# INTRODUCTION TO/UPDATE ON

THE

### FIBER CHANNEL

Roger Cummings Storagetek August 18, 1989

### WHAT IS FIBER CHANNEL?

New Physical Layer (i.e. conductors, connectors, transceivers and low-level protocol) for:

SCSI Cmds/Messages

IPI Level 3 Protocol

HSC Data Link Layer

Other vendor protocols

All of the above to coexist on the same physical plant (perhaps to different equipments)

Faster and/or Longer and/or Better RFI/EMI than present copper interfaces

Smaller plant than copper at equivalent performance level FIBER CHANNEL IS NOT A SIMPLE EXTENDER

Page 1 of 7 August 18, 1989

Roger Cummings Storagetek

## WHY NEW LOW-LEVEL PROTOCOL?

Excessive overhead with current protocol due to long turnaround delays (over 10 microseconds @ 1KM)

Poor bandwidth utilization of "brute force" serialization approach

Different error mechanisms due to serial nature

Different architecture because separate fiber for each direction (i.e. each fiber is true simplex link)

Security an issue over these distances

Page 2 of 7 August 18, 1989

Roger Cumpings Storagetek

## SYSTEMS PRESENTED TO WORKING GROUP

ICL MACROLAN

Processor-peripheral s/s interface

50 Mb/s, 500m, compact token ring, led

20,000 nodes in field

HP-FL

Connection to remote disk cabinet 40 Mb/s, 500m, 820 nm frequency

Serial copper intra-cabinet (low cost)

PARALAN/OPTIVISION

Fiber extenders for SCSI and DR-11W

CANSTAR/HUBNET

Expandable, broadcast hub system 100 Mb/s, collision arbitration

Page 3 of 7 August 18, 1989

Roger Custaings Storagetek

I/O Subsystem i/f, 160 Mb/s, 2KM

Serial copper short distance

GRUMMAN HS LAN

Expandable up to 200 KM

Up to 800 Mb/s, fault tolerant Complex ring/star topology

ANCOR PASTNET

Expandable transparent circuit switch

Up to 1Gb/s/chan

Excellent cost/performance

Page 4 of 7 August 18, 1989

Roger Cummings Storagetek

2 Kilometers

### HULTIPLE CLASSES

As in IPI and SCSI today

200

Plastic Class

5 - 10 Mbits/s @ 20 meters

Multimode LED Class

Multimode Laser Class

5 Kilometers 200 Mbits/s @ OR 1000

Mbits/s @

Mbits/s @ 750 meters

Single Mode Class

1250 Mbits/s @ 25 Kilometers

Page 5 of 7 August 18, 1989

Roger Cummings Storagetek

#### ARCHITECTURE

Separate high speed and low speed functions

ECL or GaAs transceiver chip contains:

transmitter and receiver electrical/optical conversion and vice versa clock source and recovery serial/parallel conversion and vice versa framing

CMOS interface chip acts on parallel data and contains:

encoding and decoding error detection buffering

Intent is to standardize parallel interface between chips

Page 6 of 7 August 18, 1989 Roger Cumnings Storagetek

### WHY CODING?

Enable worst-case link parms: dc balance (rcvr sens) run length (clock recover)

Provide control characters for framing and protocol use Provide error detection

Four schemes presented to Group:

4B/5B 8B/10B 8B/10B + FEC

"Naked"

(AMD TAXI chips, FDDI) (IBM, Hitachi channal)

(DEC)

(Ancor, Livermore and others)

Page 7 of 7 August 18, 1969

Roger Cumnings Storagetek