2

Memo to:

Memo from:

Date:

Sub ject:

XET?.E/BB—E;

ANSI X3T9.2

James McBrath
Ruantum

1804 McCarthy Blvd
Milpitas, CA 95035
January 4, 1988

Questions Concerning section 5 of SCEI-2 Rev 3.0

The following is a list of questions/comments/proposals (in (}'s)
concerning various elements in the Rev 3 draft of the standard. 1
have not repeated concerns raised by bracketed comments embedded
within the draft (although I have responded to a couple of them).

1.

S5.1.3. SELECTION Phase

(skip & paragraphs)}
IMPLEMENTORS NOTE: To maintain compatability with single
initiator option of SCSI {X3.131-1986), it should not be an
error to have only one ID bit present during selection.

{While not considered an error, is the SELECTION successful?
This appears to be the intent, in which case more of the the
single initiator option wording from X3.131 should be
replicated here (i.e. S&CS5I-2 targets have to fully support
single initiator mode, so it should be completely defined).)

S.1.6. Information Transfer Phases

{skip 3 paragraphs}
IMNPLEMENTORS NOTE: Between information transfer phases, C/D,
1/0 and MSG may change in any order. A new phase does not
begin until REQ is asserted for the first byte of the new

phase. The phase ends when C/D, 1/0, or MSG changes after ACK
goes false Lor when a new phase beginsl.

{While technically correct, this note is misleading since
there is silicon out there which will break if C/Dy 1/0, and
MSG are changed in an arbitrary order. I suggest this point
be noted.?

3.

S5.1.10.2. MESSAGE OUT Phase
{4 paragraphs)

If the target receives all of the message byte(s) successfully
{i.e.y no parity errors), it shall indicate that it does not
wish to retry by changing to any information transfer phase
other than the MESSAGE OUT phase and transfer at least ong
byte. The target may also indicate that it has successfully
received the message byte(s) by changing to the BUS FREE phase
(e.g., ABORT or BUS DEVICE RESET messages).

{This last sentence conflicts with an earlier statement

describing the conditions under which a BUS FREE phase may be

reached. Specifically, it is perfectly possible on an error

condition to go to BUS FREE from MESSAGE OUT (i.e. retries are

exhausted, so the target gives up and decides to abort the
entire command).}

5.2.2.1. "Hard" RESET Alternative
(1) Clear all uncompleted commands [including queuved commands?l

(5) Preserve all the information required to continue normal
dispatching of commands queued prior to the RESET. L[JBL: I'm
not sure where item (5) came from. It seems strange to clear

current commands, but preserve queued commands. Perhaps this

was intended to be added to "soft" RESET?]

{When is a command queued? When it is identified (i.e.
IDENTIFY and queue tag messages received)? See point 9 for
more on this topic.?

S5.4. BCS5I Pointers
{skip 4 paragraphs}
An additional pointer is used when the autosense data option is

implemented, known as the autosense data pointer.

RESTORE POINTERS 03h. ... Pointers to the command, data, and
status leocations for the logical unit shall be restored to the

a

active pointers.

{These two sections conflict, showing that the autosense data
pointer concept is not fully integrated into the text. Why
do we have this new pointer anyway? Why not just use the
data pointer? We seem to be adding quite a bit of complexity
in an unclean manner.)}



a4/

5.5.2. Messages
(skip 1 paragraph?
[Paul Boulay has requested a separate subsection be defined for

each message. I didn't have time to do it for this rev. Any
comments? JBL]

{I think it is a good idea.)

CLEAR QUEUE OEh. If the target is currently connected for

the command specified in the tag value, the target shall go to

BUS FREE phase. [what does that last sentence mean??7?...P . F.
Boulayl

(This sentence should be removed (it is a holdover from a
previous draft).}

CLEAR QUEUE OEh. A UNIT ATTENTION condition shall be
created for all other initiators with commands that either had
been executing or were queued for that LU. The UNIT ATTENTION
condition is received by each initiator upon transmission of the
next command to that LU from that initiator. CAEN?]

