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A Common Command Unit Architecture
based on P1212.1 Shareable List DMA

X3T9.2/92-131r1 / D0.52 13Aug92

Abstract

This document specifies the I/O process that provides communication between a I/O driver and an I/O
service. The scope of the specification includes the formats of command and status lists, the list-update
operations, device registers, and ROM entries. This document assumes that nodes are connected using the
P1394 Serial Bus and that devices fully comply with the IEEE Std 1212-1991 CSR Architecture. This
document is based on the concepts developed within the P1212.1 DMA Framework working-group draft.
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1. Introduction

1.1 I/O Process Overview

1.1.1 I/O Process Components

This document specifies the I/O process, initiator-target command/status protocol based on the
Shareable List DMA model described in the IEEE project P1212.1 DMA Framework draft document.
This specification covers the necessary algorithms, transaction types, data structures, registers, and
ROM entries to be a participant in the /O process. This document assumes that the underlying bus
is specified by the IEEE P1394 Serial Bus draft document and that devices connecting to it comply to
IEEE Std 1212-1991 CSR Architectdre.

This document builds on the DMA Framework to provide a unit architecture, called the Common
Command Unit Architecture (CCU Architecture), that participates in this command/status protocol
and defines management functions that are not specified in the DMA Framework. This document is
self-sufficient with respect to the DMA Framework (P1212.1). It is not, however, self-contained with
respect to P1394 Serial Bus or to IEEE Std 1212-1991 CSR Architecture.

The major elements in a simple I/O process are illustrated in Figure 1-1. An initiator is a function
that has the intelligence to generate commands. The initiator appends a command entry to the
command list of the appropriate target. The command entry contains queuning information, command
information, data buffer pointer(s), and status information pointer(s).

W+ % #////?:ﬁ?;ﬁ’/ﬁ?/{/?ﬂ/ / | _ §\\\\\\\\\\\w

0

Figure 1-1: I/O Process System Overview

A target is a function that has one or more I/O services, such as a disk controller or network
interface, as its client(s). When the target is notified that there is new information in one of its
command lists, it extracts the command entry (updating the list pointers as required) and passes a
copy of the command entry to the appropriate /O service.

When the target’s /O service completes the command-entry-specified action, it may be required to
return status. The target updates the contents of the command-entry-specified status entry and
appends that status entry to the command-entry-specified status list, and may notify the command-
entry-specified initiator that new information was added to that list.
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1.1.2 Steps in the I/O Process

To better illustrate the I/O process concepts, consider the operation of the I/0 process in the context
of a simple single initiator and a single target configuration. The steps involved in performing a
DMA transfer are then illustrated in Figure 1-2,

4
5 status 7/%*\\
--------- (6)-----"-*

1) Command entry added to command-queus

2) DMA triggered to re-fetch command queue entries
3) DMA copies entry from command queue

4) DMA data transfers performed

5) DMA adds entry to status queue

6) DMA interrupts processor

7) Processor retrieves status entries

Figure 1-2: Steps in the I/0 Process

These steps in the I/O process are summarized below:

1)

2)

3)

4)

5)

6)

)

Command Append. The initiator initializes the contents of a command entry data structure.
The command entry is then appended to the tail of the target’s command list.

Target Wakeup. A write to a specialized target wakeup register re-activates the target’s
processing of additional command-list entries.

Target Extract. The target extracts one or more command entries from the command list,
possibly queueing them in internal storage before they are processed.

Command Execution. The target executes the data-transfer commands contained within the
command entry. These commands typically transfer data between system memory space and
device-specific addresses (such as locations on a disk).

Status Append. After the execution of a command entry completes, its affiliated status block
is updated and appended into a memory-resident status list.

Initiator Wakeup. After the status has been appended to the status list, a write to a
specialized initiator wakeup register re-activates the initiator’s processing of additional
status-list entries.

The initiator’s I/O driver software processes the returned status entries. After each status
entry is processed, the command entry, status entry, and affiliated data buffers are released
for other system uses.
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1.1.3 Shared-Queue Transfers

Although the /O process often involves one initiator and one target, the command and status list
structures can be shared. For example, consider two processors (called initiator(0] and initiator(1])
which access three /0 devices (called target[a], target[b], and target[c]), as jllustrated in Figure 1-3.

N\ '7 A command list Z
NN\ gz DOIN
\‘\\\\\\\ﬁ:' command list ] m
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\Q\\\\\\\\\\\\‘ 4 % command list 7
Memory

Figure 1-3: Shared Queue Overview

In this example, the command list for zarget/b] is shared by initiator[0] and initiator[1], which can
actively share the device. Similarly, the status lists for initiator{0] are shared by its dedicated
target[a] and shared target(b] devices; the status lists for initiator[1] are shared by its dedicated
target(c] and shared target[b] devices.

In many cases, the initiator that generates a command entry and the initiator that processes the
returned status entry will be the same. However, since the address of the status list is specified
within each command entry, the command entry has the possibility of being routed to a different

status list.

As shown, the command and status lists may reside anywhere in bus-accessible space, that is in the
addressable space common to the targets and initiators. Also, an initiator may append command
entries to any number of command lists; a target, in an analogous fashion, may append status to any
number of status lists. In one system, there could be many targets accessed by only one initiator, as
in a CPU and peripherals configuration. In a different system, there may be many initiators
accessing one target, as in a shared printer configuration.

e
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1.1.4 Initiator and Target Resources

The initiator and targets maintain internal state, as needed to access the command and status lists.
Both the initiator and the target are required to provide an externally accessible wakeup register,
which is used to reactivate command and status entry processing in the target and initiator
respectively, as illustrated in Figure 1-4.

== m. =—

\\Qx\

Figure 1-4: Initiator and Target Resources
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To append command-list entries, the initiator also knows the addresses of the command-list tail
pointer (commandTailHandle), the address of the wakeup register (wakeupPtr), and the value to use
when writing to the command-list-affiliated wakeup register (wakeupValue). This information is
needed for each target that may be accessed.

To extract command-list entries, the target knows the addresses of the command-list head and tail
pointers (commandHeadHandle and commandTailHandle). The target does not save status-list
related parameters, since the status-queue related parameters (statusTailHandle, wakeupPtr, and
wakeupValue) are included as parameters within the command-list entries.

1.1.5 Design Capabilities

The functional properties of the CCU Architecture’s command and status list design, which are
unavailable on many alternative DMA architectures, include the following:

1) High Performance. Most of the initiator's read and write transactions that update command
and/or status lists involve efficient accesses of local system memory. Remote SerialBus
control register accesses are generally much less efficient, particularly for read bus
transactions. The CCU Architecture is optimized for this environment; control register reads
are not normally used and only one write transaction is needed to initiate the target's
command-list processing.

4
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2) Device Autonomy. Because the target autonomously fetches its DMA commands from system
memory, the size of initiator-generated command lists is not limited by the target’s physical
buffer size. The target paces the flow of commands, so the transient rates of command
generation (by the initiator) and command consumption (by the target) need not be matched.

3) Scalable. The scalability properties of the CCU Architecture include the following:

a) Shared Queues. Multiple initiators may share a single target’s command list and
multiple targets may share an initiator’s status list.

b) Generalized. In addition to supporting traditional processor-to-I/O communications,
the shared command/status queue structures are an efficient mechanism for sending
processor-to-processor messages through shared memory.

c) High-End Support. Although the CCU Architecture was designed primarily for low-
cost SerialBus applications, the architecture is equally applicable to high-speed
backplanes, such as provided by the IEEE Std 1596 Scalable Coherent Interface.

4) Flexible. Because commands and data are located in target-accessible shared memory,
special capabilities (like flow-control, command-list looping, and command-list transfers) are

easily supported.

1.2 Glossary and Notation

1.2.1 Conformance Levels

Several keywords are used to differentiate between different levels of requirements and optionality,
as follows:

expected. A keyword used to describe the behavior of the hardware or software in the design models
assumed by the CCU standard. Other hardware and software design models may also be
implemented. :

may. A keyword that indicates flexibility of choice with no implied preference.

shall. A keyword indicating a mandatory requirement. Designers are required to implement all such
mandatory requirements to ensure interoperability with other CCU Architecture conformant

products.

should. A keyword indicating flexibility of choice with a strongly preferred alternative. Equivalent
to the phrase “it is recommended.”

(b2
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1.2.2 Glossary of Terms

A large number of bus and interconnect-related technical terms are used in this document. These
terms are described below:

bus transaction. A data exchange between two nodes, consisting of a request subaction and a
response subaction. The request subaction transfers a read/write/lock transaction code from a
requester to a responder. The response subaction returns a completion-code from a responder to the

requester. Depending on the transaction code, the data may be transferred in the request (for a
write), in the response (for a read), or in both (for a lock).

byte. Eight bits of data, used as a synonym for octet.

command entry. An entry in a command list that contains command information and may
optionally contain address information.

command list. A singly-linked list of command entries. One or more initiators may append
command entries to a command list. A single target is responsible for extracting command entries
from a command list.

compareSwap. An indivisible bus transaction that conditionally stores a new argument to a
specified data address and returns the previous data value from that address. The store occurs when

the addressed memory value and a second arg value are equal. In the CSR Architecture, this is
called a compare_swap transaction.

CSR Architecture. IEEE Std 1212-1991, Control and Status Register Architecture.

CCU Architecture. A term which refers to the contents of this document.

doublet. A data format or data type that is 2 bytes in size.

DMA Framework. A draft document being produced by the IEEE P1212.1 working group.
fullSwap. A form of the maskSwap bus transaction, in which the mask value is all ones.

hexlet. A data format or data type that is 16 bytes in size. The name hexadeclet would more
accurately describe these 16-byte formats, but for notational convenience this abbreviated term is

used throughout this standard.

indivisible acecess. A data access for which the entire datum is read or written as a whole, with no
possibility of being partial interleaved with another data access.

initiator. An entity that generates commands and delivers them to a target using the I/O process.
The initiator may also receive status from the target upon command completion.

I/0. An abbreviation for the terms Input and Output.
I/O process. TBD.
I/O service. TBD.

list access mechanism. TBD.
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lock transaction. A bus transaction that transfers data and sub-command from the requester to the
responder and returns data from the responder. The subcommand indicates whether this is a
maskSwap or compareSwap transaction.

maskSwap. An indivisible bus transaction that stores bits of a new argument to a specified data
address and returns the previous data value from that address. The affected bits are specified by a
mask argument. In the CSR Architecture this is called a mask_swap transaction.

node. An entity associated with a particular set of control register addresses (including
identification ROM and reset command registers) that is initially defined in a 4Kbyte (minimum)
initial node address space. In normal operation each node can be accessed independently (a control
register update on one node has no effect on the control registers of another node). Physically, a node
is most commonly a device attached to SerialBus, although such a device may in fact contain more
than one ndde. -

octlet. A data format or data type that is 8 bytes in size. Not to be confused with an octet, which has
been commonly used to describe 8 bits of data. In this document, the term byte, rather than octet, is
used to describe 8 bits of data.

quadlet. A data format or data type that is 4 bytes in size.

read operation. The data-transfer phase in the execution of a read command entry that copies data
from the device-specific space into bus-accessible space. A read operation consists of one or more
write transfers.

read transaction. A bus transaction that returns data from the responder to the requester.

read transfer. A transfer of data from a contiguous range of bus addresses into device-specific
address space. Read transfers are performed by the target in the process of executing a write
(memory-to-target) or copy (memory-to-memory) command-entry.

requester. A term which describes the node that initiates a bus transaction and transfers an
address and command to the responder.

responder. A term which describes the node that completes a bus transaction and returns status to
the requester.

scatter array. A contiguous array of elements that specifies a set of discontiguous address spaces to
which a single logical data transfer is performed. A scatter array consists of one or more elements,
where each scatter element contains a 64-bit address pointer and an unsigned 32-bit count.

SerialBus. Refers to the draft document being produced by the IEEE P1394 working group. This
defines an inexpensive serial interconnect that can be used as an alternate control or diagnostic
path, as an 1/O connection, or even in place of a parallel bus in some systems.

Scalable Coherent Interface. A term which refers to the IEEE Std 1596-1992 Scalable Coherent
Interface.

status entry. An entry in a status list that contains status information and may optionally contain
address information.

status list. A singly-linked list of status entries. One or more targets may append status entries to a
status list. A single initiator is responsible for extracting status entries from a status list.

[
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target. An entity that receives commands from one or more initiators, acts on those commands and
optionally returns status, using the I/O process.

transaction. See bus transaction.

unit. A sub-component of the node that provides a processing, memory, or I/O functionality. After
the node has been initialized (typically by generic software), the unit provides the register interface
which is accessed by I/0 driver software. The units normally operate independently of each other,
and do not affect the operation of the node upon which they reside. Note that one node could have
multiple units (for example: processor, memory, and SCSI controller).

write operation. The data-transfer phase in the execution of a write command entry that copies
data from the bus-accessible space into device-specific space. A write operation consists of one or
more read-transfers, =

write transaction. A bus transaction that transfers data from the requester to the responder.

write transfer. A transfer of data from a device-specific address space into a contiguous range of
bus addresses. Write transfers are performed by the target in the process of executing a read
(memory-to-target) or copy (memory-to-memory) command-entry.

1.3 Bit, Byte, and Quadlet Ordering

This document defines registers and memory locations which are 4 bytes (or larger) in size. To
ensure interoperability across bus standards, the ordering of the bytes within these locations is
defined by their relative addresses, not their time slot or physical position on the bus. Bus bridges
are similarly expected to route data bytes from one bus to another based on their addresses, not their
physical position on a bus. The routing of data bytes based on their address is called address-

invariance.

