n

X3T49,2/9/- J¢o

“o: Members, X3T9.2
fm: Steve Cornaby
Conner Peripherals
re: SCSI 3 Proposed Queueing Model

dt: 10 October 1991

After having reviewed the document, X3T79.2/91-098 Rev 1, a Proposed
Queuing Model, I have some concerns about the ramifications of
the current model.

In an attempt to clarify my concerns, I will first discuss the means
by which an initiator would typically make file updates, then follow
with methodologies which could make use of command queueing.

The types of initiators with which I am concerned are all multi-tasking,
since this is the only environment that can currently make use of
tagged command queueing. I will assume either a UNIX-based

environment, or a file-server environment, since these are the most
common.

JNIX is usually a heavily cached environment, which decreases redundant
disk accesses and tends towards a bundling of disk writes. Files

are typically updated based upon some time event. Upon this event,
cached blocks which have been marked as "dirty" are written to the
media, and file-system blocks are then updated to reflect the write.

File-servers, regardless of the particular implementation, funnel
device requests to a central processing point. This central processor
schedules disk accesses and alocates space. Most file-server

software also includes some sort of scheduling algorithym

to reduce actuator thrashing.

In current non-queued implementations, there is usually some sort of
"pool" of disk requests which the 0/S generates. The I/O0 sub-level
operates on the pool to determine the order in which requests should
be passed to the device. The 0/S determines when the requests
corresponding to a particular file node have been serviced and will
then submit this update to the pool.

The pool concept works regardless of whether the system is single-
user or multi-user, because the 0/S generates the file system
updates only after the associated writes have been completed.

Tagged command gueueing can benefit the system to the extent that
normal I/0 sub-level performance techniques can now be off-loaded
o the device. 1In addition, command overhead delays become less
of a concern as they no longer cause a direct delay within the
critical-time path. Additionally, command queueing allows distributed
devices (e.g. arrays) to concurrently service multiple queued requests.
Devices can now become multi-threading, with separate hardware
servicing separate requests.

£1//



Current queued implementations with which I am familiar utilize only
simple queue tags. The 0/S retains the responsibility of holding
off file node updates until the file has been correctly written.

There may be a case to be made for being able to give the device both
the data updates and the file-system update at the same time,

making sure that the file-system blocks are updated only upon
successful completion of the affected data blocks. I think that

I can see this intent behind the wording of the ORDERED QUEUE

TAG message:

If ORDERED QUEUE TAG messages are used, the target shall
execute I/O Processes in the order received with respect

to other I/0 Processes received with ORDERED QUEUE TAG
messages regardless of which initiator sends the I/O
Processes. All I/0 Processes received with a SIMPLE QUEUE
TAG message prior to a I/0 Process received with an

ORDERED QUEUE TAG message, regardless of initiator, shall be
executed before-that I/0 Process with the ORDERED QUEUE

TAG message. All I/0 Processes received with a SIMPLE QUEUE
TAG message after a I/0 Process received with an ORDERED
QUEUE TAG message, regardless of initiator, shall be
executed after that I/0 Process with the ORDERED QUEUE TAG
message. :

Unfortunately, the solution has more of a DOS taste to it than the
flavor of a multi-tasking system. The above scenario would work only
in the case where a single file was being updated, and no multi-
tasking was involved.

The above implementation quickly spells disaster in a multi-processing
environment where multiple threads can be simultaneously outstanding.
Suppose a system of 250 users, with a common thread loading of 10.
Suppose further that file updates were made rather randomly, such
that you could easily skew the file contents and the associated nodal
updates. In this situation, with true multi-tasking, it can easily
be understood how the intrusion of ORDERED QUEUE TAG commands would
degrade disk performance by forcing far too frequent access to the
file system areas of the device. Thrashing, not mechanical delay
minimization is the end result.

4y 2



If our intent is really to allow the system to give us all of the

data requests followed by the file system requests, I suggest that

che ORDERED QUEUE TAG is terribly inadequate for the task. What would
instead be required is a thread concept that says, in simple terms:

Do all of these simple queued tasks that BELONG TO THIS
THREAD before doing this ordered queue task.

This extends the concept beyond the single-file update to the realm
of multi-tasking.

I believe that George has done us all a great service in forcing us
to model in what cases each of the queue type messages should

be used. When the ORDERED QUEUE TAG was inserted into the document,
I had no idea that it might_be interpreted as is currently written
into the model. I had interpred ordered queue tags as entirely
independent from their simple counterparts, and had assumed that they
would be used only for configuration or for error recovery. I do
believe that this interpretation makes more sense than that found

in the current model.

I suggest that wording that forces an interdependency between
ordered queue tags and simple tags be deleted from the model.

If we do perceive a need in the world for being able to give the
device both the blocks to be updated and the file system blocks to
be updated at the same time, we should work to introduce a thread
concept. This move would require that queue messages be modified
somewhat. I might suggest the following:

SIMPLE QUEUE TAG - (Same as current)

HEAD OF QUEUE THREAD - (Defines first entry belonging
to a thread)

SIMPLE QUEUE THREAD - (Defines a subsequent entry belonging
to a thread)

ORDERED QUEUE THREAD - (Used for file system updates of
the thread)

Each of the QUEUE THREAD messages would require an additional
message byte as a thread tag which would uniquely define a thread.

I am also of the opinion that other utility messages would require
definition to allow for more expedient cleanup. (Abort Thread, being
one, to allow for error recovery of a threaded operation.) Current
cleanup tools are inadequate.

As always, I appreciate the time and talents of the committe in

reviewing these concept. I hope that by pooling our knowledge and
talents, we can provide a framework for further I/0 performance.

K13



