Copies of this proposal may be purchased from:
CAM Committee 408-867-6630
14426 Black Walnut Ct, Saratoga CA 95070

working document of the
CAM (Common Access Method Committee)
draft proposal
ATA (AT Attachment)
Rev 2.2 August 15, 1990

ABSTRACT: This standard defines mechanical, electrical, and functional
requirements for attaching small computers employing an AT Bus with
intelligent peripheral devices. The resulting interface provides a common
interface specification for systems manufacturers, system integrators,
controller manufacturers, and suppliers of intelligent disk drives.

CAUTION: This is a preliminary draft of the proposed standard. It is subject
to change without notice, at the sole discretion of the CAM Committee. It is
likely that some sections may change significantly, and most sections will
change to some extent in the course of further development of this draft
standard. This draft is distributed solely for the purpose of review and
comment, and it should not be used as a design document without assuming the
risk of an early implementation.

COPYRIGHT NOTICE: This draft standard is based upon product specifications of
contributing members, these documents may be copyrighted by the individual
companies. This draft standard may be reproduced without further permission,
for the purpose of review and comment or for the purpose of including in an
appropriate product specification provided the risk of early implementation is
assumed. All other rights are reserved.

POINTS OF CONTACT:
I. Dale Allen (CAM Committee Chairman)
ENDL
14426 Black Walnut Court
Saratoga, CA 95070
(408) 867-6630

If changes from the prior revision of this document are included, they may
be identified by:
- change bars at the side of each paragraph or
- printed in bold or
- printed in italics or
- underscored in the text.

The specific technique used will depend on the software used to detect the
differences and the printer used to print the document.

In the event that deleted text is identified by an overstrike, the Table of
Contents will not be accurate.

An electronic copy of this document is available from the CAM Committee
(408-867-6630).

This document has been prepared according to the style guide of the ISO
(International Organization of Standards).

If this document was printed in a 2-up form directly from the printer, NOTES
had to be adjusted to fit into a half-page, which may have resulted in an
imperfect representation of the format within the NOTE. This is most likely
to occur if a series of NOTES are mixed in without any line separation.
TABLE OF CONTENTS

1. Scope
 1.1 Description of Clauses

2. References
 2.1 General Description
 2.2 Structure

3. Definitions and Conventions
 3.1 Definitions
 3.2 Conventions

4. Interface Cabling Requirements
 4.1 Configuration
 4.2 Addressing Considerations
 4.3 DC Cable and Connector
 4.4 4-Pin Power
 4.5 3-Pin Power
 4.6 Device Grounding

5. I/O Connector
 5.1 I/O Cable

6. Physical Interface
 6.1 Signal Conventions
 6.2 Signal Summary
 6.3 Signal Descriptions
 6.4 CSIF (Drive chip Select 0)
 6.5 CSIF (Drive chip Select 1)
 6.6 DAO-2 (Driver Address Bus)
 6.7 DASP (Driver Active/Drive 1 Present)
 6.8 DD-DDS (Drive Data Bus)
 6.9 DIOR (Drive I/O Head)
 6.10 DIOH (Drive I/O Write)
 6.11 DMACK (DMA Acknowledge) (Optional)
 6.12 DMARQ (DMA Request) (Optional)
 6.13 INTIO (Drive Interrupt)
 6.14 IOC(S) (Drive 16-bit L/O)
 6.15 IRC (1/0 Channel Ready) (Optional)
 6.16 PDIAG (Passed Diagnostics)
 6.17 RESER (Drive Reset)
 6.18 SPSYNC (Spindle Synchronization) (Optional)

7. Logical Interface
 7.1 General
 7.2 Alternate Status Register
 7.3 Command Register
 7.4 Cylinder Low Register
 7.5 Data Register
 7.6 Device Control Register
 7.7 Drive Address Register

8. Programming Requirements
 8.1 Reset Response
 8.2 Translate Mode
 8.3 Power Conditions
 8.4 Error Posting

9. Command Descriptions
 9.1 Check Power Mode
 9.2 Execute Drive Diagnostic
 9.3 Format Track
 9.4 Identify Drive
 9.5 Number of fixed cylinders
 9.6 Number of heads
 9.7 Number of unformatted bytes per track
 9.8 Number of unformatted bytes per sector
 9.9 Number of sectors per track
 9.10 Serial Number
 9.11 Buffer Type
 9.12 Firmware Revision
 9.13 Model Number
 9.14 PIO data transfer cycle timing mode
 9.15 DMA data transfer cycle timing mode

10. Idle
11. Idle Immediate
12. Initialize Drive Parameters
13. Recalibrate
14. Read Buffer
15. Read DMA
16. Read Long
17. Read Multiple Command
18. Read Sector(s)
19. Read Verify Sector(s)
20. Seek
21. Set Features
22. Set Multiple Mode
23. Sleep
24. Standby
25. Standby Immediate
26. Write Buffer
27. Write DMA
28. Write Multiple Command
29. Write Same
30. Write Long
31. Write Sector(s)
32. Write Verify
33. Protocol Overview
34. PIO Data In Commands
35. PIO Read Command
1. **Scope**

This standard defines the CAM (Common Access Method) AT Attachment.

The CAM Committee was formed in October, 1988 and the first working document of the AT Attachment was introduced in March, 1989.

1.1 **Description of Clauses**

Clause 1 contains the Scope and Purpose.

Clause 2 contains Referenced and Related International Standards.

Clause 3 contains the General Description.

Clause 4 contains the Glossary.

Clause 5 contains the electrical and mechanical characteristics; covering the interface cabling requirements of the DC, data cables and connectors.

Clause 6 contains the signal descriptions of the AT Attachment interface.

Clause 7 contains descriptions of the registers of the AT Attachment interface.

Clause 8 describes the programming requirements of the AT Attachment interface.

Clause 9 contains descriptions of the commands of the AT Attachment interface.

Clause 10 contains an overview of the protocol of the AT Attachment interface.

Clause 11 contains the interface timing diagrams.

Annex A is informative.

Annex B is informative.

2. **References**

None.
3. General Description

The application environment for the AT Attachment is any computer which uses an AT bus or 40-pin ATA interface.

The AT Bus is a widely used and implemented interface for which a variety of peripherals have been manufactured. As a means of reducing size and cost, a class of products has emerged which embed the controller functionality in the drive. These new products utilize the AT Bus fixed disk interface protocol and a subset of the AT Bus. Because of their compatibility with existing AT hardware and software this interface quickly became a de facto industry standard.

The purpose of the ATA standard is to define the de facto implementations.

Software in the operating system dispatches I/O (Input/Output) requests via the AT Bus to peripherals which respond to direct commands.

3.1 Structure

This standard relies upon specifications of the mechanical and electrical characteristics of the AT Bus and a subset of the AT Bus specifically developed for the direct attachment of peripherals.

Also defined are the methods by which commands are directed to peripherals, the contents of registers and the method of data transfers.

4. Definitions and Conventions

4.1 Definitions

For the purpose of this standard the following definitions apply:

4.1.1 ATA (AT Attachment): ATA defines a compatible register set and a 40-pin connector and its associated signals.

4.1.2 Data block: This term describes a data transfer, and is typically a single sector, except when declared otherwise by use of the Set Multiple command.

4.1.3 DMA (Direct Memory Access): A means of data transfer between peripheral and host memory without processor intervention.

4.1.4 Optional: This term describes features which are not required by the standard. However, if any feature defined by the standard is implemented, it shall be done in the same way as defined by the standard. Describing a feature as optional in the text is done to assist the reader. If there is a conflict between text and tables on a feature described as optional, the table shall be accepted as being correct.

4.1.5 PIO (Programmed Input/Output): A means of data transfer that requires the use of the host processor.

4.1.6 Reserved: Where this term is used for bits, bytes, fields and code values; the bits, bytes, fields and code values are set aside for future standardization, and shall be zero.

4.1.7 VV (Vendor Unique): This term is used to describe bits, bytes, fields, code values and features which are not described in this standard, and may be used in a way that varies between vendors.

4.2 Conventions

Certain terms used herein are the proper names of signals. These are printed in uppercase to avoid possible confusion with other uses of the same words, e.g., ATTENTION. Any lowercase uses of these words have the normal American-English meaning.

A number of conditions, commands, sequence parameters, events, English text, states or similar terms are printed with the first letter of each word in uppercase and the rest lowercase; e.g., In, Out, Request Status. Any lowercase uses of these words have the normal American-English meaning.

The American convention of numbering is used i.e., the thousands and higher multiples are separated by a comma and a period is used as the decimal point. This is equivalent to the ISO convention of a space and comma.

<table>
<thead>
<tr>
<th>American</th>
<th>ISO:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000</td>
<td>0.6</td>
</tr>
<tr>
<td>1,323,402.9</td>
<td>1,000,000</td>
</tr>
<tr>
<td>1,323,402.9</td>
<td>1,323,402.9</td>
</tr>
</tbody>
</table>

5. Interface Cabling Requirements

5.1 Configuration

This standard provides the capability of operating on the AT Bus in a daisy chained configuration with a second drive that operates in accordance with these standards. One drive (selected as Drive 0) has been referred to as the master in industry terms and the second (selected as Drive 1) has been referred to as the slave (see Figure 5-3).

The designation as Drive 0 or Drive 1 is made by a jumper plug or switch on the drive.

Data is transferred in parallel (8 or 16 bits) either to or from host memory to the drive's buffer under the direction of commands previously transferred from the host. The drive performs all of the operations necessary to properly write data to, or read data from, the disk media. Data read from the media is stored in the drive's buffer pending transfer to the host memory and data is transferred from the host memory to the drive's buffer to be written to the media.
discriminates between the two by using the DRV bit in the Drive/Head Register.

5.3 DC Cable and Connector

The drive receives DC power through a 4-pin or a low-power application 3-pin connector.

5.3.1 4-Pin Power

The pin assignments are shown in Table 5-1. Recommended part numbers for the mating connector to 18AWG cable are shown below, but equivalent parts may be used.

<table>
<thead>
<tr>
<th>Connector (4 Pin)</th>
<th>AMP 1-480424-0 or equivalent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contacts (loose piece)</td>
<td>AMP 60619-4 or equivalent.</td>
</tr>
<tr>
<td>Contacts (strip)</td>
<td>AMP 61117-4 or equivalent.</td>
</tr>
</tbody>
</table>

Table 5-1: DC INTERFACE

<table>
<thead>
<tr>
<th>POWER LINE DESIGNATION</th>
<th>PIN NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>+12 V</td>
<td>1-01</td>
</tr>
<tr>
<td>+12 V RETURN</td>
<td>1-02</td>
</tr>
<tr>
<td>+5 V RETURN</td>
<td>1-03</td>
</tr>
<tr>
<td>+5 V</td>
<td>1-04</td>
</tr>
</tbody>
</table>

5.3.2 3-Pin Power

The pin assignments are shown in Table 5-2. Recommended part numbers for the mating connector to 18AWG cable are shown below, but equivalent parts may be used.

| Connector (3 Pin) | Molex 5404 39-27-0032 or equivalent. |

Table 5-2: DC INTERFACE

<table>
<thead>
<tr>
<th>POWER LINE DESIGNATION</th>
<th>PIN NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>+12 V</td>
<td>1-01</td>
</tr>
<tr>
<td>Ground</td>
<td>1-02</td>
</tr>
<tr>
<td>+5 V</td>
<td>1-03</td>
</tr>
</tbody>
</table>

5.3.3 Device Grounding

System ground may be connected to a "quick-connect" terminal equivalent to:

- Drive Connector Terminal: AMP 61664-1 or equivalent.
- Cable Connector Terminal: AMP 62137-2 or equivalent.