To support the address-invariance model, this standard specifies the mapping of data-byte addresses
to bytes within the multi-byte registers and memory-resident data locations. For a quadlet location,
the data byte with the smallest address is the most significant, as illustrated in Figure 1-5.

mse  bytesin aquadlet ¢ g_quadlet register pair _;qp
b[o] | b[1] | b[2] | b[3] Al most_significant_quadiet
8 8 8 8 A+4| least_significant_quadiet
32

Figure 1-5: Byte and Quadlet Ordering

Since 64-bit addressing is supported throughout this standard, many values are stored as quadlet-
register pairs. For consistency, the quadlet register with the smallest address is also the most
significant, as illustrated above.

For most of the quadlet locations, the size of all fields within the quadlet are specified; the bit
position of each field is implied by the size of fields to its right or left. This labelling convention is
more compact than bit-position labels, and avoids the question of whether 0 should be used to label
the most or least significant bit.
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1.4 Numerical Values

Decimal, hexadecimal, and binary numbers are used within this document. For clarity, decimal
numbers are generally used to represent counts, hexadecimal numbers are used to represent
addresses, and binary numbers are used to describe bit patterns within binary fields.

Decimal numbers are represented in their standard 0, 1, 2, ... format. Hexadecimal numbers are
represented by a string of one or more hexadecimal (0-9,A-F) digits followed by the subscript 16.
Binary numbers are represented by a string of one or more binary (0,1) digits, followed by the
subscript 2. Thus the decimal number “26” may also be represented as “1A;g" or “11010,".

1.5 Address Pointers

1.5.1 4/8-byte Aligned Pointers

SerialBus uses 64-bit addresses to access objects in bus address space. In general, a 64-bit address of
a data structure can be arbitrarily aligned.

The I/O process defines special objects that have certain data alignment requirements. An example is
the wakeup register (described in Section 5.1.2) which must be located at 4-byte-aligned addresses.
When used within CCU-Architecture-defined data structures, these addresses have a the format
illustrated in Figure 1-6.

Address+0 addressHi
Address+4 addressLo c|n
28 11

Figure 1-6: 4/8-Byte Aligned Pointer Format

The null bit n is 0 or 1 if the address pointer is valid and invalid respectively. The cache bit ¢ is 0 or
1 if the address pointer is valid and invalid respectively.

1.5.2 16-byte Aligned Pointers

The /O process defines other data objects which are required to be 16-byte aligned, such as the
command block (described in Section 4.1). When used within the CCU-Architecture-defined data
structures, these addresses have the format illustrated in the Figure 1-7.

Address+0 addressHi
Address+4 addresslLo 1bs |c|n
28 2 11

Figure 1-7: 16-Byte Aligned Pointer Format
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For byte-aligned pointers, the associated bs, ¢, and n fields are contained in listControl, a nearby
quadlet location in the command entry. Regardless of their location, these fields limit the bus
transactions that are permitted when accessing the data to which the pointer points.

The null bit n is 0 or 1 if the address pointer is valid or invalid respectively. The cache bit ¢ is 0 or 1
if the address pointer is valid or invalid respectively.

For non-coherent transfers, the 2-bit block-size field bs field values specifies the maximum bus-
transaction size, as specified in Table 1-1, below.

b c bs description

0 0 0 Uncached; read4 and writed transactions maximum

" " 1 Uncached; read16 and writel6 transactions maximum

e & 2 Uncached; read64 and write 64 transactions maximum

) " 3 Uncached: transactions of any size up to maximum for bus speed
0 1 all Cache-coherent access (not applicable to SerialBus)

1 0,1 all Null pointer (address is invalid)

Table 1-1: Standard Aligned-Address Field Values
1.6 Memory-Access Operations

1.6.1 List and Management Operations

The maintenance of the lists and the other management functions specified by the I/O process
require the underlying bus to support certain memory-access operations. Since many portions of the
list-access protocols are specified as C code, these memory-access operations are also defined by C-
code routines; prototypes for these routines are listed in Table 1-2, below.

Quadlet Read4 (Octlet address);

Octlet Read8(Octlet address);

void Read64 (Octlet address, Byte *dataBlock);

void Writed4(Octlet address, Quadlet data);

void Write8 (Octlet address, Octlet data):

void Writeb64 (Octlet address, Byte *dataBlock);

Octlet MaskSwap8(Octlet address, Octlet data, Octlet mask);

Octlet CompareSwap8(Octlet address, Octlet data, Octlet test);

Table 1-2: Memory-Aécess Routines

The Readd () routine shall return the Quadlet stored in the location specified by address. The
address value shall be an integer multiple of 4.

10
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The Read8 () routine shall return the octlet stored in the location specified by address. The
address value shall be an integer multiple of 8.

The Read64 () routine returns 64 bytes of data, starting from the location specified by address. The
size of the dataBlock array shall contain at least 64 bytes. The address value shall be an integer
multiple of 16.

The Writed () routine shall store the quadlet data value in the location specified by address. The
address value shall be an integer multiple of 4.

The Write8 () routine shall stores the octlet data value in the location specified by address. The
address value shall be an integer multiple of 8.

The Write64 () routine moves the 64 bytes in dataBlock to locations starting at address. The size
of the dataBlock array shall contain at least 64 bytes. The address value shall be an integer
multiple of 16.

The MaskSwap8 () routine performs a partial swap of data with the value in the location specified
by address. Data is stored in those bits of the addressed location corresponding to 1 bits in the mask
value.

The Compareswap8 () routine compares the octlet test value with the octlet in the location
specified by address; if they are equal, the octlet data value is stored in the location specified by
address. In all cases, the previous octlet value at that address is returned. The address value shall
be an integer multiple of 8.

The memory-access routines listed in Table 1-5 generate actual bus activity, arbitration, request
packet, etc. However, their functionality can be illustrated by the following C-code, which assumes
all resources are memory-mapped. The C-code is shown in Listing 1-1, and the necessary support
code can be found in the Appendix.

/* Listing 1-1: Memory-Access Routines */
/* CODE_BEGIN */
Quadlet
Readd (Octlet address)
{ ©Quadlet result;

/* Generates a read4 transaction, with the following effects */
assert ( (address%4)==0);

result= *({Quadlet *)address);

return(result);

};

Octlet
Read8 (Octlet address)
{ Octlet result;

/* Generates a read8 transaction, with the following effects */
assert ( (address%8)}==0);

result= *((Octlet *)address);

return(result);

11
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void
Read64 (Octlet address, Byte *dataBlock)
{ int 1i;

/* On SerialBus, generates read64 transaction, with the following effects.
* On aligned buses, like NuBus or Scalable Coherent Interface, four
* readlé transactions are used on addresses that are not 64-byte aligned */
assert ( (address%16)==0);
for (i= 0; i<64; i+= 1)
*(dataBlock+i)= *((Byte *)address+i);
}i

void
Writed (Octlet address, QuadYet data)
{
/* Generates a writed transaction, with the following effects */
assert ((address%4)==0);
*{ (Quadlet *)address) = data;
};

void
Write8 (Octlet address, Octlet data)
{
/* Generates a write8 transaction, with the following effects */
assert ( (address%8)==0);
*({Octlet *)address) = data;
}:

void
Write64 (Octlet address, Byte *dataBlock)
{ int i;

/* On SerialBus, generates writeéd transaction, with the following effects.
* On aligned buses, like NuBus or Scalable Coherent Interface, four
* writel6 transactions are used on addresses that are not 64-byte aligned*/
assert((address%16)==0);
for (i= 0; i<64; i+= 1)
*{(Byte *)address+i) = *{(dataBlock+1);
};

Octlet
MaskSwap8 (Octlet address, Octlet data, Octlet mask)
{ Octlet old;

/* Generates a maskSwap8 transaction, as defined by CSR Architecture.
* On SerialBus, the (data&mask) operation is performed by the
* requester before the request subaction is generated. However,
* this transaction always has the following (bus-independent) effects */
assert ( (address%8)==0) ;
old= *((Octlet *)address);
*({Octlet *)address)= (data & mask) | (old & -mask);
return(old) ;

12
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Octlet
CompareSwap8 (Octlet address, Octlet data, Octlet test)

{ oOctlet old;

/* Generates a compareSwap8 transaction, with the following effects */

assert ( (address%8)==0);
old= *((Octlet *)address);
if {old==test) *((Octlet *)address) = data;
return(old) ;
};:
/* CODE_END - BUS_TRANSACTIONS x

13
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2. List Update Protocols

2.1 Command and Status List Structures

2.1.1 List Structures

Both the command and status lists have the same structure, shown in Figure 2-1, and are
manipulated by the same algorithms. The only difference between the two lists is the information in
the entryInfo field. All of the elements of the list shall be located in bus-accessible space and shall
be 16-byte aligned.

| listHeadPtr , - I IistTailPtr I

nextEntryPtr =] neXtEntryPtr |— ] nextEntryPtr g nextEntryPtr g (NULL)

entryInfo entryInfo entryInfo entryInfo

Figure 2-1: List Structure

The listHeadPtr element is the pointer to the first entry in the list. In the context of a command
list, this element is called a command head pointer, commandHeadPtzr. In the context of a status list,
this element is called a status head pointer, statusHeadPtr.

A list entry consists of two parts. The next entry pointer, nextEntryPtr, and the entry-dependent
information, entryInfo. In the context of a command-list entry, the next entry pointer is called a
next command pointer, nextCommandPtr, and the entry-dependent information is called the
command information, commandInfo. In the context of a status-list entry, the next entry pointer is
called a next status pointer, nextStatusPtr, and the entry-dependent information is called the
statusInfo.

The 1istTailPtr element is the pointer to the last entry in the list. In the context of a command
list, this element is called a command tail pointer, commandTailPtr. In the context of a status list,
this element is called a status tail pointer, statusTailbPtr,

14
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The summary of list element names is given in Table 2-1.

generic list command list status list
listHeadPtr commandHeadPtr statusHeadPtr
listTailPtr commandTailPtr statusTailPtr
nextEntryPtr nextCommandPtr nextStatusPtr

entryInfo commandlInfo statusInfo

Table 2-1: List Element Names

2.1.2 Empty (Zero-Entry) List Structures

The list is initially empty, in that it contains no entries. In an empty list the value of 1istTailPtr
is the address of 1istHeadPtr and the value of 1istHeadPtr is NULL, as illustrated in Figure 2-2.

rllstHeadPtr |<— 7 _{ TistTai1lPtr J

(NULL)
Figure 2-2: Empty List
2.2 List Append Operation

2.2.1 Appending One Eniry

To append entry into the list, the appender allocates the entry and initializes its nextEntryPtr
value to NULL. The appender then swaps the address of the new entry with the list’s 1istTailPtr
value and saves the returned value (the old 1istTailPtr value)in a local 01d1listTailPtr
location. This sequence is shown in Figure 2-3.

(old 1listTailPtr)

listHeadPtr —_— e e e ——— — —— — — listTailPtr
P |
—1
ery)
\ g g ne¥ =
(NULL) & \aadl’ess o

nextEntrypPtr | e (NULL)

entryInfo

Figure 2-3: Adding First Entry to List, Phase 1
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To complete the appending of the new entry, the appender writes the address of the new entry to the
address specified by the previously returned o1dListTailPtr value. After the append completes,
the appender typically signals the associated extracter by writing a pre-specified quadlet wakeup
value to a pre-specified wakeup register address, as illustrated in Figure 2-4.

(write of wakeup value to the wakeup register)
*--- -------------------------------------------------------------- -_—---

I llstHeadPtr I listTailPtr I

(address of new " en\‘.ff!"
entry written to s of ne
location pointed _ tadafes
to by old

listTailPtr)

nextEntryPtr | g (NULL)

entryiInfo

Figure 2-4: Appending First Entry to List, Phase 2
2.2.2 Appending Multiple Entries

When the appender appends multiple entries simultaneously, the append algorithm is modified
slightly. The appender pre-links the entries to be added to the list, as shown in Figure 2-5. The
appender then swaps the address of the last entry in the mini-list with the list’s 1istTailPtr value
and saves the returned value (the old 1istTailPtr value) in a local c1dTailPtr location, as shown
in Figure 2-5.

I listHeadPtr I ,I listTailPtr I
—
_ -
-
P ko o Sy R (address of last entry
a liﬁtTgl’ swap () in mini-list)
A2
—

nextEntryPtr | g (NULL) nextEntryPtr |Je—pe| nextEntryPtr

Y

nextEntryPtr | g (NULL)

entryInfo entryInfo entryInfo entryInfo

Figure 2-5: Adding a Mini-List to List, Phase 1
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To complete the appending, the appender then writes the address of the first entry in the mini-list to
the address specified by the previously returned oldListTailPtr value. After the append is
completed, the appender may send a wakeup signal to the extracter, as illustrated in Figure 2-6.

B Lt ke kit
I listHeadPtr l [_1istTailPtr I

(address of first .
entry in mini-list {address of last entry
written to location in mini-list)
pointed to by old
listTailPtr)

nextEntryPtr. NexCEMCrybtr |j—i| NEXEENCIYPLE i NextEntryPtr je—a={NULL)

entryInfo entryInfo entryInfo entryInfo

Figure 2-6: Appending a Mini-List to List, Phase 2
2.3 List Extract Operation

2.3.1 Extractor Wakeups

For the extractor, the wakeup register address and the wakeup value are expected to uniquely
identify which list contains the new entry. When checking that list, the extracter reads the
1istHeadPtr to see if it is valid, i.e. non-NULL, When listHeadPtr is NULL, the extractor waits

for the next wakeup signal.

When 1istHeadPtr is not NULL, the extractor attempts to extract one or more entries, as described
in the following sections. To simplify this concept, the textual descriptions consider the case where
only one entry is extracted. A more efficient extraction process can be used to extract multiple
command entries, as specified by the C-code specification of Listing TBD.

2.3.2 List Extractions

If 1istHeadptr is not NULL, the extractor reads the next entry from the address specified by the
1istHeadPtr. If the nextEntryPtr value in this entry is not NULL (it is not the last list entry),
the extractor fetches any extended portions of the entry into local memory, sets the memory-resident
1istHeadPtr to the nextEntryPtr value, and processes the local copy of the entry.

