A Serial Link
for Storage Subsystems

I D Judd

IBM (UK) Ltd
Mail Point 200
Hursley Park
Winchester
England SO21 2JN
Tel: 011-44-703-701421
Fax: 011-44-703-705106

15 January 1992
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Subsystem overview</td>
<td>2</td>
</tr>
<tr>
<td>Performance</td>
<td>3</td>
</tr>
<tr>
<td>Overview</td>
<td>4</td>
</tr>
<tr>
<td>Physical and electrical</td>
<td>5</td>
</tr>
<tr>
<td>Frame format</td>
<td>6</td>
</tr>
<tr>
<td>Protocol</td>
<td>7</td>
</tr>
<tr>
<td>Error handling</td>
<td>8</td>
</tr>
<tr>
<td>Distributed switch proposal</td>
<td>9</td>
</tr>
<tr>
<td>Switch functions</td>
<td>10</td>
</tr>
<tr>
<td>Disk orders</td>
<td>11</td>
</tr>
<tr>
<td>SCSI mapping (Proposed)</td>
<td>12</td>
</tr>
</tbody>
</table>
• Serial Storage Architecture (SSA)
 SSA-0: General-purpose transport layer
 SSA-1: Intermediate-level disk orders
 SSA-2: SCSI mapping

• An enhancement of the IBM 9333 serial link:
 8B/10B code
 Choice of data rates
 Device-independence
 Daisy-chain and loop topologies (Proposed)

• Open architecture
 Specifications are freely available
 IBM would like SSA to be industry-standard
 IBM is seeking partners
IBM 9333 high-performance disk drive subsystem
Serial links for all internal connections
Announced in July 1991 for RISC System/6000
9333 response time measurements on RISC System/6000 model 930

- Workload:
 - 0.7 Read, 0.3 Write
 - 0.5 Sequential
 - 0.5 Seek (2/3 bandwidth)
 - Avg 10KB transfer
 - No skew
 - Back-to-back writes and split enabled
 - Readahead enabled

Response time (msec)

Operations per second

ANSI J1/RFM 920109

I D Judd

IBM (UK) Ltd.

01/92
Overview

- High-performance transport layer
 10, 20, ... MBytes/s (Automatically negotiated)
 Full-duplex
 Frame multiplexing
 Spatial reuse with daisy-chain & loop
- Excellent Reliability, Availability & Serviceability
 Wrap mode for Power-On-Self-Test
 Comprehensive error detection
 Transparent frame recovery
 Concurrent maintenance
- Compatible with small form-factor devices
 Fully integrated (10K equivalent gates per port)
 Low power (0.3 watts per port)
 Compact cables and connectors
- Internal and external connections

 Dual twisted-pair or twinax cable

 10 Metres maximum (Point-to-point only)

 +/- 2 Volt common mode range

 Self-latching connectors

- 10-bit characters

 8B/10B code (DC-balanced)

 5 protocol characters

 100, 200, ... Mbits/s with NRZ modulation
Frame format

<table>
<thead>
<tr>
<th>FLAG</th>
<th>CONTROL</th>
<th>ADDRESS</th>
<th>DATA</th>
<th>......</th>
<th>DATA</th>
<th>CRC</th>
<th>CRC</th>
<th>FLAG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 frame

- **FLAG** PROTOCOL CHARACTER

 Frame delimiter

 Byte synchronisation

- **CONTROL FIELD**

 2-bit Frame_sequence_number

 Resets

 Extensions for daisy chain and loop

- **ADDRESS FIELD**

 Used to route the frame at the destination node, eg.

