101

LONG DISTANCE, SMALL SWING DIFFERENTIAL SCSI

ADVANTAGES:

- o VERY HIGH DATA RATES (FASTER THAN FAST SCSI) ALL TRANSCEIVERS ON SAME SILICON.
- o LOW POWER INTEGRATION ONTO PROTOCOL CONTROLLER A POSSIBILITY.
- o TWO VOLT GROUND SHIFT ALLOWED.
- o BACKWARD COMPATIBLE WITH SHORT DISTANCE DIFFERENTIAL.

National Semiconductor Gary Murdock 1 0/27/89

DISADVANTAGES:

- o TRANSCEIVER DESIGN MORE COMPLICATED. YIELD OF PROTOCOL PLUS DIFF. TRANSCEIVERS BIGGEST PROBLEM.
- o PROCESS REQUIRED COMPATABLE WITH PROTOCOL PROCESS?

National Semiconductor Gary Murdock 1 0/27/8 9

TRANSCEIVER FEATURES:

- o SMALL SWING DRIVER 0.7V OR 0.4V
- o TIGHT THRESHOLD RECEIVER 100 mV OR 50mV
- o HIGH VOL (>2V) TO ALLOW FOR GROUND SHIFT.
- o SAME TRANSCEIVER ON ALL LINES TO AVOID GROUND SHIFT PROBLEMS.

Note:

- Precedent for small swing SMD-E uses ECL (0.7V), SMD uses Current-mode (0.3V) at lengths to 15 meters.
- ECL receiver Vcm (+/- 1V) limit SMD-E distance?

National Semiconductor Gary Murdock 10/27/89

CIRCUIT DIAGRAM - ONE CHANNEL (ALL 18 THE SAME):

National Semiconductor Gary Murdock 10/27/89

National Semiconductor

1/0

GROUND SHIFT TOLERANCE:

- 0 GROUND OF #2 IS 2V HIGHER THAN #1 (WORST CASE DIRECTION OF GROUND SHIFT)
- o VOL OF #1 LOOKS KIKE GROUND TO #2.
- o A SIMPLE TOTEM POLE OUTPUT DOES NOT STAY IN TRI-STATE WHEN ITS OUTPUT GOES BELOW ITS GROUND.
- o SINCE VOL IS NOT BELOW DRIVER #2 GROUND, DRIVER #2 STAYS IN TRI-STATE.
- o 2 VOLT VOL GIVES GROUND SHIFT PROTECTION OF 2V, WORST CASE.

National Semiconductor Gary Murdock 10/27/89

CALCULATION OF 18 CHANNEL POWER DISSIPATION:

MINIMUM CABLE IMPEDANCE

LOADED CABLE IMPEDANCE IS GIVEN BY:

$$Z_{L} = \frac{Z_{O}}{\sqrt{1 + C_{L}/C_{O}}}$$

WHERE: Zo = Unloaded cable characteristic impedance.

ZI = Loaded cable characteristic impedance.

Co = Unloaded cable capacitance per foot.

CI = Loaded cable capacitance per foot.

Therefore:
$$Z_L = \frac{120}{\sqrt{1 + 15/15}} = 85 \text{ ohms}$$

Assume min loaded impedance of 80 ohms.

National Semiconductor Gary Murdock 10/27/89

CALCULATION OF 18 CHANNEL POWER DISSIPATION:

MAXIMUM DRIVER LOAD CURRENT

0.7V SWING:

$$I load = \underbrace{0.7V}_{40 ohms} = 17.5 mA$$

0.4V SWING:

$$1 load = \underline{0.4V} = 10 mA$$

$$40 ohms$$

National Semiconductor Gary Murdock 10/27/89

CALCULATION OF 18 CHANNEL POWER DISSIPATION:

DRIVER POWER DISSIPATION AT FAST SCSI DATA RATE

Pd = (Vcc - Vload) * Iload + Cpd * Vcc*Vcc * f

Where: f = frequency (fast SCSI data channel= 5Mhz)

Cpd = Power dissipation capacitance (est. 50 pF for output and load)

Pd = (5-.7)*17.5 mA + 50pF*25V*5Mhz= 82 mW/driver Note: Assumed zero quiesent current

(CMOS process). Assumed control

R Watts

line constant switching.

18 channel Pd = 82 mW/driver * 18 drivers = 1.48 Watts

0.4V SWING

Pd = (5-.4)*10mA + 50pF*25V* 5Mhz= 53 mW/driver

18 channel Pd = 53mW/driver * 18 drivers = <u>0.95 Watts</u>

National Semiconductor Gary Murdock 10/27/89

CALCULATION OF 18 CHANNEL POWER DISSIPATION:

TOTAL TRANSCEIVER POWER DISSIPATION

O RECEIVER POWER DISSIPATION:

Assume receiver lcc = 5 mA/receiver

= 5 mA * 5V * 18

= 0.45 Watts

o TOTAL 18 CHANNEL TRANSCEIVER POWER DISSIPATION:

0.7V SWING

Pd total = Pd drivers + Pd receivers

= 1.48 W + 0.45W

= 1.93 Watts

0.4V SWING

Pd total = 0.95 W + 0.45 W

= 1.4 Watts

National Semiconductor Gary Murdock 10/27/89

SUMMARY

- o POWER DISSIPATION APPEARS TO BE LOW ENOUGH TO ALLOW INTEGRATION ONTO A PROTOCOL CHIP.
- o HOWEVER, SOME CONCERNS:
 - 1) TRANSCEIVER DESIGN IS MORE COMPLEX THAN CURRENT SINGLE-ENDED DESIGNS
 - 2) TRANSCEIVER PROCESS COMPATIBILE WITH PROTOCOL PROCESS?
 - 3) YIELDS OF ADVANCED PROTOCOL + ADVANCED TRANSCEIVERS?
- o IS THERE A MARKET FOR AN OUTBOARD, SMALL SWING, 18 CHANNEL TRANSCEIVER?
 - 1) MARKET LIFE?
 - 2) PACKAGE SIZE?
 - 3) HOW MUCH \$?

National Semiconductor Gary Murdock 10/27/89

