

Common Configuration Method

Proposed Common Configuration Method

July 9, 1991

The Common Configuration Method (CCM) simplifies configuration of disks and other storage devices. This
definition includes a Standard AT Compatible Register Map, and a configuration sector layout. Drivers
incorporating this method of configuration will be able to find the controller and recognize the geometry and
options of any media formatted and containing the CCM signature and required information in the indicated fields
in sector 02 (third logical sector of the media on the device, assuming 512 byte sectors). This method of
configuring for drives allow media to be identified universally independent of a given operating system or system
BIOS. A driver incorporating this technique for configuration will be required to read sector 02 in the driver,
recognize the Common Configuration Signature, and get the necessary information from the fields as defined in
the Common Configuration sector layout in the following pages.

Common Configuration Method

Common Configuration Method
Sector 02 Layout

Field Offset(hex) Offset(dec) Data Type Description

1 000 - 0FF 000 - 255 unsigned char [256] Vendor Unique
Reserved for vendor use

2* 100 - 101 256 - 257 unsigned int Signature
Contains the signature (55AAh)

3 102 - 105 258 - 261 unsigned long User blocks (low-order long word)
Low order half of following

4 106 - 109 262 - 265 unsigned long User blocks (high-order long word)
The user sectors divided by the block
size**

5* 10A - 10B 266 - 267 unsigned int User Data Heads
Number of user-accessible data heads**

6* 10C - 10F 268 - 271 unsigned long User Cylinders
Number of user accessible cylinders** (not
including spares)

7* 110 - 111 272 - 273 unsigned int Average Sectors Per Track
Average number of user-accessible sectors
in each track**

8* 112 - 115 274 - 277 unsigned long User Sectors (low-order long word)
lower half of number of sectors (below)

9* 116 - 119 278 - 281 unsigned long User Sectors (high-order long word)
Total user accessible sectors on device**

10 11A - 11B 282 - 283 unsigned int BlockSize
Data transfer size in sectors per block**

11* 11C - 11D 284 - 285 unsigned int Sector Data Length
Number of data bytes in each sector**

12 11E - 13D 286 - 317 unsigned char [32] Support Field
Feature identification (for vendor use)

13* 13E - 13F 318 - 319 unsigned int Controller Interface Type

0 = unknown 3 = ESDI 6 = ST-506
1 = IDE/ATA 4 = SMD
2 = SCSI 5 = IPI
If greater than 6, refer to Controller Name

14* 140 - 14F 320 - 335 unsigned char [16] Model Name***

15 150 - 15F 336 - 351 unsigned char [16] Controller Name***

Common Configuration Method

Common Configuration Method
Sector 02 Layout (cont)

Field Offset(hex) Offset(dec) Data Type Description

16* 160 - 161 352 - 353 unsigned int Peripheral Device Type****

00 = Hard disk
01 = Magnetic Tape
02 = Printer
03 = Processor Device
04 = WORM Device
05 = CD-ROM
06 = Scanner
07 = Optical Disk
08 = Medium Changer Device
09 = Communications Device

0Ah-0Bh = Defined by ASC IT8
0Ch-1Eh = Reserved

1Fh = Unknown or no device type
7Fh = Logical Unit Missing

80h-FFh = Vendor Unique

17* 162 - 175 354 - 373 unsigned char [20] Device Serial Number***

18 176 - 179 374 - 377 unsigned char [4] Unique Device Address
In family

19 17A - 199 378 - 409 unsigned long [8] Start-up Sector Pointers
Sector numbers for devices that require
special start-up routines

20 19A - 1FB 410 - 507 unsigned char [98] Reserved
Reserved for future use

21* 1FC - 1FF 508 - 511 unsigned long CRCDoubleWord
32-bit CRC of the CCM area (0100h-01FBh)

* Fields that must contain valid data if the signature is written to bytes 100h-101h
** An absolute count; i.e., a whole number total; 0=zero units, 1=one unit, etc.
*** A null-terminated and null-padded ASCII string
**** From SCSI ANSI Standard X3.131-1986, 23 Jun 1986, p. 70; see also SCSI II ANSI Standard X3.131-1990, 31 Aut

1990, p. 7-21
Note: The decimal whole numbers in brackets [] indicate the storage allocation in bytes in the designated data

type

DEFINITIONS

byte An 8-bit unit, such as a character

word A 16-bit unit, such as an integer

long word A 32-bit unit, such as a long integer

vendor Manufacturer of the device

Common Configuration Method

This section details the contents and definitions of all the fields specified by the Common Configuration Method
(CCM) for sector 02 of peripheral devices. All addresses are designated in hex and pertain to the data field of
sector 02. All fields are unsigned.