If the nextEntryPtr value is NULL, this extractor initially assumes this is the last entry in the list.
The extracter saves the shared 1istHeadPtr value in a local queueHeadShadowPtr location and
writes a NULL value to the shared 1istHeadPtr location. Using the indivisible CompareSwap8
operation, the 1istTailPtr value is compared to the queueHeadShadowPtr value and (if they are
equal) the 1istTailPtr value is set to the address of 1istHeadPtr.

If the CompareSwap8 operation succeeds, the extractor fetches any extended portions of the entry
into local memory and processes the local copy of this entry. The extractor waits for the next wakeup

signal.

17
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If the Compareswap8 operation fails (because other entries are in the process of being appended), the
extractor copies the queueHeadShadowPtr value back to the 1istHeadPtr location and waits for
the next wakeup signal.
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2.4 Append and Extract Specification

2.4.1 Append and Basic Extract

There are three basic algorithms that describe how to append an entry to a list and how to extract an
entry from a list: Append (), ExtractOne(), and ExtractMany (). The ExtractOne () routine
illustrates how individual command-list entries can be simply extracted; the ExtractMany ().
routine illustrates how extraction of multiple command-list entries can be more efficient. The C-code
for both are shown in Listing 2-1. The necessary simulation environment for compiling and testing
this code is located in the Appendix.

/* Listing 2-1: Append and Extract List Operations */
/* BEGIN_CODE */ =

#include *CCU.h*

#include ®"BusXacts.h®

#include ®"Address.h"

#define NULL (~(Octlet)0} /* All 1's is NULL wvalue */
#define NULL_BIT 1 /* LSB is the null bit */
#define NULL_SET 1 /* 1 is the null-bit value */
#define ADDRESS_MASK (~(Octlet)0XF) /* Four LSBS are "special* */
enum { /* Append status codes */
DONE_GOOD, /* Completed successfully */
DONE_NULL ' /* Tail pointer was null */

} ListUpdateStatus;

/* Append function assumes that the client has allocated an entry and
* filled in the entry_info and set the *next_entry to NULL. */
ListUpdateStatus

Append (Octlet queueTailHandle,Octlet firstEntry,Octlet lastEntry)

{ Octlet 0ldTailPtr, newTailPtr;

/* Update tailPtr to point to end of appended list,

* but leave the null bit unchanged. */
0ldTailPtr= MaskSwapB(queueTailHandle,lastEntry,~({Octlet}NULL_BIT);
if ({oldLastEntry&NULL_BIT)==NULL_SET)

return (DONE_NULL)

newTailPtr= o0ldTailPtr & ADDRESS_MASK; /* Ignore 4 LSBs */
Write8 (newTailPtr, firstEntry);
return (DONE_GOOD) ;

/* The wakeup write is done at the next highest level,
* gince some appenders may not always send a wakeup.
L]
}i
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/* The ExtractOne() function is called after a wakeup indicates the

* list state may have changed. The routine “ProcessEntry ()" is called to

* fetch any extended portions of the entry, to "process® the

* entry contents and to return a pointer to another usable data block. */
ListUpdateStatus
ExtractOne(Octlet queueHeadHandle, Octlet queueTailHandle, Entry *localEntry)

{

Octlet gueueHeadShadowPtr, oldQueueTailPtr;

if ((queueHeadHandle & NULL_BIT) == NULL_SET)
return (DONE_NULL} ; /* Don't use a null handles */

/* queueHeadShadowPtr is the extracter's local copy of *queueHeadPtr */
queueHeadShadowPtr= Read8 (queueHeadHandle) ;

/* If the head pointer is null, don't do anything */
if ((gueueHeadShadowPtr & NULL_BIT) == NULL_SET)
return (DONE_GOOCD) ;

/* If the head pointer is valid, copy the entry into local storage */
Readb4 (queueHeadShadowPtr, (Byte *)localEntry);

/* While there are more known entries, process the localEntry copy.
* Then update local gqueueHeadShadowPtr address and read next list entry. */
if (({localEntry->nextEntry & NULL_BIT) != NULL_SET) {
gueueHeadShadowPtr= localEntry->nextEntry;-
/* Process localEntry data, returning pointer to additional storage */
(void)ProcessEntry (localEntry) ;
Write8 (queueHeadHandle, queueHeadShadowPtr) ;
return (DONE_GOOD) ;

}

/* The previously-fetched entry appears to be the last list entry.
* Set gqueueHeadPtr value to NULL, in expectation of emptying the list */
Write8 (queueHeadHandle, (Octlet ) NULL) ;

/* Perform the compare&swap on the tail to empty the list */
oldQueueTailPtr="
CompareSwap8 (queueTailHandle, queueHeadHandle, queueHeadShadowPtr);

if (oldQueueTailPtr!= queueHeadShadowPtr) {
/* I1f compare&swap fails, write the local queusHeadShadowPtr value
* to its memory-resident queueHeadPtr storage location. */
Write8{gqueueHeadHandle, queueHeadShadowPtr) ;
return (DONE_GOOD) ;
)
/* If the compare and swap succeeds, process last entry & return */
localEntry = ProcessEntry(localEntry);
return (DONE_GOOD) ;

20
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/*

*

The ExtractMany() function is like ExtractOne(), but the routine
ProcessEntry () is called repetitively while processing command entries */

ListUpdateStatus
ExtractMany (Octlet gqueueHeadHandle, Octlet gueueTailHandle, Entry *localEntry)

{

*

*/

}

Octlet queueHeadShadowPtr, oldQueueTailPtr;

if {(qUEUEHeadHandle & NULL_BIT) == NULL_SET)
return (DONE_NULL) ; /* Don't use a null handles */

/* queueHeadShadowPtr is the extracter’s local copy of *queueHeadPtr */
cueueHeadShadowPtr= Read8 (queueHeadHandle) ;

/* Tf the head pointer is null, don't do anything */
if {(gqueueHeadShadowPtr & NULL_BIT) == NULL_SET}
return (DONE_GQOOD) ;

/* If the head pointer is valid, copy the entry into local storage */
Read64 (queueHeadShadowPtr, (Byte *)}localEntry) ;

/* While there are more known entries, process the localEntry copy.
* Then update local gueueHeadShadowPtr address and read next list entry.

if (({(localEntry->nextEntry & NULL_BIT) != NULL_SET) {
queueHeadShadowPtr= localEntry->nextEntry;
/* Process localEntry data, returning pointer to additional storage */
localEntry= ProcessEntry(localEntry);
if ((localEntry)==NULL} { /* Local storage exhausted, */
Write8 (queueHeadHandle, queueHeadShadowPtr) ;
return (DONE_GOOD) ; /* Save state and return

)

/* Mask the 4 LSBs of entry pointers; these have special meanings. */
Read64 (queueHeadShadowPtr & ADDRESS MASK, (Byte *)localEntry);

}

/* The previously-fetched entry appears to be the last list entry.
* Set queueHeadPtr value to NULL, in expectation of emptying the list */
Write8 (queueHeadHandle, (OCctlet)NULL) ;

/* Perform the compare&swap on the tail to empty the list */

oldQueueTailPtr=
CompareSwap8 (queueTailHandle, queueHeadHandle, queueHeadShadowPtr);

if (oldQueueTailPtr!= queueHeadShadowPtr) {
/* If compare&swap fails, write the local gueueHeadShadowPtr value
* £o its memory-resident queueHeadPtr storage location. */
Write8 (queueHeadHandle, queueHeadShadowPtr) ;
return (DONE_GOOD) ;
}

/* If the compare and swap succeeds, process last entry & return */
localEntry = ProcessEntry{localEntry);
return (DONE_GOOD) ;

/* END_CCDE */
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2.5 Wakeup Registers

To improve efficiency and ensure forward progress, the standardized wakeup registers supports the
immediate acceptance of an arbitrary number of quadlet-write transactions. Although all wakeup
events are immediately queued, the processing of the queued events may be delayed (based on
vendor-dependent wakeup priority servicing protocols).

To ensure interoperability between processors and I/O controllers provided by different vendors, the
CSR Architecture restricts the functionality of wakeup registers. Wakeup events are constrained to
be write4 transactions (which transfer 32-bit data values), whose address is a register within the
affected unit architecture. The wakeup register address is 64 bits in size, since the wakeup register
could be located on any node, and unit-dependent wakeup registers could be most any place on the
node.

For the target unit, the ROM entries specify where the unit's register set (which includes the wakeup
register) is located. For the initiator unit, the command entry specifies which wakeup register
address and data value shall be used by the target.

2.5.1 Target Wakeup Register Model

To simplify the design target units, one wakeup register is shared for all of the target's command
lists, as illustrated in Figure 2-7. The value which is written to this wakeup register selects which of
N wakeup bits is set, where N is the number of command lists supported by the unit. Each write can
be processed immediately, by setting the addressed wakeup bit, so there is never a need to return a
busy status.

bit-set index - bit-clear index .
wakeup data F ' o serviced data
log5(N) : logo(N)
bit-set enable ——p{ ~ Dilstorage L  piclear enable
{one bit per
each of N
command lists)
initiator software : target hardwareffirmware
(quadlet write) ' (intemnal write)

Figure 2-T: Bit-Indexed Wakeup Model

2.5.2 Initiator Wakeup Register Model (Broadcast Capable)

Since the command entry specifies which wakeup register address and data value shall be used, a
variety of initiator wakeup register formats can be supported. The initiator is expected to support a
few status lists, one for each priority level. Simple initiators are expected to support the standardized
INTERRUPT_TARGET register (as defined in the CSR Architecture), since this can support
broadcast as well as directed interrupts.

22
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The INTERRUPT _TARGET register provides one bit of storage for each of 32 interrupt groups; an
interrupt is queued by setting the corresponding interrupt-group bit. In bus-accessible writes to this
INTERRUPT _TARGET register, the data bits are OR'd with the 32 interrupt-pending bits. In
initiator-internal updates of the INTERRUPT_TARGET register, the data bits can be selectively

cleared, as illustrated in Figure 2-8.

wakeup data @ @- serviced data

32 32

interrupt bits (32)

Figure 2-8: Bit-Mapped Wakeup Model

2.5.3 Alternate Initiator Wakeup Register Model (Directed Only)

The initiator is not required to support the (optional) INTERRUPT_TARGET register, nor is it
required to support bit-mapped interrupt storage. Since the command entry specifies which wakeup
register address and data value shall be used, an initiator can request that an arbitrary 32-bit value
(called an interrupt vector) be returned to its wakeup register.

Initiators which support interrupt vectors are expected to provide a FIFO to save the received
interrupt-vector values. A write to the wakeup data register saves the data value in the FIFO, and a
unit-internal service access removes the most-recent data value from the FIFO, as illustrated in

Figure 2-9.
wakeup data
732 ?

wakeup
vector
FIFO

32
t_/_p serviced data

Figure 2-9: Vector-Fifo Wakeup Model

Saving interrupt vectors simplifies the common I/O driver software, which can can quickly and
simply dispatch to the proper interrupt routine. However, saving these vectors requires special
hardware FIFO support and (since the size of the FIFO is finite), software needs to ensure that the
FIFO does not overflow. These overflow-avoidance constraints complicate the software and limit the
number of simultaneously active status entries to the size of the interrupt-vector FIFO.
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3. Command-List Structure

3.1 Command Entries

A command entry is a data structure that the initiator creates for the target. The information
contained in a command entry describes some action for the target to perform. Section 4 contains the
complete definition of the fields in a command entry.

Command entries always occur in linked lists. The first field in all command entries, called the
nextCommandPir, contains the address of the next command entry in the linked list. For command
entries that have no command entries following them, the next command entry pointer contains a
NULL value.

A command entry may completely describe an action for a target to perform. In this case, the
command contains sufficient information for the target to act and optionally return status to the
initiator upon command completion.

It is also possible to create a linked list of command entries which are logically related to each other.
Such a linked list is referred to as a command group. The following section describes command

groups.
3.2 Command Groups

A command group is a set of one or more command entries for which there is one status entry.
Initiators may choose to use a command group instead of a linked list of individual commands in
situations where more than one command is required to describe a given operation. In other words,
the commands in a command group are (in normal operation) executed together.

The first and last command entries in a command group differ in how the statusEntryPtr and
statusTailHandle fields are filled in. The first command-group entry has a valid statusEntryPtr
value and a NULL statusTailHandle value. The last command-group entry has a NULL
statusEntryPtr value and a valid statusTailHandle value. All commands in between the first and
last entries have NULL statusEntryPtrs and statusTailHandle values. Figure 3-1 shows this
relationship graphically.
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| groupA | groupB | groupC |
- - i other
first | mid | final || first =] final | both - command
* * \ entries
statusTailPtr statusTailPtr statusTailPtr
status status status
buffer buffer buffer

Figure 3-1: Command-Group Structures

The above figure shows a linked list of command groups. Notice that the last command group
contains exactly one command entry. By convention, all commands are members of a command
group, but in some cases the command group contains only one entry.

For any command entry in a command group, if the initiatorWakeupPtr value is not NULL, the
target shall generate a wakeup to the initiator by writing the initiatorWakeupValue to the address
contained in the initiatorWakeupPtr field.

When the target detects the beginning of a command group (signalled when a command entry is
encountered in which the statusEntryPtr value is valid, and the statusTailHandle is NULL), it shall
store the statusEntryPtr value, then process the command entry. The target continues processing
subsequent commands, accumulating status in the status entry pointed to by the saved
statusEntryPtr value, if necessary.

If an error occurs during the processing of command-group entries, the target skips subsequent
command-list entries in the command group until it finds the final command-group entry (i.e., the
next command entry containing a valid statusTailPtr value). The target then appends the updated
status entry (at the previously-specified statusEntryPtr address) to the desired status list (whose
address is specified by the statusTailHandle value). If the initiatorWakeupPtr field in the last
command group command entry is valid, the target writes the initiatorWakeupValue to the address
contained in the initiatorWakeupPtr field. The target may then continue processing subsequent
command-list entries in the list.

