High Speed Serial Bus

Project 1394 of the Microcomputer Standards Committee of the IEEE Computer Society

Michael Teener
Chair, P1394 Working Group
Apple Computer, Inc.
3535 Monroe St, MS 69-1
Santa Clara, CA 95051
408-974-3521
teener@apple.com

Apple Computer, Inc.

Note: 40 Mbps physical layer is updated to 100 Mbps. See attached document for details.
Goals

- **Alternate Bus**
 Bridging between different parallel busses
 Redundant path for configuration and maintenance
 For extremely low cost modules
- **Low cost peripheral bus**
- **Bus bridge**
- **Compatible architecture with other IEEE 32-bit busses**
 Follow 1212 CSR standard (control and status register)
Goals (cont.)

- Modest cost
 < $15 for cable, socket & interface ICs (very large volume)

- High bandwidth
 Fast as possible given cost goals
 Lower CPU overhead via simpler protocols & assumption of memory bus model
 Performance extensibility

- Add isochronous service
 from 64 kbps for voice to 1.5 Mbps for stereo HiFi sound to >20 Mbps for compressed video
"Isochronous"??

- Iso (same) chronous (time):
 - Uniform in time
 - Having equal duration
 - Recurring at regular intervals

- Examples
 (source and destination for real-time data)

<table>
<thead>
<tr>
<th>ISDN</th>
<th>8 kHz x 8 bits</th>
<th>64 kbps</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD</td>
<td>44.1 kHz x 16 bits x 2 channels</td>
<td>1.4 Mbps</td>
</tr>
<tr>
<td>DAT</td>
<td>48 kHz x 16 bits x 2 channels</td>
<td>1.5 Mbps</td>
</tr>
<tr>
<td>Video</td>
<td>25 or 30 fps</td>
<td>variable</td>
</tr>
</tbody>
</table>
Goals for External Cable

- **Reduce EMC problems**
 Low voltage swing, low current, low skew differential signal.
 Shielding & isolation designed in from the start.

- **Improved ergonomics**
 Small, flexible cable
 Robust small connectors with self-locking feature
 No terminators, few topology rules
Goals for Backplane

- Two conductors (single-ended)
 Two differential pairs for compatible busses (SCI)
- Direct repeater to cable media
- Usable in FastBus, Futurebus, VME, NuBus, Multibus II, SCI
Unsupervised!

Typical "supervised cabling"— daisy-chain like SCSI; terminators at ends; devices with internal terminations must be at one end.

"unsupervised cabling"— Serial Bus "non-cyclic network"; no terminators, locations are arbitrary.
Protocols

- P1394 High Speed Serial Bus
 "Memory-bus-like" logical architecture
 Serial implementation of 1212 architecture

- 1212 CSR Architecture
 Standardized addressing
 Well-defined control and status registers
 Standardized transactions
 Standardized DMA and other Unit-specific features
 in the future
Module Architecture

- Processor
- I/O
- Memory
- ID & Registers

System Bus

Module - Replace together
Node - Initialize and test together
Unit - Independent in normal operation
1212 Addressing

- The serial bus uses 1212 direct 64-bit addressing
Protocol Stack

High Speed Serial Bus

- Transaction Layer
 - Configuration & Error Control
 - Read, Write, Lock
- Link Layer
 - Cycle Control
 - Arbitration
 - Packet Transmitter
 - Packet Receiver
- Physical Layer
 - Encode
 - Media Interface
 - Decode
- Hardware
- Firmware
- Serial Bus Management
- Channels
- Symbols
- Electrical Signals & Mechanical Interface
Physical Layer Topology

High Speed Serial Bus
Cable Interface

- Silicon bus provides "or"ing of signal

- Cables and transceivers are bus repeaters

- Limit of 6 cable hops and 10 meters of cable between any two nodes
Cable Interface Features

- 3-pair shielded cable
- Small and rugged connector
 Two sockets in the same area as one mini-DIN socket
- CMOS transceiver
 300 mv peak-to-peak
 4 ma drive
 < 160 ps random jitter (at 6 sigma)
 < 500 ps worst case jitter
Cable Media Example