Field 1: Vendor Unique 256 bytes unsigned char

The Vendor Unique field is reserved for purposes specific to the manufacturer and is comprised of
addresses 000h through 0FFh (the lower-addressed half of sector 02); Because the information stored at
this location is vendor-specific, the generic data type unsigned char is assigned to it.

Field 2: Signature 2 bytes unsigned int

The Signature field contains the hex number 55AA (decimal 21930) at address 100h of sector 02 to
indicate the remaining data follows the CCM standard. This signature also indicates that valid data is
stored in the User Data Heads, Average Sectors Per Track, User Type, and Serial Number fields, and a
valid checksum for the CCM data is stored in the Checksum field.

Field 3: User Blocks, low order long word 4 bytes unsigned long

Field 4: User Blocks, high order long word 4 bytes unsigned long

The lower 32 bits of the 64-bit number representing the number of blocks on the device is stored at
address 102h, the low order long word of the User Blocks field. The upper 32 bits of the same 64-bit
number is stored at address 106h, the high order long word of the User Blocks field. This is equal to the
User Sectors divided by the Block Size. The number of user blocks is a whole number, indicating an
actual count of the number of blocks available to the user; i.e., 0 = zero blocks, 1 = one block, 2 = two
blocks, etc.

Field 5: User Data Heads 2 bytes unsigned int

The number of data heads on the device accessible to the user is stored in the User Data Heads field at
address 10Ah and does not include servo heads. Valid data must be present in this field if the proper
signature is written to the Signature field. The number of user data heads is a whole number, indicating
an actual count of the number of data heads available to the user; i.e., 0 = zero heads, 1 = one head, 2
= two heads, etc.

Common Configuration Method

Field 6: User Cylinders 4 bytes unsigned long

The number of cylinder so the device accessible to the user is stored in the User Cylinders field at address
10Ch and does not include spare cylinders. Valid data must be present in this field if the proper signature
is written to the Signature field. The number of user cylinders is a whole number, indicating an actual
count of the number of cylinders available to the user; i.e., 0 = zero cylinders, 1 = one cylinder, 2 = two
cylinders, etc.

Field 7: Average Sectors Per Track 2 bytes unsigned int

The average number of sectors in each track accessible to the user is stored in the Average Sectors Per
Track field at address 110h. Valid data must be present in this field if the proper signature is written to
the Signature ;field. The average number of sectors per track is a whole number, indicating an actual
count of the average number of sectors per track available to the user; i.e., 0 = zero sectors per track, 1
= one sector per track, 2 = two sectors per track, etc.

Field 8: User Sectors, low order long word 4 bytes unsigned long

Field 9: User Sectors, high order long word 4 bytes unsigned long

The lower 32 bits of the 64-bit number representing the number of sectors on the device is stored at
address 112h, the low order long word of the User Sectors field. The upper 32 bits of the same 64-bit
number is stored at address 116h, the high order long word of the User Sectors field. This is equal to the
User Blocks multiplied by the Block Size. Valid data must be present in this field if the proper signature
is written to the Signature field. The number of user sectors is a whole number, indicating an actual count
of the number of sectors available to the user; i.e., 0 = zero sectors, 1 = one sector, 2 = two sectors, etc.

Field 10: Block Size 2 bytes unsigned int

The data transfer size in the number of sectors per block is stored in the Block Size field at address 11Ah.
The block size is a whole number, indicating an actual count of the number of sectors per block available
to the user; i.e., 0 = zero sectors per block, 1 = one sector per block, 2 = two sectors per block. etc.

Common Configuration Method

Field 11: Sector Data Length 2 bytes unsigned int

The number of data bytes in each sector is stored in the Sector Data Length field at address 11Ch. Valid
data must be present in this field if the proper signature is written to the Signature field. The sector data
length is a whole number, indicating an actual count of the number of data bytes per sector available to
the user; i.e., 0 = zero data bytes per sector, 1 = one data byte per sector, 2 = two data bytes per sector,
etc.

