X379.2/§7- 44

page 1 of 4

Date: March 18, 1987

To: XiT9.2

From: Jim MoGrath

Company: Quantum Corporation
Subject: OCommand Queuing Proposal

This is a proposal for the inclusion of a cammand queuing feature in
the SCSI 2 standard.

Cammand queuing would be implemented by expanding the multiple thread
of command execution concept permitted by 5CSI (re: appendix C of the
SCSI standard). Currently a thread of execution is defined by the
corbination of Initiator address, Target address, and Logical Unit
Mumber. No two currently active threads can possess the same triplet
of values. Adding a fourth component, the SEQUENCE NUMBER, to this
triplet will form a guadnuple that can be used to uniquely identify
miltiple threads involving the same Initiator/Target/ILUN. This
allows for command queuing.

Specifically, it is proposed that a new extended message, the ORMAND
SBEQUENCE IDENTIFICATION message, be established. This message would
be sent from the initiator to the target after the sending of the
IDENTIFY message, but before entering Command Fhase. In this manner
the initiator would assign a sequence number to the command that is
currently not in use for this Initiator/Target/ILN triplet. Upon
reconnection this message, containing the same sequence number, will
be sent from the target to the initiator after the sending of the
IDENTIFY message, but before entering Data Phase. This will
re-establish the logical connection with the command execution
thread.

The precise queuing discipline implemented by the target shall be
Vendor Unique. However, the discipline adopted must maintain the
temporal order of comnand execution necessary to insure that the
final contents of the logical blocks is the same as if the commands
were executed in the order in which they arrived (e.g. a Write of 1BA
0, followed by a Read of LBA 0, cannot be executed in reverse order).
However, partial command execution that does not violate this
restriction shall be allowed (e.g. a Write of 1BA 1 and IBA 2,
followed by a Read of IBA O and 1BA 1, can be executed as a Read of
IBA 0, a Write of 1BA 1 and IPA 2, followed by a Read of LIBA 1).

e
~L
N

! page 2 of 4

The following are the specific modifications proposed to the 5CSI 2
Working Draft Proposal of 10/31/86:
Replace Table 5-4 with the following:

Table 5-4: Extended Message Codes

Code (y) Description

ooh MODIFY DATA FOINTER (Opticnal) .

01h SYNCHRONOUS DATA TRANSFER REQUEST (Optional)
0zh EXTENDED IDENTIFY (Opticnal))

03h OMMAND SPQUENCE IDENTIFICATION (Optional)
04h - 7Fh Reserved

80h - FFh Verndor Unigue

Add the following as the new section 5.5.6:
5.5.6 COMMAND SEQUENCE IDENTIFICATION (Opticnal)
Table 5-8: CCMMAND SEQUENCE IDENTIFICATION

Byte | value | Description

o] 01h Extended message

1 03h Extended message length

2 03h COMMAND SBQUENCE IDENTIFICATION code
3 b4 Sequence mmber

4 0ooh Reserved

The COMMAND SEQUENCE IDFNTIFICATION message (Table 5-B) is up'l';mml
and may be sent by a target or an initiator. It may be used in
conjunction with the normal IDENTIFY message to provide a unique
identifier for each of several commands currently active for an
Initiator/Target/IUN cambination. By allowing multiple cammands to
be active for a given Initiator/Target/LUN combination, this enables
comands to be queued at the target and various Vendor Unigue gueue
service algorithms to be employed. Up to 255 such commands (seguence
mumbered 1 to 255) may be active for each Initiator/Target/IUN
combination at any given time. Sequence mumber 0 is reserved for
commands requiring immediate execution.

Insert the following as the first words of the first sentence of
paragraph 5 in section 6: "Unless cammand gueuing 1s implemented (see
6.4), ".

page 3 of 4

Insert the following as section 6.4, remumbering all subsequent
sections:

6.4 Comand Queuing

CGomand queuing may be implemented through the use of the oOMMAND
SEQUENCE IDENTIFICATION message. This message may only be sent under
one of two circumstances. First, from the initiator to the target
after the serding of the IDENTIFY message, but before entering
Command Phase. Secornd, from the target to the initiator after the
sending of the IDENTIFY message, but before entering Data Mhase. Any
attempt to send this message atany other time, or to send two such
messages during an appropriate pericd of time, shall be ignored, but
shall result in an GIECK CONDITION status for that command. [sense
code and key to be supplied later — Jpm)

The sequence number specified for the command shall act to
distinquish it from other cammands issued by that initiatm: to that

Any attempt to assign a sequence number that is still being used by a
queued command to a new cammand shall result in a CHECK CONDITION for
that new command, with no modifications having been made to the data
on the logical unit. [sense code and key to be supplied later - jpm)

Comand queuing is only supported for systems that implement
disconnect/reconnect. The Sequence number contained in the COMMAND
SEQUENCE IDENTIFICATION message sent by the target to the initiator
during reconnection informs the initiator of which comand is
returning data, status, or message information.

Hote that any command may be preceded by a COMMAND SBEQUENCE
IDENTIFICATION message. Specifically, a REQUEST SENSE cammand may be
preceded by such a message. When this is done the sense data
reported shall be that of the most recently completed command having
that sequence nunber. Thus non zero sense data must be kept for
every command until either: 1) its sequence number is reused, 2) a

issue a subsequent command before the last command has been executed
will be treated if queuing was not implemented for this system (see
6).

t‘ page 4 of 4

commands may be queued by the target according to a Vendor Unique
gzui_rq disciplﬁne. However, any command with a sequence r_mwrd;ae{_of 0
shall be executed immediately, regardless of the gqueuing discipline.
Also, any queuing discipline must preserve temporal order of ccrrm;n:li
execution necessary to insure that the final contents of the logic
blocks is the same as if the commands were executed in the order in
which they arrived (e.g. a Write of IBA 0, followed by a Read of 1BA
0, cannot be executed in reverse order). Partial command execution
that does not violate this restriction shall be allowed (e.qg. a Write
of IBA 1 and IBA 2, followed by a Read of IBA 0 and LBA 1, can be
executed as a Read of IBA 0, a Write of 1BA 1 and LBA 2, followed by
a Read of IBA 1).