Provision for tying the DC Logic ground and the chassis ground together or for separating these two ground planes is vendor specific.

5.4 I/O Connector

The I/O connector is a 40-pin connector as shown in Figure 5-4, with pin
assignments as shown in Table 5-1.

The connector should be keyed to prevent the possibility of installing it upside down. A key is provided by the removal of Pin 20. The corresponding pin on the cable connector should be plugged.

The pin locations are governed by the cable plug, not the receptacle. The way in which the receptacle is mounted on the Printed Circuit Board affects the pin positions, and Pin 1 should remain in the same relative position. This means the pin numbers of the receptacle may not reflect the conductor number of the plug. The header receptacle is not polarized, and all the signals are relative to Pin 20, which is keyed.

By using the plug positions as primary, a straight cable can connect drives. As shown in Figure 5-4, conductor 1 on pin 1 of the plug has to be in the same relative position no matter what the receptacle numbering looks like. If receptacle numbering was followed, the cable would have to twist 180 degrees between a drive with top-mounted receptacles, and a drive with bottom-mounted receptacles.

![40-PIN CONNECTOR MOUNTING](image)

FIGURE 5-4: 40-PIN CONNECTOR MOUNTING

Recommended part numbers for the mating connector are shown below, but equivalent parts may be used.

- **Connector (40 Pin)**: 3M 3417-7000 or equivalent.
- **Strain Relief**: 3M 3441-2040 or equivalent.
- **Flat Cable (Stranded 28 AWG)**: 3M 3365-40 or equivalent.
- **Flat Cable (ShIELDED 28 AWG)**: 3M 3517-40 (Shielded) or equivalent.

5.5 I/O Cable

The cable specifications affect system integrity and the maximum length that can be supported in any application.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable length of 0.46m (18 inches)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Driver Iol, Sink Current</td>
<td>12mA</td>
<td></td>
</tr>
<tr>
<td>Driver Iol Source Current</td>
<td></td>
<td>-400μA</td>
</tr>
<tr>
<td>Cable Capacitive Loading</td>
<td></td>
<td>200pF</td>
</tr>
</tbody>
</table>

*This distance may be exceeded in circumstances where the characteristics of both ends of the cable can be controlled.
6.3 Signal Descriptions

The interface signals and pins are described in more detail than shown in Table 6-1. The signals are listed according to function, rather than in numerical connector pin order. Table 6-2 lists signal mnemonic, connector pin number, whether input to (I) or output from (O) the drive, and full signal name.

Table 6-2: INTERFACE SIGNALS DESCRIPTION

<table>
<thead>
<tr>
<th>Signal</th>
<th>Pin</th>
<th>I/O</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS1FX-</td>
<td>37</td>
<td>I</td>
</tr>
<tr>
<td>CS3FX-</td>
<td>38</td>
<td>I</td>
</tr>
<tr>
<td>DA0</td>
<td>35</td>
<td>O</td>
</tr>
<tr>
<td>DA1</td>
<td>33</td>
<td>O</td>
</tr>
<tr>
<td>DA2</td>
<td>36</td>
<td>O</td>
</tr>
<tr>
<td>DASP-</td>
<td>39</td>
<td>I/O</td>
</tr>
<tr>
<td>DD0</td>
<td>17</td>
<td>O</td>
</tr>
<tr>
<td>DD1</td>
<td>15</td>
<td>O</td>
</tr>
<tr>
<td>DD2</td>
<td>13</td>
<td>O</td>
</tr>
<tr>
<td>DD3</td>
<td>11</td>
<td>O</td>
</tr>
<tr>
<td>DD4</td>
<td>9</td>
<td>O</td>
</tr>
<tr>
<td>DD5</td>
<td>7</td>
<td>O</td>
</tr>
<tr>
<td>DD6</td>
<td>5</td>
<td>O</td>
</tr>
<tr>
<td>DD7</td>
<td>3</td>
<td>O</td>
</tr>
<tr>
<td>DD8</td>
<td>4</td>
<td>O</td>
</tr>
<tr>
<td>DD9</td>
<td>6</td>
<td>O</td>
</tr>
<tr>
<td>DD10</td>
<td>8</td>
<td>O</td>
</tr>
<tr>
<td>DD11</td>
<td>10</td>
<td>O</td>
</tr>
<tr>
<td>DD12</td>
<td>12</td>
<td>O</td>
</tr>
<tr>
<td>DD13</td>
<td>14</td>
<td>O</td>
</tr>
<tr>
<td>DD14</td>
<td>16</td>
<td>O</td>
</tr>
<tr>
<td>DD15</td>
<td>18</td>
<td>O</td>
</tr>
<tr>
<td>DOR-</td>
<td>25</td>
<td>I</td>
</tr>
<tr>
<td>DOR+</td>
<td>23</td>
<td>I</td>
</tr>
<tr>
<td>DMA-</td>
<td>19</td>
<td>O</td>
</tr>
<tr>
<td>DMA+</td>
<td>21</td>
<td>O</td>
</tr>
<tr>
<td>INT0</td>
<td>27</td>
<td>I</td>
</tr>
<tr>
<td>INT1</td>
<td>19</td>
<td>I</td>
</tr>
<tr>
<td>IOC1S-</td>
<td>32</td>
<td>O</td>
</tr>
<tr>
<td>IOC1S+</td>
<td>31</td>
<td>O</td>
</tr>
<tr>
<td>IOC1S-0</td>
<td>30</td>
<td>O</td>
</tr>
<tr>
<td>IOC1S-1</td>
<td>29</td>
<td>O</td>
</tr>
<tr>
<td>IOC1S-2</td>
<td>28</td>
<td>O</td>
</tr>
<tr>
<td>IOC1S-3</td>
<td>27</td>
<td>O</td>
</tr>
<tr>
<td>IOC1S-4</td>
<td>26</td>
<td>O</td>
</tr>
<tr>
<td>IOC1S-5</td>
<td>25</td>
<td>O</td>
</tr>
<tr>
<td>IOC1S-6</td>
<td>24</td>
<td>O</td>
</tr>
<tr>
<td>IOC1S-7</td>
<td>23</td>
<td>O</td>
</tr>
<tr>
<td>IOC1S-8</td>
<td>22</td>
<td>O</td>
</tr>
<tr>
<td>IOC1S-9</td>
<td>21</td>
<td>O</td>
</tr>
<tr>
<td>IOC1S-10</td>
<td>20</td>
<td>O</td>
</tr>
<tr>
<td>IOC1S-11</td>
<td>19</td>
<td>O</td>
</tr>
<tr>
<td>IOC1S-12</td>
<td>18</td>
<td>O</td>
</tr>
<tr>
<td>IOC1S-13</td>
<td>17</td>
<td>O</td>
</tr>
<tr>
<td>IOC1S-14</td>
<td>16</td>
<td>O</td>
</tr>
<tr>
<td>IOC1S-15</td>
<td>15</td>
<td>O</td>
</tr>
<tr>
<td>IOC1S-16</td>
<td>14</td>
<td>O</td>
</tr>
<tr>
<td>IOC1S-17</td>
<td>13</td>
<td>O</td>
</tr>
<tr>
<td>IOC1S-18</td>
<td>12</td>
<td>O</td>
</tr>
<tr>
<td>IOC1S-19</td>
<td>11</td>
<td>O</td>
</tr>
<tr>
<td>IOC1S-20</td>
<td>10</td>
<td>O</td>
</tr>
<tr>
<td>IOC1S-21</td>
<td>9</td>
<td>O</td>
</tr>
<tr>
<td>IOC1S-22</td>
<td>8</td>
<td>O</td>
</tr>
<tr>
<td>IOC1S-23</td>
<td>7</td>
<td>O</td>
</tr>
<tr>
<td>IOC1S-24</td>
<td>6</td>
<td>O</td>
</tr>
<tr>
<td>IOC1S-25</td>
<td>5</td>
<td>O</td>
</tr>
<tr>
<td>IOC1S-26</td>
<td>4</td>
<td>O</td>
</tr>
<tr>
<td>IOC1S-27</td>
<td>3</td>
<td>O</td>
</tr>
<tr>
<td>IOC1S-28</td>
<td>2</td>
<td>O</td>
</tr>
<tr>
<td>IOC1S-29</td>
<td>1</td>
<td>O</td>
</tr>
<tr>
<td>IOC1S-30</td>
<td>0</td>
<td>O</td>
</tr>
<tr>
<td>IOC1S-31</td>
<td>24</td>
<td>O</td>
</tr>
<tr>
<td>IOC1S-32</td>
<td>23</td>
<td>O</td>
</tr>
<tr>
<td>IOC1S-33</td>
<td>22</td>
<td>O</td>
</tr>
<tr>
<td>IOC1S-34</td>
<td>21</td>
<td>O</td>
</tr>
<tr>
<td>IOC1S-35</td>
<td>20</td>
<td>O</td>
</tr>
<tr>
<td>IOC1S-36</td>
<td>19</td>
<td>O</td>
</tr>
<tr>
<td>IOC1S-37</td>
<td>18</td>
<td>O</td>
</tr>
<tr>
<td>IOC1S-38</td>
<td>17</td>
<td>O</td>
</tr>
<tr>
<td>IOC1S-39</td>
<td>16</td>
<td>O</td>
</tr>
<tr>
<td>IOC1S-40</td>
<td>15</td>
<td>O</td>
</tr>
</tbody>
</table>

6.3.1 CS1FX- (Drive chip Select 0)
This is the chip select signal decoded from the host address bus used to select the Command Block Registers.

6.3.2 CS3FX- (Drive chip Select 1)
This is the chip select signal decoded from the host address bus used to select the Control Block Registers.
6.3.3 DAS- (Drive Active/Drive 1 Present)

This is a time-multiplexed signal which indicates that a drive is active, or that Drive 1 is present. This signal shall be an open collector output and each drive shall have a 10K pull-up resistor.

During power on initialization or after RESET is negated, DAS- shall be asserted by Drive 1 within 400 msec to indicate that Drive 1 is present.

Drive 0 shall allow up to 450 msec for Drive 1 to assert DAS-. If Drive 1 is not present, Drive 0 may assert DAS- to drive an activity LED.

DAS- shall be negated following acceptance of the first valid command by Drive 1 or after 3T seconds, whichever comes first.

Any time after negation of DAS-, either drive may assert DAS- to indicate that a drive is active.

NOTE: Prior to the development of this standard, products were introduced which did not time multiplex DAS-. Some used two jumpers to indicate to Drive 0 whether Drive 1 was present. If such a drive is jumpered to indicate Drive 1 is present it should work successfully with a Drive 1 which complies with this standard. If installed as Drive 1, such a drive may not work successfully because it may not assert DAS- for a long enough period to be recognized. However, it would assert DAS- to indicate that the drive is active.

6.3.5 DDS-0D15 (Drive Data Bus)

This is an 8- or 16-bit bidirectional data bus between the host and the drive. The lower 8 bits are used for 8-bit transfers e.g. registers, ECC bytes.

6.3.6 DIO- (Drive 1/0 Read)

This is the Read strobe signal. The falling edge of DIO- enables data from a register or the data port of the drive onto the host data bus, DDS-0D7 or DDS-0D15. The rising edge of DIO- latches data at the host.

6.3.7 DIOW- (Drive 1/0 Write)

This is the Write strobe signal. The rising edge of DIOW- clocks data from the host data bus, DDS-0D7 or DDS-0D15, into a register or the data port of the drive.

6.3.8 DMARQ (DMA Acknowledge) (Optional)

This signal shall be used by the host in response to DMARQ to either acknowledge that data has been accepted, or that data is available.