If the target encounters no errors during the processing of commands in the command group, it
continues until it encounters the last entry in the command group (a command entry in which the
statusTailHandle value is not NULL). The target processes this last command, then appends the
status entry pointed to by the saved statusEntryPtr value to the status list whose tail handle is
contained in the statusTailHandle value in the last entry. If the initaitorWakeupPtr field in the last
entry is not NULL, the target writes the value in the initiatorWakeupValue field to the address
contained in the initiatorWakeupPtr field.

The initiator shall pre-initialize the contents of the status buffer with an expected target-status
value. The target should only update the status buffer in cases where it must return an unexpected
status value.
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3.3 Data Transfer Addresses

3.3.1 Direct and Indirect Address Blocks

The read and write data-transfer commands copy data between the initiator’s bus-accessible space
and the device-specific space. For example, the device-specific address space may map into logical
disk addresses. The initiatorBufferPtr and initiatorBufferLength fields in the command entry always
describe a buffer (or buffers) in the bus-accessible space, while the targetBufferPtr and
targetBufferLength fields in the read and write command entries describe a buffer (or buffers) in the
device-specific address space. :

The initiator and target buffer pointer and length fields may describe a physically contiguous buffer,
or one that is scattered within the address space. A physically contiguous buffer is one that begins at
the address contained in the buffer pointer field and extends to higher addresses for the number of
bytes contained in the buffer length field.

A scattered data buffer is one that is composed of multiple smaller contiguous blocks of memory.
Each block of memory in the buffer is described by a separate buffer pointer and length field. Each
buffer pointer and length field pair form a single entry in a scatter array. The scatter array is a data
structure that is contiguous and which contains one or more scatter entries. The format of a scatter
array is described in section 4.

If the initiator or target buffer is scattered, the corresponding buffer pointer and buffer length fields
contain the start address and length of the scatter list. Either the target buffer or the initiator buffer
or both may be scattered.
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For example, the initiatorBufferPtr address could point to a contiguous data block and the
targetBufferPtr address could point to a scatter list, as illustrated in Figure 3-2:

7

commandHeadPtr commandTailPtr

.

target

address -

block-0 other info \ .

initiatorBuffarPtr command-list

2 N \ entry
é aﬁ?::s targetBufferPtr \
g block-1 \
Z
//

/ -
- %\“’ d o
= //g\\\\\\\\\

target-specific %\ NN
ddresses / \ initiator-managed addresses
////////////////////% N\ Gbatadsress sp2c0) - N\

&

_

Figure 3-2: Address-Block Structures

Data transfers may be performed between two identically-sized sets of address blocks, and either
address block set may contain direct or indirect address blocks. To better illustrate this concept,
several forms of data-block specifications are illustrated in the following sections. Within the context
of these examples, all numerical values are represented in hexadecimal format and the data bytes to
be transferred are labelled with the letters a through v.
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3.3.2 Data-Block Transfer Examples

3.3.2.1 Direct-Initiator/Direct-Target Transfers

Data may be transferred between a directly-specified range of initiator addressees and a directly-
specified range of target addresses, as illustrated in Figure 3-3. The command entry fields for the
transfer are shown in Table 3-1. Although arbitrarily-aligned initiator addresses shall be supported,
transfers are expected to be more efficient when the initiator addresses are 64-byte aligned. The
target address alignment restrictions are device dependent.

initiator target

addresses addresses

S 80 . al|l bl e 100 al|b
84| 4 e £ a 104 | < d e £
88| bk i 3 k 108l gl h i j
sgcl 1| m|n| o 10cl k|1 |m|n
soyp|lalr 5 110 o | P a|r
84| t u v 114 | s £ ul| v

Figure 3-3: Data Addressing, Direct-Initiator/Direct-Target Transfers

@1 __ivalue
initiatorBufferPtr _1811p
initiatorBufferLength . 1616
targetBufferPtr 10216
targetBufferLength 1616

Table 3-1: Command Entry Fields, Direct-Initiator/Direct-Target Transfers

3.3.2.2 Indirect-Initiator/Direct-Target Transfers

Data may be transferred between an indirectly-specified set of initiator addresses and one directly-
specified range of target addresses, as illustrated in Figure 3-4. The command entry fields for the
transfer are shown in Table 3-2. The listControl.iSa bit within the standard-header portion of the
command entry specifies whether the initiator addresses are contiguous or scattered; see Sections
4.1, and 7.1 for details. E
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initiator target
addresses addresses
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200

204 dataBufferPtr = 61

208 dataBufferLength = 7

206 reserved = 0

210 -

214 dataBufferPtr = 159

218 dataBufferLength = 9

21¢ reserved = 0

220

224 dataBufferPtr = 127

228 dataBufferLength = 6

22¢ reserved = 0

{(data at initiatorBufferPtr)

Figure 3-4: Data Addressing, Indirect-Initiator/Direct-Target Transfers

field value
initiatorBufferPtr 20016
initiatorBufferLength 3016
| targetBufferPtr 10216
targetBufferLength 1616

Table 3-2: Command Entry Fields, Indirect-Initiator/Direct-Target Transfers
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3.3.2.3 Indirect-Initiator/Indirect-Target Transfers

Data may be transferred between an indirectly-specified set of initiator addressees and an indirectly-
specified set of target addresses, as illustrated in Figure 3-5. The command entry fields for the
transfer are shown in Table 3-3.

initiator target
addresses addresses
60 a b c 34 k 1
64' d e b g 38 mi|n ol p
3cC g r 5 t
124 g 40 - -
128 x| st w
12¢c | v
158 NN E 100 alhb
15c [k | 1 n b5 : Lt
160 [ o | p 0819 1)
200 200
204 dataBufferPtr = 61 204 dataBufferPtr = 102
208 dataBufferLength = 7 208 dataBufferLength =
20c | reserved = 0 20C reserved = 0
210 210 _
214 dataBufferPtr = 159 214 dataBufferPtr = 36
218 | gataBufferLength = 9 218 | 3ataBufferLength = C
21CI reserved = 0 21¢ reserved e 0
220
254 dataBufferptr - 127 (data at targetBufferPtr)
228 dataBufferLength = 6
22 reserved = 0
(data at initiatorBufferPtr)

Figure 3-5: Data Addressing, Indirect-Initiator/Indirect-Target Transfers

field value
initiatorBufferPtr 20016
initiatorBufferLength 3016
targetBufferPtr 36016
targetBufferLength 2016

Table 3-3: Command Entry Fields, Indirect-Initiator/Indirect-Target Transfers
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3.4 Constant Transfers

3.4.1 Initiator Constant used with Read Command

For a read command, the first half of the command-dependent portion of the command entry may
contain a 12-byte constant value, rather than a pointer to bus-accessible space. This specifies the
data value(s) which are copied into the bus-accessible space specified by the command entry’s
targetBufferPtr and targetBufferLength components.

3.4.2 Initiator Constant used with Copy Command

For a copy command, the first half of the command-dependent portion of the command entry may
contain a 12-byte constant value, rather than a pointer to bus-accessible space. This specifies the
data value(s) which are copied into the bus-accessible space specified by the command entry’s
targetBufferPtr and targetBufferLength components.

3.4.3 Target Constant used as Device-Dependent Command

For the read commands, the second half of the command-dependent portion of the command entry
may contain a 12-byte constant value, rather than a pointer to device-specific. This specifies the
command which is executed by the device as part of the data transfer.

For example, the 12-byte constant could contain a SCSI CDB data value, which specifies a disk-block
and transfer length. The read command and the initiatorBufferPtr/initiatorBufferLength values
control the bus-accessible addresses generated by the DMA hardware; the 12-byte constant controls
the device-specific addresses generated by the DMA hardware.

This access mode supports the use of traditional SCSI devices, for which a variety of special
operations (disk format, tape rewind, etc.) may need to be supported. Passing CDB values is also
useful for supporting special reads or writes, for example disk accesses where the media is formatted
to support 520-byte blocks. However, most devices are expected to be optimized for passing a scatter
list of device-specific transfer addresses and lengths.
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3.5 Data-Transfer Constraints

3.5.1 Unaligned or Cross-Block Transfers

Many large bus-accessible space transfers are expected to have addresses and sizes that are cache- or
page-aligned. However, unaligned read transfers are also required to efficiently support smaller
transfers, network or terminal traffic. For example, Figure 3-6 illustrates a transfer that does not fall
on an even boundary at either the start or end.

//////////// \\“‘;sae% \\\\W

V \\\\\.\\\\\\\\\\\\\\\‘ffllllll/J’/////J/IJ/// Q
i:\ a\‘\\\\\\\\\\\\\\\\\W///’////////////////

%//// lowed write bus-transaction rang / \\\\\

bs - n*bs .'f" bs
Lowest-byte address is on left

"-meoosaaa
e oo easan

bs=4, 16, 64, or more

Figure 3-6: Cross-Block Data Transfers

Targets are expected to implement such unaligned read transfers as a sequence of aligned block
transfers of the largest convenient size (e.g., read16, preferably read64, and most preferably block
read transactions of the maximum size permitted for the given bus speed). The maximum transfer
size is configurable, since simple bridges between the target and its memory may not support the
large block-transfer sizes.

The rule to follow is that read transfers shall not cross a block-size-aligned boundary. For example,
a 64-byte block read transaction may not cross a 64- byte-aligned boundary. The effect that this
restriction has on normal operation is that for large data buffer read operations, in the worst case,
the first and last block read must access only the residual between the beginning/end of the buffer up
to the next alignment boundary.

For read transactions, the device issuing the read request may optionally begin the first block read
on a boundary that is before the actual beginning of the desired data. For the last block read, the
read transaction may continue up to the next block boundary following the end of the data of
interest.

For SerialBus, the most bandwidth-efficient read transactions access only the portions of the data
that are needed. A bridge to another block-aligned bus (like Scalable Coherent Interface) is expected
to convert these partial first and final transfers into block-size transactions, discarding the data that
is not used.
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Unaligned write transfers are harder to perform, since data at adjacent addresses shall not be
modified. Targets are expected to implement such unaligned write transfers as an initial unaligned
transfer, a sequence of block-aligned transactions, and a final unaligned transfer. DMA units are
expected to use write transactions of the largest convenient size during the intermediate, aligned
portion of the block copy, again subject to the pre-specified block-size maximum.

For SerialBus, the most bandwidth-efficient read and write transactions access only the portions of
the data which are needed. A bridge to another block-aligned bus (like Scalable Coherent Interface)
is expected to convert these partial first and final transfers into one or more of its supported bus-
block-aligned transactions, updating only the data which is addressed.

3.5.2 Aligned Sub-Block Transfers

he uncach;ed ﬂ?J4/8/16/64-byte read transfers that are contained within one address block generate
exactly one read1/2/4/8/16/64 transaction. The uncached 1/2/4/8/ 16/64-byte write transfers that are
contained within one address block generate exactly one write1/2/4/8/16/64 transaction.
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4. Data Formats

The I/O Process requires three data structures: command entry, status entry, and scatter array. The
following sections describe these data structures .

4.1 Command Entry

Figure 4-1 shows the command entry. The initiator appends command entries to a list and the target
extracts them from a list. The command entry describes an operation that the initiator wishes the
target to perform. The fields in the command entry are described in the following text.

T o T
L nextCommandPtr
04 bs E In
08 listControl
12 initiatorWakeupValue
16 - initiatorWakeupPtr
always
required 20 FF
24
= statusEntryPtr g
og Ibs En| =
)
3
| slatusTailHnd|

command
specific data miﬁ;{éf / //// /
(!EEd, 'M'ib, !IIIIIIIIIIZIIIII
and copy ///.’/7/7////////(/
fislds are 52 targe uffer eng

I}[I!IIIIIII

Figure 4-1: Command Entry Fields

8

The standard command-entry formats are defined to be 64 bytes long, but non-standard command-
entry formats may be larger (up to 4K bytes), as specified by a field within the listControl quadlet,
see Section 4.1.1.1 for details.

The nextCommandPtr field is either NULL or contains the address of the next command entry in
the list. When an initiator appends a mini-list, the nextCommandPtr in all but the last command
entry in the mini-list shall point to the next command entry in the mini-list. The initiator shall set
the nextCommandPtr field in a single command entry or in the last mini-list entry, to NULL. The
actual address of the next command entry is the nextCommandPtr value with the four least
significant bits set to zero (note that command entries are always 16-byte aligned).
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The listControl field specifies which DMA command is performed and provides additional
command-dependent parameters. See Section 4.1.1.1 for details.

The initiatorWakeupValue is the value that the target writes to the initiator wakeup register after
it has appended a status entry to the designated status list. The address of the initiator wakeup
register and the pointer needed to append a status entry to a status list are all contained in the
command entry (see below).

The initiatorWakeupPtr value is either NULL or it contains the address of the initiator wakeup
register. When this field is not NULL, the target shall write the value contained in the
initiatorWakeupValue field to the address contained in the initiatorWakeupPtr field when the target
has completed the command described in this command entry. The actual address of the initiator
wakeup register is the initiatorWakeupPtr value with the two least-significant bits set to zero (note
that the wakeup register is always 4-byte-aligned). The ¢'and the n bits are described in section 1.
When the n bit is set to 1, the initiatorWakeuPtr is NULL (i.e., not valid).

The statusEntryPtr value is either NULL or it contains the address of the status entry associated
with this command entry. The format of a status entry is described in a later section. If the status
entry pointer is not NULL, the target shall return status for this command after completely
processing the last command in the current command group (note that the current command group
may contain as few as one command entry). The actual address of the status entry is the
statusEntryPtr value with the four least significant bits set to zero (note that status entries are

always 16-byte-aligned).

