An electronic copy of this document is available from the SCSI Bulletin Board (316-636-8700).

This document has been prepared according to the style guide of the ISO (International Organization of Standards).

If this document was printed in a 2-up form directly from the printer, NOTEs had to be adjusted to fit into a half-page, which may have resulted in an imperfect representation of the format within the NOTE. This is most likely to occur if a series of NOTEs are mixed in without any line separation.

This document identifies all changes made since Rev 2.1 of June, 1990.
Foreword (This Foreword is not part of American National Standard X3.***-199x.)

When the first IBM PC (Personal Computer) (tm) was introduced, there was no hard disk capability for storage. Successive generations of product resulted in the inclusion of a hard disk as the primary storage device. When the PC AT (tm) was developed, a hard disk was the key to system performance, and the controller interface became a de facto industry interface for the inclusion of hard disks in PC ATs.

The price of desktop systems has declined rapidly because of the degree of integration to reduce the number of components and interconnects required to build a product. A natural outgrowth of this integration was the inclusion of controller functionality into the hard disk.

In October 1988 a number of peripheral suppliers formed the Common Access Method Committee to encourage an industry-wide effort to adopt a common software interface to dispatch input/output requests to SCSI peripherals. Although this was the primary objective, a secondary goal was to specify what is known as the AT Attachment interface.

Suggestions for improvement of this standard will be welcome. They should be sent to the Computer and Business Equipment Manufacturers Association, 311 First Street N.W., Suite 500, Washington, DC 20001.

This standard was processed and approved for submittal to ANSI by the Accredited Standards Committee on Information Processing Systems, X3. Committee approval of this standard does not necessarily imply that all committee members voted for its approval. At the time it approved this standard, the X3 Committee had the following members:

X3 Committee list goes here:

Subcommittee X3T9 on I/O interfaces, which reviewed this standard, had the following members:

X3T9 Committee list goes here:

Task Group X3T9.2 on Lower-Level Interfaces, which completed the development of this standard, had the following members:

X3T9.2 Committee list goes here:

The initial development work on this standard was done by the CAM Committee.

The membership of the CAM Committee consisted of the following organizations:

Adaptec	Data Technology	NCR
AMD	Eastman Kodak	Olivetti
Apple	Emulex	Quantum
AT&T Bell Labs	Fujitsu uElectronics	Scientific Micro Systems
Caliper	Future Domain	Seagate
Cambrian Systems	Hewlett Packard	Sony
Cipher Data	IBM	Storage Dimensions
Cirrus Logic	Imprimis	Sun Microsystems
Columbia Data	Interactive Systems	Syquest Technology
Compaq	JVC	Sytron
Compaq	LSI Logic	Trantor
Compaq	Mass Storage	Western Digital
Digital Equipment	Maxtor	Western Digital
Digital	Microploy	
DP	Miniscribe	
TABLE OF CONTENTS

1. Scope
 1.1 Description of Clauses

2. References
 3. General Description

3. Structure
 4. Definitions
 4.1 Conventions

5. Interface Cabling Requirements
 5.1 Configuration
 5.2 Addressing Considerations
 5.3.1 4-Pin Power
 5.3.2 3-Pin Power
 5.3.3 Device Grounding
 5.4 I/O Connector
 5.5 I/O Cable

6. Physical Interface
 6.1 Signal Conventions
 6.2 Signal Summary
 6.3 Signal Descriptions
 6.3.1 CSIFX - (Drive chip Select 0)
 6.3.2 CSIFX - (Drive chip Select 1)
 6.3.3 DASD - (Drive Address Bus)
 6.3.4 DASD - (Drive Active/Drive 1 Present)
 6.3.5 DASD-DDS - (Drive Data Bus)
 6.3.6 DASD - (Drive I/O Read)
 6.3.7 DASD - (Drive I/O Write)
 6.3.8 DMACK - (DMA Acknowledge) (Optional)
 6.3.9 DMARQ - (DMA Request) (Optional)
 6.3.10 INTRO - (Interrupt)
 6.3.11 IRCB - (Inter-Circuit Bus)
 6.3.12 IORDY - (I/O Channel Ready) (Optional)
 6.3.13 PDA - (Passed Diagnostics)
 6.3.14 RES - (Drive Reset)
 6.3.15 RPS - (Spindle Synchronization) (Optional)

7. Logical Interface
 7.1 General
 7.1.1 Bit Conventions
 7.1.2 Environment

7.2 I/O Register Descriptions
 7.2.1 Alternate Status Register
 7.2.2 Command Register
 7.2.3 Cylinder High Register
 7.2.4 Cylinder Low Register
 7.2.5 Data Register
 7.2.6 Device Control Register
 7.2.7 Drive Address Register
10.1.2 PIO Read Aborted Command
10.2 PIO Data Out Commands
10.2.1 PIO Write Command
10.2.2 PIO Write Aborted Command
10.3 Non-Data Commands
10.4 Miscellaneous Commands
10.5 DMA Data Transfer Commands (Optional)
10.5.1 Normal DMA Transfer
10.5.2 Aborted DMA Transfer
10.5.3 Aborted DMA Command

11. Timing
11.1 Describing
11.2 Symbols
11.3 Terms
11.4 Data Transfers
11.5 Power On and Hard Reset

FIGURES
FIGURE 5-1: ATA INTERFACE TO EMBEDDED BUS PERIPHERALS
FIGURE 5-2: HOST BUS ADAPTER AND PERIPHERAL DEVICES
FIGURE 5-3: ATA INTERFACE TO CONTROLLER AND PERIPHERAL DEVICES
FIGURE 5-4: 40-PIN CONNECTOR MOUNTING
FIGURE 11-1: PIO DATA TRANSFER TO/FROM DRIVE
FIGURE 11-2: I/O DATA TIMING REQUIREMENTS
FIGURE 11-3: DMA DATA TRANSFER
FIGURE 11-4: RESET SEQUENCE

TABLES
TABLE 5-1: DC INTERFACE
TABLE 5-2: DC INTERFACE
TABLE 5-3: CABLE PARAMETERS
TABLE 6-1: INTERFACE SIGNALS
TABLE 6-2: INTERFACE SIGNALS DESCRIPTION
TABLE 7-1: I/O PORT FUNCTIONS/SELECTION ADDRESSES
TABLE 8-1: POWER CONDITIONS
TABLE 8-2: REGISTER CONTENTS
TABLE 9-1: COMMAND CODES AND PARAMETERS
TABLE 9-2: DIAGNOSTIC CODES

Information Processing Systems --
AT Attachment Interface

1. Scope
This standard defines the AT Attachment Interface.
The CAM Committee was formed in October, 1988 and the first working document
of the AT Attachment was introduced in March, 1989.

1.1 Description of Clauses
Clause 1 contains the Scope and Purpose.
Clause 2 contains Referenced and Related International Standards.
Clause 3 contains the General Description.
Clause 4 contains the Glossary.
Clause 5 contains the electrical and mechanical characteristics; covering the
interface cabling requirements of the DC, data cables and connectors.
Clause 6 contains the signal descriptions of the AT Attachment Interface.
Clause 7 contains descriptions of the registers of the AT Attachment
Interface.
Clause 8 describes the programming requirements of the AT Attachment
Interface.
Clause 9 contains descriptions of the commands of the AT Attachment Interface.
Clause 10 contains an overview of the protocol of the AT Attachment Interface.
Clause 11 contains the interface timing diagrams.
Annex A is informative.
Annex B is informative.

2. References
None.

3. General Description
The application environment for the AT Attachment Interface is any computer
which uses an AT Bus or 40-pin ATA interface.

The PC AT Bus (tm) is a widely used and implemented interface for which a
variety of peripherals have been manufactured. As a means of reducing size and
cost, a class of products has emerged which embed the controller functionality
in the drive. These new products utilize the AT Bus fixed disk interface
protocol, and a subset of the AT bus. Because of their compatibility with
existing AT hardware and software this interface quickly became a de facto industry standard.

The purpose of the ATA standard is to define the de facto implementations.

Software in the Operating System dispatches I/O (Input/Output) requests via the AT Bus to peripherals which respond to direct commands.

3.1 Structure

This standard relies upon specifications of the mechanical and electrical characteristics of the AT Bus and a subset of the AT Bus specifically developed for the direct attachment of peripherals.

Also defined are the methods by which commands are directed to peripherals, the contents of registers and the method of data transfers.

4. Definitions and Conventions

4.1 Definitions

For the purpose of this standard the following definitions apply:

4.1.1 ATA (AT Attachment): ATA defines a compatible register set and a 40-pin connector and its associated signals.

4.1.2 Data block: This term describes a data transfer, and is typically a single sector, except when declared otherwise by use of the Set Multiple command.

4.1.3 DMA (Direct Memory Access): A means of data transfer between peripheral and host memory without processor intervention.

4.1.4 Optional: This term describes features which are not required by the standard. However, if any feature defined by the standard is implemented, it shall be done in the same way as defined by the standard. Describing a feature as optional in the text is done to assist the reader. If there is a conflict between text and tables on a feature described as optional, the table shall be accepted as being correct.

4.1.5 PIO (Programmed Input/Output): A means of data transfer that requires the use of the host processor.

4.1.6 Reserved: Where this term is used for bits, bytes, fields and code values; the bits, bytes, fields and code values are set aside for future standardization, and shall be zero.

4.1.7 VU (Vendor Unique): This term is used to describe bits, bytes, fields, code values and features which are not described in this standard, and may be used in a way that varies between vendors.

4.2 Conventions

Certain terms used herein are the proper names of signals. These are printed in uppercase to avoid possible confusion with other uses of the same words; e.g., ATTENTION. Any lowercase uses of these words have the normal American-English meaning.
5.2 Addressing Considerations

In traditional controller operation, only the selected controller receives commands from the host following selection. In this standard, the register contents go to both drives (and their embedded controllers). The host discriminates between the two by using the DRV bit in the Drive/Head Register.

5.3 DC Cable and Connector

The drive receives DC power through a 4-pin or a low-power application 3-pin connector.

5.3.1 4-Pin Power

The pin assignments are shown in Table 5-1. Recommended part numbers for the mating connector to 18AWG cable are shown below, but equivalent parts may be used.

TABLE 5-1: DC INTERFACE

<table>
<thead>
<tr>
<th>POWER LINE DESIGNATION</th>
<th>PIN NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>+12 V</td>
<td>1-01</td>
</tr>
<tr>
<td>+12 V RETURN</td>
<td>1-02</td>
</tr>
<tr>
<td>+5 V RETURN</td>
<td>1-03</td>
</tr>
<tr>
<td>+5 V</td>
<td>1-04</td>
</tr>
</tbody>
</table>

5.3.2 3-Pin Power

The pin assignments are shown in Table 5-2. Recommended part numbers for the mating connector to 18AWG cable are shown below, but equivalent parts may be used.

- Connector (4 Pin) AMP 480424-0 or equivalent.
- Contacts (Loose Piece) AMP 60619-4 or equivalent.
- Contacts (Strip) AMP 61117-4 or equivalent.

TABLE 5-2: DC INTERFACE

<table>
<thead>
<tr>
<th>POWER LINE DESIGNATION</th>
<th>PIN NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>+12 V</td>
<td>1-01</td>
</tr>
<tr>
<td>+12 V RETURN</td>
<td>1-02</td>
</tr>
<tr>
<td>+5 V RETURN</td>
<td>1-03</td>
</tr>
<tr>
<td>+5 V</td>
<td>1-04</td>
</tr>
</tbody>
</table>

5.3.3 Device Grounding

System ground may be connected to a "quick-connect" terminal equivalent to:

- Drive Connector Terminal AMP 61664-1 or equivalent.
- Cable Connector Terminal AMP 62137-2 or equivalent.

Provide for tying the DC Logic ground and the chassis ground together or for separating these two ground planes is vendor specific.

5.4 I/O Connector

The I/O connector is a 40-pin connector as shown in Figure 5-4, with pin assignments as shown in Table 6-1.

The connector should be keyed to prevent the possibility of installing it upside down. A key is provided by the removal of Pin 20. The corresponding pin on the cable connector should be plugged.

The pin locations are governed by the cable plug, not the receptacle. The way in which the receptacle is mounted on the Printed Circuit Board affects the pin positions, and pin 1 should remain in the same relative position. This means the pin numbers of the receptacle may not reflect the conductor number of the plug. The header receptacle is not polarized, and all the signals are relative to Pin 20, which is keyed.
By using the plug positions as primary, a straight cable can connect drives.
As shown in Figure 5-4, conductor 1 on pin 1 of the plug has to be in the same
relative position no matter what the receptacle numbering looks like. If
receptacle numbering was followed, the cable would have to twist 180 degrees
between a drive with top-mounted receptacles, and a drive with bottom-mounted
receptacles.

\[
\begin{array}{c|c|c|c}
40 & 20 & 2 \\
\hline
\end{array}
\]

\[
\begin{array}{c|c|c|c}
\text{Circuit Board} & \text{Circuit Board} \\
40 & 20 & 2 \\
\hline
\end{array}
\]

FIGURE 5-4: 40-PIN CONNECTOR MOUNTING

Recommended part numbers for the mating connector are shown below, but
equivalent parts may be used.