6.3.9 DMARQ (DMA Request) (Optional)

This signal, used for DMA data transfers between host and drive, shall be asserted by the drive when it is ready to transfer data to or from the host. The direction of data transfer is controlled by DIO- and DIOW-. This signal is used in a handshake manner with DMARQ, i.e. the drive shall wait until the host asserts DMARQ before negating DMARQ, and re-asserting DMARQ if there is more data to transfer.

When a DMA operation is enabled, IOCS16-, CSIP- and CSS- shall not be asserted and transfers shall be 16-bits wide.

NOTE: ATA products with DMA capability require a pull-down resistor on this signal to prevent spurious data transfers. This resistor may affect driver requirements for drives sharing this signal in systems with unbuffered ATA signals.

6.3.10 INTRQ (Drive Interrupt)

This signal is used to interrupt the host system. INTRQ is asserted only when the drive has a pending interrupt, the drive is selected, and the host has cleared nIEN in the Device Control Register. If nIEN is 1, or the drive is not selected, this output is in a high impedance state, regardless of the presence or absence of a pending interrupt.

INTRQ shall be negated by:

- assertion of RESET- or
- the setting of SRST of the Device Control Register, or
- the host writing the Command Register or
- the host reading the Status Register

NOTE: Some drives may negate INTRQ on a PIO data transfer completion, except on a single sector read or on the last sector of a multi-sector read.

On PIO transfers, INTRQ is asserted at the beginning of each data block to be transferred. A data block is typically a single sector, except when declared otherwise by use of the Set Multiple command. An exception occurs on Format Track, Write Sector(s), Write Buffer and Write Long commands - INTRQ shall not be asserted at the beginning of the first data block to be transferred.

On DMA transfers, INTRQ is asserted only once, after the command has completed.

6.3.11 IOCS16- (Drive 16-bit I/O)

Except for DMA transfers, IOCS16- indicates to the host system that the 16-bit data port has been addressed and that the drive is prepared to send or receive a 16-bit data word. This shall be an open collector output.

- When transferring in PIO mode, if IOCS16- is not asserted, transfers shall be 8-bit using DDS-0.
- When transferring in PIO mode, if IOCS16- is asserted, transfers shall be 16-bit using DDS-0.
- For 16-bit data transfers,
 - When transferring in DMA mode, the host shall use a 16-bit DMA channel and
6.3.12 IORDY (1/0 Channel Ready) (Optional)

This signal is negated to extend the host transfer cycle of any host register access (Read or Write) when the drive is not ready to respond to a data transfer request. When IORDY is not negated, IORDY shall be in a high impedance state.

6.3.13 PDIAG- (Passed Diagnostics)

This signal shall be asserted by Drive 1 to indicate to Drive 0 that it has completed diagnostics. A 10K pull-up resistor shall be used on this signal by each drive.

Following a power on reset, software reset or RESET-, Drive 1 shall negate PDIAG- within 1 msec (to indicate to Drive 0 that it is busy). Drive 1 shall then assert PDIAG- within 30 seconds to indicate that it is no longer busy, and is able to provide status. After the assertion of PDIAG-, Drive 1 may be unable to accept commands until it has finished its reset procedure and is Ready (DRDY=1).

Following the receipt of a valid Execute Diagnose command, Drive 1 shall negate PDIAG- within 1 msec to indicate to Drive 0 that it is busy and has not yet passed its drive diagnostics. If Drive 1 is present then Drive 0 shall wait for up to 5 seconds from the receipt of a valid Execute Diagnose command for Drive 1 to assert PDIAG-. Drive 1 should clear BSY before asserting PDIAG-, as PDIAG- is used to indicate that Drive 1 has passed its diagnostics and is ready to post status.

If DASP is not asserted by Drive 1 during reset initialization, Drive 0 shall post its own status immediately after it completes diagnostics, and clear the Drive 1 Status Register to 00h. Drive 0 may be unable to accept commands until it has finished its reset procedure and is Ready (DRDY=1).

6.3.14 RESET- (Drive Reset)

This signal from the host system shall be asserted for at least 25 usec after voltage levels have stabilized during power on and negated thereafter unless some event requires that the drive(s) be reset following power on.

6.3.15 SPSYNC (Spindle Synchronization) (Optional)

This signal may be either input or output to the drive depending on a vendor-defined switch. If a drive is set to Master the signal is output, and if a drive is set to Slave the signal is input.

There is no requirement that each drive implementation be plug-compatible to the extent that a multiple vendor drive subsystem be operable. Mix and match of different manufacturer's drives is unlikely because rpm, sync fields, sync bytes etc need to be virtually identical. However, if drives are designed to match the following recommendations, controllers can operate drives with a single implementation.

There can only be one master drive at a time in a configuration. The host or the drive designated as master can generate SPSYNC at least once per rotation, but may be at a higher frequency.
Prior to the adoption of this standard, some drives may have provided jumpers to indicate Drive 0 with no Drive 1 present, or Drive 0 with Drive 1 present.
Throughout this document, drive selection always refers to the state of the DRT Bit, and the position of the Drive 0/Drive 1 jumper or switch.

7.2 I/O Register Descriptions

Communication to or from the drive is through an I/O Register that routes the input or output data to or from registers (selected) by a code on signals from the host (CISFX-, CSFXX-, DA2, DA1, DA0, DIOH- and DIOW-).

The Command Block Registers are used for sending commands to the drive or posting status from the drive.

The Control Block Registers are used for drive control and to post alternate status.

Table 7-1 lists these registers and the addresses that select them.

Logic conventions are:
A = signal asserted
N = signal negated
x = does not matter which it is

<table>
<thead>
<tr>
<th>TABLE 7-1: I/O PORT FUNCTIONS/SELECTION ADDRESSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addresses</td>
</tr>
<tr>
<td>CISFX-</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

7.2.1 Alternate Status Register

This register contains the same information as the Status Register in the command block. The only difference being that reading this register does not imply interrupt acknowledge or clear a pending interrupt.

7.2.2 Command Register

This register contains the command code being sent to the drive. Command execution begins immediately after this register is written. The executable commands, the command codes, and the necessary parameters for each command are listed in Table 9-1.

7.2.3 Cylinder High Register

This register contains the high order bits of the starting cylinder address for any disk access. At the end of the command, this register is updated to reflect the current cylinder number. The most significant bits of the cylinder address shall be loaded into the cylinder high Register.

NOTE: Prior to the introduction of this standard, only the lower 2 bits of this register were valid, limiting cylinder address to 10 bits i.e. 1,024 cylinders.

7.2.4 Cylinder Low Register

This register contains the low order 8 bits of the starting cylinder address for any disk access. At the end of the command, this register is updated to reflect the current cylinder number.

7.2.5 Data Register

This 16-bit register is used to transfer data blocks between the device data buffer and the host. It is also the register through which sector information is transferred on a format command. Data transfers may be either PIO or DMA.

7.2.6 Device Control Register

The bits in this register are as follows:

- SRST is the host software reset bit. The drive is held reset when this bit is set. If two disk drives are daisy chained on the interface, this bit resets both simultaneously. Drive I is not required to execute the DASP-handshake procedure.
- nIEN is the enable bit for the drive interrupt to the host. When nIEN=0, and the drive is selected, INTRQ shall be enabled through a tri-state buffer. When nIEN=1, or the drive is not selected, the INTRQ signal shall be in a high impedance state.
7.2.7 Drive Address Register

This register contains the inverted drive select and head select addresses of the currently selected drive. The bits in this register are as follows:

7 6 5 4 3 2 1 0

HIZ | HSHG | nHIS | nHS2 | nHS1 | nHS0 | nD5 | nD4

- HIZ shall always be in a high impedance state.
- HSHG is the write gate bit. When writing to the disk drive is in progress, HSHG=0.
- nHIS through nHS0 are the one's complement of the binary coded address of the currently selected head. For example, if nHIS through nHS0 are 1100b, respectively, head 3 is selected. nHS3 is the most significant bit.
- nD5 is the drive select bit for drive 1. When drive 1 is selected and active, nD5=1.
- nD4 is the drive select bit for drive 0. When drive 0 is selected and active, nD4=0.

NOTE: Care should be used when interpreting these bits, as they do not always represent the expected status of drive operations at the instant the status was put into this register. This is because of the use of caching, translate mode and the Drive 0/Drive 1 concept with each drive having its own embedded controller.

7.2.8 Drive/Head Register

This register contains the drive and head numbers. The contents of this register define the number of heads minus 1, when executing an Initialize Drive Parameters command.

7 6 5 4 3 2 1 0

1 | 0 | 1 | DRV | H5 | H4 | H3 | H2

- DRV is the binary encoded drive select number. When DRV=0, Drive 0 is selected. When DRV=1, Drive 1 is selected.
- H5 through H2 contain the binary coded address of the head to be selected e.g. if H5 through H2 are 0011b, respectively, head 3 will be selected.
- H1 is the most significant bit. At command completion, this register is updated to reflect the currently selected head.

7.2.9 Error Register

This register contains status from the last command executed by the drive or a Diagnostic Code.

At the completion of any command except Execute Drive Diagnostic, the contents of this register are valid when ERR=1 in the Status Register.

Following a power on, a reset, or completion of an Execute Drive Diagnostic command, this register contains a Diagnostic Code (see Table 9-2).
7.2.13 Status Register

This register contains the drive status. The contents of this register are updated at the completion of each command. When BSY is cleared, the other bits in this register shall be valid within 400 nsec. If BSY = 1, no other bits in this register are valid. If the host reads this register when an interrupt is pending, it is considered to be the interrupt acknowledge. Any pending interrupt is cleared whenever this register is read.

NOTE: If Drive 1 is not detected as being present, Drive 0 clears the Drive 1 Status Register to 00h (indicating that the drive is Not Ready).

```
7  6  5  4  3  2  1  0
| BSY | DRY | DWF | DSC | DRQ | CORR | IDX | ERR |
```

NOTE: Prior to the definition of this standard, DRY and DSC were unlatched real time signals.

- **BSY** (Busy) is set whenever the drive has access to the Command Block Registers. The host should not access the Command Block Register when BSY = 1. When BSY = 1, a read of any Command Block Register shall return the contents of the Status Register. This bit is set by the drive (which may be able to respond at times when the media cannot be accessed) under the following circumstances:
 a) within 400 nsec after the negation of RESET- or after SRST has been set in the Device Control Register. Following acceptance of a reset it is recommended that BSY be set for no longer than 30 seconds by Drive 1 and no longer than 31 seconds by Drive 0.
 b) within 400 nsec of a host write of the Command Register with a Read, Read Long, Read Buffer, Seek, Recalibrate, Initialize Drive Parameters, Read Verify, Identify Drive, or Execute Drive Diagnostic command.
 c) within 5 usecs following transfer of 512 bytes of data during execution of a Write, Format Track, or Write Buffer command, or 512 bytes of data and the appropriate number of ECC bytes during the execution of a Write Long command.

- **DRY** (Drive Ready) indicates that the drive is capable of responding to a command. When there is an error, this bit is not changed until the Status Register is read by the host, at which time the bit again indicates the current readiness of the drive. This bit shall be cleared at power on and remain cleared until the drive is ready to accept a command.

- **DWF** (Drive Write Fault) indicates the current write fault status. When an error occurs, this bit shall not be changed until the Status Register is read by the host, at which time the bit again indicates the current write fault status.

- **DSC** (Drive Seek Complete) indicates that the drive heads are settled over a track. When an error occurs, this bit shall not be changed until the Status Register is read by the host, at which time the bit again indicates the current Seek Complete status.

