaded 6-slot backplane.
- The signals were measured to find the eye opening with ISI, reflections and crosstalk including:
 - Amplitude errors;
 - Timing shift errors;
 - Miscellaneous noise.
- The following describes the test and results.

U320 25m Cable Test Setup

- Margins were evaluated with the same techniques as used for our other Ultra320 data:
 - Transmitter driving voltage: +/- 400mV.
 - Transmitted Pattern: 2μs of "101010..." training pattern followed by 8μs random data.
 - The equalizer input signals are captured differentially with a Tektronix TDS694C oscilloscope by probing at the backplane.
 - The equalizer output signal is generated by Spectre, simulating in transistor level models and using captured data as input stimulant.
- For the bit cell: the training pattern ("1010...")
 defines the cell boundary and cell center.

Quantum™

U320 25m Cable Test Schematic

06 March 2000

U320 25m Cable Test Configuration

 25 meter Amphenol cable assembly[†] using Madison 28AWG round shielded cable plus 6-slot backplane.

 Error sources are used to define the range over which a receiver characteristic may typically vary from the <u>ideal sample point</u>, i.e., the actual sample point may lie anywhere within a box defined by 2 times 0-to-peak height and 2 times 0-to-peak width of the errors.

U320 Eye Mask

 Amplitude error sources define height, and timing error sources define width, e.g., set-up time margin is measured as the distance from the eye diagram waveform to the box.

U320, Eq Input, 25m Cable, bp1

Conclusion: Failing Margin

(Increasing amplitude would still fail)

06 March 2000 T10/00-153r0 Russ Brown - slide 7

U320, Rx Equalized, 25m Cable, bp1

Conclusion: Excellent Margin

Quantum_™ Set-up and Hold vs Eye Opening, bp1

U320, Eq Input, 25m Cable, bp3

Conclusion: Failing Margin

(Increasing amplitude would still fail)

06 March 2000 T10/00-153r0 Russ Brown - slide 10

Quantum U320, Rx Equalized, 25m Cable, bp3

Conclusion: Excellent Margin

Quantum™ Set-up and Hold vs Eye Opening, bp3

U320, Eq Input, 25m Cable, bp6

Conclusion: Failing Margin

(Increasing amplitude would still fail)

06 March 2000 T10/00-153r0 Russ Brown - slide 13

U320, Rx Equalized, 25m Cable, bp6

Conclusion: Excellent Margin

Quantum_™ Set-up and Hold vs Eye Opening, bp6

U320 25m Cable Test Conclusions

- A Receiver Equalization scheme is extremely robust, capable at operating beyond the specified limits for Ultra 160.
- The specification for the maximum bus path length between terminators (25 meters point-to-point and 12 meters multidrop interconnect) does not need to be changed for U320 in SPI-4.