The statusTailHandle value is either NULL or it contains the address of the tail pointer for a
status list. The target uses this value to append a status entry to the status list upon command
completion. The actual address of the status list tail pointer is the statusTailHandle value with the
two least significant bits set to zero (note that status list tail pointers are always 8 byte aligned). The
c and the n bits are described in section 1. When the n bit is set to 1, the statusTailHandle is NULL
(i.e., not valid).

All fields that follow those listed above are available for command-dependent information. Note
that there are 24 bytes available for command specific information in a 64 byte command entry. The
allowable sizes for a command entry are limited by the CESize field in the listControl field. This field
and all other fields in the listControl field are described in the next section.
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4.1.1 listControl Field

4.1.1.1 listControl Format

The format of the listControl field is shown in Figure 4-2.

cmdDependent CESize |E|%|8 | cmd
16 8 112 4

Figure 4-2: listControl Format

The emdDependent field is available for command specific information. As such, the definition of
this field varies by command.

The 1-bit kill field allows the initiator to kill an active command-group entry, without corrupting the
remainder of the command-entry fields.

The 8-bit CESize field gives the size, as the number of 16-byte blocks minus 1, of the entire
command entry. A value of 3 in this field indicates that the entire command entry is 64 bytes long,
which is the case for all standard command entries. When the cmd field indicates that this is an
other command, the command can be larger.

The ord field is a 1 bit field that determines allowable reordering of this command relative to other
command entries in the same list. When the ord field contains a value of 0, this command entry may
be reordered without restriction relative to other commands in the same list. When the ord field
contains a value of 1, this command entry shall be treated using the same ordering rules that apply
to an ordered tagged command in the SCSI-3 queuing model.

The 2-bit res field is reserved.

The following section describes the 4-bit emd field.
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4.1.1.2 listControl.cmd Values

The 4-bit emd field indicates to the target what operation is performed by the I/O service. The values
and meanings are defined in Table 4-1.

value | name  description
B T e

00002 | write Data is copied from the initiatorBufferPtr-specified bus-accessible space into
the targetBufferPtr-specified device-specific space (memory-to-device transfers).

00012 | read Data is copied from the targetBufferPtr-specified device-specific space into the

- initiatorBufferPtr-specified bus-accessible space (device-to-memory transfers).

00102 § copy Data is copied from the initiatorBufferPtr-specified bus-accessible space into

the targetBufferPtr-specified bus-accessible space {memory-to-memory
‘transfers).

00112- | attach | Two pointer arguments identify the head and tail of an attached list. The third
pointer argument identifies the list to which this is attached.

01002 | loop A 64-bit argument value is subtracted from an internal loopCount value, and
the result is stored at an argument-specified address. If the result is positive,
an argument specifies the address of the next command entry.

01019 | kill ‘Search the specified command list, terminate processing of the specified
command group, and return status. This command is appended to the
management list to kill commands in the other command-group lists.

01102 } noOp The target shall not transfer any data as a result of this command. The target
shall return a "normal termination” status for this command.

01119- | reserved | These encodings are reserved for future standard definitions.

11109

11112 | other The command operation is indicated by the fields after the standard header

(starting at command-entry byte-offset 40). :

Table 4-1: listControl.cmd Field Values

There are no commands for explicitly copying data between device-specific spaces, but the equivalent
functionality can be provided by concurrent execution of dependent data-transfer lists; see Section
6.1.1 for details.

37
\ad,



X3T79.2/92-131r1: 13Augd2 Data Formats CCU Architecture: D0.52

4.2 Status Entry

4.2.1 Status Entry Format

The status entry, shown in Figure 4-3, is appended by the target and extracted by the initiator. It
carries status information from the I/O service to the driver.

00
voe nextsStatusPtr m
+08
Y - commandEntryPtr m
+16
+20[ 1
= reserved -
+28 [ ]
+32 stdStatus
+36 serviceDependentStatusi
+40 serviceDependentStatus2
+44 serviceDependentStatus3
+48 serviceDependentStatus4
+52 serviceDependentStatus5s
+56 serviceDependentStatusé
+60 serviceDependentStatus’

Figure 4-3: Status Entry Fields

The nextStatusPtr field is either NULL or it contains the address of the next status-list entry.
When a target appends a mini-list, the nextStatusPtr value in all but the last status entry shall
point to the next status-list entry in the mini-list. The last nextStatusPtr in a single entry or the
nextStatusPtr in the last mini-list entry shall be set by the initiator to NULL. The actual address of
the next status entry is the value in the nextStatusPtr field with the low order 4 bits set to zero (note
that status entries must be 16-byte-aligned).

The commandEntryPir shall be initialized by the initiator to the address of the first command
group entry; the target shall not modify this field.

The stdStatus value is preset to "normal termination” by the initiator. When necessary (to return
another completion-status value), the target may modify this value, The format of the stdStatus0
value is described in a following section.

The serviceDependentStatusl through serviceDependentStatus7 locations provide space for
service dependent information to be passed from the target to the initiator.
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4.2.2 stdStatus Values

The format of the stdStatus field is shown in Figure 4-4.

statDependent stat
28 4

Figure 4-4: stdStatus Format

The statDependent field is available for status-specific information. As such, the definition of this
field varies by stat value.

The stat field contains I/0 service independent status. It shall be preset to good by the initiator and
shall only be modified by the target if the stat for the command (group) is not good. Its four LSBs are
defined in Table 4-2.
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value | name description

0 good Normal termination indicates that the command was
processed correctly and no errors occurred.

1 abnormalTermination An error occurred that could not be categorized by the
target.

2 dataTransferError A bus-transaction error occurred. Either a timeout or a data
CRC error was detected.

3 reserved Reserved for extensions to the CCU Architecture.

4 dataLengthError The size of the initiator data buffer(s) is insufficient for the
total transfer size of the command.

5 targetLengthError The size of the target data buffer(s) is insufficient for the
total transfer size of the command.

6 initiatorDataAddressError An address within the initiator data buffer(s) could not be
accessed by the target.

7 targetDataAddressError An address within the target data buffer(s) does not exist
within the target.

8 killed This command-group entry was killed by a kill command in
the management list or (when the command group was
processed) the listControl.kill bit of the first command entry
was 1.

9 killFound Kill-command status: the command entry was terminated.

10 killNotFound Kill-command status: the command entry was not found and
all command-list entries were searched.

11 killFragment Kill-command status: the command entry was not found; the

command list was fragmented and not all command-list
entries could be checked.

Table 4-2: StdStatus.stat Values
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4.3 Scatter Array

A scatter array (which is pointed to by the command entry) allows a single command to specify a
transfer of a logically contiguous memory buffer that maps to a discontiguous set of physically-
addressed memory blocks.

A scatter array consists of one or more elements located at contiguous physical addresses. The
format of a scatter array differs slightly depending on whether it is a scatter array for the initiator or
for the target. Both formats of scatter arrays are described in the following sections.

4.3.1 Target’s Scatter-Array Elements

The Figure 4-5 shows the format of the first two elements in a target’s scatter array at the address
specified by targetBufPtr. Two entries are shown for illustrative purposes; a minimal scatter array
consists of only one element.

00
= dataBufferPtr -
+04
+08 dataBufferLength
+12 transferLength
+16
— dataBufferbPtr -t
+20
+24 dataBufferLength
+28 reserved

Figure 4-5: Initiator’s Scatter-Array Format

The dataBufferPir field contains the address of a 1-byte-aligned physically contiguous block of
memory. The command entry’s listControl field contains bits that affect the meaning of this
dataBufferPtr field.

The dataBufferLength field contains the size in bytes of the block of memory whose address is
contained in the dataBufferPtr field.

The transferLength field is the final quadlet in the first of the target’s scatter array elements, and
specifies the number of data bytes involved in the command entry’s data transfer. An error condition
shall be reported if this value exceeds the acumulative sum of the dataBufferLength fields for this
array’s scatter elements.

In all but the first of the target’s scatter elements, the final quadlet is reserved.
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4.3.2 Initiator’s Scatter-Array Elements

The Figure 4-6 shows the format of the first two elements in a initiator-specific scatter array at the
address specified by initiatorBufPtr. Two entries are shown for illustrative purposes; a minimal
scatter array consists of only one element.

00
L dataBufferbPtr =
+04
+08 dataBufferLength
+12 reserved
+16
- dataBufferPtr -
+20
+24 - dataBuiferLength
+28 reserved

Figure 4-6: Initiator’s Scatter-Array Format

The dataBufferPtr field contains the address of a 1-byte-aligned physically contiguous block of
memory. The listControl field contains bits that affect the meaning of this dataBufferPtr field.

The dataBufferLength field contains the size in bytes of the block of memory whose address is
contained in the dataBufferPtr field.

In all of the initiator’s scatier elements, the final quadlet is reserved.
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5. Registers and ROM Entries
5.1 DMA Register Addressing

5.1.1 Unit Address Spaces

The address structure of a CCU unit architecture is shown in Figure 5-1.

< address structure defined >|
by CSR Architecture
unitld
locate L -4
ROM mr parms l
1
' 1
.t"o [PORARARISN
i
node = rogistars
DMA re_gisters
register f (tGdbi;'S)ed .
space r ormat defined by
2 reglétg Listg)ace CCU Architecture
address offset
43 bi
bus addresses (43 bils)
(64 bits)

Figure 5-1: CCU Unit Addressing
The addressing structure is defined by the CSR Architecture.

ROM contains a unitld, which identifies the proper I/O Software interface. Locate specifies the
location and size of the DMA-related registers.

A variety of unit-dependent parameters (parms) may also be provided, but the format and content of
these are beyond the scopes of the CSR and CCU Architectures. These driver-dependent parameters
could specify the structure and number of DMA list groups supported by the target.

The unit’s ROM identifies the location and size of its DMA registers. The CCU Architecture defines
the format and function of the initial DMA registers. The remaining registers may be device
dependent.
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5.1.2.Control Register Structure

The control register is used to control the overall activity of the list to which it is related. The format
for the control register is shown in Figure 5-2.

0 wakeup N
4 reserved
8 status
12 control
P > control
initialHeadHandle
24 initialTailHandle p
N
32 ownerld
36 ownerDataPir
a8 [ ~ > ownership
— reserved —
56 | _
60 ~

Figure 5-2: Unit Register Organization

5.2 Control Registers

The wakeup register provides access to an internal array of wakeup bits, where one wakeup bit is
provided for each of the target’s command lists. The wakeup register is typically written to by an
initiator after the DMA command-list parameters have changed. Any one of these wakeup bits may
be individually set by writing the bit’s index value to the wakeup register. The wakeup register is
cleared by the affiliated I/0 process before the command-list status is re-checked.

This has a different format than the INTERRUPT TARGET register defined by the CSR
Architecture, whose contents are OR'd with up to 32 internal wakeup bits. The difference in format
and function are possible because 1) broadeast capability is not needed and 2) More than 32 internal
wakeup bits may exist on high-capability unit architectures.

Reads from the status register indicate the state of the DMA process: stopped, initializing, running,
and halted. DMA halts when processing of the highest-level event list has a fatal error (typically a
bus error). Errors in processing of other DMA lists are reported through the event list.

Writes to the control register are used to start, stop, and resume DMA operations.
The values in the read/write initialHeadHandle and initialTailHandle registers are transferred

to internal commandHeadHandle and commandTailHandle locations at the beginning of the DMA-
start process. This information is sufficient to initiate management-list processing.
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5.3 Ownership Registers

Ownership registers are read/write registers, initially zero, that can be accessed using any of the
read4, writed, and compareSwap8 transactions. By I/O driver software convention, they are used to
control ownership of the unit or driver-dependent portions of the unit. They have no special side
effects.

Owners are expected to leave an owner-unique 64-bit value in the ownerld register, to identify
which owner has control of the unit resources. The 64-bit value consists of the 24-bit companyId
value (as defined in the CSR Architecture) concatenated with the company-unique 40-bit component
specifier of the owning device.

The ownerDataPtr register specifies the address of the owner’s shared data structure. The data

contained within this data structure is used to synchronize and control shared unit resources.
Further definition of this data structure and conventions for its use by I/O driver software are TBD.

5.4 DMA List Groups

5.4.1 List Groups

DMA lists are organized into list groups. This list group has the structure illustrated in Figure 5-3
Although multiple transfer lists are illustrated, a minimal list group contains only one transfer list.

management "immediate” & supervisory functiona
asyncEvents indefinite delays (unpredicted events)
transfer]2]

device-dependent queue delays

transfer{N+1]

Figure 5-3: List Group Components

The commands in the management list are expected to affect lists within the same list group, or
lists at a lower level within a hierarchical list-group structure. However, all management list
commands are expected to be completed almost immediately, independent of the affiliated device

operations.

For example, a kill command is placed in the management queue, even though it has the side-effect
of killing a pending command in the n’th transfer queue, transfer(n].

The commands in the asyncEvents list are expected to be read commands that (on demand) return
unexpected event status. Only one or two read commands are expected to be queued, since a queued
command is not pre-allocated to any list, but can be used to return event status from any of the
affiliated lists. Note that the commands in the asyncEvents list may remain for an indefinite period,
depending on the arrival rate of unexpected events.
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The commands in the transfer[2] through transfer[N+1] lists are expected to be used individually
to support half-duplex traffic or in pairs to support full-duplex traffic. The commands in these lists
are typically transient, in that they are constantly consumed as I/O operations are performed.
However, some I/O operations (such as terminal reads or flow-controlled writes) may have an
indefinite lifetime.

5.4.2 Unit Architectures

A minimal unit architecture supports only one list group. A unit architecture may also support
multiple list groups, where a hierarchical list-group structure typically reflects the functional
capabilities of the physical device attachments. Such a hierarchical list-group structure is illustrated
in Figure 5-4

list[O] unit initialization group([0]
controller initialization group[1]

device connection group[2]

device connection group[3]

through device connection group[4]
device connection group[5]

controller initialization group[6]

device connection group[7]

list[N-1] device connection group|[8]

Figure 5-4: Multiple List Groups

The number of levels in the hierarchy as well as the detailed structure of each level within the
hierarchy is unit dependent and beyond the scope of the CCU Architecture.