- **DRQ** (Data Request) indicates that the drive is ready to transfer a word or byte of data between the host and the drive.

- **CORR** (Corrected Data) indicates that a correctable data error was encountered and the data has been corrected. This condition does not terminate a data transfer.

- **IDX** (Index) is set once per disk revolution.

- **ERR** (Error) indicates that an error occurred during execution of the previous command. The bits in the Error Register have additional information regarding the cause of the error.

8. Programming Requirements

8.1 Reset Response

A reset is accepted within 400 nsec after the negation of RESET- or within 400 nsec after SRST has been set in the Device Control Register.

When the drive is reset by RESE-, Drive 1 shall indicate it is present by asserting DASP- within 400 nsec, and DASP- shall remain asserted for 30 seconds or until Drive 1 accepts the first command. See also 6.3.4 and 6.3.13.

When the drive is reset by SRST, the drive shall set BSY = 1.

See also 7.2.6.

When a reset is accepted, and with BSY set:

a) Both drives perform any necessary hardware initialization
b) Both drives clear any previously programmed drive parameters
c) Both drives may revert to the default condition
d) Both drives load the Command Block Registers with their default values

e) If a hardware reset, Drive 0 waits for DASP- to be asserted by Drive 1
f) If not operational, Drive 1 asserts DASP-
g) Drive 0 waits for DIOAG- to be asserted if Drive 1 asserts DASP-
h) If operational, Drive 1 clears BSY
i) If operational, Drive 1 asserts DIOAG-
j) Drive 0 clears BSY

No interrupt is generated when initialization is complete.

The default values for the Command Block Registers if no self-tests are performed or if no errors occurred are:

```
Error Count = 01h  Cylinder Low = 00h
Sector Count = 01h  Cylinder High = 00h
Sector Number = 01h  Drive/Head = 00h
```

The Error Register shall contain a Diagnostic Code (see Table 9.2) if a self-test is performed.

Following any reset, the host should issue an Initialize Drive Parameters command to ensure the drive is initialized as desired.

There are three types of reset in ATA. The following is a suggested method for classifying reset actions:

- **Power On Reset**: The drive executes a series of electrical circuitry diagnostics, spins up the HDA, tests speed and other mechanical parameters, and sets default values.
- **Hardware Reset**: The drive executes a series of electrical circuitry diagnostics, and resets to default values.
- **Software Reset**: The drive resets the interface circuitry to default values.
8.2 Translate Mode

The cylinder, head and sector geometry of the drive as presented to the host may differ from the actual physical geometry. Translate mode is an optional and device specific means of mapping between the two.

8.3 Power Conditions

Optional power commands permit the host to modify the behavior of the drive in a manner which reduces the power required to operate.

TABLE 8-1: POWER CONDITIONS

<table>
<thead>
<tr>
<th>Mode</th>
<th>SRST</th>
<th>BSY</th>
<th>DROD</th>
<th>Interface Active</th>
<th>Media</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sleep</td>
<td>1</td>
<td>x</td>
<td>x</td>
<td>No</td>
<td>0</td>
</tr>
<tr>
<td>Standby</td>
<td>x</td>
<td>0</td>
<td>1</td>
<td>Yes</td>
<td>0</td>
</tr>
<tr>
<td>Idle</td>
<td>x</td>
<td>0</td>
<td>1</td>
<td>Yes</td>
<td>1</td>
</tr>
<tr>
<td>Active</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Yes</td>
<td>1</td>
</tr>
</tbody>
</table>

The lowest power consumption occurs in Sleep mode. When in Sleep mode, the drive needs a Software Reset to be activated (see 9.18). The time to respond could be as long as 30 seconds or more.

In Standby mode the drive interface is capable of accepting commands, but as the media is not immediately accessible, it could take the drive as long as 30 seconds or more to respond.

In Idle mode the drive is capable of responding immediately to media access requests. A drive in Idle mode may take longer to complete the execution of a command because it may have to activate some circuitry.

In Active mode the drive is capable of responding immediately to media access requests, and commands complete execution in the shortest possible time.

Ready is not a power condition. A drive may pass ready at the interface even though the media may not be accessible.

See specific power-related commands.

8.4 Error Posting

The errors that are valid for each command are defined in Table 8-1. It is not a requirement that all valid conditions be implemented. See 7.2.9 and 7.2.13 for the definition of the Error Register and Status Register bits.

TABLE 8-2: REGISTER CONTENTS

<table>
<thead>
<tr>
<th>Error Register</th>
<th>Status Register</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBK</td>
<td>UNC</td>
</tr>
<tr>
<td>Check Power Mode</td>
<td></td>
</tr>
<tr>
<td>Execute Drive Diags</td>
<td></td>
</tr>
<tr>
<td>Format Track</td>
<td></td>
</tr>
<tr>
<td>Identify Drive</td>
<td>V</td>
</tr>
<tr>
<td>Idle</td>
<td></td>
</tr>
<tr>
<td>Idle Immediate</td>
<td></td>
</tr>
<tr>
<td>Initialize DriveParms</td>
<td></td>
</tr>
<tr>
<td>Recalibrate</td>
<td></td>
</tr>
<tr>
<td>Read Buffer</td>
<td>V</td>
</tr>
<tr>
<td>Read DMA</td>
<td>V</td>
</tr>
<tr>
<td>Read Long</td>
<td>V</td>
</tr>
<tr>
<td>Read Multiple</td>
<td>V</td>
</tr>
<tr>
<td>Read Sector(s)</td>
<td>V</td>
</tr>
<tr>
<td>Read Verify Sector(s)</td>
<td>V</td>
</tr>
<tr>
<td>Seek</td>
<td></td>
</tr>
<tr>
<td>Set Features</td>
<td></td>
</tr>
<tr>
<td>Set Multiple Mode</td>
<td></td>
</tr>
<tr>
<td>Sleep</td>
<td></td>
</tr>
<tr>
<td>Standby</td>
<td></td>
</tr>
<tr>
<td>Standby Immediate</td>
<td></td>
</tr>
<tr>
<td>Write Buffer</td>
<td></td>
</tr>
<tr>
<td>Write DMA</td>
<td></td>
</tr>
<tr>
<td>Write Long</td>
<td></td>
</tr>
<tr>
<td>Write Multiple</td>
<td></td>
</tr>
<tr>
<td>Write Same</td>
<td></td>
</tr>
<tr>
<td>Write Sector(s)</td>
<td></td>
</tr>
<tr>
<td>Write Verify</td>
<td></td>
</tr>
<tr>
<td>Invalid Command Code</td>
<td></td>
</tr>
</tbody>
</table>

V = valid on this command

9. Command Descriptions

Commands are issued to the drive by loading the pertinent registers in the command block with the needed parameters, and then writing the command code to the Command Register.

The manner in which a command is accepted varies. There are three classes (see Table 9-1) of command acceptance, all predicated on the fact that to receive a command, BSY=0:

- Upon receipt of a Class 1 command, the drive sets BSY within 400 nsec.
- Upon receipt of a Class 2 command, the drive sets BSY within 400 nsec, sets up the sector buffer for a write operation, sets DRO within 700 usec, and clears BSY within 400 nsec of setting DRO.
- Upon receipt of a Class 3 command, the drive sets BSY within 400 nsec, sets up the sector buffer for a write operation, sets DRO within 20 nsec, and clears BSY within 400 nsec of setting DRO.

NOTE: DRO may be set so quickly on Class 2 and Class 3 that the BSY
The drive shall implement all mandatory commands as identified by an M, and may implement the optional commands identified by an O, in Table 9-1. V indicates a Vendor Specific command code.

TABLE 9-1: COMMAND CODES AND PARAMETERS

<table>
<thead>
<tr>
<th>Class</th>
<th>Command Code</th>
<th>Command</th>
<th>Parameters Used</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>FR</td>
</tr>
<tr>
<td>1</td>
<td>Check Power Mode</td>
<td>0 98h E5h</td>
<td>y</td>
</tr>
<tr>
<td>2</td>
<td>Execute Drive Diagnostic</td>
<td>M 90h</td>
<td>y</td>
</tr>
<tr>
<td>1</td>
<td>Format Track</td>
<td>M 60h</td>
<td>y</td>
</tr>
<tr>
<td>1</td>
<td>Identify Drive</td>
<td>M ECh</td>
<td>y</td>
</tr>
<tr>
<td>1</td>
<td>Idle</td>
<td>M 97h E3h</td>
<td>y</td>
</tr>
<tr>
<td>1</td>
<td>Idle Immediate</td>
<td>M 95h E1h</td>
<td>y</td>
</tr>
<tr>
<td>1</td>
<td>Initialize Drive Parameters</td>
<td>M 91h</td>
<td>y</td>
</tr>
<tr>
<td>1</td>
<td>Recalibrate</td>
<td>M 1xh</td>
<td>y</td>
</tr>
<tr>
<td>1</td>
<td>Read Buffer</td>
<td>M E4h</td>
<td>y</td>
</tr>
<tr>
<td>1</td>
<td>Read DMA (w/retry)</td>
<td>O CCh</td>
<td>y</td>
</tr>
<tr>
<td>1</td>
<td>Read DMA (w/o retry)</td>
<td>O C9h</td>
<td>y</td>
</tr>
<tr>
<td>1</td>
<td>Read Multiple</td>
<td>O C4h</td>
<td>y</td>
</tr>
<tr>
<td>1</td>
<td>Read Sector(s) (w/retry)</td>
<td>M 20h</td>
<td>y</td>
</tr>
<tr>
<td>1</td>
<td>Read Sector(s) (w/o retry)</td>
<td>M 21h</td>
<td>y</td>
</tr>
<tr>
<td>1</td>
<td>Read Long (w/retry) See 9.13</td>
<td>M 22h</td>
<td>y</td>
</tr>
<tr>
<td>1</td>
<td>Read Long (w/o retry) See 9.13</td>
<td>M 23h</td>
<td>y</td>
</tr>
<tr>
<td>1</td>
<td>Read Verify Sector(s)</td>
<td>M 40h</td>
<td>y</td>
</tr>
<tr>
<td>1</td>
<td>Read Verify Sector(s) (w/retry)</td>
<td>M 41h</td>
<td>y</td>
</tr>
<tr>
<td>1</td>
<td>Seek</td>
<td>M 7xh</td>
<td>y</td>
</tr>
<tr>
<td>1</td>
<td>Set Features</td>
<td>M E6h</td>
<td>y</td>
</tr>
<tr>
<td>1</td>
<td>Set Multiple Mode</td>
<td>M C0h</td>
<td>y</td>
</tr>
<tr>
<td>1</td>
<td>Set Sleep Mode</td>
<td>M 99h E6h</td>
<td>y</td>
</tr>
<tr>
<td>1</td>
<td>Standby</td>
<td>M 96h E2h</td>
<td>y</td>
</tr>
<tr>
<td>1</td>
<td>Standby Immediate</td>
<td>M 94h E0h</td>
<td>y</td>
</tr>
<tr>
<td>2</td>
<td>Write Buffer</td>
<td>M E8h</td>
<td>y</td>
</tr>
<tr>
<td>3</td>
<td>Write DMA (w/retry)</td>
<td>M EAh</td>
<td>y</td>
</tr>
<tr>
<td>3</td>
<td>Write DMA (w/o retry)</td>
<td>M CCh</td>
<td>y</td>
</tr>
<tr>
<td>3</td>
<td>Write Multiple</td>
<td>O C5h</td>
<td>y</td>
</tr>
<tr>
<td>3</td>
<td>Write Same</td>
<td>M E9h</td>
<td>y</td>
</tr>
<tr>
<td>3</td>
<td>Write Sector(s) (w/retry)</td>
<td>M 30h</td>
<td>y</td>
</tr>
<tr>
<td>3</td>
<td>Write Sector(s) (w/o retry)</td>
<td>M 31h</td>
<td>y</td>
</tr>
<tr>
<td>3</td>
<td>Write Long (w/retry)</td>
<td>M 32h</td>
<td>y</td>
</tr>
<tr>
<td>3</td>
<td>Write Long (w/o retry)</td>
<td>M 33h</td>
<td>y</td>
</tr>
<tr>
<td>3</td>
<td>Write Verify</td>
<td>M 3Ch</td>
<td>y</td>
</tr>
<tr>
<td>3</td>
<td>Vendor Unique</td>
<td>V 9Ah</td>
<td>y</td>
</tr>
<tr>
<td>3</td>
<td>Vendor Unique</td>
<td>V 9Ah</td>
<td>y</td>
</tr>
<tr>
<td>3</td>
<td>Vendor Unique</td>
<td>V 0Ch</td>
<td>y</td>
</tr>
<tr>
<td>3</td>
<td>Vendor Unique</td>
<td>V 0Ah</td>
<td>y</td>
</tr>
<tr>
<td>3</td>
<td>Vendor Unique</td>
<td>V 0Ah</td>
<td>y</td>
</tr>
<tr>
<td>3</td>
<td>EATA Standard (CAM/09-004)</td>
<td>V F0h-F4h</td>
<td>y</td>
</tr>
</tbody>
</table>