High Speed Serial Bus

Notes:
1. Signal pairs impedance $Z_0 = 115 \, \Omega$ nominal
 (Dielectric is foamed polyethylene, $\varepsilon_r = 1.7$)

- Capable of operation beyond 400 Mbaud for a few metres
Cable Interface Features

• Live attach/detach
 System protected from power on/off cycling
 Higher layers provide simple management
 remote power control
 "I'm here!" message to notify monarch

• Peripheral power
 8-40 VDC carried by cable
 Each peripheral interface needs 1/4 - 1/2 watt while active
 Total available power is system dependent
 Node power requirements must be declared in configuration ROM
 Cable system allows up to 1.5 A (60 watts) per link
 Nodes can either source or sink power
 Multiple power sources on one bus provide additional flexibility

Further specification needed

Apple Computer, Inc.
49.152 Mbaud data transport
DAT, ISDN & compressed video rate-compatible
2 Mbaud full duplex rate for arbitration and acknowledgement
196 Mbaud growth path

Data encoding
4B5B block code with NRZI translation for simple clock recovery with good efficiency
Yields ≈ 40 Mbps burst data rate
Link Layer

- Flexible addressing using 1212 architecture
 Direct 64-bit addressing (48 bits per node)
 Hierarchical addressing for up to 63 nodes on 1023 busses
 Standardized register addresses
- Flexible packet formats
 Optimized for 4-byte data
 Optional 0-256 byte packets
 Longer packets at higher speeds
 Actual limit is 60 μsec per packet
- Immediate acknowledge
 Normal ack < 1 μsec
 Non-hogging retry mechanism
• Fair and urgent access
 Bit-serial arbitration
 Automatic assignment of addresses
 Access opportunities split between fair and priority modes

• Isochronous transport
 Optional
 Multiple "channels" each 125 μsec "cycle" period
 41 ns max jitter in 125 μsec clock
 Variable channel size up to ~480 bytes/cycle
 Up to ~1900 bytes/cycle at 196 Mbaud
Link Layer Operation

Requester Link Layer

- Link Request

Responder Link Layer

- Arbitration & Packet Transmission
 - no arbitration for isochronous channels
- Link Indication
- Acknowledge
 - not present for broadcasts or channels
- Link Response
- Link Confirmation
Example Packets

4-byte subaction

- arbitration
- SD
- dest addr
- source ID
- codes
- 32-bit data
- CRC
- T
- 1 bit

- 8 bits
 @ 2 Mbaud

- 16
- 64
- 16
- 16
- 32
- 16
- 4
- 1 bit
 @ 2 Mbaud

- ≥ 1 μsec
- 4 μsec

- 164 bits
 @ 49.152 Mbaud
 = 4.2 μsec

- = 0.5 μsec
- ≥ 1 μsec

- 160
- 512
- 16+4

- 64-byte packet
 692 bits
 @ 49.152 Mbaud
 = 17.6 μsec

- 4 μsec

- 0.5 μsec
- 0.5 μsec

64-byte subaction
- Fairness Cycle is bounded by arbitration reset gaps
- Reset gaps are longer than normal subaction gaps
- Each node gets one access opportunity each Fairness Cycle
Fair & Urgent Access Sharing

- Node ID of A > node ID of B > node ID of C
Cycle Structure

P1394
High Speed Serial Bus

![Diagram showing cycle structure with packet data, channel and subaction gaps, and cycle synchronization points.]

- Cycle #m-1: Packet A (data = x)
- Cycle #m: Channels 1, 2, 3, ..., n
- Cycle #m+1: Packet B (data = y)

Channel (short) gaps and Subaction (long) gaps are indicated.