5.5 Internal State

This section describes how internal unit state is mapped into"
the target’s address space and updated indirectly through read

and write DMA commands. An alternative proposal is located
in Section 8, which maps these resources to registers within the
unit’s address space. The reader is encouraged to consider the

ramifications of both design models.

A unit has a significant amount of context that may be associated with each of the target’s command
lists, including the commandHeadHandle, the commandTailHandle, the bufSize parameter (if flow-
control is supported) and the intLoopCount value (if command-list looping is supported). This
internal state is mapped into the target’s address space and is accessed indirectly, using a read or
write command entry.
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5.6 Unit Initialization and Control

A reset of the node clears the unit’s registers to zero. For the status register, this is interpreted as
the INTTIALIZING state. After the node has been initialized, the status register state changes to

READY, as illustrated in Figure 5-5.

X3T9.2/92-131r1: 13Augd2

Nota: Status changes may be delayed
by unit-processing time.

power-on

(from any state)

status=
INITIALIZING

* good test

\

status=
READY

status=
DEAD

X\

* control= START

fatal errors

status=
STARTING

* DMA operational

status=
RUNNING

control= RESET

Figure 5-5: Changes in a Unit’s Operational State

The T/O driver software is then expected to write a START value to the control register. This starts
the DMA operation, by copying the contents of initialHeadHandle and initialTailHandle into the
internalHeadHandle[0] and internalTailHandle[0] registers and activating command-list processing.

Further description of the initialization process is TBD.
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6. Special Operations

6.1 Dependent Data Transfers

6.1.1 Serialized Data Transfers

In some cases, there is the need to transfer data directly from one device to another. These device-to-
device transfers have often been performed by transferring the data through intermediate memory
buffers, as illustrated in Figure 6-1. A producer’s command list copies the data from the producer to
memory. After the producer’s transfer ¢

ompletes, the data is transferred from memory to the

consuming device. '
prOducer (diSk) ke ko / i iindins rrry (ko lodddnda? A A F e 2T T T, e/
H write % write /% write
H A / B C //

consumer (printer)

s

AL SISS

%

D

onsumer's comman

% produ/cer's comn)and ist
77,77,

g

o
 read read % read /V
1 A 7] B c W
’//f////// //‘ FTTITITIS % FTTTTTITS A

d us%{/’_/(//

memory7/

Figure 6-1: Sequential Dependent Transfers

Although this technique works in many applications, it has the disadvantage that a large memory
buffer (which can be expensive) must be pre-allocated and the data-transfer latency (which may be
unacceptable in real-time applications).

A large transfer could be decomposed into a sequence of smaller data transfers, but software would
have to intervene and append additional mini-lists as previous mini-lists complete. Software
intervention complicates the I/O software and may place critical real-time requirements on the
interrupt-service times.

Note that the efficiency of these operations can be improved dramatically if the memory buffers (A,
B, and C) are physically located in the consuming device. The normal pair of read and write memory
transactions are then reduced to a single write transaction (with a target address in the consumer’s
address space).
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6.1.2 Flow-Controﬂed Transfers

The producer and consumer are programmed to agree on a common buffer size; in this example
bufSize is the size of data buffer A. The producer and consumer transfers then begin, updating
memory-resident produceCount and consumeCount locations as the transfers progress. These
components are shown in Figure 6-2.

producer.(disk) ez e
s W%W/Z/W%
p""d“‘i‘t’:"}/ ”“”“‘f:‘% /////
e 4

ANARNNY

i

NI

\ )
N\

bufSize ? ref:d / 2 / re)ild
]
4
consumer (printer) rrrrrrr % FEFIIIT IS %‘i’/f/////

Figure 6-2: Flow-Controlled Transfers

The values of produceCount and consumeCount are both initially zero, and represent the number of
bytes transferred into (or out of) the shared data buffer. Since the 32-bit number can wrap around,
the 32-bit size limits only the length of the shared data buffer, not the total transfer length.

The producer writes data into system-memory addresses until the buffer becomes full. The producer
then sends a wakeup signal to the consumer, and then the producer sleeps. After a wakeup, the
producer rechecks the buffer counts and (if more buffer space is available) activates another data
transfer. The amount of free buffer space is specified by the following equation:

freeBufferSpace= bufSize - (unsigned) (produceCount-consumeCount),-

The consumer reads data from system-memory addresses until the buffer becomes empty. The
consumer then sends a wakeup signal to the producer and then the consumer sleeps. After a wakeup,
the consumer rechecks the buffer counts and (if more buffer space is available) activates another
data transfer. The amount of filled buffer space is specified by the following equation:

filledBufferSpace= (unsigned) (produceCount-consumeCount )

The updates of the produceCount and consumeCount values may occur more frequently, such as
before every lengthy disk seek operation. The detailed timing of such intermediate checkpoints is
beyond the scope of the CCU standard.

To improve system efficiency, the produceCount and consumeCount values are required to be at
adjacent quadlet addresses and the address of the first (produceCount) quadlet shall be a multiple of
8. With this restriction, one producer-generated transaction can be used to simultaneously write
produceCount and read consumeCount. Equivalently, one consumer-generated transaction can be
used to simultaneously read produceCount and write consumeCount.
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To minimize the number of SerialBus transactions, the produceCount and consumeCount values
could be physically located in either the producer or the consumer. One of the two count-update
transactions (generated by the producer or consumer) can then be performed locally.

6.1.3 Command-List Looping

On address-less devices, like a printer or communication channel, the target address need not be
updated as the data transfer progresses. Thus, two or more of the command blocks may contain
identical information. To support large contiguous data transfers to such devices, a command-list
loop capability is provided, as illustrated in Figure 6-3.

prOducer (diSk) I ETFIEIY) IIJI///!// /I?'//If'/l """"
' write % write write UL
5 A / A / A /
.
produceCount | consumeCount
///]////f/ff/e»;t»{’:;.lo ;jé_g;;;/f///f//fi/] ////f

intLoopCount rea
i i /// 4

Figure 6-3: Command-List Looping
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Each loop "iteration" performs an add of a command-entry resident constant with an internal 64-bit
intLoopCount value and saves the result in a command-entry specified external extLoopCount
location. If the loop condition is met, the command-entry specified loopCommandPtr value specifies
the address of the next command entry which is fetched. The looping stops when extLoopCount
becomes negative, or when a data transfer error causes all but the last command-group entry to be

skipped.
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6.1.4 Command-List Attachments

In the case of a printer and disk, it is desired to control the spooling order from the printer and to
activate the disk data transfers as required. To control the order of print listings, the printer enforces
the data-transfer orders, and the disk has no preferred ordering. The attach command supports this
capability, providing the functionality illustrated in Figure 6-4.

producer (disk) -~ - - -producer's transfer list = — B>
—B= NULL wite =] write > wiite [NULL
A A A

- =T

= —
- | _iach reAad loop = NULL
consumer (printer) T a g uy -~ consumer's transfer list- =
[ IS

attach completes

Fean

———— [wite P> wiite 2] write [ NULL
A A A

producer (disk)

I —

—_—
re::d M oop [ NULL

consumer (printer)

Figure 6-4: Command-List Attachments

6.2 Supervisory Kill Command

The expected use of a kill command is to abort a previously-appended command entry, so that the
command entry, status entry, and affiliated data-transfer buffers can be released for other system
uses. Within the context of this illustration, the kill command is said to kill an affected command
group, which is located in one of the affected command lists (an event or transfer list).

Before appending a kill command-entry to the management list, the initiator is expected to set the
listControl kill bit in the first of the affected command-group entries. This inhibits further processing
of the affected command group, which could otherwise occur before or while the supervisory-list kill
command-entry is processed by the target.

The initiator then appends the kill command entry to the management queue. When the target
processes this a kill command, it stops processing commands in the affected list. The initiating kill
command is completed immediately, with one of the following status conditions:

51

708



X83T79.2/92-131r1: 13Aug92 Special Operations CCU Architecture: D0.52

1) killFound. The affected command-group was terminated, in either of the following ways:

a) Stopped. The affected command-group was being processed when the management’s
kill command was received; the affected command-group processing was terminated
immediately (with a killed status).

b) Queued. The affected command group had not been processed, but was found in a
forward search of the affected command list.

2) EilINotFound. The affected command group was not being pracessed and could not be found
in a search to the end of a stable command list. The address of the final command-list entry
was equal to the commandTailPtr value (the affected list appeared to be stable).

2) killFragment. The affected command group was not being processed and could not be found
in a search of the affected command list. The address of the final command-list entry was
different than the commandTailPtr value (an append to the affected list was in progress).

After the initiating kill command is processed, the target continues processing commands in the
affected list. When it encounters the command entry which has a listControl.kill bit value is one, the
target returns a Rilled status for the affected command group and continues normal processing of
command groups from its (affected as well as other) command lists.
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7. Standardized DMA Commands

This section describes commands that have a standardized format. It is expected that devices
implementing the sharable list DMA model will implement the commands described in this section.

7.1 Read and Write Command Entries

The read and write command entries are used to transfer data between bus-accessible space and
device-specific space. The format of the command-specific portion of the read or write command entry
is illustrated in Figure 7-1.

.

TR g R =z R
e N S S e ettt et ataletely S

HS
A

00-36 E:j:}}:?; 2R standard header ZEERE888 5
R
— iniiatorBufferPtr -
44
command
specific data 48 initiatorBufferLength
52 targetBufferLength
56
— targetBufferPtr =
y =

Figure 7-1: Read and Write Command Entry Formats

The initiatorBufferPtr field is a part of the initiator buffer descriptor. Depending on the
listControl field values, this field contains a constant, the address of a data-transfer block in system
memory, or the address of a scatter array in system memory.

The initiatorBufferLength field contains the size, in bytes, of the object pointed to by the
initiatorBufferPtr value. If the listControl.iSa bit (contained in the standard header) is 0 (direct
buffer descriptors), then the initiatorBufferLength field is ignored.

The targetBufferLength field contains the size, in bytes, of the object pointed to by the
targetBufferPtr value. If the listControl.tSa bit(contained in the standard header) is 0 (direct buffer
descriptor), then the targetBufferLength field contains the total transfer size, in bytes, for this
command entry. If the listControl.tSa bit is one (indirect buffer descriptor), then the total transfer
size, in bytes, is contained in the first entry in the target's scatter array.

The targetBufferPtr field is a part of the target buffer descriptor. Depending on the listControl
field values, this field contains a constant, the address of a data-transfer block in target address
space, or the address of a scatter array in system memory.
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For the read and write command entries, the format of the command-dependent portion of the
listControl quadlet (contained in the standard header) is illustrated in Figure 7-2.

I< target »Iq initiator p{

///I///f//f
res 1Sal 1Bs | tC| N g res |iSa] iBs | iC| iN ;standaldj
3 1 2 11 1 2 1 2 11 16

Figure 7-2: Read and Write listControl Formats

If the value of the initiator-scatter-array field iSa is 0, the data transfer involves one contiguous bus-
accessible space and the iN, iC and iBs fields specify how the data are accessed, as listed in Table 7-
1 St

iN _iC iBs description )

Uncached data buffer; block size is 4

Uncached data buffer; block size is 16

Uncached data buffer; block size is 64

Uncached data buffer; block size is bus maximum
Cached data buffer (not applicable to SerialBus)
Fixed bus address, 4-byte reads and writes

Fixed bus address, 16-byte reads and writes
Fixed bus address, 64-byte reads and writes
Fixed bus address, 256-byte reads and writes
Immediate constant, use the initiatorBufferPtr value itself

OWMHOPMNHQ
o

)
o

Table 7-1: iN, iC, iBs Fields, Contiguous Initiator Space

If the value of the initiator-scatter-array field iSa is 1, the data transfer involves a scattered bus-
accessible space and the iN, iC and iBs fields specify how the data accessed, as listed in Table 7-2.

N _iC_iBs _descripti

0 0 Uncached scatter array; block size is 4

" " Uncached scatter array; block size is 16

Uncached scatter array; block size is 64

Uncached scatter array; block size is bus maximum
0 1 0-3 Cached scatter array (not applicable to SerialBus)
1 0,1 0-3 Nullpointer (address is invalid)

n "

(1] "

WO

Table 7-2: iN, iC, iBs Fields, Scattered Initiator Space
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If the value of the target-scatter-array field tSa is 0, the data transfer involves one contiguous
device-specific space and the tN, tC and tBs fields specify how the data accessed, as listed in Table 7-

3.

tN___tC_ iBs description
0 0,1 0-3 Data buffer in target address space (tC and tBs are ignored)

1 0 0 Fixed target address, 4-byte reads and writes

= "1 Fixed target address, 16-byte reads and writes

" " 2 Fixed target address, 64-byte reads and writes

" " 3 Fixed target address, 256-byte reads and writes

1 1 0-3 Immediate constant, use the initiatorBufferPtr value itself

Table 7-3: tN, tC, tBs Fields, Contiguous Target Space

The values of the target-scatter-array field tSa is 1, the data transfer involves one contiguous device-
specific space and the tN, tC and tBs fields specify how the data accessed, as listed in Table 7-4.

tN__tC tBs description
0 0 0 Uncached scatter array; block sizeis 4
" " 1 Uncached scatter array; block size is 16
1 "2 Uncached scatter array; block size is 64
" "3 Uncached scatter array; block size is bus maximum
0 1 0-3 Cached scatter array (not applicable to SerialBus)
1 0,1 0-3 Null pointer (address is invalid)

Table 7-4: tN, tC, tBs Fields, Scattered Target Space

For the fixed address options, the address is not incremented during the specified data transfer and
the bus transaction size shall equal the block size, as specified by the tBs field.