Notes:
- **CY** = Cylinder Registers
- **SC** = Sector Count Register
- **DH** = Drive/Head Register
- **FR** = Features Register (see command descriptions for use)
- **SN** = Sector Number Register
- y - the register contains a valid parameter for this command.
- For the Drive/Head Register, y means both the drive and head parameters are used.
- D - only the drive parameter is valid and not the head parameter.
- D* - Addressed to Drive 0 but both drives execute it.
- * - Maintained for compatibility (see 7.2.9)
9.1 Check Power Mode

This command checks the power mode.

If the drive is in, going to, or recovering from the Standby Mode the drive shall set BSY, set the Sector Count Register to 00h, clear BSY, and generates an interrupt.

If the drive is in the Idle Mode, the drive shall set BSY, set the Sector Count Register to FFh, clear BSY, and generate an interrupt.

9.2 Execute Drive Diagnostic

This command shall perform the internal diagnostic tests implemented by the drive. See also 6.3.4 and 6.3.13. The DRV bit is ignored. Both drives, if present, shall execute this command.

If Drive 1 is present:
- Drive 0 waits up to 5 seconds for Drive 1 to assert PDIAG-
- If Drive 1 has not asserted PDIAG-, indicating a failure, Drive 0 shall append 80h to its own diagnostic status.
- Both drives shall execute diagnostics.
- If Drive 1 diagnostic failure is detected when Drive 0 status is read, Drive 1 status is obtained by setting the DRV bit, and reading status.

If there is no Drive 1 present:
- Drive 0 posts only its own diagnostic results.
- Drive 0 clears BSY, and generates an interrupt.

The Diagnostic Code written to the Error Register is a unique 8-bit code as shown in Table 9-2, and not as the single bit flags defined in 7.2.3.

If Drive 1 fails diagnostics, Drive 0 "ORs" 80h with its own status and loads that code into the Error Register. If Drive 1 connected, Drive 0 "ORs" 00h with its own status and loads that code into the Error Register.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>01h</td>
<td>No error detected</td>
</tr>
<tr>
<td>02h</td>
<td>Formatter device error</td>
</tr>
<tr>
<td>03h</td>
<td>Sector buffer error</td>
</tr>
<tr>
<td>04h</td>
<td>ECC circuitry error</td>
</tr>
<tr>
<td>05h</td>
<td>Controlling microprocessor error</td>
</tr>
<tr>
<td>06h</td>
<td>Drive 1 failed</td>
</tr>
</tbody>
</table>

9.3 Format Track

The implementation of the Format Track command is vendor specific. The actions may be a physical reformatting of a track, initializing the data field contents to some value, or doing nothing.

The Sector Count Register contains the number of sectors per track.

The track address is specified in the Cylinder High and Cylinder Low Registers, and the number of sectors is specified in the Sector Count Register. When the command is accepted, the drive sets the DRQ bit and waits for the host to fill the sector buffer. When the sector buffer is full, the drive clears DRQ, sets BSY and begins command execution.

The contents of the sector buffer shall not be written to the media, and may be either ignored or interpreted as follows:

<table>
<thead>
<tr>
<th>DD15</th>
<th>DDO</th>
<th>DD15</th>
<th>DDO</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Descr</td>
<td>Sector</td>
<td>Filler</td>
<td>Bit</td>
</tr>
<tr>
<td>Last Descr</td>
<td>Sector</td>
<td>Filler</td>
<td>Bit</td>
</tr>
</tbody>
</table>

One 16-bit word represents each sector, the words being contiguous from the start of a sector. Any words remaining in the buffer after the representation of the last sector are filled with zeros. DD15-B contain the sector number. If an interleave is specified, the words appear in the same sequence as they appear on the track. DD7-D contain a descriptor value defined as follows:

00h - Format sector as good
20h - Unassign the alternate location for this sector
40h - Assign this sector to an alternate location
80h - Format sector as bad

NOTE: Some users of the ATA drive expect the operating system partition table to be erased on a Format command. It is recommended that a drive which does not perform a physical format of the track, write a data pattern of all zeros to the sectors which have been specified by the Format Track command.

NOTE: It is recommended that implementors ressasign data blocks which show repeated errors.

9.4 Identify Drive

The Identify Drive command enables the host to receive parameter information from the drive. When the command is issued, the drive sets BSY, stores the required parameter information in the sector buffer, sets DRQ, and generates an interrupt. The host then reads the information out of the sector buffer. The parameter words in the buffer have the arrangement and meanings defined in Table 9-3. All reserved bits or words shall be zero.
9.4.1 Number of fixed cylinders
The number of translated cylinders in the default translation mode.

9.4.2 Number of heads
The number of translated heads in the default translation mode.

9.4.3 Number of unformatted bytes per track
The number of unformatted bytes per translated track in the default translation mode.

9.4.4 Number of unformatted bytes per sector
The number of unformatted bytes per sector in the default translation mode.

9.4.5 Number of sectors per track
The number of sectors per track in the default translation mode.

9.4.6 Serial Number
The contents of this field are right justified and padded with spaces (20h).

9.4.7 Buffer Type
The contents of the field are determined by the manufacturer.

0000h = not specified.
0001h = a single ported single sector buffer which is not capable of simultaneous data transfers to or from the host and the disk.
0002h = a dual ported multi-sector buffer capable of simultaneous data transfers to or from the host and the disk.
0003h = a dual ported multi-sector buffer capable of simultaneous transfers with a read caching capability.
0004-FFFFh = reserved

These codes are typically not used by the operating system, however, they are useful for diagnostic programs which perform initialization routines e.g. a different interface may be desirable for 0001h vs 0002h or 0003h.

9.4.8 Firmware Revision
The contents of this field are left justified and padded with spaces (20h).

9.4.9 Model Number
The contents of this field are left justified and padded with spaces (20h).

9.4.10 PIO data transfer cycle timing mode
The PIO transfer timing for each ATA device falls into categories which have unique parametric timing specifications. To determine the proper device timing category, compare the Cycle Time specified in Figure 11-1 with the contents of this field. The value returned in Bits 15-8 should fall into one of the categories specified in Figure 11-1, and if it does not, then Mode 0 shall be
used to serve as the default timing.

9.4.11 DMA data transfer cycle timing mode

The DMA transfer timing for each ATA device falls into categories which have unique parametric timing specifications. To determine the proper device timing category, compare the Cycle Time specified in Figure 11-3 with the contents of this field. The value returned in Bits 15-8 should fall into one of the categories specified in Figure 11-3, and if it does not, then Mode 0 shall be used to serve as the default timing.

9.5 Idle

This command causes the drive to set BSY, enter the Idle Mode, clear BSY, and generate an interrupt. The interrupt is generated even though the drive may not have fully transitioned to Idle Mode.

If the drive is already spinning, the spinup sequence is not executed.

If the Sector Count Register is non-zero then the automatic power down sequence shall be enabled and the timer begins counting down immediately. If the Sector Count Register is zero then the automatic power down sequence shall be disabled.

9.6 Idle Immediate

This command causes the drive to set BSY, enter the Idle Mode, clear BSY, and generate an interrupt. The interrupt is generated even though the drive may not have fully transitioned to Idle Mode.

9.7 Initialize Drive Parameters

This command enables the host to set the number of sectors per track and the number of heads minus 1, per cylinder. Upon receipt of the command, the drive sets BSY, saves the parameters, clears BSY, and generates an interrupt.

The only two register values used by this command are the Sector Count Register which specifies the number of sectors per track, and the Drive/Head Register which specifies the number of heads minus 1. The DRV bit designates these values to Drive 0 or Drive 1, as appropriate.

The sector count and head values are not checked for validity by this command. If they are invalid, no error will be posted until an illegal access is made by some other command.

9.8 Recalibrate

This command moves the read/write heads from anywhere on the disk to cylinder 0. Upon receipt of the command, the drive sets BSY and issues a seek to cylinder zero. The drive then waits for the seek to complete before updating status, clearing BSY and generating an interrupt.

If the drive cannot reach cylinder 0, a Track Not Found error is posted.

9.9 Read Buffer

The Read Buffer command enables the host to read the current contents of the drive's sector buffer. When this command is issued, the drive sets BSY, sets up the sector buffer for a read operation, sets DRO, clears BSY, and generates an interrupt. The host then reads up to 512 bytes of data from the buffer.

The Read Buffer and Write Buffer commands shall be synchronized such that sequential Write Buffer and Read Buffer commands access the same 512 bytes within the buffer.

9.10 Read DMA

This command executes in a similar manner to the Read Sectors command except for the following:

- The host initializes a slave-DMA channel prior to issuing the command.
- Data transfers are qualified by DMAQ and are performed by the slave-DMA channel.
- The drive issues only one interrupt per command to indicate that data transfer has terminated and status is available.

Any unrecoverable error encountered during execution of a Read DMA command results in the termination of data transfer at the sector where the error was detected. The sector in error is not transferred. The drive generates an interrupt to indicate that data transfer has terminated and status is available. The error posting is the same as that of the Read Sectors command.

9.11 Read Long

The Read Long command performs similarly to the Read Sectors command except that it returns the data and the ECC bytes contained in the data field of the desired sector. During a Read Long command, the drive does not check the ECC bytes to determine if there has been a data error. Only single sector read long operations are supported.

The transfer of the ECC bytes shall be 8-bits wide.

9.12 Read Multiple Command

The Read Multiple command performs similarly to the Read Sectors command. Interrupts are not generated on every sector, but on the transfer of a block which contains the number of sectors defined by a Set Multiple command.

Command execution is identical to the Read Sectors operation except that the number of sectors defined by a Set Multiple command are transferred without intervening interrupts. DRO qualification of the transfer is required only at the start of the data block, not on each sector.

The block count of sectors to be transferred without intervening interrupts is programmed by the Set Multiple Mode command, which shall be executed prior to the Read Multiple command.

When the Read Multiple command is issued, the Sector Count Register contains the number of sectors (not the number of blocks or the block count) requested.

