1) Buffered Mode Two MODE SELECT Wording

Add the following wording to the MODE SELECT command, page 9-20, replacing the last sentence at the bottom of the page:

"A buffered mode of two indicates that the target may report GOOD status on WRITE commands as soon as the data block is transferred to the target's buffer. One or more blocks may be buffered prior to writing the block(s) to the medium. The target shall maintain identification of the initiator(s) that sent the data until the data has been successfully transferred to the medium. This mode is intended for multiple-initiator systems that require independent recovery paths for deferred write errors (see Deferred Error Condition, Section x.x.x, to be defined). Buffered modes of 3h through 7h are reserved."

2) Proposed Wording for Deferred Error Condition Reporting

Section 6.x.x. Deferred Error Condition

A deferred error condition shall begin whenever the target detects an error has occurred on a command that previously reported GOOD status. This condition shall persist for all affected initiator(s) until error recovery (if any) is completed, recovery is aborted, a BUS DEVICE RESET message is received, or "hard" reset condition occurs at the target.

If an initiator issues a non-medium access command while a deferred error condition is pending, the target shall perform the command and maintain the deferred error condition.

(Additional wording:"

[Maybe just INQUIRY and REQUEST SENSE should pass through ...?]

If an initiator issues a medium access (?) command while a deferred error condition is pending, the target will not perform the command and will report CHECK CONDITION status.

If the next command from the initiator is a REQUEST SENSE, then the ABORTED COMMAND Sense Key will be reported and the additional sense code will be set as appropriate.

Possibly set the qualifier to the "owning" initiator(s)?

\texttt{4C 00} Deferred Write Error - No ID
\texttt{4C 01} " Init ID 0
\texttt{...} " Init ID 7
\texttt{4C 80} "
\texttt{4C 81} " Init ID 7, 0"

Specific error recovery and abort criteria is provided in the descriptions of the commands that can create the deferred error conditions (e.g. Buffered WRITE, REMIND Immediate)."
3) Proposed Wording for Deferred Write Error Recovery
 (Buffered mode one)

Section 9.x.x Deferral Write Error Condition
[New section to be added to WRITE command]
A deferred write error condition occurs whenever the target
 detects that an error has occurred on a buffered write command
 that previously reported GOOD status.

If a deferred write error occurs in buffered mode one, the error
 will be reported to the first initiator issuing a buffer
 manipulating (?) command or the first initiator to respond to
 Asynchronous Event Notification (if supported).
After the error is reported to an initiator, subsequent commands
 from different initiators will result in a BUSY status until the
 deferred error condition is cleared.

The deferred write error condition in buffered mode one may be
 cleared by one of the following actions from the initiator
 receiving the deferred error indication:
 a) RECOVER BUFFERED DATA commands are issued to retrieve
 all buffered data that was not written to the medium.
 b) A REMIND or LOAD/UNLOAD command is issued to discard
 the unwritten buffered data. [Other positioning
 commands?]

The deferred error condition may also be cleared by a "hard"
 reset condition or a BUS DEVICE RESET message from any initiator.

4) Proposed Wording for Deferred Write Error Recovery
 (Buffered mode two)
If a deferred write error occurs in buffered mode two, the error
 will be reported to any initiator that issues a buffer
 manipulating command. Asynchronous Event Notification (if
 supported) will be attempted if a deferred write error is pending
 for any initiator(s) with unwritten data in the buffer.

After the error is reported, commands from initiators not
 involved in recovery will result in a BUSY status until the
 deferred error condition is cleared.

The deferred write error condition in buffered mode two may be
 cleared by the following action(s) from each initiator with
 unwritten data in the buffer:
 a) RECOVER BUFFERED DATA commands are issued by the
 initiator(s) involved in recovery to retrieve all data
 that was not written to the medium. (Note: Each
 initiator is responsible for recovering its own data in
 buffered mode two)
 b) An initiator issues a REMIND or LOAD/UNLOAD command to
 discard its unwritten buffered data. (Note: Each
 initiator is responsible for discarding its own data in
 buffered mode two)

The deferred error condition may also be cleared by a "hard"
 reset condition or a BUS DEVICE RESET message from any initiator.

5) Deferred Error Extended Sense Format
 There have been concerns expressed about the extended sense
 format proposed for deferred error reporting. Compatibility with
 earlier implementations could be impacted by a target that
 arbitrarily responds to a REQUEST SENSE command with a previously
 reserved format. There is also a problem with reporting deferred
 error while another command is in process, particularly in
 multiple-initiator systems.
 It may be possible to address both concerns by borrowing the
 desired data format concept proposed for the INQUIRY command. A
 desired data format of one would request sense format 71h. This
 method ensures compatibility with earlier implementations while
 providing the tools for more sophisticated error reporting and
 recovery in future applications.
 When a deferred write error is reported (as described in item
 two of this proposal), each initiator requesting deferred error
 format would only receive error information related to its
 recovery process. If a target requests a request for deferred
 error format from an initiator without a deferred error, a NO
 SENSE indication would be returned.