- Connector (40 Pin): 3M 3417-7000 or equivalent.
- Strain relief: 3M 3449-2040 or equivalent.
- Flat Cable (Stranded 28 AWG): 3M 3365-40 or equivalent.
- Flat Cable (Stranded 28 AWG): 3M 3317-40 (Shielded) or equivalent.

5.5 I/O Cable

The cable specifications affect system integrity and the maximum length that
can be supported in any application.

TABLE 5-3: CABLE PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driver 1, 10 Sink Current</td>
<td>12mA</td>
<td>-400mA</td>
</tr>
<tr>
<td>Driver 10 Source Current</td>
<td>-</td>
<td>280μA</td>
</tr>
<tr>
<td>Cable Capacitive Loading</td>
<td></td>
<td>200pF</td>
</tr>
</tbody>
</table>

* This distance may be exceeded in circumstances where the characteristics of both ends of the cable can be controlled.

6. Physical Interface

6.1 Signal Conventions

Signal names are shown in all upper case letters. Signals can be asserted
(active, true) in either a high (more positive voltage) or low (less positive
voltage) state. A dash character (-) at the beginning or end of a signal name
indicates it is asserted at the low level (active low). No dash or a plus
character (+) at the beginning or end of a signal name indicates it is
asserted high (active high). An asserted signal may be driven high or low by
an active circuit, or it may be allowed to be pulled to the correct state by
the bias circuity.

Control signals that are asserted for one function when high and asserted for
another function when low are named with the asserted high function name
followed by a slash character (/), and the asserted low function name followed
with a dash (-) e.g. BITENA/BITLR- enables a bit when high and clears a bit
when low. All signals are TTL compatible unless otherwise noted. Negated means
that the signal is driven by an active circuit to the state opposite to the
asserted state (inactive, or false) or may be simply released (in which case
the bias circuity pulls it inactive, or false), at the option of the
implementor.

6.2 Signal Summary

The physical interface consists of single ended TTL compatible receivers and
drivers communicating through a 40-conductor flat ribbon nonshielded cable
using an asynchronous interface protocol. The pin numbers and signal names are
shown in Table 6-1. Reserved signals shall be left unconnected.
6.3 Signal Descriptions

The interface signals and pins are described in more detail than shown in Table 6-1. The signals are listed according to function, rather than in numerical connector pin order. Table 6-2 lists signal name mnemonic, connector pin number, whether input to (I) or output from (O) the drive, and full signal name.

<table>
<thead>
<tr>
<th>Signal</th>
<th>Pin</th>
<th>I/O</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSIFX</td>
<td>37</td>
<td>I</td>
</tr>
<tr>
<td>CS3FX</td>
<td>38</td>
<td>I</td>
</tr>
<tr>
<td>D40</td>
<td>36</td>
<td>I</td>
</tr>
<tr>
<td>D41</td>
<td>35</td>
<td>I</td>
</tr>
<tr>
<td>D42</td>
<td>34</td>
<td>I</td>
</tr>
<tr>
<td>D43</td>
<td>33</td>
<td>I</td>
</tr>
<tr>
<td>D44</td>
<td>32</td>
<td>O</td>
</tr>
<tr>
<td>D45</td>
<td>31</td>
<td>O</td>
</tr>
<tr>
<td>D46</td>
<td>30</td>
<td>O</td>
</tr>
<tr>
<td>D47</td>
<td>29</td>
<td>O</td>
</tr>
<tr>
<td>D48</td>
<td>28</td>
<td>O</td>
</tr>
<tr>
<td>D49</td>
<td>27</td>
<td>O</td>
</tr>
<tr>
<td>D50</td>
<td>26</td>
<td>I</td>
</tr>
<tr>
<td>D51</td>
<td>25</td>
<td>I</td>
</tr>
<tr>
<td>D52</td>
<td>24</td>
<td>I</td>
</tr>
<tr>
<td>D53</td>
<td>23</td>
<td>I</td>
</tr>
<tr>
<td>D54</td>
<td>22</td>
<td>I</td>
</tr>
<tr>
<td>D55</td>
<td>21</td>
<td>I</td>
</tr>
<tr>
<td>D56</td>
<td>20</td>
<td>I</td>
</tr>
<tr>
<td>D57</td>
<td>19</td>
<td>I</td>
</tr>
<tr>
<td>D58</td>
<td>18</td>
<td>I</td>
</tr>
<tr>
<td>D59</td>
<td>17</td>
<td>I</td>
</tr>
<tr>
<td>D60</td>
<td>16</td>
<td>I</td>
</tr>
<tr>
<td>D61</td>
<td>15</td>
<td>I</td>
</tr>
<tr>
<td>D62</td>
<td>14</td>
<td>I</td>
</tr>
<tr>
<td>D63</td>
<td>13</td>
<td>I</td>
</tr>
<tr>
<td>D64</td>
<td>12</td>
<td>I</td>
</tr>
<tr>
<td>D65</td>
<td>11</td>
<td>I</td>
</tr>
<tr>
<td>D66</td>
<td>10</td>
<td>I</td>
</tr>
<tr>
<td>D67</td>
<td>9</td>
<td>O</td>
</tr>
<tr>
<td>D68</td>
<td>8</td>
<td>O</td>
</tr>
<tr>
<td>D69</td>
<td>7</td>
<td>O</td>
</tr>
<tr>
<td>D70</td>
<td>6</td>
<td>O</td>
</tr>
<tr>
<td>D71</td>
<td>5</td>
<td>O</td>
</tr>
<tr>
<td>D72</td>
<td>4</td>
<td>O</td>
</tr>
<tr>
<td>D73</td>
<td>3</td>
<td>O</td>
</tr>
<tr>
<td>D74</td>
<td>2</td>
<td>O</td>
</tr>
<tr>
<td>D75</td>
<td>1</td>
<td>O</td>
</tr>
<tr>
<td>D76</td>
<td>0</td>
<td>I</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Signal</th>
<th>Pin</th>
<th>I/O</th>
</tr>
</thead>
<tbody>
<tr>
<td>D0</td>
<td>35</td>
<td>I</td>
</tr>
<tr>
<td>D1</td>
<td>34</td>
<td>O</td>
</tr>
<tr>
<td>D2</td>
<td>33</td>
<td>O</td>
</tr>
<tr>
<td>D3</td>
<td>32</td>
<td>O</td>
</tr>
<tr>
<td>D4</td>
<td>31</td>
<td>O</td>
</tr>
<tr>
<td>D5</td>
<td>30</td>
<td>O</td>
</tr>
<tr>
<td>D6</td>
<td>29</td>
<td>O</td>
</tr>
<tr>
<td>D7</td>
<td>28</td>
<td>O</td>
</tr>
<tr>
<td>D8</td>
<td>27</td>
<td>O</td>
</tr>
<tr>
<td>D9</td>
<td>26</td>
<td>O</td>
</tr>
<tr>
<td>D10</td>
<td>25</td>
<td>O</td>
</tr>
<tr>
<td>D11</td>
<td>24</td>
<td>O</td>
</tr>
<tr>
<td>D12</td>
<td>23</td>
<td>O</td>
</tr>
<tr>
<td>D13</td>
<td>22</td>
<td>O</td>
</tr>
<tr>
<td>D14</td>
<td>21</td>
<td>O</td>
</tr>
<tr>
<td>D15</td>
<td>20</td>
<td>O</td>
</tr>
<tr>
<td>D16</td>
<td>19</td>
<td>O</td>
</tr>
<tr>
<td>D17</td>
<td>18</td>
<td>O</td>
</tr>
<tr>
<td>D18</td>
<td>17</td>
<td>O</td>
</tr>
<tr>
<td>D19</td>
<td>16</td>
<td>O</td>
</tr>
<tr>
<td>D20</td>
<td>15</td>
<td>O</td>
</tr>
<tr>
<td>D21</td>
<td>14</td>
<td>O</td>
</tr>
<tr>
<td>D22</td>
<td>13</td>
<td>O</td>
</tr>
<tr>
<td>D23</td>
<td>12</td>
<td>O</td>
</tr>
<tr>
<td>D24</td>
<td>11</td>
<td>O</td>
</tr>
<tr>
<td>D25</td>
<td>10</td>
<td>O</td>
</tr>
<tr>
<td>D26</td>
<td>9</td>
<td>O</td>
</tr>
<tr>
<td>D27</td>
<td>8</td>
<td>O</td>
</tr>
<tr>
<td>D28</td>
<td>7</td>
<td>O</td>
</tr>
<tr>
<td>D29</td>
<td>6</td>
<td>O</td>
</tr>
<tr>
<td>D30</td>
<td>5</td>
<td>O</td>
</tr>
<tr>
<td>D31</td>
<td>4</td>
<td>O</td>
</tr>
<tr>
<td>D32</td>
<td>3</td>
<td>O</td>
</tr>
<tr>
<td>D33</td>
<td>2</td>
<td>O</td>
</tr>
<tr>
<td>D34</td>
<td>1</td>
<td>O</td>
</tr>
<tr>
<td>D35</td>
<td>0</td>
<td>I</td>
</tr>
</tbody>
</table>

* Drive Intercommunication Signals

6.3.1 CSIFX (Drive chip Select 0)

This is the chip select signal decoded from the host address bus used to select the Command Block Registers.

6.3.2 CS3FX (Drive chip Select 1)

This is the chip select signal decoded from the host address bus used to select the Control Block Registers.
6.3.3 DAD-2 (Drive Address Bus)
This is the 3-bit binary coded address asserted by the host to access a
register or data port in the drive.

6.3.4 DASP - (Drive Active/Drive 1 Present)
This is a time-multiplexed signal which indicates that a drive is active, or
that Drive 1 is present. This signal shall be an open collector output and
each drive shall have a 10K pull-up resistor.

During power on initialization or after RESE T- is negated, DASP shall be
asserted by Drive 1 within 400 msec to indicate that Drive 1 is present.
Drive 0 shall allow up to 450 msec for Drive 1 to assert DASP. If Drive 1 is
not present, Drive 0 may assert DASP to drive an activity LED.

DASP shall be negated following acceptance of the first valid command by
Drive 1 or after 31 seconds, whichever comes first.

Any time after negation of DASP-, either drive may assert DASP- to indicate
that a drive is active.

NOTE: Prior to the development of this standard, products were introduced
which did not time multiplex DASP-. Some used two jumpers to indicate
Drive 0 whether Drive 1 was present. If such a drive is jumpered to
indicate Drive 1 is present it should work successfully with a Drive 1
which complies with this standard. If installed as Drive 1, such a
drive may not work successfully because it may not assert DASP- for
a long enough period to be recognized. However, it would assert DASP- to
indicate that the drive is active.

6.3.5 DDO-DD15 (Drive Data Bus)
This is an 8- or 16-bit bidirectional data bus between the host and the drive.
The lower 8 bits are used for 8-bit transfers e.g. registers, ECC bytes.

6.3.6 DIOR- (Drive I/O Read)
This is the Read strobe signal. The falling edge of DIOR- enables data from a
register or the data port of the drive onto the host data bus, DDO-DD7 or DDD-
DD15. The rising edge of DIOR- latches data at the host.

6.3.7 DIOW- (Drive I/O Write)
This is the Write strobe signal. The rising edge of DIOW- clocks data from the
host data bus, DDO-DD7 or DDD-DD15, into a register or the data port of the
drive.

6.3.8 DMACK- (DMA Acknowledge) (Optional)
This signal shall be used by the host in response to DMARQ to either
acknowledge that data has been accepted, or that data is available.

6.3.9 DMARQ (DMA Request) (Optional)
This signal, used for DMA data transfers between host and drive, shall be
asserted by the drive when it is ready to transfer data to or from the host.
The direction of data transfer is controlled by DIOE- and DIOE-. This signal
is used in a handshake manner with DMACK- i.e. the drive shall wait until
the host asserts DMACK- before negating DMARQ, and re-asserting DMARQ if there is
more data to transfer.

When a DMA operation is enabled, ICS16-, CS1FX- and CS3FX- shall not be
asserted and transfers shall be 16-bits wide.

NOTE: ATA products with DMA capability require a pull-down resistor on this
signal to prevent spurious data transfers. This resistor may affect
driver requirements for drives sharing this signal in systems with
unbuffered ATA signals.

6.3.10 INTRQ (Drive Interrupt)
This signal is used to interrupt the host system. INTRQ is asserted only when
the drive has a pending interrupt, the drive is selected, and the host has
cleared nIENA in the Device Control Register. If nIENA=1, or the drive is not
selected, this output is in a high impedance state, regardless of the presence
or absence of a pending interrupt.

INTRQ shall be negated by:
- assertion of RESE T- or
- the setting of SRST of the Device Control Register, or
- the host writing the Command Register or
- the host reading the Status Register.