If the number of requested sectors is not evenly divisible by the block count,
as many full blocks as possible are transferred, followed by a final, partial block transfer. The partial block transfer shall be for \(n \) sectors, where

\[
\text{n = Remainder (Sector Count / Block Count)}
\]

If the Read Multiple command is attempted before the Set Multiple Mode command has been executed or when Read Multiple commands are disabled, the Read Multiple operation shall be rejected with an Aborted Command error.

Disk errors encountered during Read Multiple commands are posted at the beginning of the block or partial block transfer, but DRQ is still set and the data transfer shall take place as it normally would, including transfer of corrupted data, if any.

The contents of the Command Block Registers following the transfer of a data block which had a sector in error are undefined. The host should retry the transfer as individual requests to obtain valid error information.

Subsequent blocks or partial blocks are transferred only if the error was a correctable data error. All other errors cause the command to stop after transfer of the block which contained the error. Interrupts are generated when DRQ is set at the beginning of each block or partial block.

9.13 Read Sector(s)

This command reads from 1 to 256 sectors as specified in the Sector Count register. A sector count of 0 requests 256 sectors. The transfer begins at the sector specified in the Sector Number Register. See 10.1 for the DRQ, IRQ and BSY protocol on data transfers.

If the drive is not already on the desired track, an implied seek is performed. Once at the desired track, the drive searches for the appropriate ID field.

If retries are disabled and two index pulses have occurred without error free reading of the requested ID, an ID Not Found error is posted.

If retries are enabled, up to a vendor specific number of attempts may be made to read the requested ID before posting an error.

If the ID is read correctly, the data address mark shall be recognized within a specified number of bytes, or the Address Mark Not Found error is posted.

DRQ is always set regardless of the presence or absence of an error condition at the end of the sector.

At command completion, the Command Block Registers contain the cylinder, head, and sector number of the last sector read.

If an error occurs, the read terminates at the sector where the error occurred. The Command Block Registers contain the cylinder, head, and sector number of the sector where the error occurred.

The flawed data is pending in the sector buffer.

9.14 Read Verify Sector(s)

This command is identical to the Read Sectors command, except that DRQ is never set, and no data is transferred to the host. See 10.3 for protocol.

When the requested sectors have been verified, the drive clears BSY and generates an interrupt. Upon command completion, the Command Block Registers contain the cylinder, head, and sector number of the last sector verified.

If an error occurs, the verify terminates at the sector where the error occurs. The Command Block Registers contain the cylinder, head, and sector number of the sector where the error occurred. The Sector Count Register shall contain the number of sectors not yet verified.

9.15 Seek

This command initiates a seek to the track and selects the head specified in the command block. The drive need not be formatted for a seek to execute properly. See 10.3 for protocol. The drive shall not set DSC1 until the action of seeking has completed. The drive may return the interrupt before the seek is completed.

If another command is issued to the drive while a seek is being executed, the drive sets BSY, waits for the seek to complete, and then begins execution of the command.

9.16 Set Features

This command is used by the host to establish the following parameters which affect the execution of certain drive features:

- 44h Vendor unique length of ECC on Read Long/Write Long commands
- 55h Disable read look-ahead feature
- 8Ah Enable read look-ahead feature
- B8h 4 bytes of ECC apply on Read Long/Write Long commands

See 10.3 for protocol. If the value in the register is not supported or is invalid, the drive posts an Aborted Command error.

At power on, or after a software or hardware reset, the default mode is read look-ahead enabled and 4 bytes of ECC.

9.17 Set Multiple Mode

This command enables the drive to perform Read and Write Multiple operations and establishes the block count for these commands. See 10.3 for protocol.

The Sector Count Register is loaded with the number of sectors per block. Drives shall support block sizes of 2, 4, 8, and 16 sectors, if their buffer size is at least 0.192 bytes, and may also support other block sizes. Upon receipt of the command, the drive sets BSY-1 and checks the Sector Count Register.

If the Sector Count Register contains a valid value and the block count is supported, the value is loaded for all subsequent Read Multiple and Write Multiple commands and execution of those commands is enabled. If a block count is not supported, an Aborted Command error is posted, and Read Multiple and
Write Multiple commands are disabled.

If the Sector Count Register contains 0 when the command is issued, Read and Write Multiple commands are disabled.

At power on, or after a hardware or software reset, the default mode is Read and Write Multiple disabled.

9.18 Sleep

This command is the only way to cause the drive to enter Sleep Mode. The drive is spun down, and when it is stopped, BSY is cleared, an interrupt is generated, and the interface becomes inactive.

The only way to recover from Sleep mode without a reset or power on, is for the host to issue a software reset.

A drive shall not power on in Sleep Mode nor remain in Sleep Mode following a reset sequence. If the drive is already spun down, the spin down sequence is not executed.

9.19 Standby

This command causes the drive to enter the Standby Mode. See 10.3 for protocol. The drive may return the interrupt before the transition to Standby Mode is completed.

If the drive is already spun down, the spin down sequence is not executed.

If the Sector Count Register is non-zero then the automatic power down sequence shall be enabled and the timer will begin counting down when the drive returns to Idle mode. If the Sector Count Register is zero then the automatic power down sequence shall be disabled.

9.20 Standby Immediate

This command causes the drive to enter the Standby Mode. See 10.3 for protocol. The drive may return the interrupt before the transition to Standby Mode is completed.

If the drive is already spun down, the spin down sequence is not executed.

9.21 Write Buffer

This command enables the host to overwrite the contents of the drive's sector buffer with any data pattern desired. See 10.2 for protocol.

The Read Buffer and Write Buffer commands shall be synchronized within the drive such that sequential Write Buffer and Read Buffer commands access the same 512 bytes within the buffer.

9.22 Write DMA

This command executes in a similar manner to Write Sectors except for the following:

- the host initializes a slave-DMA channel prior to issuing the command
- data transfers are qualified by DMARQ and are performed by the slave-DMA channel
- the drive issues only one interrupt per command to indicate that data transfer has terminated and status is available.

Any error encountered during Write DMA execution results in the termination of data transfer. The drive issues an interrupt to indicate that data transfer has terminated and status is available in the Error Register. The error posting is the same as that of the Write Sectors command.

9.23 Write Multiple Command

This command is similar to the Write Sectors command. The drive sets BSY within 400 usec of accepting the command, and interrupts are not presented on each sector but on the transfer of a block which contains the number of sectors defined by Set Multiple.

Command execution is identical to the Write Sectors operation except that the number of sectors defined by the Set Multiple command are transferred without intervening interrupts. DMARQ qualification of the transfer is required only at the start of the data block, not on each sector.

The block count of sectors to be transferred without intervening interrupts is programmed by the Set Multiple Mode command, which shall be executed prior to the Read Multiple command.

When the Write Multiple command is issued, the Sector Count Register contains the number of sectors (not the number of blocks or the block count) requested.

If the number of requested sectors is not evenly divisible by the block count, as many full blocks as possible are transferred, followed by a final, partial block transfer. The partial block transfer is for \(n \) sectors, where

\[
\begin{align*}
 n &= \text{Remainder (Sector Count / Block Count)}
\end{align*}
\]

If the Write Multiple command is attempted before the Set Multiple Mode command has been executed or when Write Multiple commands are disabled, the Write Multiple operation shall be rejected with an aborted command error.

Disk errors encountered during Write Multiple commands are posted after the attempted disk write of the block or partial block transferred. The Write command ends with the sector in error, even if it was in the middle of a block. Subsequent blocks are not transferred in the event of an error. Interrupts are generated when DMARQ is set at the beginning of each block or partial block.

The contents of the Command Block Registers following the transfer of a data block which had a sector in error are undefined. The host should retry the transfer as Individual requests to obtain valid error information.

9.24 Write Same

This command executes in a similar manner to Write Sectors except that only one sector of data is transferred. The contents of the sector are written to the medium one or more times.

NOTE: The Write Same command allows for initialization of part or all of the
medium to the specified data with a single command.

If the Features Register is 22h, the drive shall write that part of the medium specified by the sector count, sector number, cylinder and drive/head registers. If the Features Register contains 02h, the drive shall initialize all the user accessible medium. If the register contains a value other than 22h or 02h, the command shall be rejected with an aborted command error.

The drive issues an interrupt to indicate that the command is complete. Any error encountered during execution results in the termination of the write operation. Status is available in the Error Register if an error occurs. The error posting is the same as that of the Write Sectors command.

9.25 Write Long

This command is similar to the Write Sectors command except that it writes the data and the ECC bytes directly from the sector buffer; the drive does not generate the ECC bytes itself. Only single sector Write Long operations are supported.

The transfer of the ECC bytes shall be 8-bits wide.

9.26 Write Sector(s)

This command writes from 1 to 256 sectors as specified in the Sector Count Register (a sector count of zero requests 256 sectors), beginning at the specified sector. See 10.1 for the DRQ, IRQ and BSY protocol on data transfers.

If the drive is not already on the desired track, an implied seek is performed. Once at the desired track, the drive searches for the appropriate ID field.

If retries are disabled and two index pulsas have occurred without error free reading of the requested ID, an ID Not Found error is posted.

If retries are enabled, up to a vendor specific number of attempts may be made to read the requested ID before posting an error.

If the ID is read correctly, the data loaded in the buffer is written to the data field of the sector. Followed by the ECC bytes. Upon command completion, the Command Block Registers contain the cylinder, head, and sector number of the last sector written.

If an error occurs during a write of more than one sector, writing terminates at the sector where the error occurs. The Command Block Registers contain the cylinder, head, and sector number of the sector where the error occurred. The host may then read the command block to determine what error has occurred, and on which sector.

9.27 Write Verify

This command is similar to the Write Sectors command, except that each sector is verified immediately after being written. The verify operation is a read without transfer and a check for data errors. Any errors encountered during the verify operation are posted. Multiple sector write verify commands write all the requested sectors and then verify all the requested sectors before generating the final interrupt.

10. Protocol Overview

Commands can be grouped into different classes according to the protocols followed for command execution. The command classes with their associated protocols are defined below.

For all commands, the host first checks if BSY=1, and should proceed no further unless and until BSY=0. For most commands, the host will also wait for DRDY=1 before proceeding. Those commands shown with DRDY=x can be executed when DRDY=0.

Data transfers may be accomplished in more ways than are described below, but these sequences should work with all known implementations of AIA drives.

10.1 PIO Data In Commands

This class includes:

- Identify Drive
- Read Buffer
- Read Long
- Read Sector(s)

Execution includes the transfer of one or more 512-byte (>=512 bytes on Read Long) sectors of data from the drive to the host.

a) The host writes any required parameters to the Features, Sector Count, Sector Number, Cylinder and Drive/Head registers.
b) The host writes the command code to the Command Register.
c) The drive sets BSY and prepares for data transfer.
d) When a sector of data is available, the drive sets DRQ and clears BSY prior to asserting INTRQ.
e) After detecting INTRQ, the host reads the Status Register, then reads one sector of data via the Data Register. In response to the Status Register being read, the drive negates INTRQ.
f) The drive clears DRQ. If transfer of another sector is required, the drive also sets BSY and the above sequence is repeated from d).

10.1.1 PIO Read Command

<table>
<thead>
<tr>
<th>Setup</th>
<th>Issue Command</th>
<th>Read Status</th>
<th>Read Data</th>
<th>Transfer</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSY=0</td>
<td>DRDY=1</td>
<td>BSY=1</td>
<td>DRQ=0</td>
<td>DRQ=0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BSY=0</td>
<td>DRQ=1</td>
<td>DRQ=1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Assert Nega</td>
<td>Assert Nega</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>INTRQ</td>
<td>INTRQ</td>
</tr>
</tbody>
</table>

If Error Status is presented, the drive is prepared to transfer data, and it is at the host's discretion that the data is transferred.
10.1.2 PIO Read Aborted Command

Although DRQ=1, there is no data to be transferred under this condition.