{AEN appears to be a feature that adds considerable complexity
to a target’s implementation (which does not support initiator
mode unless COPY is implemented) and yields little in value.
Whenever an AEN might be invoked a UNIT ATTENTION condition can
be posted instead.

If a command is currently active (executing or queued) from a
device then, instead of issuing an AEN to the devices; the LU
can simply complete the command with CHECK CONDITION status and
an UNIT ATTENTION key. If the LU wants to enter into extended
error recovery, then it can send an INITIATE RECOVERY message
and enter into ECA. AEN is simply not needed in this case.

IT a command is not currently active (executing or queued) from
a device then, instead of issuing an REN to the device, the LU
can simply begin a UNIT ATTENTION condition for that device.
Since no command is active at the LU, the device should not be
expecting communications from the LU and really should not care
if an operating condition has changed. It will care when it
has to access the LU again, but at that time the UNIT ATTENTION
will be correctly noted. Once again, AEN is not needed.

AEN appears to be a solution in search of a problem. It is a
technically cleaner than working through the UNIT ATTENTION
mechanism; and would probably be faster. But conditions
requiring an AEN are (hopefully) not frequent enough to support
a performance argument, and the added complexity is
considerable.

1 would prefer to get rid of AEN entirely, but if a case can be
made for it (perhaps for device types other than DASDs), then I
would not object to leaving it. But the sections on UNIT
ATTENTION and AEN should be integrated closely, the standard
making it clear that they are two different mechanisms dealing
with similar problems, and that either one (or both) can be
implemented.

HEAD OF RUEUE TAG 21h. The HEAD OF QUEUE tagged command
shall not preempt commands already dispatched from the gueue, but
shall be executed next after a currently executing command.
Subsequent HEAD OF QUEUE tagged commands shall be inserted at the
head of the gqueue for execution in LIFD order, except where a
previous HEAD OF QUEUE tagged command has already been dispatched
from the queue for execution.

Although we have defined "command identification” (reception of
IDENTIFY message and queue tag message) and "command
completion” (receipt of the COMMAND COMPLETE message), we have
not yet defined “command execution.” Clearly receipt of the
CDB by the target is not execution (otherwise the above section
makes no sense). Perhaps this point should be defined as
“command reception.” Command execution would then be the time
between dequeuing, which in turn must be after command
reception, and command completion.

However, even this model leaves something to be desired. While
@ command is executing from the queue (say the seek portion of
a READ command) the queued commands can also be “preprocessed”
(syntax checking of the CDB, doing LBA to CHS conversion,
scanning a cache table for a hit, etc...). Are these
activities part of “command execution?" If so, then several
commands are executing concurrently.

In a caching controller two commands can actually be executed
at the same time. A seek for a READ command that generated a
cache miss can be overlapped with executing another READ
command that generates a cache hit. Here the seek for one
command and the data transfer for another are overlapped.

Even such activity as seeking can occur concurrently for two of
more commands. Consider a DASD with two independently movable
actuators.



10.

124

In all of these cases, although there is still a single LU,
there are now multiple servers rather than a single gerver.
This has all sort of implicatians, particularly for error
recovery situations. Although the command queuing proposal
does not create this problem (queuing of commands for a single
LU from multiple initiators is already allowed), it does make
it much more likely to be a practical difficulty.

IDENTIFY 80h to FFh.

(He need to clarify the error conditions and responses for the
IDENTIFY message. MESSAGE REJECTion is not an appropriate
response under some circumstances. When it is other legal for
an initiator to send an IDENTIFY message, the following error
conditions can occur:

Reserved bits (3 or 5) are et {response is not specified,
some implementations reject the message while others treat
this the same as setting a reserved bit in the CDB,
generating a CHECK CONDITION).

Target/LUN bit is set, option not supported (respunse is
specified - message is rejected).

LUN/Target Process specified not suppﬁrted (response is not
specified and, since some commands can execute through an
illegal LUN, message rejection is not appropriate).}