NOTE: Some drives may negate INTRQ on a PIO data transfer completion, except
on a single sector read or on the last sector of a multi-sector read.

On PIO transfers, INTRQ is asserted at the beginning of each data block to be
transferred. A data block is typically a single sector, except when declared
otherwise by use of the Set Multiple command. An exception occurs on Format
Track, Write Sector(s), Write Buffer and Write Long commands - INTRQ shall not
be asserted at the beginning of the first data block to be transferred.

On DMA transfers, INTRQ is asserted only once, after the command has
completed.

6.3.11 ICS16- (Drive 16-bit I/O)
Except for DMA transfers, ICS16- indicates to the host system that the 16-bit
data port has been addressed and that the drive is prepared to send or receive
a 16-bit data word. This shall be an open collector output.

- When transferring in PIO mode, if ICS16- is not asserted, transfers shall
be 8-bit using DDO-7.
- When transferring in PIO mode, if ICS16- is asserted, transfers shall be
16-bit using DDO-15, for 16-bit data transfers.
- When transferring in DMA mode, the host shall use a 16-bit DMA channel and
ICS16- shall not be asserted.
6.3.12 IORDY (I/O Channel Ready) (Optional)

This signal is negated to extend the host transfer cycle of any host register access (Read or Write) when the drive is not ready to respond to a data transfer request. When IORDY is not negated, IORDY shall be in a high impedance state.

6.3.13 PDIAG- (Passed Diagnostics)

This signal shall be asserted by Drive 1 to indicate to Drive 0 that it has completed diagnostics. A 10k pull-up resistor shall be used on this signal by each drive.

Following a power on reset, software reset or RESET-, Drive 1 shall negate PDIAG- within 1 msec (to indicate to Drive 0 that it is busy). Drive 1 shall then assert PDIAG- within 30 seconds to indicate that it is no longer busy, and is able to provide status. After the assertion of PDIAG-, Drive 1 may be unable to accept commands until it has finished its reset procedure and is Ready (DRDY=1).

Following the receipt of a valid Execute Drive Diagnostics command, Drive 1 shall negate PDIAG- within 1 msec to indicate to Drive 0 that it is busy and has not yet passed its drive diagnostics. If Drive 1 is present then Drive 0 shall wait for up to 5 seconds from the receipt of a valid Execute Drive Diagnostics command for Drive 1 to assert PDIAG-. Drive 1 should clear BSY before asserting PDIAG-, as PDIAG- is used to indicate that Drive 1 has passed its diagnostics and is ready to post status.

If DASP- was not asserted by Drive 1 during reset initialization, Drive 0 shall post its own status immediately after it completes diagnostics, and clear the Drive 1 Status Register to 00h. Drive 0 may be unable to accept commands until it has finished its reset procedure and is Ready (DRDY=1).

6.3.14 RESET- (Drive Reset)

This signal from the host system shall be asserted for at least 25 usec after voltage levels have stabilized during power on and negated thereafter unless some event requires that the drive(s) be reset following power on.

6.3.15 SPSYNC (Spindle Synchronization) (Optional)

This signal may be either input or output to the drive depending on a vendor-defined switch. If a drive is set to Master the signal is output, and if a drive is set to Slave the signal is input.

There is no requirement that each drive implementation be plug-compatible to the extent that a multiple vendor drive subsystem be operable. Mix and match of different manufacturers drives is unlikely because rpm, sync fields, sync bytes etc need to be virtually identical. However, if drives are designed to match the following recommendation, controllers can operate drives with a single implementation.

There can only be one master drive at a time in a configuration. The host or the drive designated as master can generate SPSYNC at least once per rotation, however may be at a higher frequency.

SPSYNC received by a drive is used as the synchronization signal to lock the spindles in step. The time to achieve synchronization varies, and is indicated by the drive setting DRDY i.e. if the drive does not achieve synchronization following power on or a reset, it shall not set DRDY.

A master drive or the host generates SPSYNC and transmits it.

A slave drive does not generate SPSYNC and is responsible to synchronize its index to SPSYNC.

If a drive does not support synchronization, it shall ignore SPSYNC.

In the event that a drive previously synchronized loses synchronization, but is otherwise operational, it does not clear DRDY.

Prior to the introduction of this standard, this signal was defined as DALE (Drive Address Latch Enable), and used for an address valid indication from the host system. If used, the host address and chip selects, DAD through D2, CS1, and CS2, were valid at the negation of this signal and remained valid while DAE was negated, therefore, the drive did not need to latch these signals with DAE.

7. Logical Interface

7.1 General

7.1.1 Bit Conventions

Bit names are shown in all upper case letters except where a lower case n precedes a bit name. This indicates that when nBIT=0 (bit is zero) the action is true and when nBIT=1 (bit is one) the action is false. If there is no preceding n, then when BIT-1 it is true, and when BIT-0 it is false.

A bit can be set to one or cleared to zero and polarity influences whether it is to be interpreted as true or false:

<table>
<thead>
<tr>
<th>True</th>
<th>BIT-1</th>
<th>nBIT=0</th>
</tr>
</thead>
<tbody>
<tr>
<td>False</td>
<td>BIT-0</td>
<td>nBIT=1</td>
</tr>
</tbody>
</table>

7.1.2 Environment

The drives using this interface shall be programmed by the host computer to perform commands and return status to the host at command completion. When two drives are daisy chained on the interface, commands are written in parallel to both drives, and for all except the Execute Diagnostics command, only the selected drive executes the command. On the Execute Diagnostics command addressed to Drive 0, both drives shall execute the command, and Drive 1 shall post its status to Drive 0 via PDIAG-.

Drives are selected by the DRV bit in the Drive/Head Register (see 7.2.8), and by a jumper or switch on the drive designating it as either a Drive 0 or as Drive 1. When DRV=0, Drive 0 is selected. When DRV=1, Drive 1 is selected. When drives are daisy chained, one shall be set as Drive 0 and the other as Drive 1. When a single drive is attached to the interface it shall be set as Drive 0.

Prior to the adoption of this standard, some drives may have provided jumpers to indicate Drive 0 with no Drive 1 present, or Drive 0 with Drive 1 present.
AT Attachment Interface Rev 2.3 January 30, 1991 Page 14

Throughout this document, drive selection always refers to the state of the DRV bit, and the position of the Drive 0/Drive 1 jumper or switch.

7.2 I/O Register Descriptions

Communication to or from the drive is through an I/O Register that routes the input or output data to or from registers (selected) by a code on signals from the host (CSI2X-, CS3X-, DM2, DA1, DM1, DIOX- and DION-).

The Command Block Registers are used for sending commands to the drive or posting status from the drive.

The Control Block Registers are used for drive control and to post alternate status.

Table 7-1 lists these registers and the addresses that select them.

Logic conventions are:
- A = signal asserted
- N = signal negated
- x = does not matter which it is

<table>
<thead>
<tr>
<th>TABLE 7-1: I/O PORT FUNCTIONS/SELECTION ADDRESSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addresses</td>
</tr>
<tr>
<td>CSI2X-[CS3X-] DA2</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>A</td>
</tr>
</tbody>
</table>

7.2.1 Alternate Status Register

This register contains the same information as the Status Register in the command block. The only difference being that reading this register does not imply interrupt acknowledge or clear a pending interrupt.

7.2.2 Command Register

This register contains the command code being sent to the drive. Command execution begins immediately after this register is written. The executable commands, the command codes, and the necessary parameters for each command are listed in Table 9-1.

7.2.3 Cylinder High Register

This register contains the high order bits of the starting cylinder address for any disk access. At the end of the command, this register is updated to reflect the current cylinder number. The most significant bits of the cylinder address shall be loaded into the cylinder High Register.

NOTE: Prior to the introduction of this standard, only the lower 2 bits of this register were valid, limiting cylinder address to 10 bits i.e. 1,024 cylinders.

7.2.4 Cylinder Low Register

This register contains the low order 8 bits of the starting cylinder address for any disk access. At the end of the command, this register is updated to reflect the current cylinder number.

7.2.5 Data Register

This 16-bit register is used to transfer data blocks between the device data buffer and the host. It is also the register through which sector information is transferred on a Format Track command. Data transfers may be either PIO or DMA.

7.2.6 Device Control Register

The bits in this register are as follows:

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>SRST</td>
<td>nIEN</td>
<td>0</td>
</tr>
</tbody>
</table>

- SRST is the host software reset bit. The drive is held reset when this bit is set. If two disk drives are daisy chained on the interface, this bit resets both simultaneously. Drive 1 is not required to execute the DASP-handshake procedure.
- nIEN is the enable bit for the drive interrupt to the host. When nIEN=0, and the drive is selected, INTRQ shall be enabled through a tri-state buffer. When nIEN=1, or the drive is not selected, the INTRQ signal shall be in a high impedance state.
7.2.7 Drive Address Register

This register contains the inverted drive select and head select addresses of the currently selected drive. The bits in this register are as follows:

- HIZ is the Write Gate bit. When writing to the disk drive is in progress, HIZ=0.
- nHTG through nHSO are the one's complement of the binary coded address of the currently selected head. For example, if nHTG through nHSO are 1100b, respectively, head 3 is selected. nHTG is the most significant bit.
- nD51 is the drive select bit for drive 1. When drive 1 is selected and active, nD51=0.
- nD50 is the drive select bit for drive 0. When drive 0 is selected and active, nD50=0.

NOTE: Care should be used when interpreting these bits, as they do not always represent the expected status of drive operations at the instant the status was put into this register. This is because of the use of caching, translate mode and the Drive 0/Drive 1 concept with each drive having its own embedded controller.

7.2.8 Drive/Head Register

This register contains the drive and head numbers. The contents of this register define the number of heads minus 1, when executing an Initialize Drive Parameters command.

- DRV is the binary encoded drive select number. When DRV=0, Drive 0 is selected. When DRV=1, Drive 1 is selected.
- HLT through HSO contain the binary coded address of the head to be selected e.g. if HLT through HSO are 0011b, respectively, head 3 will be selected. HLT is the most significant bit. At command completion, this register is updated to reflect the currently selected head.

7.2.9 Error Register

This register contains status from the last command executed by the drive or a Diagnostic Code.

At the completion of any command except Execute Drive Diagnostic, the contents of this register are valid when ERR=1 in the Status Register.

Following a power on, a reset, or completion of an Execute Drive Diagnostic command, this register contains a Diagnostic Code (see Table 9-2).
7.2.13 Status Register

This register contains the drive status. The contents of this register are updated at the completion of each command. When BSY is cleared, the other bits in this register shall be valid within 400 nsec. If BSY=1, no other bits in this register are valid. If the host reads this register when an interrupt is pending, it is considered to be the interrupt acknowledge. Any pending interrupt is cleared whenever this register is read.

NOTE: If Drive 1 is not detected as being present, Drive 0 clears the Drive 1 Status Register to 00h (indicating that the drive is Not Ready).

<table>
<thead>
<tr>
<th>BSY</th>
<th>DRDY</th>
<th>DMF</th>
<th>DSC</th>
<th>DRQ</th>
<th>CORR</th>
<th>IDX</th>
<th>ERR</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

NOTE: Prior to the definition of this standard, DRDY and DSC were unlatched real time signals.

- BSY (Busy) is set whenever the drive has access to the Command Block Registers. The host should not access the Command Block Register when BSY=1. When BSY=1, a read of any Command Block Register shall return the contents of the Status Register. This bit is set by the drive (which may be able to respond at times when the media cannot be accessed) under the following circumstances:
 a) within 400 nsec after the negation of RESET- or after SRT is set in the Device Control Register. Following acceptance of a reset it is recommended that BSY be set for no longer than 30 seconds by Drive 1 and no longer than 31 seconds by Drive 0.
 b) within 400 nsec of a host write of the Command Register with a Read, Read Long, Read Buffer, Seek, Recalibrate, Initialize Drive Parameters, Read Verify, Identify Drive, or Execute Drive Diagnostic command.
 c) within 5 usec following transfer of 512 bytes of data during execution of a Write, Format Track, or Write Buffer command, or 512 bytes of data and the appropriate number of ECC bytes during the execution of a Write Long command.

- DRDY (Drive Ready) indicates that the drive is capable of responding to a command. When there is an error, this bit is not changed until the Status Register is read by the host, at which time the bit again indicates the current readiness of the drive. This bit shall be cleared at power on and remain cleared until the drive is ready to accept a command.

- DMF (Drive Write Fault) indicates the current write fault status. When an error occurs, this bit shall not be changed until the Status Register is read by the host, at which time the bit again indicates the current write fault status.

- DSC (Drive Seek Complete) indicates that the drive heads are settled over a track. When an error occurs, this bit shall not be changed until the Status Register is read by the host, at which time the bit again indicates the current seek complete status.

- DRQ (Data Request) indicates that the drive is ready to transfer a word or byte of data between the host and the drive.

- CORR (Corrected Data) indicates that a correctable data error was encountered and the data has been corrected. This condition does not terminate a data transfer.

- IDX (Index) is set once per disk revolution.