10.2 PIO Data Out Commands

This class includes:
- Format
- Write Buffer
- Write Long
- Write Sector(s)

Execution includes the transfer of one or more 512 byte (>512 bytes on Write Long) sectors of data from the drive to the host.

a) The host writes any required parameters to the Features, Sector Count, Sector Number, Cylinder and Drive/Head registers.
b) The host writes the command code to the Command Register.
c) The drive sets DRQ when it is ready to accept the first sector of data.
d) The host writes one sector of data via the Data Register.
e) The drive clears DRQ and sets BSY.
f) When the drive has completed processing of the sector, it clears BSY and asserts INTRQ. If transfer of another sector is required, the drive also sets DRQ.
g) After detecting INTRQ, the host reads the Status Register.
h) The drive clears the interrupt.
i) If transfer of another sector is required, the above sequence is repeated from d).

10.2.1 PIO Write Command

a) The host writes any required parameters to the Features, Sector Count, Sector Number, Cylinder and Drive/Head registers.
b) The host writes the command code to the Command Register.
c) The drive sets BSY.
d) When the drive has completed processing, it clears BSY and asserts INTRQ.
e) The host reads the Status Register.
f) The drive negates INTRQ.

10.3 Non-Data Commands

This class includes:
- Execute Drive Diagnostic (DRDY=x)
- Idle
- Initialize Drive Parameters (DRDY=x)
- Read Power Mode
- Read Verify Sector(s)
- Recalibrate
- Seek
- Set Features
- Set Multiple Mode
- Standby

Execution of these commands involves no data transfer.

a) The host writes any required parameters to the Features, Sector Count, Sector Number, Cylinder and Drive/Head registers.
b) The host writes the command code to the Command Register.
c) The drive sets BSY.
d) When the drive has completed processing, it clears BSY and asserts INTRQ.
e) The host reads the Status Register.
f) The drive negates INTRQ.

10.4 Miscellaneous Commands

This class includes:
- Read Multiple
- Sleep
- Write Multiple
- Write Same

The protocol for these commands is contained in the individual command descriptions.

10.5 DMA Data Transfer Commands (Optional)

This class comprises:
- Read DMA
- Write DMA

Data transfers using DMA commands differ in two ways from PIO transfers:
- data transfers are performed using the slave-DMA channel
- no intermediate sector interrupts are issued on multi-sector commands

Initiation of the DMA transfer commands is identical to the Read Sector or Write Sector commands except that the host initializes the slave-DMA channel prior to issuing the command.

The interrupt handler for DMA transfers is different in that:
- no intermediate sector interrupts are issued on multi-sector commands
- the host resets the DMA channel prior to reading status from the drive.

The DMA protocol allows high performance multi-tasking operating systems to eliminate processor overhead associated with PIO transfers.

a) Command Phase
 1) Host initializes the slave-DMA channel
 2) Host updates the Command Block Registers
 3) Host writes command code to the Command Register

b) Data Phase - the register contents are not valid during a DMA Data Phase.
 1) The slave-DMA channel qualifies data transfers to and from the drive
 with DMAQ

c) Status Phase
 1) Drive generates the interrupt to the host
 2) Host resets the slave-DMA channel
 3) Host reads the Status Register and Error Register

10.5.1 Normal DMA Transfer

```
<table>
<thead>
<tr>
<th>Initialize DMA</th>
<th>Command</th>
<th>DMA Data Transfer</th>
<th>Reset DMA</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSY=0</td>
<td></td>
<td>BSY=x</td>
<td>BSY=1</td>
<td>BSY-0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DRQ=x</td>
<td>nIE=0</td>
<td></td>
</tr>
</tbody>
</table>
```

10.5.2 Aborted DMA Transfer

```
<table>
<thead>
<tr>
<th>Initialize DMA</th>
<th>Command</th>
<th>DMA Data</th>
<th>Reset DMA</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSY=0</td>
<td></td>
<td>BSY=x</td>
<td>BSY=1</td>
<td>BSY-0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DRQ=1</td>
<td>nIE=0</td>
<td></td>
</tr>
</tbody>
</table>
```

10.5.3 Aborted DMA Command

```
<table>
<thead>
<tr>
<th>Initialize DMA</th>
<th>Command</th>
<th>Reset DMA</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSY=0</td>
<td></td>
<td>BSY-1</td>
<td>BSY=0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nIE=0</td>
<td></td>
</tr>
</tbody>
</table>
```

11. Timing

11.1 Deskewing

The host shall provide cable deskewing for all signals originating from the controller. The drive shall provide cable deskewing for all signals originating at the host.

11.2 Symbols

Certain symbols are used in the timing diagrams. These symbols and their respective definitions are listed below.

- signal transition (asserted or negated)
- data transition (asserted or negated)
- undefined but not necessarily released
- the "other" condition if a signal is shown with no change
- used to number the sequence in which events occur e.g. #a, #b
- a degree of uncertainty as to when a signal may be asserted

- a degree of uncertainty as to when a signal may be negated

* All signals are shown with the Asserted condition facing to the top of the page. The negated condition is shown towards the bottom of the page relative to the asserted condition.

11.3 Terms

The interface uses a mixture of negative and positive signals for control and data. The terms asserted and negated are used for consistency and are independent of electrical characteristics.

In all timing diagrams, the lower line indicates negated, and the upper line indicates asserted e.g. the following illustrates the representation of a signal named TEST going from negated to asserted and back to negated, based on the polarity of the signal.

```
Bit Setting=1  TEST
Assert          Negate
```

```
Bit Setting=0
Assert          Negate
```

```
Bit Setting=0  TEST
```

```
Bit Setting=1
```

K0167161
11.4 Data Transfers

Figure 11-1 defines the relationships between the interface signals for both 16-bit and 8-bit data transfers.

- **Address Valid** *1 *
 - \[\text{Address Valid} \rightarrow \text{t7} \rightarrow \text{t2} \rightarrow \text{t9} \rightarrow \text{t8} \]

- **Write Data Valid** *2 *
 - \[\text{t3} \rightarrow \text{t4} \rightarrow \text{t5} \rightarrow \text{t6} \]

- **IOCS16**
 - *1 Drive Address consists of signals CS1FX- , CS3FX- and DA2-0
 - *2 Data consists of DDO-15 (16-bit) or DDO-7 (8-bit)

<table>
<thead>
<tr>
<th>PIO</th>
<th>Timing Parameters</th>
<th>Mode 0 nsec</th>
<th>Mode 1 nsec</th>
<th>Mode 2 nsec</th>
</tr>
</thead>
<tbody>
<tr>
<td>t0</td>
<td>Cycle Time</td>
<td>600</td>
<td>383</td>
<td>240</td>
</tr>
<tr>
<td>t1</td>
<td>Address Valid to DIOR-/DIOW- Setup</td>
<td>Min</td>
<td>70</td>
<td>50</td>
</tr>
<tr>
<td>t2</td>
<td>DIOR-/DIOW- 16-bit Pulse Width</td>
<td>Min</td>
<td>165</td>
<td>125</td>
</tr>
<tr>
<td>t3</td>
<td>DIOW- Data Setup</td>
<td>Min</td>
<td>290</td>
<td>290</td>
</tr>
<tr>
<td>t4</td>
<td>DIOW- Data Hold</td>
<td>Min</td>
<td>60</td>
<td>45</td>
</tr>
<tr>
<td>t5</td>
<td>DIOR- Data Setup</td>
<td>Min</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>t6</td>
<td>DIOR- Data Hold</td>
<td>Min</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>t7</td>
<td>Addr Valid to IOCS16- Assertion</td>
<td>Max</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>t8</td>
<td>Addr Valid to IOCS16- Negation</td>
<td>Max</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>t9</td>
<td>DIOR-/DIOW- to Address Valid Hold</td>
<td>Min</td>
<td>20</td>
<td>15</td>
</tr>
</tbody>
</table>

FIGURE 11-1: PIO DATA TRANSFER TO/FROM DRIVE

DIOR-/DIOW

- \[\text{tA} \rightarrow \text{tB} \rightarrow \text{tC} \rightarrow \text{tD} \rightarrow \text{tE} \rightarrow \text{tF} \rightarrow \text{tG} \rightarrow \text{tH} \]

- **Label Description**
 - tA - IORDY Setup time
 - tB - IORDY Pulse Width

WARNING: The use of IORDY for data transfers is a system integration issue which requires control of both ends of the cable.

FIGURE 11-2: IORDY TIMING REQUIREMENTS

DMARQ

- \[\text{tC} \rightarrow \text{tD} \rightarrow \text{tE} \rightarrow \text{tF} \rightarrow \text{tG} \rightarrow \text{tH} \]

FIGURE 11-3: DMA DATA TRANSFER
11.5 Power On and Hard Reset

![Diagram of reset sequence]

- Drive 0 can set BSY=0 if Drive 1 not present
- Drive 0 can use DASP- to indicate it is active if Drive 1 is not present
- DASP- can be asserted to indicate that the drive is active

Annex A: Diagnostic and Reset Considerations

This annex describes the following timing relationships during:

a) Power On and Hardware Resets
- One drive
- Two drives

b) Software Reset
- One drive
- Two drives

c) Diagnostic Command Execution
- One drive
- Two drives
- Two drives - Drive 1 failed

The timing assumes the following:

- DASP- is asserted by Drive 1 and received by Drive 0 at power-on or hard reset to indicate the presence of Drive 1. At all other times it is asserted by Drive 0 and Drive 1 to indicate when a drive is active.
- PDOAG- is asserted by Drive 1 and detected by Drive 0. It is used by Drive 1 to indicate to Drive 0 that it has completed diagnostics and is ready to accept commands from the Host (BSY bit is cleared). This does not indicate that the drive is ready, only that it can accept commands. This line may remain asserted until the next reset occurs or an Execute Diagnostic command is received.
- Unless indicated otherwise, all times are relative to the event that triggers the operation (RESET-, SBS=1, Execute Diagnostic Command).

A.1 Power On and Hardware Resets

A.1.1 Power On and Hardware Resets - One Drive

- Host asserts RESET- for a minimum of 25 usec.
- Drive 0 sets BSY within 400 usec after RESET- is negated.
- Drive 0 negates DASP- within 1 msec after RESET- negated.
- Drive 0 performs hardware initialization
- Drive 0 may revert to its default condition
- Drive 0 waits 1 msec then samples for at least 450 usec for DASP- to be asserted from Drive 1.
- Drive 0 clears BSY when ready to accept commands (within 31 seconds).

A.1.2 Power On and Hardware Resets - Two Drives

- Host asserts RESET- for a minimum of 25 usec.
- Drive 0 and Drive 1 set BSY within 400 usec after RESET- negated.
- DASP- is negated within 1 msec after RESET- is negated.

A.1.2.1 Drive 1

- Drive 1 negates PDOAG- before asserting DASP-.
- Drive 1 asserts DASP- within 400 usecs after RESET- (to show presence).
- Drive 1 performs hardware initialization and executes its internal diagnostics.
- Drive 1 may revert to its default condition
- Drive 1 posts diagnostic results to the Error Register
A.1.2.2 Drive 0

- Drive 0 performs hardware initialization and executes its internal diagnostics.
- Drive 0 may revert to its default condition.
- Drive 0 posts diagnostic results to the Error Register.
- Drive 0 waits until the first command is received or negates DASP- if no command is received within 30 seconds after RESET.