Nominal cycle period = 125 μsec

Cycle synch points are marked at the start of each cycle.
Transaction Layer

- **Multiple transaction types**
 - Optimized for 4-byte operations
 - Read and write quadlet are required
 - Variable-length block operations optional
 - Lock transactions optional
 - Swap and Compare-and-swap are needed for distributed sharable-list DMA

- **Advanced management**
 - Automatic address assignment (no switches)
 - Standardized addresses from 1212 architecture command, status, interrupt, etc.
 - Configuration ROM from 1212 architecture
 - device type, name, manufacturer, power requirements, capabilities, driver code
Transaction Layer Operation

Requester Transaction Layer

Transaction Request

Requester Transaction Layer

Transaction Request
includes data if Set or Lock

Responder Transaction Layer

Transaction Indication

Transaction Response
includes data if Get or Lock

Transaction Confirmation
Split Transaction

High Speed Serial Bus
Higher Layers

- **Configuration**
 Using 1212 configuration ROM
 Automatic minimal configuration
 Extensive self-identification possible
 Software finishes configuration, possible user interaction

- **Bridges to other busses**
 Full support for 1212 transactions and addressing
 Can use LAN as bus extender
 High interest in SCSI adapter

- **DMA standard in development**
 Part of P1212.1 standard
 Need standard command interface
 Unfortunately beyond scope of P1212.1
Development Schedule

- **Current draft 4.1**
 Link layer and transaction layer mostly complete
 Detailed simulation has been completed
 Minor changes to fields have been proposed
 Physical layer needs more work
 Initial simulations and implementations look good
 Connector & cable work almost complete
 Scalable speed/lower cost proposal coming

- **Working group to be finished winter-spring 1992**
 Formal approval within working group
 Forward to Microcomputer Standards Committee
Resynchronizing Physical Layer

Michael Teener
Roger Van Brunt
Florin Oprescu
Apple Computer, Inc.
September 10, 1991
Why Change Now?

- **History**
 Pressure to increase speed and lower cost
 I/O bus requirements increasing fast
 Clock recovery most complex part of Physical Layer
 Possible patent problems with 4B5B code

- **Roger & Florin observation:**
 2nd signal pair unused during packet transmission
 Use to carry explicit clock

- **Further improvements**
 Resynchronize data at each node
 Automatic speed scaling
Advantages

- Simpler
 No analog circuitry for clock recovery
 No coding of data to guarantee clock edges

- Higher performance
 Single hop for clock and data before resynch
 Jitter margins much improved
 100 Mbit/sec for the same or lower cost as 40 Mbit/sec

- Scalable performance much easier
 200 Mbit/sec possible very, very soon with CMOS
 400 Mbit likely with BiCMOS technology
- **Redefine TPO and TPI interface signals**
 - TPA is transmit arb, transmit clock, receive data
 - TPB is receive arb, receive clock, transmit data
 - Both are bidirectional signals

- **Resynchronize repeated packet data signals**
Mode Shifts

- Arbitration operation is unchanged except:
 TPA is tristated after driving signal pair to "0"
 Hysteresis required on receivers
- Shift to packet mode (resynch)
 On winning node, start driving TPB high
 On losing nodes, port that is receiving arb signals will see a high signal on TPA.
 Starts driving TPB on other ports.

- Shift back to arb mode at end of packet (no clock)
Arbitration Data Flow

End of arbitration at losing node:
Port 4 receiving from winning node, all others transmitting
Data Packet Repeat

Clk Data

Clk Data

Clk Data

Data Clk

A

B

Port 1

Logic

Repeating packet data:
Port 4 receiving, all others transmitting

RxData

RxClock/RxArb

TxData

TxClock/TxArb

Local Clock

Resynch

Mode Control

Link Interface

Apple Computer, Inc.
Packet Data Encoding

- First data bit is clocked at 100 Mhz

- If high, double clock speed and get next bit
 Repeat until a low data bit is found

- If low, clock is unchanged
 Next bit is start of link packet
Example Packet Start

P1394
High Speed Serial Bus

Apple Computer, Inc.
Link Layer Changes

- No 4B5B code
 Just NRZ data

- Variable speed
 Speed code associated with each packet
 Implementations probably use variable width interface
 2 bits @ 50 Mhz = 100 Mbits/sec
 4 bits @ 50 Mhz = 200 Mbits/sec
 etc.
System Concerns

- Configuration ROM must include speed capabilities
 Requester free to use higher speed if responder and the path to it is capable

- Backplane interface
 100 Mbit/sec possible with ECL
 What are BTL limits?

- Do we want to specify an upper limit?