- ERR (Error) indicates that an error occurred during execution of the previous command. The bits in the Error Register have additional information regarding the cause of the error.

8. Programming Requirements

8.1 Reset Response

A reset is accepted within 400 nsec after the negation of RESET- or within 400 nsec after SRT has been set in the Device Control Register.

When the drive is reset by RESET-, Drive 1 shall indicate it is present by asserting DASP- within 400 nsec, and DASP- shall remain asserted for 30 seconds or until Drive 1 accepts the first command. See also 6.3.4 and 6.3.13.

When the drive is reset by SRST, the drive shall set BSY=1.

See also 7.2.6.

When a reset is accepted, and with BSY set:

a) Both drives perform any necessary hardware initialization
b) Both drives clear any previously programmed drive parameters
c) Both drives may revert to the default condition
d) Both drives load the Command Block Registers with their default values

e) If a hardware reset, Drive 0 waits for DASP- to be asserted by Drive 1
f) If operational, Drive 1 asserts DASP-
g) Drive 0 waits for PDIA/ to be asserted if Drive 1 asserts DASP-
h) If operational, Drive 1 clears BSY
j) If operational, Drive 1 asserts PDIA-
k) Drive 0 clears BSY

No interrupt is generated when initialization is complete.

The default values for the Command Block Registers if no self-tests are performed or if no errors occurred are:

- Error = 01h
- Sector Count = 01h
- Cylinder Low = 00h
- Cylinder High = 00h
- Sector Number = 01h
- Drive/Head = 00h

The Error Register shall contain a Diagnostic Code (see Table 9.2) if a self-test is performed.

Following any reset, the host should issue an Initialize Drive Parameters command to ensure the drive is initialized as desired.

There are three types of reset in ATA. The following is a suggested method of classifying reset actions:

- Power On Reset: the drive executes a series of electrical circuitry diagnostics, starts up the HDA, tests speed and other mechanical parameters, and sets default values.
- Hardware Reset: the drive executes a series of electrical circuitry diagnostics, and resets to default values.
- Software Reset: the drive resets the interface circuitry to default values.
8.2 Translate Mode

The cylinder, head and sector geometry of the drive as presented to the host may differ from the actual physical geometry. Translate mode is an optional and device specific means of mapping between the two.

8.3 Power Conditions

Optional power commands permit the host to modify the behavior of the drive in a manner which reduces the power required to operate.

<table>
<thead>
<tr>
<th>Mode</th>
<th>SRST</th>
<th>BSY</th>
<th>DRDY</th>
<th>Interface Active</th>
<th>Media</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sleep</td>
<td>1</td>
<td>x</td>
<td>x</td>
<td>No</td>
<td>0</td>
</tr>
<tr>
<td>Standby</td>
<td>x</td>
<td>0</td>
<td>1</td>
<td>Yes</td>
<td>0</td>
</tr>
<tr>
<td>Idle</td>
<td>x</td>
<td>0</td>
<td>1</td>
<td>Yes</td>
<td>1</td>
</tr>
<tr>
<td>Active</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Yes</td>
<td>1</td>
</tr>
</tbody>
</table>

1 = Active 0 = Inactive

The lowest power consumption occurs in Sleep mode. When in Sleep mode, the drive needs a Software Reset to be activated (see 9.18). The time to respond could be as long as 30 seconds or more.

In Standby mode the drive interface is capable of accepting commands, but as the media is not immediately accessible, it could take the drive as long as 30 seconds or more to respond.

In Idle mode the drive is capable of responding immediately to media access requests. A drive in Idle mode may take longer to complete the execution of a command because it may have to activate some circuitry.

In Active mode the drive is capable of responding immediately to media access requests, and commands complete execution in the shortest possible time.

Ready is not a power condition. A drive may post ready at the interface even though the media may not be accessible.

See specific power-related commands.

8.4 Error Posting

The errors that are valid for each command are defined in Table 8-1. It is not a requirement that all valid conditions be implemented. See 7.2.6 and 7.2.13 for the definition of the Error Register and Status Register bits.

<table>
<thead>
<tr>
<th>Error Register</th>
<th>Status Register</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9. Command Descriptions

Commands are issued to the drive by loading the pertinent registers in the command block with the needed parameters, and then writing the command code to the Command Register.

The manner in which a command is accepted varies. There are three classes (see Table 9-1) of command acceptance, all predicated on the fact that to receive a command, BSY=0:

- Upon receipt of a Class 1 command, the drive sets BSY within 400 nsec.
- Upon receipt of a Class 2 command, the drive sets BSY within 400 nsec, sets up the sector buffer for a write operation, sets DRQ within 700 usec, and clears BSY within 400 nsec of setting DRQ.
- Upon receipt of a Class 3 command, the drive sets BSY within 400 nsec, sets up the sector buffer for a write operation, sets DRQ within 20 msec, and clears BSY within 400 nsec of setting DRQ.
NOTE: DBO may be set so quickly on Class 2 and Class 3 that the BSY
transition is too short for BSY-1 to be recognized.

The drive shall implement all mandatory commands as identified by an M, and
may implement the optional commands identified by an O, in Table 9-1. V
indicates a Vendor Specific command code.

If a new command is issued to a drive which has an uncompleted command
(subsequently referred to as Old Command) in progress, the drive shall
immediately respond to the new command (Subsequently referred to as
New_Command), even if execution of the Old Command could have been completed.

There shall be no indication given to the system as to the status of the
Old_Command which was being executed at the time the New_Command was issued.

<table>
<thead>
<tr>
<th>Class</th>
<th>Command Description</th>
<th>Command Code</th>
<th>FR</th>
<th>SC</th>
<th>SN</th>
<th>CY</th>
<th>DH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Check Power Mode</td>
<td>98h</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Execute Drive Diagnostic</td>
<td>90h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Format Track</td>
<td>96h</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Identify Device</td>
<td>97h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Idle</td>
<td>89h</td>
<td>y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Idle Immediate</td>
<td>95h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Initialize Drive Parameters</td>
<td>91h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Recalibrate</td>
<td>6xh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Read Buffer</td>
<td>83h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Read DMA (w/retry)</td>
<td>87h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Read DMA (w/o retry)</td>
<td>85h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Read Multiple</td>
<td>89h</td>
<td>y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Read Sector(s) (w/retry)</td>
<td>95h</td>
<td>y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Read Sector(s) (w/o retry)</td>
<td>91h</td>
<td>y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Read Long (w/retry) See 9.13</td>
<td>93h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Read Long (w/o retry) See 9.13</td>
<td>97h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Read Verify Sector(s) (w/retry)</td>
<td>95h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Read Verify Sector(s) (w/o retry)</td>
<td>91h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Seek</td>
<td>7xh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Set Features</td>
<td>89h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Set Multiple Mode</td>
<td>91h</td>
<td>y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Set Sleep Mode</td>
<td>93h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Standby</td>
<td>95h</td>
<td>y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Standby Immediate</td>
<td>97h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Write Buffer</td>
<td>83h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Write DMA (w/retry)</td>
<td>87h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Write DMA (w/o retry)</td>
<td>85h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Write Multiple</td>
<td>89h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Write Sector(s) (w/retry)</td>
<td>95h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Write Sector(s) (w/o retry)</td>
<td>91h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Write Long (w/retry)</td>
<td>93h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Write Long (w/o retry)</td>
<td>97h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Write Verify</td>
<td>7xh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Vendor Unique</td>
<td>91h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Vendor Unique</td>
<td>93h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Reserved: All remaining codes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FR = Features Register (see command descriptions for use)
SC = Sector Count Register
SN = Sector Number Register
CY = Cylinder Registers
DH = Drive/Head Register
y = the register contains a valid parameter for this command.
For the Drive/Head Register, y means both the drive and head parameters are used.
D = only the drive parameter is valid and not the head parameter.
D* = Addressed to Drive 0 but both drives execute it.
* = Maintained for compatibility (see 7.2.3)
9.1 Check Power Mode
This command checks the power mode.
If the drive is in, going to, or recovering from the Standby Mode the drive shall set BSY, set the Sector Count Register to 00h, clear BSY, and generate an interrupt.
If the drive is in the Idle Mode, the drive shall set BSY, set the Sector Count Register to FFh, clear BSY, and generate an interrupt.

9.2 Execute Drive Diagnostic
This command shall perform the internal diagnostic tests implemented by the drive. See also 6.3.4 and 6.3.13. The DRV bit is ignored. Both drives, if present, shall execute this command.
If Drive 1 is present:
- Drive 0 waits up to 5 seconds for Drive 1 to assert PDIAG-
- If Drive 1 has not asserted PDIAG-, indicating a failure, Drive 0 shall append 80h to its own diagnostic status.
- Both drives shall execute diagnostics.
- If Drive 1 diagnostic failure is detected when Drive 0 status is read, Drive 1 status is obtained by setting the DRV bit, and reading status.
If there is no Drive 1 present:
- Drive 0 posts only its own diagnostic results.
- Drive 0 clears BSY, and generates an interrupt.

The Diagnostic Code written to the Error Register is a unique 8-bit code as shown in Table 9-2, and not as the single bit flags defined in 7.2.9.
If Drive 1 fails diagnostics, Drive 0 "ORs" 80h with its own status and loads that code into the Error Register. If Drive 1 passes diagnostics or there is no Drive 1 connected, Drive 0 "ORs" 00h with its own status and loads that code into the Error Register.

TABLE 9-2: DIAGNOSTIC CODES

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00h</td>
<td>No error detected</td>
</tr>
<tr>
<td>02h</td>
<td>Formatter device error</td>
</tr>
<tr>
<td>03h</td>
<td>Sector buffer error</td>
</tr>
<tr>
<td>04h</td>
<td>ECC circuitry error</td>
</tr>
<tr>
<td>05h</td>
<td>Controlling microprocessor error</td>
</tr>
<tr>
<td>80h</td>
<td>Drive 1 failed</td>
</tr>
</tbody>
</table>

9.3 Format Track
The implementation of the Format Track command is vendor specific. The actions may be a physical reformatting of a track, initializing the data field contents to some value, or doing nothing.

The Sector Count Register contains the number of sectors per track.
The track address is specified in the Cylinder High and Cylinder Low Registers, and the number of sectors is specified in the Sector Count Register. When the command is accepted, the drive sets the DRQ bit and waits for the host to fill the sector buffer. When the sector buffer is full, the drive clears DRQ, sets BSY and begins command execution.
The contents of the sector buffer shall not be written to the media, and may be either ignored or interpreted as follows:

<table>
<thead>
<tr>
<th>DD15 --- DD0</th>
<th>DD15 ---- DD0</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Sector</td>
<td>Last Sector</td>
</tr>
<tr>
<td>Descriptor</td>
<td>Descriptor</td>
</tr>
<tr>
<td>Filled with</td>
<td>Filled with</td>
</tr>
<tr>
<td>zeros</td>
<td>zeros</td>
</tr>
</tbody>
</table>

One 16-bit word represents each sector, the words being contiguous from the start of a sector. Any words remaining in the buffer after the representation of the last sector are filled with zeros. DD15-8 contain the sector number. If an interleave is specified, the words appear in the same sequence as they appear on the track. DD7-0 contain a descriptor value defined as follows:

- 00h - Format sector as good
- 20h - Unassign the alternate location for this sector
- 40h - Assign this sector to an alternate location
- 80h - Format sector as bad

NOTE: Some users of the ATA drive expect the operating system partition table to be erased on a Format command. It is recommended that a drive which does not perform a physical format of the track, writes a data pattern of all zeros to the sectors which have been specified by the Format Track command.

NOTE: It is recommended that Implementors reassign data blocks which show repeated errors.