A.2 Software Reset

A.2.1 Software Reset - One Drive

- Host sets SRST=1 in the Device Control Register.
- Drive 0 sets BSY within 400 nsec after detecting that SRST=1.
- Drive 0 performs hardware initialization and executes its internal diagnostics.
- Drive 0 may revert to its default condition.
- Drive 0 posts diagnostic results to the Error Register.
- Drive 0 clears BSY when ready to accept commands (within 31 seconds).

A.2.2 Software Reset - Two Drives

- Host sets SRST=1 in the Device Control Register.
- Drive 0 and Drive 1 set BSY within 400 nsec after detecting that SRST=1.
- Drive 0 and Drive 1 perform hardware initialization.
- Drive 0 and Drive 1 may revert to their default condition.

A.3 Diagnostic Command Execution

A.3.1 Diagnostic Command Execution - One Drive (Passed)

- Drive 0 sets BSY within 400 nsec after the Execute Diagnostic command was received.
- Drive 0 performs hardware initialization and internal diagnostics.
- Drive 0 clears BSY when ready to accept commands (within 6 seconds).

NOTE: The 6 seconds referenced above is a host-oriented value.

Annex B: Diagnostic and Reset Considerations (informative).

B.1 Power on and hardware reset (RESET-)

DASP- is read by Drive 0 to determine if Drive 1 is present. If Drive 1 is present, Drive 0 will read PIDAG- to determine when it is valid to clear BSY and whether Drive 1 has powered on or reset without error. Otherwise, Drive 0 clears BSY whenever it is ready to accept commands. Drive 0 may assert DASP- to indicate drive activity.

B.2 Software reset

If Drive 1 is present, Drive 0 will read PIDAG- to determine when it is valid to clear BSY and whether Drive 1 has reset without any errors. Otherwise, Drive 0 will simply reset and clear BSY. DASP- is asserted by Drive 0 (and Drive 1 if it is present) in order to indicate drive activity.

B.3 Drive Diagnostic Command

If Drive 1 is present, Drive 0 will read PIDAG- to determine when it is valid to clear BSY and if Drive 1 passed or failed the Execute Drive Diagnostic command, otherwise, Drive 0 will simply execute its diagnostics and then clear BSY. DASP- is asserted by Drive 0 (and Drive 1 if it is present) in order to indicate the drive is active.

B.4 Truth Table

In all the above cases: Power on, RESET-, software reset, and the Execute Drive Diagnostics command the Drive 0 Error Register is calculated as follows:

<table>
<thead>
<tr>
<th>Drive 1 Present?</th>
<th>PIDAG- Asserted?</th>
<th>Drive 0 Passed</th>
<th>Error Register</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>01h</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>05h</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>09h</td>
</tr>
<tr>
<td>Yes</td>
<td>No (not read)</td>
<td>No</td>
<td>0Bh</td>
</tr>
<tr>
<td>No</td>
<td>No (not read)</td>
<td>Yes</td>
<td>09h</td>
</tr>
<tr>
<td>No</td>
<td>No (not read)</td>
<td>No</td>
<td>0Bh</td>
</tr>
</tbody>
</table>

Where x indicates the appropriate Diagnostic Code for the Power on, RESET-, software reset, or drive diagnostics error.

B.5 Power On or Hardware Reset Algorithm

1) Power on or hardware reset

2) The hardware should automatically do the following:
 a) Set up the hardwaress to post both Drive 0 and Drive 1 status
 b) Set the Drive 0 Status Register to 00h (set BSY and clear all the other status bits)
 c) Set the Drive 1 Status Register to 00h (set BSY and clear all the other status bits)

3) Read the single Drive 0/Drive 1 jumper and note its state

4) Perform any remaining time critical hardware initialization including starting the spin up of the disk if needed

5) If Drive 1
 a) Negate the PIDAG- signal
 b) Set up PIDAG- as an output
 c) Assert the DASP- output
 d) Set up DASP- as an output if necessary
 e) Set the hardware so it posts Drive 1 status only and continue to post 80h for Drive 1 status
 NOTE: all this must happen within 400 msec after power on or RESET-

 If Drive 0
 a) Set up PIDAG- as an input
 b) Release DASP- and set up DASP- as an input
 c) Test DASP- for 450 msec or until DASP- is asserted by Drive 1
 d) If DASP- is asserted within 450 msec
 i) Note that Drive 1 is present
 ii) Set up the hardware so it posts Drive 0 status only and continue to post 80h for the Drive 0 status
 NOTE: all this must happen within 400 msec after power on or RESET-
 e) Assert DASP- to indicate drive activity

6) Complete all the hardware initialization needed to get the drive ready, including:
 a) Set the Sector Count Register to 01h
 b) Set the Sector Number Register to 01h
 c) Set the Cylinder Low Register to 00h
 d) Set the Cylinder High Register to 00h
 e) Set the Head/Head Register to 00h

7) If Drive 1 and power on, or RESET- is valid
 a) Set the Error Register to Diagnostic Code 01h
 b) Set the Drive 1 Status Register to 00h
 c) Assert PIDAG-

 NOTE: All this must happen within 5 seconds of power on or the negation of RESET-

 If Drive 1 and power on or RESET- bad
 a) Set the Error Register to the appropriate Diagnostic Code
 b) Set the Drive 1 Status Register to 00h

 NOTE: All this must happen within 5 seconds of power on or the negation of RESET-

 If Drive 0, power on or RESET- valid, and a Drive 1 present
 a) Test PIDAG- for 6 seconds or until PIDAG- is asserted by Drive 1
 b) If PIDAG- is not asserted within 6 seconds
 i) Set the Error Register to Diagnostic Code 01h
 ii) Set the Drive 0 Status Register to 00h
 c) If PIDAG- is not asserted within 6 seconds
 i) Set the Error Register to Diagnostic Code 01h
 ii) Set the Drive 0 Status Register to 00h
 d) Set the Drive 0 Status Register to 00h

 IF Drive 0, power on or RESET- bad, and a Drive 1 present
 a) Test PIDAG- for 6 seconds or until PIDAG- is asserted by Drive 1
 b) If PIDAG- is asserted within 6 seconds
 i) Set the Error Register to the appropriate Diagnostic Code
 ii) Set the Drive 0 Status Register to 00h
 c) If PIDAG- is not asserted within 6 seconds
 i) Set the Error Register to Diagnostic Code 01h
 ii) Set the Drive 0 Status Register to 00h
 d) Set the Drive 0 Status Register to 00h

 IF Drive 0, power on or RESET- valid, and no Drive 1 is present
 a) Set the Error Register to Diagnostic Code 01h
b) Set the Drive 1 Status Register to 00h
 c) Set the Drive 0 Status Register to 00h

If Drive 0, power on or RESET- bad, and no Drive 1 is present
 a) Set the Error Register to the appropriate Diagnostic Code
 b) Set the Drive 1 Status Register to 00h
 c) Set the Drive 0 Status Register to 00h

8) Finish spin up if needed

3) If Drive 1
 a) Set the Drive 1 Status Register to 50h
 b) Negate DASP- If a command is not received within 30 seconds
 if Drive 0 and a Drive 1 is present
 a) Set the Drive 0 Status Register to 50h
 b) Negate DASP-
 if Drive 0 and no Drive 1 is present
 a) Leave the Drive 1 Status Register OOh
 b) Set the Drive 1 Status Register to 50h

B.6 Software Reset Algorithm

1) The software reset bit is set
2) If Drive 1
 a) The hardware should set BUSY in the Drive 1 Status Register
 b) Negate the PDIAG- signal

 NOTE: this must happen within 1 msec of the software reset

 If Drive 0 and Drive 1 is present
 a) The hardware should set BUSY in the Drive 0 Status Register
 b) Set the Drive 0 Status Register to 00h

 If Drive 0 and there is no Drive 1 the hardware should:
 a) Set BUSY in the Drive 0 Status Register
 b) Set the Drive 1 Status Register to 00h

3) Assert DASP-
4) Finish all the hardware initialization needed to place the drive in reset
5) Wait for the software reset bit to clear
6) Finish all hardware initialization needed to get the drive ready
 to receive any type of command from the host including:
 a) Set the Sector Count Register to 01h
 b) Set the Sector Number Register to 01h
 c) Set the Cylinder Low Register to 00h
 d) Set the Cylinder High Register to 00h
 e) Set the Drive/Head Register to 00h

7) If Drive 1 and reset valid
 a) Set the Error Register to Diagnostic Code 01h
 b) Set the Drive 1 Status Register to 50h
 c) Assert PDIAG-

 NOTE: All this must happen within 5 seconds of the clearing of
 the software reset bit

If Drive 1 and reset bad
 a) Set the Error Register to the appropriate Diagnostic Code
 b) Set the Drive 1 Status Register to 50h

 NOTE: All this must happen within 5 seconds of the clearing of
 the software reset bit

If Drive 0, reset valid, and a Drive 1 is present
 a) Test PDIAG- for 5 seconds or until PDIAG- is asserted by
 Drive 1
 b) If PDIAG- is asserted within 6 seconds
 i) Set the Error Register to Diagnostic Code 01h
 c) If PDIAG- is not asserted within 6 seconds

B.7 Diagnostic Command Algorithm

1) The diagnostics command is received
2) If Drive 1
 a) The hardware should set BUSY in the Drive 1 Status Register
 b) Negate the PDIAG- signal

 NOTE: this must happen within 1 msec after command acceptance

 If Drive 0 and Drive 1 is present
 a) The hardware should set BUSY in the Drive 0 Status Register
 b) Set the Drive 1 Status Register to 00h

 If Drive 0 and there is no Drive 1 the hardware should:
 a) Set BUSY in the Drive 0 Status Register
 b) Set the Drive 1 Status Register to 00h

3) Assert DASP-
4) Perform all the drive diagnostics and note their results
5) Finish all the hardware initialization needed to get the drive ready
 to receive any type of command from the host including:
 a) Set the Sector Count Register to 01h
 b) Set the Sector Number Register to 01h
 c) Set the Cylinder Low Register to 00h
 d) Set the Cylinder High Register to 00h
 e) Set the Drive/Head Register to 00h

6) If Drive 1 and passed
 a) Set the Error Register to Diagnostic Code 01h
 b) Set the Drive 1 Status to 50h
 c) Assert PDIAG-

 NOTE: All this must happen within 5 seconds of the acceptance
 of the diagnostic command

If Drive 1 and did not pass
 a) Set the Error Register to the appropriate Diagnostic Code
 b) Set the Drive 1 Status to 50h

 NOTE: All this must happen within 5 seconds of the acceptance
 of the diagnostic command

If Drive 0, passed, and a Drive 1 is present
 a) Test PDIAG- for 5 seconds or until PDIAG- is asserted by
 Drive 1
 b) If PDIAG- is asserted within 6 seconds
 i) Set the Error Register to Diagnostic Code 01h
 c) If PDIAG- is not asserted within 6 seconds
i) Set the Error Register to 81h
 d) Set the Drive 0 Status to 50h
 e) Issue interrupt to the host

If Drive 0, did not pass, and a Drive 1 is present
 a) Test PDIAG- for 6 seconds or until PDIAG- is asserted by Drive 1
 b) If PDIAG- is asserted within 6 seconds
 i) Set the Error Register to the appropriate Diagnostic Code
 c) If PDIAG- is not asserted within seconds
 i) Set the Error Register to 80h + the appropriate code
 d) Set the Drive 0 Status Register to 50h
 e) Issue interrupt to the host

If Drive 0, did not pass, and no Drive 1 is present
 a) Set the Error Register to Diagnostic Code 01h
 b) Set the Drive 1 Status Register to 00h
 c) Set the Drive 0 Status Register to 50h
 d) Issue interrupt to the host