Field 12: Support Field 32 bytes unsigned char

The support Field is an information field that is allocated for feature identification of the device and is
reserved for use by the vendor.

Field 13: Controller Interface Type 2 bytes unsigned int

The 16-bit number that identifies the type of interface the device communicates with is stored in the
Controller Interface Type field at address 13Eh. This information is defined as follows:

0 = unknown controller type 3 = ESDI 6 = ST-506
1 = IDE/ATA 4 = SMD
2 = SCSI I/SCSI II 5 = IPI

Controller types represented by numbers greater than 6 are identified in the Controller Name field. Valid
data must be present in this field if the proper signature is written to the Signature field.

Field 14: Model Name 16 bytes unsigned char

The model name of the device is stored in the Model Name field at address 140h. This is a null-padded
and null-terminated ASCII string, meaning that (1) the last byte must be a null (00h) character and (2) all
other unused bytes must also be null characters.

Field 15: Controller Name 16 bytes unsigned char

The controller name of the device is stored in the Controller Name field at address 150h. This is a null-
padded and null-terminated ASCII string, meaning that (1) the last byte must be a null (00h) character and
(2) all other unused bytes must also be null characters.

Common Configuration Method

Field 16: Peripheral Device Type 2 bytes unsigned int

The 16-bit number that identifies the medium or peripheral device type is stored in the Peripheral Device
Type field at address 160h. This information is defined as follows:

00h = Hard Disk
01h = Magnetic Tape
02h = Printer
03h = Processor Device
04h = WORM Device
05h = CD-ROM
06h = Scanner
07h = Optical Disk

08h = Medium Changer Device
09h = Communications Device
0Ah-0Bh = Defined by ASC IT8
0Ch-1Eh = Reserved
1Fh = Unknown/No Device Type
7Fh = Logical Unit Missing
80h-FFh = Vendor Specific

Valid data must be present in this field if the proper signature is written to the Signature field.

Field 17: Serial Number 20 bytes unsigned char

The serial number of the device is stored as an ASCII string in the Serial Number field at address 162h.
This is a null-padded and null-terminated ASCII string, meaning that (1) the last byte must be a null (00h)
character and (2) all other unused bytes must also be null characters. Valid data must be present in this
field if the proper signature is written to the Signature field.

Field 18: Unique Device Address 4 bytes unsigned char

The unique address that distinguishes the device from other members of the same family is stored in the
Unique Device Address field at address 176h.

Field 19: Startup Sector Pointers 32 bytes unsigned long

The Startup Sector Pointers field is provided to store sector numbers that locate routines required by some
devices to complete the startup process.

Field 20: Reserved 98 bytes unsigned char

The Reserved field is allocated for future expansion.

Common Configuration Method

Field 21: CRCDoubleWord 4 bytes unsigned long

This field contains a 32-bit CRC of the CCM data starting at location 0100h and ending with location
01FBh. The CRC is calculated using the supplied "C" routine. Please note that the CRC accumulator is
initialized to all ones (0FFFFFFFFh) and that the resulting value is inverted. This standard technique
prevents generating a matching CRC when data is erroneously shifted by one or more bytes, with more
or less initial zero bytes. The polynomial used in the 32-bit CRC is found in the ANSI X3.66
specification, or FED-STD-1003, and is represented as:

X32+X26+X23+X22+X16+X12+X11+X10+X8+X7+X5+X4+X2+X1+X0

Valid data should be present in this field if the proper signature is written to the Signature field.

Following are sample routines to calculate the CRCDoubleWord in both "C" and Assembler, along with
a sample definition file to allow the 32-bit mode assembler routine to be loaded as an NLM, exporting
the routine for drivers and other NLMs:

Common Configuration Method

Sample 32-bit CRC32 Routine

COMMENT ~
==

*ENTRYPOINT: GenerateCRC32

*PURPOSE: Generates 32-bit CRCs for data blocks (32-bit mode flat model)

*PROTOTYPE: CRC = GenerateCRC32(bufferlength, @buffer)

*PARAMETERS: bufferlength - LONG buffer length in bytes

@buffer - LONG pointer to data buffer

*RETURNS: CRC - LONG new accumulated CRC (EAX)