 A DMA channel (For data frames)

 Microprocessor (For message frames)

- **DATA FIELD**

 Variable length, typically 128 bytes maximum

- **CRC FIELD**

 Checks Control, Address and Data fields
Each frame expects 2 responses:

- ACK indicates the frame was received OK
- RR paces the next frame

- ACK and RR are protocol characters, not frames
 - Duplicated for checking
 - Can be interleaved within a frame to reduce latency

- Typical transfer with A/B buffering
 - NB. Half-duplex for clarity, but full-duplex is supported

```
| ← 1st frame → | ← 2nd frame → |
Outbound: C A D D D D X X -> C A D D D D D D X X . . . . . . . . .
          ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓
          V     V     V     V     V     V     V     V
Inbound: . . . . r r . . . . a a . . . . . . . . . . . . . . . . a a . . . . . . . . . . r r .
          ↓                  ↓                  ↓
          ← Processing of 1st frame →
```

Data characters: Protocol characters:

- C - Control . - FLAG
- A - Address a - ACK
- D - Data r - RR
- X - CRC
• Local 'wrap' provides an excellent power-on self-test

• The hardware provides comprehensive error detection

 Line faults

 Illegal characters

 CRC errors

 Non-sequential frame sequence numbers

 Missing ACK's

 Protocol errors

• There is an architected Error Recovery Procedure:

 Exchange Receive_sequence_numbers

 Compare with Transmit_sequence_numbers

 Retransmit any lost frames
Distributed switch proposal

- Each device has dual ports and a frame switch
 Links operate independently with the existing protocol
- Increases connectivity, similar to SCSI bus
 16 nodes maximum
 Peer-to-peer communication
- Can be configured as a loop by using dual-port adapters
 No single point of link failure
 Increases bandwidth 2X
- Spatial reuse increases the effective bandwidth, eg.
 DISK1 <-> ADAPTER1 and DISK2 <-> ADAPTER2
 Provides up to 4X bandwidth of a token ring

I D Judd
IBM (UK) Ltd.
01/92
Switch functions

- The frame control field is extended to include:

 Hop_count (4 bits), decremented by each switch

 Inbound frames are forwarded until Hop_count = 0

 Multi-cast flag for multiple destinations

 Priority flag for synchronous traffic (eg. multi-media)

- Switch uses 'worm-hole' routing to reduce latency

- Fairness algorithm shares bandwidth equally

 Each node has a quota for originating frames

 Quotas are refreshed by a circulating **SAT** character
Disk orders

- Intermediate-level orders optimised for clusters & arrays
 - Device independence
 - Low overheads
 - Tight device control
 - Buffered or unbuffered devices
 - Dual-ported devices for high availability
 - Integrated spindle synchronisation

- **Read** and **Write** orders access up to 64K sectors
 - Automatic head and cylinder seeks
 - Device manages track format, defects & header fields
 - Device checks for split transfer
 - Device performs error recovery (eg. ECC)

- **Extend** order can be over-lapped with Read or Write:
 - Back-to-back writes
 - Continuation of read-ahead

- **Format & Reassign Block** for media maintenance
 - Device manages the defect list
2 types of frame:

Message frames have x'FF' in the address field

Data frames specify a **channel** in the address field

Channels are allocated dynamically using messages

NB. The destination node is selected by the control field

Typical message frames:

- **SCSI_command** (Initiator, LUNTRN, Tag, CTL, CDB) \(I \rightarrow T \)
- **Data_ready** (Target, Tag, Offset, Length) \(T \rightarrow I \)
- **Data_reply** (Initiator, Tag, Channel) \(I \rightarrow T \)
- **Data_request** (Target, Tag, Offset, Length, Channel) \(T \rightarrow I \)
- **SCSI_status** (Target, Tag, status) \(T \rightarrow I \)

Example of a read command:

INITIATOR

SCSI_command message ——>

\(<--- \text{Data_ready message} \)

Allocate DMA channel

Data_reply message ————>

\(<--- \text{Data frames} \)

\(<--- \text{SCSI_status message} \)
READ (Ret_addr, LBA, Count, Options)

- Implies initial seek and termination of read-ahead
 Device does logical-to-physical conversion
- Ret_addr specifies address for data frames
- LBA specifies next starting block
- Count allows up to 64 K sectors
 Device performs head & cylinder seeks as necessary
 Device skips defects as necessary
- Options
 Report all errors
 Limit recovery
 Read continuous
 Disable split
Orders

- Read
- Write
- Extend
- Motor_control
- Set_position
- Read_status
- Code_download
- Release
- Format
- Reassign_block
- Read_device_characteristics
- Read_Vital_Product_Data
- Diagnostic