If the value in the field seq is 0, the target may transfer data to the initiator out of order.

If the value in the field seq is 1, the target shall transfer data to the initiator in order, i.e., beginning
at the address specified in the initiator buffer pointer, or the address specified in the first initiator
buffer scatter/gather array containing address information, and proceeding to higher addresses. The
target shall appear to have transferred data off of the media in order, i.e., beginning at the address
specified in the target buffer pointer, or the address specified in the first target scatter/gather array
containing address information and proceeding to higher addresses.
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7.2 Copy Command Entries

The format of the command-specific portion of the copy command entry is illustrated in Figure 7-3.
and described in the following text:

00-36 BRREOSERESSS 25358 standand header REKERERSSRESEEE
T
- initiatorBufferPtr -
44
. command
specific data 48 initiatorBufferLength
521 - targetBufferLength
56
= targetBufferPtr -
Yy °

Figure 7-3: Copy Command-Entry Format

The initiatorBufferPtr, initiatorBufferLength, and targetBufferLength fields for the read,
write, and copy commands are identically defined.

The targetBufferPtr field is a part of the target buffer descriptor. Depending on the listControl
field values, this field contains a constant, the address of a data-transfer block in bus-accessible
space, or the address of a scatter array in system memory.

The values of tN, tC, tBs, and tSa (for the copy command) are the same as those defined for the iN,
iC, iBs, and iSa in the read and write commands.

7.3 Kill Command

The kill command is used to delete a command group from a list or to inform the target to stop
processing a command group that is currently being processed. The kill command is a one-entry
command group, and shall not be included within part of another command group. The kill command
may only be appended to 2 management list. The format of the command-specific portion of the kill
command entry is illustrated in Figure 7-4.

00-36 [
T .
B commandEntryAddrass =
44
command -
specific data 48 listNumber
52
B reserved =
56

_LGO

Figure 7-4: Kill Command-Entry Format
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The commandEntryAddress contains the address of the first command in a command group to
kill. Only entire command groups may be killed (note that a command group may contain only one

command entry).

The listNumber field is a 32 bit identifier for the list containing the command entry to kill. This
value determines if the command entry to kill is in the async list or one of the transfer lists
associated with the management list.

Note that there are no command dependent bits defined for the kill command.

7.4 Loop Command

The format of the command-specific portion of the loop command entry is illustrated in Figure 7-5.

B loopCommandPtr =T

44 [

command
specific data 48 loopCountPir

52

56
= loopCountValue -

y ® '

Figure 7-5: Loop Command-Entry Format

If the loop condition is satisfied, the listCommandPir value specifies the address of the next
command entry that is executed.

The value of loopCountValue shall be added to the internal intLoopCount value, and the result
shall be written to the address specified by loopCountPtr (unless the pointer is null). The loop
condition is satisfied if the result is positive and an error condition has not initiated skipping of

command entries.
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7.5 Attach Command
The format of the command-specific portion of the attach command is illustrated in Figure 7-6.
00-36 E Siandard header SRR
¥
B commandTailHandle ]
44
curgimand 48
specific dafs ™ 1 firstEntryPtr : -
52| _
56
- lastEntryPtr =
60
Y

Figure 7-6: Attach Command-Entry Format
The specified list is appended to the command list whose listTailPtr address is specified by

commandTailHandle. The first and last entries of the to-be-attached list are specified by
firstEntryPtr and lastEntryPtr respectively.
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8. Design Alternatives

In some cases, a final decision between two (or more) design alternatives has not been made. To
maintain continuity while reading this document, only one of the design alternatives is contained in
the main body of this document. The reader should understand that other design alternatives are
being actively considered.

These alternative proposals will be maintained until there is a clear technical reason or
organizational mandate to eliminate a design alternative. By formally including descriptions of
active design alternatives, the significant ramifications of both alternatives can be evaluated in the
context of (eventually detailed) technical documentation.

8.1 Direct-Mapped DMA Resources

Background: There is a significant amount of context that may be associated with each of the
target’s command lists, including the commandHeadHandle, the commandTailHandle, the bufSize
parameter (if flow-control is supported) and the intLoopCount value (if command-list looping is
supported).

Proposal: The information associated with each of the target's command lists should be directly
accessible through memory-mapped control registers contained within the unit’s address space. The
cost of supporting the memory-mapped access capability is offset by the additional diagnoestic and
control capabilities that are provided.

Arguments: A better technical specification of the indirect-mapped (defined in Section 5) and direct-
mapped DMA resources (defined here) is needed, as well as an understanding of when these
resources are updated.
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9. Appendix
9.1 C-Code Specification

The real specification in this document is in the C-code. It has been run using GNU CC 2.10n a
Solbourne 5E/500 running Sun(0S4.1.1. The compile command used was "gcc -0 -ansi -Wall-".

9.1.1 Code Extraction

Developers are expected to extract portions of this specification during their system development. To
assist in this process, comments are included in the first and last line of the C code routines. To
obtain the executable coherence codg, the electronic form (Microsoft Word for the Macintosh) of this
document should first be saved using the “Save As...” command, specifying the file name as
“ascii_ccu” and the “File Format” as “Text Only with Line Breaks”.

In the UNIX environment, the text-only “ascii_ccu” file can be processed by the stream editor (sed) to
extract the ccu-code headers, “ccuHeadX . h” and the coherence-code C routines, “ccucode.c”. The
UNIX shell program that performs this conversion is illustrated in Listing 9-1.

/* Listing 9-1: make_cache shell-file */
cat asciiSci | sed -n -f sedCmdl > ccuHeadl.h
cat asciiSci | sed -n -f sedCmd2 > ccuHead2.h
cat asciiSci | sed -n -f sedCmd3 > ccuHead3.h
cat asciiSci | sed -n -f sedCmd3 > ccuHead4.h
cat asciiSci | sed -n -f sedCmd3 > ccuHead5.h
cat asciiSci | sed -n -f sedCmdc > ccuCodeA.c

cat ccuHeadl.h ccuHead2.h ccuHead3.h ccuHead4.h ccuHeadS5.h \
ccuCodel.c > ccuCode.c

This shell program assumes the existence of the stream-editor command files: “sedCmd1”,
“sedCmd2”, “sedCmd3”, “sedCmd4”, “sedCmd5”, “sedCmdc”. The file sedCmd1 is used to extract the
code located between (and including) the lines containing the commented words HEAD1_BEGIN and
HEAD1_END. The other files sedCmd2(through sedCmd5) are used to similarly extract the code
located between the commented words HEAD2_BEGIN (through HEADS_BEGIN) and HEAD2_END
(through HEADS_END).
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The file sedCmdc is used to extract the code located between (and including) the lines containing the
commented words CODE_BEGIN and CODE_END. Special nonprinting characters are used in this
section to disable the code-extraction process on the keywords used in this section. The first and final
command files (sedCmd1 and sedCmdc) are illustrated in Listing 9-2 and Listing 9-3.

/* Listing 9-2: sedCmdl sed-command files */
: start

n

s/HEAD1_BEGIN/HEAD1_BEGIN/

t first

b start

: first

P

: more

n

P
s/HEAD1_END/HEAD1_END/

t start
b more

l* Listing 9-3: sedCmdc sed-file ey
: start

n

s/CODE_BEGIN/CODE_BEGIN/

t first

b start

: first

P

: more

n

P
s/CODE_END/CODE_END/

t start
b more

9.1.2 Simulation Environment

TBD - The old code-simulation environment has not been updated to reflect recent changes in the
document. The old code should be updated and included in this document, to provide a simulation
environment in which lint and gec will produce no errors and the code functionality can be
successfully tested.
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9.2 Native SerialBus Adapters

The SerialBus uses a 64-bit Fixed addressing model, as defined within the CSR Architecture. This
addressing model is scalable, in the since that it can also be applied to processor-to-memory
applications as well as low-cost device-connection applications. For example, the Scalable Coherent
Interface, which is optimized for multiprocessor-and-memory connections, uses the same 64-bit Fixed
addressing model.

9.2.1 Address-Space Mappings

A bridge between a Scalable-Coherent-Interface-based HostBus and SerialBus need not perform
address translations, since both interconnects support compatible 64-bit Fixed address space models.
Such a bridge would selectively routes transactions, based on the value of the nodeld portion (the
most-significant 16-bits) of their 64-bit physical address. The routing decision would be made by
comparing the nodeld to one or several software-settable base/bound on the bridge.

A simple bridge could partition the system addresses into low and high spaces, where the high
address space would correspond to host-bus addresses and the low address space would correspond to
SerialBus addresses. Transactions with low addresses would be routed from SerialBus to HostBus;
addresses with high addresses would be routed from HostBus to SerialBus.

TBD - provide a picture illustrating how HostBus and SerialBus addresses are mapped.

The HostBus-to-SerialBus transactions might be performed indirectly, to avoid the high latency
associated with these transactions, as described in Section XX. However, these latencies are not a
concern during normal system operation, since writes are the only HostBus-to-SerialBus
transactions used during normal system operation, and these can be buffered in the bridge.

9.2.2 Buffered Write Transactions

In a pipelined high-performance system, write-transaction status may be returned to the host when
the transaction has been queued by the HostBus side of a bridge but before it has been completed by
the SerialBus responder. These are called buffered writes, since the write-transaction data is
temporarily held in a bridge buffer.

For the read and write transactions specified by the CSR Architecture, the response status is
expected to be returned from the responder. An implementation of a bridge can safely buffer these
writes, if the response still appears to have been returned from the responder (i.e. the buffered writes
are transparent to software).

For simple bus topologies, two ordering constraints are sufficient to make buffered writes
transparent:

1) Request Ordering. After a buffered write is accepted, other read/lock/write requests (which
pass through the bridge in the same direction) cannot bypass the buffered write.

2) Response Ordering. After a buffered write is accepted, other read/lock response subactions
(which pass through the bridge in the same direction) cannot pass it.
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To illustrate the need for the request ordering constraint, consider a processor which performs a CSR
write (1) to change the NODE_IDS register on a SerialBus node (i.e. the SerialBus node address is
changed). After the write has been buffered, the processor could reads a different value (2) from
within that newly-assigned space, as illustrated in Figure 9-1. In the absence of ordering constraints,
the read request can bypass the buffered write and return and incorrect address_error status. Note
that simple address checks, which return the most-recent data from the buffered write, fail when the
CSR write has an effect on other address spaces.

. “Graphics |
Frame Buffer &

{Faansonnssanssassasancononsansanced

1) Set extended units space location
2) Read a register located within the extended units space

Figure 9-1: Request Ordering Violation

To illustrate the need for a response ordering constraint, consider two DMA controllers (target-A and
target-B), where target-A is the producer, target-B is the consumer. In this example, the target-A-to-
target-B data transfer is performed through an intermediate memory buffer (located in memory-B)
and are controlled by a flow-control location (located in memory-A), as illustrated ion Figure 9-2.

1) Target-A updates data buffers in Memory-B
2) Target-A updates flow-control value in Memmory-A
3) Target-B responds to previously-queued wakeup,
reads updated flow-control value and uses
stale data buffer in Memory-B

Figure 9-2: Response Ordering Violation

After target-A (1) completes the write which updates the shared memory buffer in memory-B, target-
A (2) updates the flow--control location in memory-A. Note that the write to the shared memory
buffer may be temporarily buffered in the bridge. When responding to a previously-queued wakeup,
target-B could read the updated flow-control value in memory-A and incorrectly use the stale data in
memory-B, while the original data-buffer write remains buffered in the bridge.
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Note that buffered writes are only transparent in the absence of errors, since the responder’s error
status errors cannot be easily or uniformly returned to‘the requester. After a buffered HostBus-to-
SerialBus write error, the bridge is expected to block other HostBus-to-SerialBus accesses (which
may depend directly or indirectly of the buffered-write effects) until the error condition is explicitly
cleared (presumably by higher-level I/O driver software). Bluckmg other accesses is necessary to
safely avoid using potentially corrupted data.

9.2.3 Incoming Page Tables

Transactions can be transparently forwarded from SerialBus to HostBus, based on the transaction’s
address. However, the bridge between SerialBus and HostBus is expected to provide page-table
entries for checking incoming system addresses. These tables would control:

1) Protection. Access to HostBus addresses could be selectively enabled.

2) Performance Options. The use of optional bus capabilities (such as optional 256-byte SCI
transactions) could be selectively disabled, to avoid using optional transactions addressed to
unsupportive address spaces.

3) Caching Modes. Specifies whether the SerialBus read/write/lock transactions should be
mapped directly to SCI (using equivalent non-coherent transactions) or should be mapped to
an adapter cache (whose updates generate coherent transaction sequences).

4) Swap Conversions. Selectively enables the conversion of SerialBus maskSwap transaction to
a more-efficient HostBus list-append transaction sequence.

These host-software-settable protection tables would be located in system memory that is protected
from remote system accesses, as illustrated in Figure 9-3. A bridge register would specify the base
address of the page table, and page table entries could be cached in a small number of bridge-
resident TLB entries.

protect;on 2 protectPtr I-l— - -no access
table | subaction
T checker
‘ (type,address,
1. ! 5 _sourceid,data)
~ Local Backplane L i SerialBus
- ' Remote
HostBus System Interconnect(s)

Figure 9-3: Remote Subaction Checking
By checking fields in the request or response subaction headers, protection tables could selectively

enable remote system accesses based on the source’s 16-bit nodeld value (sourceld), the transaction
type (read, write, or lock), or the HostBus page address (address).
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9.3 Foreign SerialBus Host Bus Adapter (HBA)

This section discusses a specific architecture of a Host Bus Adapter (HBA) for connecting an existing
HostBus to one or several remote SerialBuses. The concepts presented apply to any HostBus which
supports read and write operations.