*NOTES: This CRC polynomial is in the ANSI X3.66 specification. 32-bit CRCs
are approximately 100,000 times more likely to detect an error than
16-bit CRCs. The 32-bit polynomial used is:

32 26 23 22 16 12 11 10 8 7 5 4 2 1 0
X +X +X +X +X +X +X +X +X +X +X +X +X +X +X

==
*:~

name GenerateCRC32
assume ds: OSDATA, es: OSDATA, ss: OSDATA

CPush macro
push ebp
push ebx
push esi
push edi
cld
endm

CPop macro
pop edi
pop esi
pop ebx
pop ebp
endm

Common Configuration Method

; following used to fetch values from the stack
ParmOffset equ 20 ;for ebx,ebp,esi,edi plus near call
Parm0 equ ParmOffset + 0
Parm1 equ ParmOffset + 4
poly equ 04C11DB3h

OSDATA segment rw public ’DATA’
OSDATA ends

OSCODE segment er public ’CODE’
assume cs: OSCODE
public GenerateCRC32

align 4
CRC32C proc
GenerateCRC32 label near

CPush ;push standard registers for C
mov ecx, [esp + Parm0] ;*** get # bytes to process
mov esi, [esp + Parm1] ;*** get buffer pointer
xor eax, eax ;initialize crc accumulator
dec eax ;to all ones
mov edx, poly ;get polynomial constant
jecxz exit ;*** if no bytes to process
align 4

byteloop:
rol eax, 8
xor al, [esi] ;update with new byte
ror eax, 8
mov bh, 8 ;set bit counter
align 4

bitloop:
shl eax, 1 ;shift accumulator left 1 bit
jnc bitzero ;if bit was zero
xor eax, edx ;update accumulator
align 4

bitzero:
dec bh ;done with byte ?
jnz bitloop ;no - do next bit
inc esi ;adjust buffer pointer
loop byteloop ;loop til buffer processed

exit:
xor eax,-1 ;1’s complement result
CPop ;restore saved regs
ret ;return to caller

CRC32C endp
OSCODE ends

end

Common Configuration Method

Sample DOS real-mode CRC32 C-callable routine

COMMENT ~
==

*MODULE: CRC32.ASM

*PURPOSE: Generates 32-bit CRCs for data blocks (DOS Real-Mode)

*ENVIRONMENT: DOS Client *MODIFIES ENVIRONMENT: n
*MODEL: HUGE *BLOCKING: n
*MODIFIES INTERRUPTS: n *RESTORES INTERRUPTS: n
*REQ CALL DISABLED: n *REQ CALL ENABLED: y
*C-CALLABLE: y *CALLABLE FROM INT: y

*PROTOTYPE: CRC = CRC32(bufferlength, @buffer)

*PARAMETERS: bufferlength - LONG buffer length in bytes

@buffer - LONG pointer to data buffer

*RETURNS: CRC - (AX:DX) LONG new accumulated CRC

*MODIFIES: AX, BX, CX, DX, FLAGS

*NOTES: Assemble with the /MX option.

The 32-bit polynomial used is:

32 26 23 22 16 12 11 10 8 7 5 4 2 1 0
X +X +X +X +X +X +X +X +X +X +X +X +X +X +X

The polynomial is defined in ANSI X3.66.

==
*:~
Parms equ 6 ;far call plus bp
Parm0Lo equ Parms+0
Parm0Hi equ Parms+2
Parm1Lo equ Parms+4
Parm1Hi equ Parms+6
polylo equ 1DB3h ;low word of 32-bit polynomial
polyhi equ 04C1h ;high word - note that 32 bit polynomials actually are