9.4 Identify Drive
The Identify Drive command enables the host to receive parameter information from the drive. When the command is issued, the drive sets BSY, stores the required parameter information in the sector buffer, sets DRQ, and generates an interrupt. The host then reads the information out of the sector buffer. The parameter words in the buffer have the arrangement and meanings defined in Table 9-3. All reserved bits or words shall be zero.
TABLE 9-3: IDENTIFY DRIVE INFORMATION

<table>
<thead>
<tr>
<th>Word</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>General configuration bit-significant information:</td>
</tr>
<tr>
<td>0-15</td>
<td>0 reserved for non-magnetic drives</td>
</tr>
<tr>
<td>16</td>
<td>1-formatted speed tolerance gap required</td>
</tr>
<tr>
<td>17</td>
<td>2-track offset option available</td>
</tr>
<tr>
<td>18</td>
<td>3-data strobe offset option available</td>
</tr>
<tr>
<td>19</td>
<td>4-rotational speed tolerance is > 0.5%</td>
</tr>
<tr>
<td>20</td>
<td>5-disk transfer rate > 10 Mbps</td>
</tr>
<tr>
<td>21</td>
<td>6-disk transfer rate > 5 Mbps but <= 10 Mbps</td>
</tr>
<tr>
<td>22</td>
<td>7-disk transfer rate < 5 Mbps</td>
</tr>
<tr>
<td>23</td>
<td>8 reserved for removable cartridge drive</td>
</tr>
<tr>
<td>24</td>
<td>9-fixed drive</td>
</tr>
<tr>
<td>25</td>
<td>10-spindle motor control option implemented</td>
</tr>
<tr>
<td>26</td>
<td>11-head switch time > 15 usec</td>
</tr>
<tr>
<td>27</td>
<td>12-not MFM encoded</td>
</tr>
<tr>
<td>28</td>
<td>13-soft sectored</td>
</tr>
<tr>
<td>29</td>
<td>14-hard sectored</td>
</tr>
<tr>
<td>0-2</td>
<td>0-reserved</td>
</tr>
</tbody>
</table>

1-3 | Number of fixed cylinders |
4-5 | Number of heads |
6-7 | Number of unformatted bytes per track |
8-9 | Number of unformatted bytes per sector |
10-11| Number of sectors per track |
12-13| Vendor Unique |
14-15| Serial number (20 ASCII characters, 0000h not specified) |
16-17| Buffer type |
18-19| Buffer size in 512-byte increments (0000h not specified) |
20-21| # of ECC bytes per track (0000h not specified) |
22-23| # of ECC bytes per track (0000h not specified) |
24-25| Model number (40 ASCII characters, 0000h not specified) |
26-27| Vendor Unique |
28-29| Offset (0000h not specified) |
30-31| Maximum number of sectors that can be transferred per interrupt on Read and Write Multiple commands |
32-33| Cannot perform doubleword 1/0 |
34-35| Can perform doubleword 1/0 |
36-37| Capabilities |
38-39| Vendor Unique |
40-41| Reserved |
42-43| 1-DMA Supported |
44-45| Vendor Unique |
46-47| P10 data transfer cycle timing mode |
48-49| Vendor Unique |
50-51| Reserved |
52-53| Reserved |
54-55| Reserved |
56-57| Reserved |
58-59| Reserved |
60-61| Reserved |
62-63| Reserved |
64-65| Reserved |
66-67| Reserved |
68-69| Reserved |
70-71| Reserved |
72-73| Reserved |
74-75| Reserved |
76-77| Reserved |
78-79| Reserved |
80-81| Reserved |
82-83| Reserved |
84-85| Reserved |
86-87| Reserved |
88-89| Reserved |
90-91| Reserved |
92-93| Reserved |
94-95| Reserved |
96-97| Reserved |
98-99| Reserved |
100-101| Reserved |
102-103| Reserved |
104-105| Reserved |
106-107| Reserved |
108-109| Reserved |
110-111| Reserved |
112-113| Reserved |
114-115| Reserved |
116-117| Reserved |
118-119| Reserved |
120-121| Reserved |
122-123| Reserved |
124-125| Reserved |
126-127| Reserved |
128-129| Reserved |
130-131| Reserved |
132-133| Reserved |
134-135| Reserved |
136-137| Reserved |
138-139| Reserved |
140-141| Reserved |
142-143| Reserved |
144-145| Reserved |
146-147| Reserved |
148-149| Reserved |
150-151| Reserved |
152-153| Reserved |
154-155| Reserved |
156-157| Reserved |
158-159| Reserved |
160-161| Reserved |
162-163| Reserved |
164-165| Reserved |
166-167| Reserved |
168-169| Reserved |
170-171| Reserved |
172-173| Reserved |
174-175| Reserved |
176-177| Reserved |
178-179| Reserved |
180-181| Reserved |
182-183| Reserved |
184-185| Reserved |
186-187| Reserved |
188-189| Reserved |
190-191| Reserved |
192-193| Reserved |
194-195| Reserved |
196-197| Reserved |
198-199| Reserved |
200-201| Reserved |
202-203| Reserved |
204-205| Reserved |
206-207| Reserved |
208-209| Reserved |
210-211| Reserved |
212-213| Reserved |
214-215| Reserved |
216-217| Reserved |
218-219| Reserved |
220-221| Reserved |
222-223| Reserved |
224-225| Reserved |
226-227| Reserved |
228-229| Reserved |
230-231| Reserved |
232-233| Reserved |
234-235| Reserved |
236-237| Reserved |
238-239| Reserved |
240-241| Reserved |
242-243| Reserved |
244-245| Reserved |
246-247| Reserved |
248-249| Reserved |
250-251| Reserved |
252-253| Reserved |
254-255| Reserved |

The fields described in 9.4.1 through 9.4.5 are not affected by the Initialize Drive Parameters command.
used to serve as the default timing.

9.4.11 DMA data transfer cycle timing mode

The DMA transfer timing for each ATA device falls into categories which have unique parametric timing specifications. To determine the proper device timing category, compare the Cycle Time specified in Figure 11-3 with the contents of this field. The value returned in Bits 15-8 should fall into one of the categories specified in Figure 11-3, and if it does not, then Mode 0 shall be used to serve as the default timing.

9.5 Idle

This command causes the drive to set BSY, enter the Idle Mode, clear BSY, and generate an interrupt. The interrupt is generated even though the drive may not have fully transitioned to Idle Mode.

If the drive is already spinning, the spin sequence is not executed.

If the Sector Count Register is non-zero then the automatic power down sequence shall be enabled and the timer begins counting down immediately. If the Sector Count Register is zero then the automatic power down sequence shall be disabled.

9.6 Idle Immediate

This command causes the drive to set BSY, enter the Idle Mode, clear BSY, and generate an interrupt. The interrupt is generated even though the drive may not have fully transitioned to Idle Mode.

9.7 Initialize Drive Parameters

This command enables the host to set the number of sectors per track and the number of heads minus 1, per cylinder. Upon receipt of the command, the drive sets BSY, saves the parameters, clears BSY, and generates an interrupt.

The only two register values used by this command are the Sector Count Register which specifies the number of sectors per track, and the Drive/Head Register which specifies the number of heads minus 1. The DRQ bit designates these values to Drive 0 or Drive 1, as appropriate.

The sector count and head values are not checked for validity by this command. If they are invalid, no error will be posted until an illegal access is made by some other command.

9.8 Recalibrate

This command moves the read/write heads from anywhere on the disk to cylinder 0. Upon receipt of the command, the drive sets BSY and issues a seek to cylinder zero. The drive then waits for the seek to complete before updating status, clearing BSY and generating an interrupt.

If the drive cannot reach cylinder 0, a Track Not Found error is posted.

9.9 Read Buffer

The Read Buffer command enables the host to read the current contents of the drive's sector buffer. When this command is issued, the drive sets BSY, sets up the sector buffer for a read operation, sets DRQ, clears BSY, and generates an interrupt. The host then reads up to 512 bytes of data from the buffer.

The Read Buffer and Write Buffer commands shall be synchronized such that sequential Read Buffer and Read Buffer commands access the same 512 bytes within the buffer.

9.10 Read DMA

This command executes in a similar manner to the Read Sectors command except for the following:

- the host initializes a slave-DMA channel prior to issuing the command
- data transfers are qualified by DRQA and are performed by the slave-DMA channel
- the drive issues only one interrupt per command to indicate that data transfer has terminated and status is available.

Any unrecoverable error encountered during execution of a Read DMA command results in the termination of data transfer at the sector where the error was detected. The sector in error is not transferred. The drive generates an interrupt to indicate that data transfer has terminated and status is available. The error posting is the same as that of the Read Sectors command.

9.11 Read Long

The Read Long command performs similarly to the Read Sectors command except that it returns the data and the ECC bytes contained in the data field of the desired sector. During a Read Long command, the drive does not check the ECC bytes to determine if there has been a data error. Only single sector read long operations are supported.

The transfer of the ECC bytes shall be 8-bits wide.

9.12 Read Multiple Command

The Read Multiple command performs similarly to the Read Sectors command. Interrupts are not generated on every sector, but on the transfer of a block which contains the number of sectors defined by a Set Multiple command.

Command execution is identical to the Read Sectors operation except that the number of sectors defined by a Set Multiple command are transferred without intervening interrupts. DRQ qualification of the transfer is required only at the start of the data block, not on each sector.

The block count of sectors to be transferred without intervening interrupts is programmed by the Set Multiple Mode command, which shall be executed prior to the Read Multiple command.

When the Read Multiple command is issued, the Sector Count Register contains the number of sectors (not the number of blocks or the block count) requested.
If the number of requested sectors is not evenly divisible by the block count, as many full blocks as possible are transferred, followed by a final, partial block transfer. The partial block transfer shall be for \(n \) sectors, where
\[
\text{n} = \text{Remainder} \left(\text{Sector Count} / \text{Block Count} \right)
\]

If the Read Multiple command is attempted before the Set Multiple Mode command has been executed or when Read Multiple commands are disabled, the Read Multiple operation shall be rejected with an Aborted Command error.

Disk errors encountered during Read Multiple commands are posted at the beginning of the block or partial block transfer, but DRQ is still set and the data transfer shall take place as if it normally would, including transfer of corrupted data, if any.

The contents of the Command Block Registers following the transfer of a data block which had a sector in error are undefined. The host should retry the transfer as individual requests to obtain valid error information.

Subsequent blocks or partial blocks are transferred only if the error was a correctable data error. All other errors cause the command to stop after transfer of the block which contained the error. Interrupts are generated when DRQ is set at the beginning of each block or partial block.

9.13 Read Sector(s)

This command reads from 1 to 256 sectors as specified in the Sector Count register. A sector count of 0 requests 256 sectors. The transfer begins at the sector specified in the Sector Number Register. See 10.1 for the DRQ, IRQ and BSY protocol on data transfers.

If the drive is not already on the desired track, an implied seek is performed. Once at the desired track, the drive searches for the appropriate ID field.

If retries are disabled and two index pulses have occurred without error, free reading of the requested ID, an ID Not Found error is posted.

If retries are enabled, up to a vendor specific number of attempts may be made to read the requested ID before posting an error.

If the ID is read correctly, the data address mark shall be recognized within a specified number of bytes, or the Address Mark Not Found error is posted.

DRQ is always set prior to data transfer regardless of the presence or absence of an error condition.

At command completion, the Command Block Registers contain the cylinder, head, and sector number of the last sector read.

If an error occurs, the read terminates at the sector where the error occurred. The Command Block Registers contain the cylinder, head, and sector number of the sector where the error occurred.

The flawed data is pending in the sector buffer.

9.14 Read Verify Sector(s)

This command is identical to the Read Sectors command, except that DRQ is never set, and no data is transferred to the host. See 10.3 for protocol.

When the requested sectors have been verified, the drive clears BSY and generates an interrupt. Upon command completion, the Command Block Registers contain the cylinder, head, and sector number of the last sector verified.

If an error occurs, the verify terminates at the sector where the error occurs. The Command Block Registers contain the cylinder, head, and sector number of the sector where the error occurred. The Sector Count Register shall contain the number of sectors not yet verified.

9.15 Seek

This command initiates a seek to the track and selects the head specified in the command block. The drive need not be formatted for a seek to execute properly. See 10.3 for protocol. The drive shall not set DSC=1 until the action of seeking has completed. The drive may return the interrupt before the seek is completed.

If another command is issued to the drive while a seek is being executed, the drive sets BSY=1, waits for the seek to complete, and then begins execution of the command.

9.16 Set Features

This command is used by the host to establish the following parameters which affect the execution of certain drive features:

- **44h**: Vendor unique length of ECC on Read Long/Write Long commands
- **55h**: Disable read look-ahead feature
- **66h**: Data read look-ahead feature
- **A9h**: Enable read look-ahead feature
- **88h**: 4 bytes of ECC apply on Read Long/Write Long commands
- **CCh**: Disable error correction on power on defaults
- **CCh**: Enable reverting power on defaults

See 10.3 for protocol. If the value in the register is not supported or is invalid, the drive posts an Aborted Command error.

At power on, or after a hardware reset, the default mode is the same as that represented by A9h, 88h, and CCh. A setting of 66h allows settings for read look-ahead, number of ECC bytes and multiple count which may have been modified since power on to remain at the same setting after a software reset.

9.17 Set Multiple Mode

This command enables the drive to perform Read and Write Multiple operations and establishes the block count for these commands. See 10.3 for protocol.

The Sector Count Register is loaded with the number of sectors per block. Drives shall support block sizes of 2, 4, 8, and 16 sectors, if their buffer size is at least 8,192 bytes, and may also support other block sizes. Upon receipt of the command, the drive sets BSY=1 and checks the Sector Count Register.
If the Sector Count Register contains a valid value and the block count is supported, the value is loaded for all subsequent Read Multiple and Write Multiple commands and execution of those commands is enabled. If a block count is not supported, an Aborted Command error is posted, and Read Multiple and Write Multiple commands are disabled.

If the Sector Count Register contains 0 when the command is issued, Read and Write Multiple commands are disabled.

At power on, or after a hardware reset, the default mode is Read and Write Multiple disabled. If Disable Default has been set in the Features Register then the mode remains the same as that last established prior to a software reset, otherwise it reverts to the default of disabled.

