To: X3T9.2 Committee (SCSI)

Date: November 4, 1988

From: Gerald Maurer and Jean Kodama
Emulex Corporation
1535 Scenic Avenue
Costa Mesa, CA 92626

Rick Muething
ASIX Systems Corporation
47338 Fremont Boulevard
Fremont, CA 94538

Subject: SCSI Bus Transmission Line Analysis

ABSTRACT:

As SCSI bus performance has increased past 4 MBytes/sec, the SCSI standard is gaining more widespread market acceptance and is becoming the largest installed base of peripheral interfaces in the computer industry. Although the original SCSI electrical specification was adequate for early low performance systems, higher transfer rates mandate tighter restrictions on system design.

Included here are the results from SPICE simulations and bench verification of several SCSI bus configurations. The effects of transmission line impedance, termination, and stub clustering were studied. The results show that the signal integrity on the bus can be marginal (perhaps even unusable) with long unmatched cables and clustering of several stubs at points on the bus. Furthermore, trying to push the current single-ended bus to higher speeds ("fast SCSI") is on shaky ground. The SCSI-2 standard should include tighter restrictions on cable impedance, termination, and bus topology.
SCSI Bus Transmission Line Analysis

SPICE CIRCUIT:

The basic SCSI driver model is an NMOS open drain driver with
a 10 pF capacitive load. Although very simplistic, this
model does compare reasonably well with laboratory
observations of actual drivers. The model is accurate enough
to produce relative data that can be used to draw some
general conclusions.

The configuration used for each run is indicated on each
figure. Refer to the following legend:

<table>
<thead>
<tr>
<th>SPICE element</th>
<th>Lab equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>100 or 105 ohm cable</td>
<td>normal flat cable</td>
</tr>
<tr>
<td>70 ohm cable</td>
<td>shielded round or flat cable</td>
</tr>
<tr>
<td>x 10 pF load</td>
<td>inactive SCSI device</td>
</tr>
<tr>
<td>I 10 pF load</td>
<td>initiator</td>
</tr>
<tr>
<td>T 10 pF load + NMOS driver</td>
<td>target</td>
</tr>
</tbody>
</table>

Where present, scope pictures are of the SCSI REQ/ signal
which is driven by the target device. Since a low
capacitance scope probe was not available, the waveforms are
somewhat more rounded than in the corresponding SPICE
waveforms.

OVERVIEW OF RESULTS:

For all plots and photographs, the scale is 20 nS/division
horizontally and 1 V/division vertically.

Figures 1-1 through 1-5 illustrate the ideal case, with
termination matched to the cable impedance and no stubs or
clustering. The waveforms look good in this perfect (alas
unrealistic!) transmission medium. Scope pictures for
Figures 1-3 through 1-5 were obtained by changing the
termination resistor network to 175/240 ohms. This
corresponds to a Thevenin equivalent termination of
approximately 100 ohms (to match the cable) with a 2.9 V
voltage source (which limits the current requirements of the
driver to 48 mA at Vol=0.5V). This might be a possible
solution to the problem, if tighter restrictions can be made
on cable impedance and the termination voltage.

Figures 2-1 through 2-5 illustrate the typical case, which
combines 132 ohm termination mismatched with 100 ohm and/or
70 ohm cables. Since impedances are not matched, the signal
is reflected back at each point of impedance change. The
reflections rob the signal of energy and distort its shape.
SCSI Bus Transmission Line Analysis

Figures 3-1 through 3-14 investigate the effects of adding stubs and stub clustering. Most examples use 132 ohm termination and 100 ohm cables; the effects are worse with lower impedance cables. The stubs present additional impedance mismatches on the bus which further degrade the signal.

Figures 4-1 through 4-6 attempt to send fast synchronous assertion and negation pulses across a 100 ohm cable terminated with 132 ohms.

PRELIMINARY RECOMMENDATIONS:

These results demonstrate that unmatched cables, clustering, and non-ideal bus termination can severely degrade signal integrity on the SCSI bus. Some preliminary recommendations are listed below. These should be substantiated with further work (see CONCLUSIONS).

1. An absolute minimum cable impedance for all cables (shielded and unshielded) should be specified. The impedance should be 90 ohms or greater, with greater than 100 ohms recommended.

2. An absolute maximum load capacitance per node should be specified. The total capacitance off the mainline connection should be 20 pF or less.

3. Implementors note: Stub clustering should be avoided. Stubs should be spaced at least .3 meters apart.

4. For fast synchronous transfer mode, the cable impedance should be 100 to 132 ohms, with an impedance as close as possible to the termination impedance recommended.

5. Implementors note: Single-ended mode is not recommended for fast SCSI.
CONCLUSION:

The results point out some important considerations but suggest a lot more work could be spent. The committee should very carefully consider tasking someone with a more complete analysis that includes correlating simulation results to observed conditions on practical configurations.

In developing the specification for the electrical bus the following should be included and their combined effects modeled or analyzed:

Transmission line impedance and tolerance

Practical stub configurations and stub clustering effects

Bus topology permitted, perhaps computed based on the total length, the number, length, and clustering of stubs and desired operations modes (sync/async etc.)

Termination resistors and equivalent Thevenin voltage and tolerance

Receiver implementation, sensitivity, accuracy and hysteresis both in absolute and percentage of termination voltage

Driver implementation, rise time, and impedance control, with consideration of differential and/or active three state drivers
Fig. 1-1 Ideal (100 Ω, no stub capacitance)

Fig. 1-2 Ideal (132 Ω, no stub capacitance)
Fig. 1-3 100Ω Termination

A

0'

14'

I

J

28

A

1.30 V

△V1 -3.58 V

10 V

20ns b
Fig. 1-4 100 Ω Term
Fig. 4-3 4.25V Term

Fig. 4-4
Fig. 4-5

Fig. 4-6 4.25V Term
SCSI Bus Transmission Line Analysis

Terminator Resistance Calculation (for Figs. 1-3 through 1-5)

Constraints:

Cable impedance = 100 Ω

Driver output low voltage and current:
Vol = 0.5 V max at Iol = 48 mA

Circuit:

24 mA through each 100 Ω resistor

=> Vs = (24 mA)*(100 Ω) + Vol
 = 2.4 V + 0.5 V
 = 2.9 V

Thevenin Equivalent Circuit:

\[
\frac{R1 \times R2}{R1 + R2} = 100 \Omega \\
V_{\text{term}} \times \frac{R2}{R1 + R2} = V_s
\]

For Vs = 2.9 V and Vterm = 5 V:

R1 = 172.41 Ω
R2 = 238.10 Ω

Note: With low Vterm the noise margin for signal negation is considerably reduced. If Vterm = 4.25 V:

R1 = 220 Ω, R2 = 330 Ω => Vs = 2.55 V
R1 = 172 Ω, R2 = 238 Ω => Vs = 2.47 V