;33-bit by definition

Common Configuration Method

Sample DOS real-mode CRC32 C-callable routine (cont)

public _CRC32
_TEXT segment DWORD public ’CODE’

assume CS:_TEXT
GenerateCRC32 proc far
_CRC32 label DWORD
; this routine alters AX, BX, CX, DX (Turbo C or MSC 5.1 compatible)

push bp
mov bp, sp ;setup bp
push es ;save
push si ;save
push di ;save
mov cx, [bp + Parm0Lo] ;*** get # bytes to process
mov bx, [bp + Parm0Hi] ;*** get high word of count
mov si, [bp + Parm1Lo] ;*** get buffer pointer offset
mov ax, [bp + Parm1Hi] ;*** get segment address
mov es, ax ;set up ES
mov ax, 0FFFFh ;initialize 32-bit accumulator
mov dx, ax
or bx, bx ;hi-order count non-zero
jnz SHORT byteloop ;yes - do it
jcxz SHORT exit ;if no bytes to process
align 2

byteloop:
xor dh, ES:[si] ;update with new byte
mov bh, 8 ;loop for each bit in byte
align 2

bitloop:
shl ax,1 ;shift accumulator left 1 bit
rcl dx,1 ;all 32 bits
jnc SHORT bitzero ;if bit shifted out was zero
xor ax, polylo ;update crc with polynomial
xor dx, polyhi
align 2

bitzero:
dec bh ;done with byte ?
jnz bitloop ;no - do next bit
inc si ;adjust buffer pointer
jz SHORT fixseg ;skip if at segment end

align 2
bytechk:

loop byteloop ;loop til buffer processed
dec bl ;theoretical limit 16M bytes
jnz byteloop ;until all done

exit:
xor ax, 0FFFFh ;1’s complement result
xor dx, 0FFFFh ;per ANSI standard
pop di ;restore
pop si ;restore
pop es ;restore
pop bp ;restore
ret ;return to caller

fixseg:
mov si, es ;fixup ES:si if end of segment reached
add si, 1000h ;move up 64k
mov es, si ;restore
xor si, si ;registers
jmp bytechk ;return to mainline

GenerateCRC32 endp
_TEXT ends

end

Common Configuration Method

Sample CRC32 routine in C

/* CRC32.C Generates 32-bit CRCs for data blocks */
/* */
/* crc32 = CGenerateCRC32(bufferlength, @buffer) */
/* */
/* PARAMETERS: bufferlength - unsigned long buffer length */
/* */
/* @buffer - pointer to data buffer */
/* */
/* RETURNS: crc32 - unsigned long 32-bit CRC */
/* */
/* NOTES: The 32-bit polynomial used is: */
/* */
/* 32 26 23 22 16 12 11 10 8 7 5 4 2 1 0 */
/* X +X +X +X +X +X +X +X +X +X +X +X +X +X +X */
/* */
/* The polynomial is defined in ANSI X3.66. */
/* */

unsigned long CGenerateCRC32(unsigned long bufferlength,
unsigned char *buffer)

{
unsigned long crc;
unsigned long tmp;
unsigned long bytecnt;
unsigned long bitcnt;

crc = 0xffffffffL;
if (bufferlength == 0) return (crc ^ 0xffffffffL);
for (bytecnt = 0, bytecnt < bufferlength, bytecnt++)

{
tmp = (unsigned long int) *buffer;
crc ^= (tmp << 24);
for (bitcnt = 0, bitcnt < 8, bitcnt++)

{
tmp = (crc & 0x80000000L);
crc = (crc << 1);
if (tmp) crc ^= 0x04C11DB3L;
}
buffer++;

}
return (crc ^ 0xffffffffL);

}

ProposedProposed StandardStandard ATAT CompatibleCompatible

RegisterRegister MapMap

25 Jun 1991

This document lists the proposed Standard AT Compatible
Register Map for IBM AT systems and true compatibles.

ProposedProposed StandardStandard ATAT CompatibleCompatible RegisterRegister MapMap
(all addresses are in hex)

Register Primary Secondary Tertiary Quaternary Register
Name Address Address Address Address Type

Data 1F0 170 1E8 168 Read/Write

Error 1F1 171 1E9 169 Read Only
Write Precomp 1F1 171 1E9 169 Write Only

Sector Count 1F2 172 1EA 16A Write Only

Sector Number 1F3 173 1EB 16B Read/Write

Cylinder Low 1F4 174 1EC 16C Read/Write

Cylinder High 1F5 175 1ED 16D Read/Write

Drive/Head 1F6 176 1EE 16E Read/Write

Status 1F7 177 1EF 16F Read Only

Command 1F7 177 1EF 16F Write Only

Alternate Status 3F6 376 3EE 36E Read Only
Fixed Disk 3F6 376 3EE 36E Write Only

Digital Input 3F7 377 3EF 36F Read Only