9.18 Sleep
This command is the only way to cause the drive to enter Sleep Mode. The drive is spun down, and when it is stopped, BUSY is cleared, an interrupt is generated, and the interface becomes inactive. The only way to recover from Sleep Mode without a reset or power on, is for the host to issue a software reset.

A drive shall not power on in Sleep Mode nor remain in Sleep Mode following a reset sequence. If the drive is already spun down, the spin down sequence is not executed.

9.19 Standby
This command causes the drive to enter the Standby Mode. See 10.3 for protocol. The drive may return the interrupt before the transition to Standby Mode is completed.

If the drive is already spun down, the spin down sequence is not executed.

If the Sector Count Register is non-zero then the automatic power down sequence shall be enabled and the timer will begin counting down when the drive returns to Idle mode. If the Sector Count Register is zero then the automatic power down sequence shall be disabled.

9.20 Standby Immediate
This command causes the drive to enter the Standby Mode. See 10.3 for protocol. The drive may return the interrupt before the transition to Standby Mode is completed.

If the drive is already spun down, the spin down sequence is not executed.

9.21 Write Buffer
This command enables the host to overwrite the contents of the drive's sector buffer with any data pattern desired. See 10.2 for protocol.

The Read Buffer and Write Buffer commands shall be synchronized within the drive such that sequential Write Buffer and Read Buffer commands access the same 512 bytes within the buffer.

9.22 Write DMA
This command executes in a similar manner to Write Sectors except for the following:
- the host initializes a slave-DMA channel prior to issuing the command
- data transfers are qualified by DMAQ and are performed by the slave-DMA channel
- the drive issues only one interrupt per command to indicate that data transfer has terminated and status is available.

Any error encountered during Write DMA execution results in the termination of data transfer. The drive issues an interrupt to indicate that data transfer has terminated and status is available in the Error Register. The error posting is the same as that of the Write Sectors command.

9.23 Write Multiple Command
This command is similar to the Write Sectors command. The drive sets BUSY within 400 nsec of accepting the command, and interrupts are not presented on each sector but on the transfer of a block which contains the number of sectors defined by Set Multiple.

Command execution is identical to the Write Sectors operation except that the number of sectors defined by the Set Multiple command are transferred without intervening interrupts. DMAQ qualification of the transfer is required only at the start of the data block, not on each sector.

The block count of sectors to be transferred without intervening interrupts is programmed by the Set Multiple Mode command, which shall be executed prior to the Read Multiple command.

When the Write Multiple command is issued, the Sector Count Register contains the number of sectors (not the number of blocks or the block count) requested.

If the number of requested sectors is not evenly divisible by the block count, as many full blocks as possible are transferred, followed by a final, partial block transfer. The partial block transfer is for n sectors, where

\[n = \text{Remainder (Sector Count / Block Count)} \]

If the Write Multiple command is attempted before the Set Multiple Mode command has been executed or when Write Multiple commands are disabled, the Write Multiple operation shall be rejected with an aborted command error.

Disk errors encountered during Write Multiple commands are posted after the attempted disk write of the block or partial block transferred. The Write command ends with the sector in error, even if it was in the middle of a block. Subsequent blocks are not transferred in the event of an error. Intermittent errors are generated when DMAQ is set at the beginning of each block or partial block.

The contents of the Command Block Registers following the transfer of a data block which had a sector in error are undefined. The host should retry the transfer as individual requests to obtain valid error information.
9.24 Write Same

This command executes in a similar manner to Write Sectors except that only one sector of data is transferred. The contents of the sector are written to the medium one or more times.

NOTE: The Write Same command allows for initialization of part or all of the medium to the specified data with a single command.

If the Features Register is 22h, the drive shall write that part of the medium specified by the Sector Count, Sector Number, cylinder and drive/head registers. If the Features Register contains 00h, the drive shall initialize all the user accessible medium. If the register contains a value other than 22h or 00h, the command shall be rejected with an aborted command error.

The drive issues an interrupt to indicate that the command is complete. Any error encountered during execution results in the termination of the write operation. Status is available in the Error Register if an error occurs. The error posting is the same as that of the Write Sectors command.

9.25 Write Long

This command is similar to the Write Sectors command except that it writes the data and the ECC bytes directly from the sector buffer; the drive does not generate the ECC bytes itself. Only single sector Write Long operations are supported.

The transfer of the ECC bytes shall be 8-bits wide.

9.26 Write Sector(s)

This command writes from 1 to 256 sectors as specified in the Sector Count Register (a sector count of zero requests 256 sectors), beginning at the specified sector. See 10.1 for the DRQ, IRQ and BSY protocol on data transfers.

If the drive is not already on the desired track, an implied seek is performed. Once at the desired track, the drive searches for the appropriate ID field.

If retries are disabled and two index pulses have occurred without error free reading of the requested ID, an ID Not Found error is posted.

If retries are enabled, up to a vendor specific number of attempts may be made to read the requested ID before posting an error.

If the ID is read correctly, the data loaded in the buffer is written to the data field of the sector, followed by the ECC bytes. Upon command completion, the Command Block Registers contain the cylinder, head, and sector number of the last sector written.

If an error occurs during a write of more than one sector, writing terminates at the sector where the error occurs. The Command Block Registers contain the cylinder, head, and sector number of the sector where the error occurred. The host may then read the command block to determine what error has occurred, and on which sector.

9.27 Write Verify

This command is similar to the Write Sectors command, except that each sector is verified immediately after being written. The verify operation is a read without transfer and a check for data errors. Any errors encountered during the verify operation are posted. Multiple sector write verify commands write all the requested sectors and then verify all the requested sectors before generating the final interrupt.

10. Protocol Overview

Commands can be grouped into different classes according to the protocols followed for command execution. The command classes with their associated protocols are defined below.

For all commands, the host first checks if BSY=1, and should proceed no further unless and until BSY=0. For most commands, the host will also wait for DRDY=1 before proceeding. Those commands shown with DRDY=x can be executed when DRDY=0.

Data transfers may be accomplished in more ways than are described below, but these sequences should work with all known implementations of ATA drives.

10.1 PIO Data In Commands

This class includes:
- Identify Drive
- Read Buffer
- Read Long
- Read Sector(s)

Execution includes the transfer of one or more 512 byte (>512 bytes on Read Long) sectors of data from the drive to the host.

a) The host writes any required parameters to the Features, Sector Count, Sector Number, Cylinder and Drive/Head registers.
b) The host writes the command code to the Command Register.
c) The drive sets BSY and prepares for data transfer.
d) When a sector of data is available, the drive sets DRQ and clears BSY prior to asserting INTRQ.
e) After detecting INTRQ, the host reads the Status Register, then reads one sector of data via the Data Register. In response to the Status Register being read, the drive negates INTRQ.
f) The drive clears DRQ. If transfer of another sector is required, the drive also sets BSY and the above sequence is repeated from d).
10.1.1 PIO Read Command

<table>
<thead>
<tr>
<th>Setup</th>
<th>Issue Command</th>
<th>Read Status</th>
<th>Transfer Data</th>
<th>Read Status</th>
<th>Transfer Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSY-0</td>
<td>DRDY-1</td>
<td>BSY-1</td>
<td>BSY-0</td>
<td>DRQ-1</td>
<td>Assert Negate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>INTRO</td>
</tr>
</tbody>
</table>

If Error Status is presented, the drive is prepared to transfer data, and it is at the host's discretion that the data is transferred.

10.1.2 PIO Read Aborted Command

<table>
<thead>
<tr>
<th>Setup</th>
<th>Issue Command</th>
<th>Read Status</th>
<th>Transfer Data</th>
<th>Read Status</th>
<th>Transfer Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSY-0</td>
<td>DRDY-1</td>
<td>BSY-1</td>
<td>BSY-0</td>
<td>DRQ-1</td>
<td>Assert Negate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>INTRO</td>
</tr>
</tbody>
</table>

Although DRQ-1, there is no data to be transferred under this condition.

10.2 PIO Data Out Commands

This class includes:
- Format
- Write Buffer
- Write Long
- Write Sector(s)

Execution includes the transfer of one or more 512 byte (=512 bytes on Write Long) sectors of data from the drive to the host.

a) The host writes any required parameters to the Features, Sector Count, Sector Number, Cylinder and Drive/Head registers.
b) The host writes the command code to the Command Register.
c) The drive sets DRQ when it is ready to accept the first sector of data.
d) The host writes one sector of data via the Data Register.
e) The drive clears DRQ and sets BSY.
f) When the drive has completed processing of the sector, it clears BSY and asserts INTRQ. If transfer of another sector is required, the drive also sets DRQ.
g) After detecting INTRQ, the host reads the Status Register.
h) The drive clears the interrupt.
i) If transfer of another sector is required, the above sequence is repeated from d).

10.2.1 PIO Write Command

<table>
<thead>
<tr>
<th>Setup</th>
<th>Issue Command</th>
<th>Transfer Data</th>
<th>Read Status</th>
<th>Transfer Data</th>
<th>Read Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSY-0</td>
<td>DRDY-1</td>
<td>BSY-1</td>
<td>DRQ-1</td>
<td>Assert Negate</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BSY-0</td>
<td>INTRO</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10.2.2 PIO Write Aborted Command

<table>
<thead>
<tr>
<th>Setup</th>
<th>Issue Command</th>
<th>Read Status</th>
<th>Transfer Data</th>
<th>Read Status</th>
<th>Transfer Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSY-0</td>
<td>DRDY-1</td>
<td>BSY-1</td>
<td>DRQ-1</td>
<td>Assert Negate</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BSY-0</td>
<td>INTRO</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10.3 Non-Data Commands

This class includes:
- Execute Drive Diagnostic (DRDY=X)
- Idle
- Initialize Drive Parameters (DRDY=X)
- Read Power Mode
- Read Verify Sector(s)
- Recalibrate
- Seek
- Set Features
- Set Multiple Mode
- Standby

Execution of these commands involves no data transfer.

a) The host writes any required parameters to the Features, Sector Count, Sector Number, Cylinder and Drive/Head registers.
b) The host writes the command code to the Command Register.
c) The drive sets BSY.
d) When the drive has completed processing, it clears BSY and asserts INTRQ.
g) The host reads the Status Register.
h) The drive negates INTRQ.

10.4 Miscellaneous Commands

This class includes:
- Read Multiple
- Sleep
- Write Multiple
- Write Same
The protocol for these commands is contained in the individual command descriptions.

10.5 DMA Data Transfer Commands (Optional)

This class comprises:
- Read DMA
- Write DMA
- No intermediate sector interrupts are issued on multi-sector commands

Data transfers using DMA commands differ in two ways from PIO transfers:
- Data transfers are performed using the slave-DMA channel
- No intermediate sector interrupts are issued on multi-sector commands

Initiation of the DMA transfer commands is identical to the Read Sector or Write Sector commands except that the host initializes the slave-DMA channel prior to issuing the command.

The interrupt handler for DMA transfers is different in that:
- No intermediate sector interrupts are issued on multi-sector commands
- Host resets the DMA channel prior to reading status from the drive.

The DMA protocol allows high performance multi-tasking operating systems to eliminate processor overhead associated with PIO transfers.

a) Command Phase
1. Host initializes the slave-DMA channel
2. Host updates the Command Block Registers
3. Host writes command code to the Command Register
b) Data Phase - the register contents are not valid during a DMA Data Phase.
1. The slave-DMA channel qualifies data transfers to and from the drive with DMARQ
2. Status Phase
1. Drive generates the interrupt to the host
2. Host reads the Status Register and Error Register

10.5.1 Normal DMA Transfer

<table>
<thead>
<tr>
<th>Initialize DMA Command</th>
<th>DMA Data Transfer</th>
<th>Reset DMA Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSY=0</td>
<td>BSY=1</td>
<td>DRQ=x</td>
</tr>
</tbody>
</table>

10.5.2 Aborted DMA Transfer

<table>
<thead>
<tr>
<th>Initialize DMA Command</th>
<th>DMA Data</th>
<th>Reset DMA Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSY=0</td>
<td>BSY=1</td>
<td>DRQ=1</td>
</tr>
</tbody>
</table>

10.5.3 Aborted DMA Command

<table>
<thead>
<tr>
<th>Initialize DMA Command</th>
<th>Reset DMA Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSY=0</td>
<td>BSY=1</td>
</tr>
</tbody>
</table>

11. Timing

11.1 Deskewing

The host shall provide cable deskewing for all signals originating from the controller. The drive shall provide cable deskewing for all signals originating at the host.

11.2 Symbols

Certain symbols are used in the timing diagrams. These symbols and their respective definitions are listed below.

/ or \ - signal transition (asserted or negated) *
< or > - data transition (asserted or negated)
XXXXXX - undefined but not necessarily released
\ n - the "other" condition if a signal is shown with no change
 - used to number the sequence in which events occur e.g. A, #b
\ \ / - a degree of uncertainty as to when a signal may be asserted
\ \ / - a degree of uncertainty as to when a signal may be negated

* All signals are shown with the Asserted condition facing to the top of the page. The negated condition is shown towards the bottom of the page relative to the asserted condition.