An HBA is typically a printed circuit board that plugs into an expansion bus. Examples of expansion
busses include NuBus, MCA, SBus and the AT bus. The HBA contains two sets of control-and-status-
registers (CSRs), one set for implementing HostBus registers and one set for each of the attached
SerialBuses, as illustrated in Figure 9-4.

\ SerialBus CSRs
H B A '/_I\EEE P1394

HostBus CSRs

Host Bus SerialBus

Figure 9-4: Host Bus Adapter (HBA) Components

The HBA provides an adaptation function from the HostBus to SerialBus. Although SerialBus
defines several lock transactions (e.g., maskSwap8 and compareSwap8), the HostBus does not need
to support those facilities, since the lock transactions (as used within the CCU Architecture) can be
indirectly generated by the HBA hardware.

The HostBus resident processor updates system memory and CSRs on the HBA as needed to initiate
and complete DMA operations and to monitor exception conditions. In general, the host processor
would not be physically located on the HBA.

From a SerialBus perspective, the HBA is a node with SerialBus CSRs. The CSR Architecture and
SerialBus standards constrain the function and format of the SerialBus CSRs. Access to ROM
locations can be used to identify this node’s capabilities, as defined by the CSR Architecture.

From a HostBus perspective, the HBA is a node with HostBus CSRs. The HostBus Architecture
constrains the function and format of the HostBus CSRs. Depending on the HostBus Architecture,
access to ROM locations may be used to identify this node’s capabilities.

During normal operation, the HBA is involved in the following phases of DMA operations,:

1) Processor access of SerialBus CSR's. These SerialBus ROM registers are accessed during
system initialization; the wakeup registers are accessed during normal system operation.

2) Processor-initiated appending to command lists in system memory.

3) SerialBus-initiated transfers to data buffers in system memory.
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4) SerialBus-initiated appending of entries to status lists in system memory.
5) SerialBus-initated transfer of wakeup value to processor on HostBus.

This section describes one HBA design. However, the design of a HBA is beyond the scope of the
CCU Architecture and is not constrained by this section.

This HBA implements several registers for indirectly generating all SerialBus transactions and
maskSwap transaction sequences on HostBus. The names and sizes of these registers are illustrated
in Figure 9-5. Note that an actual HBA may unplement an additional register for host processor
interrupt vectoring,

= host
size processor
{bytes) access

8 | busAddress | write

16 | requestData | write
16 | responseData | read

4 | command | write

4 | status | read

Figure 9-5: Special HBA Registers (HostBus Port)

The host processor uses these registers to indirectly access SerialBus CSR's and to append command
entries to a shared list on SerialBus. The sections below describe these operations in more detail.

Note that the HBA could also provide a simple DMA interface for fetching its transaction-generation
commands from system memory. A simple circular-queue DMA interface would be sufficient, since
these transaction-generation commands can (without loss in performance) can be fetched in FIFQ
order and all transaction-generation commands can be quickly executed.

9.3.1 Processor-Initiated Accesses of SerialBus CSRs

Every SerialBus node provides a minimal set of CSRs, which can be accessed using the read4 and
write4 transactions. The CCU Architecture requires additional CSR's to be implemented, some of
which are accessed using the compareSwap8 transaction.

These SerialBus-resident CSRs can be accessed indirectly by the host-processor, by accessing the
CSRs on the HostBus side of the HBA, as follows:

1) Address Setup. The processor writes the transaction-address value to the 8-byte busAddress
register.

2) Request-Data Setup. The processor writes the request-data values to a portion of the 16-byte
requestData registers. For a write transaction, this is the data values which are written. For
a maskSwap transaction, this is the data and mask arguments for the atomic update.
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3) Transaction Start. The SerialBus transaction is initiated by a processor-initiated write to the
command register. The HostBus processor is interrupted when the transaction has
completed.

4) Transaction End. The processor reads the status register to verify the completion of the
SerialBus transaction.

5) Response-Data Return. The processor reads the returned data values from a portion of the

16-byte responseData registers. For a read transaction, this is the data values which are
returned in the response. For a maskSwap transaction, this is the old memory value.

9.3.2 Processor-Initiated Appending To Command Lists

The host pfoceséor also uses the HBA to append a list of one or more command entries to a shared
command list. The append operation uses the same HBA registers as those used for generating the
previously-described CSR transactions.

The host processor first creates one or more command entries and links them into a command-group
list. The structure of command entries and command groups are described elsewhere in this
document. The host processor then updates the CSRs on the HostBus side of the HBA, as follows:

1) Address Setup. The processor writes the commandTailPtr address to the 8-byte busAddress
register.

2) Request-Data Setup. The processor writes the addresses of the first and last command-group
entries to the 16-byte requestData registers.

3) Transaction Start. The processor triggers a command-list-append operation by writing to the
command register. The processor is interrupted when the command-list-append operation
completes.

4) Completion Check. The processor reads the status register to confirm the successful
completion of the command-list-append operation.

The HBA performs the append operation according to the protocol described elsewhere in this
document. The append transaction sequence is equivalent to generating maskSwap8 and write8
transactions. The append sequence is divisible from the perspective of the processor, but (since it is
always performed indirectly by the HBA), it appears to be indivisible from the perspective of
SerialBus nodes.

9.3.3 SerialBus Transfers to HostBus-Resident System Memory

When a SerialBus target transfers data between itself and host memory, it performs SerialBus read
and write transactions. In the example SerialBus HBA, these SerialBus read and write transactions
result in direct access to system memory across the HostBus . The only requirement placed on the
HostBus is that it support reads and 1-byte writes.

The SerialBus read and write transactions are forwarded transparently through the HBS, without
processor intervention.
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9.3.4 SerialBus Appending to Host-Resident Status Lists

If directed to do so, a SerialBus target appends a status entry to a status list when it completes a
command., using the append protocol defined previously within this document.

From the perspective of the HostBus processor, the maskSwap8 transaction to HostBus memory is
divisible, To avoid conflicts on statusTailPtr accesses, the processor (by software convention) always
leaves one status entry in the status list. Since the processor never accesses the statusTailPtr value
and all SerialBus maskSwap8 transactions are serialized through the HBA, the SerialBus
maskSwap8 transactions appear to be performed indivisibly.

As part of the list append, the HBA may translate the write8 transaction into one or more HostBus
writes. If more than one HostBus write is required, the HBA ensures that the contents of the highest
address is updated last. Thus, the null status entry pointer remains null (i.e., the null bit remains
set) until the full 8 bytes are valid. )

9.3.5 SerialBus Wakeup of HostBus Processors

If directed to do so, a SerialBus target writes to the initiator wakeup register when it completes a
command. The wakeup’s writed transaction is translated by the HBA into a HostBus processor

interrupt signal.

The method by which the HBA interrupts the host processor depends on the HostBus characteristics
and the HBA implementation. Some HBA's may use the write4 transaction to trigger the assertion of
bus-dependent interrupt-request signals,
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9.4 List Append/Extract Overview

This appendix contains an overview and examples of the shared list append and extract operations in
a variety of scenarios. The examples in this section are for illustration and tutorial purposes only.
These examples rely on the append and extract protocols defined elsewhere in this document.

There exists no situation under which a command append will fail due to insufficient target
resources. This is true because the command append algorithm (outlined below) does not require any
target resources, other than access to the appropriate CSR registers. This eliminates the need for
special retry or error recovery software to handle boundary conditions.

9.4.1 Appending Command-Group Entries; Single Initiator

To append a new command group to an existing target command list, the initiator performs the
following steps. Assume that the initiator has already constructed a command group consisting of
one or more command entries, as described elsewhere in this document.

Step A Perform a maskSwap on the target's listTailPtr, providing the address of the last
command-group entry being appended. Note that the nextEntryPtr field of the final
command-group entry is null. The maskSwap places the address of the first command-
group entry into the target's listTailPtr; the old listTailPtr value is returned to the

initiator.

Step B Perform a write8 to the address specified by the old listTailPtr value. This action places
the address of the first command-group entry into the address previously specified by

tailPtr.

Step C  Write this command-list's wake-up value to the target's wake-up register. This write
activates the target by indicating that entries may have been appended to its command

list.

These three steps are illustrated graphically in the following diagram and further described in
Figure 9-6
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Figure 9-6: Command-Group Appending; Single Initiator

State 1 The listTailPtr points to either a commandEntry or to the listHeadPtr. The listTailPtr
normally points to the location where the initiator will write the address of the next
commandEntry being appended to the list.

State 2 The initiator has performed the swap on the listTailPtr thereby causing the listTailPtr
to point to the last command-group entry being appended.

State 3 In step 2, the result returned from the swap on the listTailPtr was the address of the
location to which the listTailPtr was previously pointing. The initiator writes the
address of the first command-group entry to the address specified by the previous
listTailPtr value, thereby adding a new command group to the existing target’s
command list.

Note that the state of the list prior to the above append operation is not relevant. Also note that the
listHeadPtr plays no significant role in the list operation. It merely serves as a place holder for a
pointer to the first command-list entry, in situations where the list is empty. When the list is not
empty, the place holder is the nextEntryPtr field of the last command-list entry.
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9.4.2 Appending Command-Group Entries; Multiple Initiators

Extending this algorithm to the case of 2 initiators concurrently appending command groups to the
same target command list, refer To Figure 9-7 and the following text.
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Figure 9-7: Command-Group Appending; Multiple Initiators

State 1 Initial state. The listTailPtr points to either the listHeadPtr or the nextEntryPtr in the
last command-list entry. The value which the listTailPtr addresses contains a null
pointer (i.e., end of list). :

State 2 After Initiator-1 performs a swap on listTailPtr. The listTailPtr points to the last of
initiator-1’s command-group entries. When initiator-1 performs this swap, its response
returns the old listTailPtr value; in this case, this is the address of either the
listHeadPtr or the address of the last entry in the previously-existing command list.
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State3  After initiator-2 performs a swap on listTailPtr. The listTailPtr points to the last
initiator-2's command-group entries. When initiator-2 performs this swap, its response
returns the old listTailPtr value; in this case, this is the address of the last entry in
initiator-1's newly-appended command group.

Also after initiator-1 performs a swap on the address specified by the previously-
returned listTailPtr value. The result of the last swap was used as an address on which
to perform the next write. This results in the previously null pointer pointing to the
first of initiator-1's command-group entries.

State4 Initiator-2 performs a write8 on the address specified by the previously-returned
listTailPtr value. The nextEntryPtr value in initiator-1's last command-group entry
now points to the first of initiator-2’s command-group entries.

After initiator-1 and initiator-2 have performed the above operations, they write to the target's wake-
up register. This may have no effect if the target is already awake (fetching previously-queued
commands), may wakeup the target once, or may wakeup the target twice. The number of serviced
wakeup events is not important, since at least one wakeup is received after the final command-group
has been appended

Note that there is a window of time during which the pointers are not in a consistent state. This
occurs in state 3 where the listTailPtr points to the last of initiator-2's command-group entries, the
previous "listHeadPtr" points to the first of initiator-1's command-group entries, and the last entry in
initiator-1's command-group does not yet point to the first of initiator-2's command-group entries.
The extract mechanism, described in the next section, explains how the target detects this condition,
and how it ensures the protocol functions correctly.

9.4.3 Extracting Command-List Entries

This section covers the steps that a target goes through to read the linked list of commandEntries
and remove items from the list. The extract protocol complements the append protocol described in
the above section. As the initial state, assume that the target has just been awakened by an initiator
writing to the target's wake-up register. At this point, the target performs the following steps:

Step 0  Wait for a write to the target’s wakeup register.

Step1 Read the listHeadPtr. Tﬁis contains the address of the next commandEntry to be
processed.

Step2 Read and process commandEntries until the nextEntryPtr field is null. Do not process
this command.

Step 3  Write to the listHeadPtr, replacing its old value with null.

Step4  Perform a compareSwap on the listTailPtr. The arguments for this operation are as
follows: ’

test = Address of last commandEntry read (but not yet processed)
data = Address of listHeadPtr

Step5 If the compareSwap of step 4 succeeds , process the last commandEntry.
Continue by returning to step 0.
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Step 6 If the compareSwap of step 4 fails, write the address of the last commandEntry (which
has not yet been processed) into listHeadPtr.
Continue by returning to step 0.
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10. TBDs

The section contains brief descriptions of issues that should be addressed in the future. Readers are
encouraged to submit proposed solutions (which reduce the size of this list) or additional issue
descriptions (which increase the size of this list).

1) Initialization. More work is needed to unambigously define the initialization process, which
should be well defined without unnecessarily restricting implementation technologies.
Specific considerations include:

a) Shared Boot Devices. How can a boot device (located on a shared SerialBus) be
shared by two or more processors (located on separate processor/memory buses)? Well
" defined software-based interlock protocols are needed.

b) Corner Cases. Describe how updates of the unit's control registers are synchronized.
More specifically, define the affect of writing a second value to the control register
before the processing of the first value has completed. Perhaps this is undefined,
except for the RESET cmd value, which has precedence.

2) Access Control. Although command lists can be physically shared, access protocols may be
required to properly synchronize the use of these shared command lists. The current thought
is that command lists could have the following sharing properties:

Free - command list is not being used.

Shared - command list is shared, higher-level access control is not required.

Checked - command list cannot be accessed directly, but command lists are attached
(after access rights have been validated) by the list owner.

Exclusive - command list may only be accessed by the list owner.

Note that a unit may have many lists, and the owners of these lists are not required to be the
same,

3) Re-joining Attach Lists. Consider in more detail the completion of the dependent command
lists which are appended to a secondary target. How are the status reports from the primary
and secondary targets merged, before being returned to the primary initiator?

4) Reserved. Accurately define reserved (and its abbreviated name res). Should always be set to
zero when written, and should always be ignored when read.

5) Exact Data Transfers. We should clearly state how the target can be programmed to access
memory using the read1/2/4/8/16/64 and write1/2/4/8/16/64 transactions.
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11. Index
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