11.3 Terms

The interface uses a mixture of negative and positive signals for control and data. The terms asserted and negated are used for consistency and are independent of electrical characteristics.

In all timing diagrams, the lower line indicates negated, and the upper line indicates asserted e.g. the following illustrates the representation of a signal named TEST going from negated to asserted and back to negated, based on the polarity of the signal.

<table>
<thead>
<tr>
<th>Bit Setting=0</th>
<th>TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assert</td>
<td></td>
</tr>
<tr>
<td>Negate</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit Setting=1</th>
<th>TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assert</td>
<td></td>
</tr>
<tr>
<td>Negate</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit Setting=0</th>
<th>TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assert</td>
<td></td>
</tr>
<tr>
<td>Negate</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit Setting=1</th>
<th>TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assert</td>
<td></td>
</tr>
<tr>
<td>Negate</td>
<td></td>
</tr>
</tbody>
</table>
11.4 Data Transfers

Figure 11-1 defines the relationships between the interface signals for both 16-bit and 8-bit data transfers.

![Diagram showing signal relationships]

Address Valid *1 ----> [Diagram with timing parameters]

DIOR-/DIOW-

Write Data Valid *2

Read Data Valid *2

I0CS16-

*1 Drive Address consists of signals CS1FX-, CS3FX- and DA2-0
*2 Data consists of DDD-15 (16-bit) or DDD-7 (8-bit)

PIO Timing Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mode 0</th>
<th>Mode 1</th>
<th>Mode 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>t0 Cycle Time</td>
<td>600</td>
<td>363</td>
<td>240</td>
</tr>
<tr>
<td>t1 Address Valid to DIOR-/DIOW- Setup</td>
<td>70</td>
<td>50</td>
<td>30</td>
</tr>
<tr>
<td>t2 DIOR-/DIOW- 16-bit Pulse Width</td>
<td>105</td>
<td>125</td>
<td>100</td>
</tr>
<tr>
<td>t3 DIOW- Data Setup</td>
<td>60</td>
<td>45</td>
<td>30</td>
</tr>
<tr>
<td>t4 DIOR- Data Hold</td>
<td>30</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>t5 DIOR- Data Hold</td>
<td>50</td>
<td>35</td>
<td>20</td>
</tr>
<tr>
<td>t6 DIOR- Data Hold</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>t7 Addr Valid to I0CS16- Assertion</td>
<td>90</td>
<td>50</td>
<td>40</td>
</tr>
<tr>
<td>t8 Addr Valid to I0CS16- Negation</td>
<td>60</td>
<td>45</td>
<td>30</td>
</tr>
<tr>
<td>t9 DIOR-/DIOW- to Address Valid Hold</td>
<td>20</td>
<td>15</td>
<td>10</td>
</tr>
</tbody>
</table>

FIGURE 11-1: PIO DATA TRANSFER TO/FROM DRIVE

IORDY Timing Requirements

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>tA IORDY Setup time</td>
<td>-</td>
<td>35</td>
<td>nsecs</td>
<td></td>
</tr>
<tr>
<td>tB IORDY Pulse Width</td>
<td>-</td>
<td>1,250</td>
<td>nsecs</td>
<td></td>
</tr>
</tbody>
</table>

WARNING: The use of IORDY for data transfers is a system integration issue which requires control of both ends of the cable.

FIGURE 11-2: IORDY TIMING REQUIREMENTS

DMA Timing Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mode 0</th>
<th>Mode 1</th>
<th>Mode 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>t0 Cycle Time</td>
<td>960</td>
<td>480</td>
<td>240</td>
</tr>
<tr>
<td>t1 DMA to DMREQ Delay</td>
<td>200</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>t2 DIOR-/DIOW- 16-bit</td>
<td>480</td>
<td>240</td>
<td>120</td>
</tr>
<tr>
<td>t3 DIOR- Data Setup</td>
<td>250</td>
<td>150</td>
<td>50</td>
</tr>
<tr>
<td>t4 DIOR- Data Hold</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>t5 DMACK- Data Setup</td>
<td>250</td>
<td>100</td>
<td>35</td>
</tr>
<tr>
<td>t6 DMACK- Data Hold</td>
<td>50</td>
<td>30</td>
<td>20</td>
</tr>
</tbody>
</table>

FIGURE 11-3: DMA DATA TRANSFER
11.5 Power On and Hard Reset

RESET-\[<\text{TM}>\] \hspace{1cm} \text{Drive 0}

BSY \hspace{2cm} => \text{TCR} <= \hspace{2cm} \#1

DASP- \hspace{2cm} => \text{EP} <= \hspace{2cm} \#2 \hspace{1cm} \#3

Control Registers \hspace{2cm} \text{Drive 1}

BSY \hspace{2cm} \text{PDIA}- \hspace{2cm} \text{DASP-} \hspace{2cm} \text{Control Registers}

*1 Drive 0 can set BSY=0 if Drive 1 not present
*2 Drive 0 can use DASP- to indicate it is active if Drive 1 is not present
*3 DASP- can be asserted to indicate that the drive is active

<table>
<thead>
<tr>
<th>Label</th>
<th>Units</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM</td>
<td>25 usec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN</td>
<td>400 usec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TP</td>
<td>1 msec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T0</td>
<td>30 secs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E0</td>
<td>450 msec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E1</td>
<td>400 msec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TS</td>
<td>30.5 secs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 11-4 RESET SEQUENCE

Annex A: Diagnostic and Reset Considerations
(informative).

This annex describes the following timing relationships during:

a) Power On and Hardware Resets
 - One drive
 - Two drives

b) Software Reset
 - One drive
 - Two drives

c) Diagnostic Command Execution
 - One drive
 - Two drives
 - Two drives - Drive 1 failed

The timing assumes the following:

- DASP- is asserted by Drive 1 and received by Drive 0 at power-on or hardware reset to indicate the presence of Drive 1. At all other times it is asserted by Drive 0 and Drive 1 to indicate when a drive is active.
- PDIA- is asserted by Drive 1 and detected by Drive 0. It is used by Drive 1 to indicate to Drive 0 that it has completed diagnostics and is ready to accept commands from the host (BSY bit is cleared). This does not indicate that the drive is ready, only that it can accept commands. This line may remain asserted until the next reset occurs or an Execute Diagnostic command is received.
- Unless indicated otherwise, all times are relative to the event that triggers the operation (RESET-, SRST-1, Execute Diagnostic Command).

A.1 Power On and Hardware Resets

A.1.1 Power On and Hardware Resets - One Drive

- Host asserts RESET- for a minimum of 25 usec.
- Drive 0 sets BSY within 400 msecs after RESET- is negated.
- Drive 0 negates DASP- within 1 msec after RESET- negated.
- Drive 0 performs hardware initialization.
- Drive 0 may revert to its default condition
- Drive 0 waits 1 msec then samples for at least 450 msecs for DASP- to be asserted from Drive 1.
- Drive 0 clears BSY when ready to accept commands (within 31 seconds).

A.1.2 Power On and Hardware Resets - Two Drives

- Host asserts RESET- for a minimum of 25 usec.
- Drive 0 and Drive 1 set BSY within 400 msecs after RESET- negated.
- DASP- is negated within 1 msec after RESET- is negated.

A.1.2.1 Drive 1

- Drive 1 negates PDIA- before asserting DASP-.
- Drive 1 asserts DASP- within 400 msecs after RESET- (to show presence).
- Drive 1 performs hardware initialization and executes its internal diagnostics.
- Drive 1 may revert to its default condition
- Drive 1 posts diagnostic results to the Error Register.
- Drive 1 clears BSY when ready to accept commands.
- Drive 1 asserts PDIAG- to indicate that it is ready to accept commands (within 30 seconds from RESET-).
- Drive 1 negates DASP- after the first command is received or negates DASP- if no command is received within 30 seconds after RESET-.

A.1.2.2 Drive 0
- Drive 0 performs hardware initialization and executes its internal diagnostics.
- Drive 0 may reinitialize its default condition.
- Drive 0 posts diagnostic results to the Error Register.
- After 1 mssec, Drive 0 waits at least 450 mssec for DASP- to be asserted (from Drive 1), if DASP- is not asserted, no Drive 1 is present (see POWER-ON RESET - One Drive operation).
- Drive 0 waits up to 31 seconds for Drive 1 to assert PDIAG-. If PDIAG- is not asserted, Drive 0 sets Bit 7=1 in the Error Register.
- Drive 0 clears BSY when ready to accept commands (within 31 seconds).

A.2 Software Reset

A.2.1 Software Reset - One Drive
- Host sets SRST-1 in the Device Control Register.
- Drive 0 sets BSY within 400 nsec after detecting that SRST-1.
- Drive 0 performs hardware initialization and executes its internal diagnostics.
- Drive 0 may reinitialize its default condition.
- Drive 0 posts diagnostic results to the Error Register.
- Drive 0 clears BSY when ready to accept commands (within 31 seconds).

A.2.2 Software Reset - Two Drives
- Host sets SRST-1 in the Device Control Register.
- Drive 0 and Drive 1 set BSY within 400 nsec after detecting that SRST-1.
- Drive 0 and Drive 1 perform hardware initialization.
- Drive 0 and Drive 1 may reinitialize their default condition.

A.2.2.1 Drive 1
- Drive 1 negates PDIAG- within 1 mssec.
- Drive 1 clears BSY when ready to accept commands.
- Drive 1 asserts PDIAG- to indicate that it is ready to accept commands (within 30 seconds).

A.2.2.2 Drive 0
- Drive 0 waits up to 31 seconds for Drive 1 to assert PDIAG-.
- Drive 0 clears BSY when ready to accept commands (within 31 seconds).

A.3 Diagnostic Command Execution

A.3.1 Diagnostic Command Execution - One Drive (Passed)
- Drive 0 sets BSY within 400 nsec after the Execute Diagnostic command was received.
- Drive 0 performs hardware initialization and internal diagnostics.

A.3.2 Diagnostic Command - Two Drives (Passed)
- Drive 0 and Drive 1 set BSY within 400 nsec after the Execute Diagnostic command was received.

A.3.2.1 Drive 1
- Drive 1 negates PDIAG- within 1 mssec after command received.
- Drive 1 performs hardware initialization and internal diagnostics.
- Drive 1 resets the Command Block registers to their default condition.
- Drive 1 posts diagnostic results to the Error Register.
- Drive 1 clears BSY when ready to accept commands (within 5 seconds).

A.3.2.2 Drive 0
- Drive 0 performs hardware initialization and internal diagnostics.
- Drive 0 resets the Command Block registers to their default condition.
- Drive 0 posts diagnostic results to the Error Register.
- Drive 0 clears BSY when ready to accept commands (within 6 seconds).

A.3.3 Diagnostic Command Execution - One Drive (Failed)
- Drive 0 sets BSY within 400 nsec after Diagnostic command received.
- Drive 0 performs hardware initialization and internal diagnostics.
- Drive 0 resets Command Block registers to default condition.
- Drive 0 posts a Diagnostic Code to the Error Register indicating a failure.
- Drive 0 clears BSY when ready to accept commands (within 6 seconds)

A.3.4 Diagnostic Command Execution - Two Drives (Drive 1 Failed)
- Drive 0 and Drive 1 set BSY within 400 nsec after Diagnostic command received.

A.3.4.1 Drive 1
- Drive 1 negates PDIAG- within 1 mssec after command received.
- Drive 1 performs hardware initialization and internal diagnostics.
- Drive 1 resets the Command Block registers to their default condition.
- Drive 1 posts a Diagnostic Code to the Error Register indicating failure.
- Drive 1 clears BSY.
- Drive 1 does not assert PDIAG-, indicating that it failed diagnostics.

A.3.4.2 Drive 0
- Drive 0 performs hardware initialization and internal diagnostics.
- Drive 0 resets the Command Block registers to their default condition.
- Drive 0 waits 5 seconds for Drive 1 to assert PDIAG- but PDIAG- is not asserted by Drive 1.
- Drive 0 posts a Diagnostic Code to the Error Register setting Bit 7=1 to indicate that Drive 1 failed diagnostics.
AT Attachment Interface Rev 2.3 January 30, 1991 Page 46

- Drive 0 clears BSY when ready to accept commands (within 6 seconds).

NOTE: The 6 seconds referenced above is a host-oriented value.

Annex B: Diagnostic and Reset Considerations
(informative).

B.1 Power on and hardware reset (RESET-)

DASP- is read by Drive 0 to determine if Drive 1 is present. If Drive 1 is
present Drive 0 will read PDIAG- to determine when it is valid to clear
BSY and whether Drive 1 has powered on or reset without error, otherwise Drive 0 clears
BSY whenever it is ready to accept commands. Drive 0 may assert DASP- to
indicate drive activity.

B.2 Software reset

If Drive 1 is present Drive 0 will read PDIAG- to determine when it is valid to
clear BSY and whether Drive 1 has reset without any errors, otherwise Drive 0
will simply reset and clear BSY. DASP- is asserted by Drive 0 (and Drive 1 if
it is present) in order to indicate drive active.

B.3 Drive Diagnostic Command

If Drive 1 is present, Drive 0 will read PDIAG- to determine when it is valid to
clear BSY and if Drive 1 passed or failed the Execute Drive Diagnostic command,
otherwise Drive 0 will simply execute its diagnostics and then clear BSY.
DASP- is asserted by Drive 0 (and Drive 1 if it is present) in order to indicate
the drive is active.

B.4 Truth Table

In all the above cases: Power on, RESET-, software reset, and the Execute
Drive Diagnostics command the Drive 0 Error Register is calculated as follows:

<table>
<thead>
<tr>
<th>Drive 1 Present?</th>
<th>PDIAG- Asserted?</th>
<th>Drive 0 Passed</th>
<th>Error Register</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>01h</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>0xh</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>81h</td>
</tr>
<tr>
<td>Yes</td>
<td>(not read)</td>
<td>Yes</td>
<td>01h</td>
</tr>
<tr>
<td>No</td>
<td>(not read)</td>
<td>No</td>
<td>0xh</td>
</tr>
</tbody>
</table>

Where x indicates the appropriate Diagnostic Code for the Power on, RESET-,
software reset, or drive diagnostics error.

B.5 Power On or Hardware Reset Algorithm

1) Power on or hardware reset

2) The hardware should automatically do the following:
 a) Set the Error Register to 01h
 b) Set the Drive 0 Status Register to 80h
 c) Set the Drive 1 Status Register to 80h

3) Read the single Drive 0/Drive 1 jumper and note its status
4) Perform any remaining time critical hardware initialization including
 starting the spin up of the disk if needed
5) If Drive 1
 a) Negate the PDIAG- signal
 b) Set up PDIAG- as an output
 c) Assert the DASP- output
 d) Set up DASP- as an output if necessary
 e) Set up the hardware so it posts Drive 1 status only
 and continue to post 80h for Drive 1 status
 NOTE: all this must happen within 400 msec after power on or RESET-
 If Drive 0
 a) Set up PDIAG- as an input
 b) Release DASP- and set up DASP- as an input
 c) Test DASP- for 450 msec or until DASP- is asserted by Drive 1
 d) If DASP- is asserted within 450 msec
 i) Set up the hardware so it posts Drive 0 status only
 ii) and continue to post 80h for the Drive 0 status
 ii) If DASP- is not asserted within 450 msec
 i) Note that Drive 1 is not present
 ii) Note that Drive 1 is not present
 e) Assert DASP- to indicate drive activity
6) Complete all the hardware initialization needed to get the drive ready,
 including:
 a) Set the Sector Count Register to 01h
 b) Set the Sector Number Register to 01h
 c) Set the Cylinder Low Register to 00h
 d) Set the Cylinder High Register to 00h
 e) Set the Drive Head Register to 00h
7) If Drive 1 and power on, or RESET- is valid
 a) Set the Error Register to Diagnostic Code 01h
 b) Set the Drive 1 Status Register to 00h
 c) Assert PDIAG-
 NOTE: All this must happen within 5 seconds of power on or the
 negation of RESET-
 If Drive 1 and power on or RESET- is bad
 a) Set the Error Register to the appropriate Diagnostic Code
 b) Set the Drive 1 Status Register to 00h
 NOTE: All this must happen within 5 seconds of power on or the
 negation of RESET-
 If Drive 0, power on or RESET- is valid, and Drive 1 is present
 a) Test PDIAG- for 6 seconds or until PDIAG- is asserted by Drive 1
 b) If PDIAG- is asserted within 6 seconds
 i) Set the Error Register to Diagnostic Code 01h
 ii) If PDIAG- is not asserted within 6 seconds
 i) Set the Error Register to 81h
 ii) Set the Drive 0 Status Register to 80h
 iii) Set the Drive 0 Status Register to 80h + the appropriate code
 If Drive 0, power on or RESET- is bad, and Drive 1 is present
 a) Test PDIAG- for 6 seconds or until PDIAG- is asserted by
 Drive 1
 b) If PDIAG- is asserted within 6 seconds
 i) Set the Error Register to the appropriate Diagnostic Code
 ii) If PDIAG- is not asserted within 6 seconds
 i) Set the Error Register to 81h + the appropriate code
 ii) Set the Drive 0 Status Register to 00h
If Drive 0, power on or RESET- is valid, and no Drive 1 is present
B.6 Software Reset Algorithm

1) The software reset bit is set
2) If Drive 1
 a) The hardware should set BUSY in the Drive 1 Status Register
 b) Negate the PDIA- signal
 NOTE: this must happen within 1 msec of the software reset
 If Drive 0 and Drive 1 is present
 a) The hardware should set BUSY in the Drive 0 Status Register
 b) Set the Drive 1 Status Register to 80h
 If Drive 0 and there is no Drive 1 the hardware should:
 a) Set BUSY in the Drive 0 Status Register
 b) Set the Drive 1 Status Register to 80h
3) Assert DASP-
4) Finish all the hardware initialization needed to place the drive in reset
5) Wait for the software reset bit to clear
6) Finish all hardware initialization needed to get the drive ready to receive any type of command from the host including:
 a) Set the Sector Count Register to 01h
 b) Set the Sector Number Register to 00h
 c) Set the Cylinder Low Register to 00h
 d) Set the Cylinder High Register to 00h
 e) Set the Drive/Head Register to 00h
7) If Drive 1 and reset valid
 a) Set the Error Register to Diagnostic Code 01h
 b) Set the Drive 1 Status Register to 50h
 c) Assert PDIA-
 NOTE: All this must happen within 5 seconds of the clearing of the software reset bit
 If Drive 1 and reset bad
 a) Set the Error Register to the appropriate Diagnostic Code
 b) Set the Drive 1 Status Register to 50h
 NOTE: All this must happen within 5 seconds of the clearing of the software reset bit
 If Drive 0, reset valid, and a Drive 1 is present
 a) Test PDIA- for 6 seconds or until PDIA- is asserted by Drive 1
 b) If PDIA- is asserted within 6 seconds
 i) Set the Error Register to Diagnostic Code 01h
 ii) Set the Drive 0 Status Register to 00h
 c) If PDIA- is not asserted within 6 seconds
 d) Set the Drive 0 Status Register to 50h
 If Drive 0, reset bad, and a Drive 1 is present
 a) Test PDIA- for 31 seconds or until PDIA- is asserted by Drive 1
 b) Set the Drive 0 Status Register to 50h
 c) If PDIA- is asserted within 31 seconds
 i) Set the Error Register to the appropriate Diagnostic Code
 ii) Set the Drive 0 Status Register to 00h
 d) Set the Drive 0 Status Register to 50h
 e) Set the Drive 0 Status Register to 00h
 f) Set the Drive 0 Status Register to 50h

B.7 Diagnostic Command Algorithm

1) The diagnostics command is received
2) If Drive 1
 a) The hardware should set BUSY in the Drive 1 Status Register
 b) Negate the PDIA- signal
 NOTE: this must happen within 1 msec after command acceptance
 If Drive 0 and Drive 1 is present
 a) The hardware should set BUSY in the Drive 0 Status Register
 b) Set the Drive 1 Status Register to 00h
 If Drive 0 and there is no Drive 1 the hardware should:
 a) Set BUSY in the Drive 0 Status Register
 b) Set BUSY in the Drive 1 Status Register
3) Assert DASP-
4) Perform all the drive diagnostics and note their results
5) Finish all the hardware initialization needed to get the drive ready to receive any type of command from the host including:
 a) Set the Sector Count Register to 01h
 b) Set the Sector Number Register to 00h
 c) Set the Cylinder Low Register to 00h
 d) Set the Cylinder High Register to 00h
 e) Set the Drive/Head Register to 00h
6) If Drive 1 and passed
 a) Set the Error Register to Diagnostic Code 01h
 b) Set the Drive 1 Status Register to 50h
 c) Assert PDIA-
 NOTE: All this must happen within 5 seconds of the acceptance of the diagnostic command
 If Drive 1 and did not pass
 a) Set the Error Register to the appropriate Diagnostic Code
 b) Set the Drive 1 Status Register to 50h
 NOTE: All this must happen within 5 seconds of the acceptance of the diagnostic command
 If Drive 0, passed, and a Drive 1 is present
 a) Test PDIA- for 6 seconds or until PDIA- is asserted by Drive 1
 b) If PDIA- is asserted within 6 seconds
1) Set the Error Register to Diagnostic Code 01h
 c) If PDIA[] is not asserted within 6 seconds
 i) Set the Error Register to 01h
 d) Set the Drive 0 status to 50h
 e) Issue interrupt to the host
If Drive 0, did not pass, and a Drive 1 is present
 a) Test PDIA[] for 6 seconds or until PDIA[] is asserted by Drive 1
 b) If PDIA[] is asserted within 6 seconds
 i) Set the Error Register to the appropriate Diagnostic Code
 c) If PDIA[] is not asserted within seconds
 i) Set the Error Register to 00h + the appropriate code
 d) Set the Drive 0 Status Register to 50h
 e) Issue interrupt to the host
If Drive 0, passed, and no Drive 1 is present
 a) Set the Error Register to Diagnostic Code 01h
 b) Set the Drive 1 Status Register to 00h
 c) Set the Drive 0 Status Register to 50h
 d) Issue interrupt to the host
If Drive 0, did not pass, and no Drive 1 is present
 a) Set the Error Register to the appropriate Diagnostic Code
 b) Set the Drive 1 Status Register to 00h
 c) Set the Drive 0 Status Register to 50h
 d) Issue interrupt to the host
anything further regarding the inclusion in SCSI-3. Please let me know if you have any questions or need

the context mode page table 7-66 listed.

portions from SCSI-2 are not included in this document except for
changes resulting from the proposal. For brevity, the unchanged

as you know, this document includes only the additions and

the planetary for inclusion in SCSI-3.

X3T9.2 planetary meeting. Consequently this is the version voted by
the appropriate to the editorial changes noted in the February

Subject: SCSI Function to allow user friendly long busy

Date: 3/8/91

X3T9.2/90-168 REV 2

John Homewer
Additions and related changes to the Control Mode Page:

7.3.3.1. Control Mode Page

<table>
<thead>
<tr>
<th>Bit</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>PS</td>
<td>Reserved</td>
<td>Page Code (0Ah)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Page Length (0Ah)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Reserved</td>
<td>ALEC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Queue Algorithm Modifier</td>
<td>Reserved</td>
<td>QErr</td>
<td>DQue</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>EECA</td>
<td>RAC</td>
<td>Reserved</td>
<td>RAENP</td>
<td>UAAENP</td>
<td>EAENP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Reserved</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Ready AEN Holdoff Period</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Busy Timeout Period</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Reserved</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Reserved</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Reserved</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Reserved</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The Report a Check (RAC) bit provides control of reporting long busy conditions or CHECK CONDITION status. A RAC bit of one specifies that a CHECK CONDITION status should be reported rather than a long busy condition (e.g. longer than the Busy Timeout Period). A RAC bit of zero specifies that long busy conditions (e.g. busy condition during extended contingent allegiance) may be reported.

The Busy Timeout Period field specifies the maximum time, in 100 milliseconds increments, that the initiator allows for the target to remain busy for unanticipated conditions which are not a routine part of commands from the initiator. This value may be rounded down as defined in 6.5.4. A 0000h value in this field is undefined by this standard. An FFth value in this field is defined as an unlimited period.

Change to Extended Contingent Allegiance Condition:

6.7. Extended Contingent Allegiance Condition

"... This condition shall be preserved until it is cleared by a BUS DEVICE RESET message, a RELEASE RECOVERY message, or a hard reset condition. While the extended contingent allegiance condition exists, the target shall respond to any other request for access to the logical unit from another initiator with BUSY status or a CHECK CONDITION status with an appropriate sense key (e.g. RECOVERED ERROR (01h) or ABORTED COMMAND (07h)) and a LOGICAL UNIT IS IN AN EXTENDED CONTINGENT ALLEGIANCE CONDITION additional sense code dependent upon the RAC bit in the Control Mode page. ... After the extended contingent allegiance condition is cleared any commands remaining in the command queue shall be executed."
There shall be no indication given to the system as to the
status of the old command which was being executed at the
time the new command was issued.

There shall be no indication given to the system as to whether
execution of the old command could have been completed.

Even if the command (subsequently referred to as the "old command")
was completed, the drive shall immediately respond to the new
uncompleted command (subsequently referred to as the "new command")
If a new command is issued to a drive which has an
uncompleted command, the drive shall take the following:

Place the following paragraphs in section 9. Command

Description: What actions the drive should take.

Defining which actions the drive should take.

Words which I believe should be added to the AIA standard for
has completed execution of an existing command, below are
actions a drive should take if it receives a command before it
There is no guidance in the AIA Rev. 2.2 standard on what

Subject: Overlapped Commands on At bus

From: George Penzake (IBM)
To: X3T9.2 Committee (SCSI)

Date: Dec 12, 1990
X3T9.2/90-181R1