T10/97-216r0
From Dave Guss SSI July 15, 1997

Backgr ound

Configuration of a SCSI physical interface is typically not under
the control of the device manufacturers. M sconfigurations, and/or
inferior conponents on the interface, can result in a nunber of
reliability problens, not the |east of which is extra and/or

m ssi ng REQ and/ or ACK pul ses caused by reflections and | Sl
effects.

Less than robust inplenentations of the Data Pacing and/or Error
Detection circuitry can conpound this problem

The sharing of information concerning a robust inplenentation of
this circuitry is in the collective best interest of the industry
and the commttee is therefore interested in including it in one of
t he SCSI docunents.

The followng is ny attenpt to understand the effects of these
errors and to identify a set of recommendati ons for the robust
i npl enmentation of the detection circuitry.

SCSI Synchronous Transfer Data Paci ng Overvi ew

The Initiator commands the Target to nove data by sending a CDB
containing the direction, length, etc. of the transfer.

The Target orchestrates the novenent of all data by sending the
requi red nunber of REQ pulses to the Initiator. The Initiator
responds to each REQ pul se by sending a correspondi ng ACK pul se
back to the Target. This sequence is the sane for read or wite
oper ati ons.

For a read operation, the data bus is driven by the Target and each
word of data (1, 2 or 4 bytes) is strobed fromthe bus by the
Initiator on the active edge of the received REQ pul se (see Fig.

1).

T10/97-216r0

Initiator Target
N ACK N o
| 4 | 4 v
p REQ p REQ
J N N J Generation
Data B
Data <==Q D 4 — 4 Q D|«=== Data

Figure 1 - SCSI Read Data Movement

For a wite operation, the data bus is driven by the Initiator and
each word of data is strobed fromthe bus by the Target on the
active edge of the received ACK pul se (see Fig. 2).

Initiator Target

Data Bus

Data ==piD Q

.

Y
Y

D Quuip Data

ACK

"4
]
v

Y

REQ REQ

Generation,

PAN
PAN

Figure 2 - SCSI Write Data Movement

T10/97-216r0
If all Initiators and Targets had guaranteed i medi ate access to
buffer resources (available data to send or enpty buffer space to
recei ve data) during a Synchronous transfer, REQ ACK counting, at
| east for the purpose of flow control, would not be necessary.
However, this is not the case and a nethod of flow control is
required to allow “throttling” of the transfer by the Initiator or
Target when they tenporarily run out of these resources.

The foll ow ng discussion on flow control describes the functional
requi renments without reference to specific hardware inplenentations
(e.g. up counters, down counters, FIFO control ranks, etc). This
should yield a set of recomendations that can be used regardl ess
of the approach take in hardware.

The nethod of flow control (a.k.a. "pacing nechanisn) used in SCS
can be thought of as the circular flow of “tokens” in a |oop from
the Target to the Initiator and back to the Target. The Initiator
and Target establish the nunber of tokens in the |oop by
negoti ating the "Maxi mum O fset" they can tolerate. The Target
starts a transfer with the Maxi mum O f set nunber of tokens
available in its Avail able Token Count. Wien a word of data is to
be transferred, the Target “spends” a token to generate the REQ
pul se. When certain conditions in the Initiator are net it returns
the token to the Target by sending an ACK pul se. Wen the Target
recei ves the ACK pul se, and certain condition are net, the token is
agai n made avail able to generate anot her REQ pul se. When no tokens
are currently available, the Target’s REQ generation circuit nust
suspend the sending of REQ pulses. By this neans, circuitry in the
Initiator or in the Target can throttle the transfer by w t hhol di ng
the fl ow of tokens around the | oop.
The conditions necessary in the Initiator or the Target for
“advancing” a token are different for read and wite operations.
For SCSI reads (see Fig. 3) a REQ pul se is generated by the
Target when the transfer count for this data phase has not
been exhausted, there is data available to send and the

T10/97-216r0
The Avail abl e Token Count

That REQ pul se
results in the transferred word being placed in the buffer in
When that buffer slot

Avai | abl e Token Count is not zero.

is then decrenented by the generated REQ pul se.
the Initiator. is again enptied, the
token is released to be used to generate an ACK pul se (the
token may be held in an Initiator Tokens Oaed Count until the
ACK can be generated at the current data rate). The Target
uses the received ACK pulse to increnent the Avail abl e Token

Count, nmeking the token available to generate another REQ

Initiator Target

ACK ACK

Generation, 4

Av4
Av4
v

Not
Empty

Token Out

Tokens
Owed
Count

Token In

A

Empty

Nogotiated
Maximum] Load
Offset

Token In

Available
Token
Count

Token Out

Not
Empty|

Buffer
Slot Guaranteed REO
Availabl y,| y,| REQ
baia \éilffaere N N Generation, ‘_CE égt;?\?;ﬂ
Space
Figure 3 - SCSI Read Pacing Functionality
For SCSI wites (see Fig. 4) a REQ pulse is generated by the

Target when the transfer count for this data phase has not
been exhausted and the Avail abl e Token Count is not zero. The
Initiator uses the received REQ pulse to increnent the Tokens
Oned Count. Wen the Tokens Omed Count
avail able to send, an ACK pul se is generated. The Tokens Owned
Count

pul se results in the transferred word being placed in the

is not zero and data is

is then decrenented by the generated ACK pul se That ACK

T10/97-216r0
buffer in the Target. Wen that buffer slot is again enptied,

the token is released to be used to increment the Avail abl e
Token Count, making the token avail able to generate another
REQ.

Data Avail

Initiator Target
Guaranteed
ACK N ACK N Available bata
Generation 4 |74 |74 Buffer
Space Empty
Buffer
Slot
Y
Token Out Token In
Not Tokens Nogotiated Available Not
Of N
Owed Maximum Load Token
Ei Ei
™Y Count Offset count Y
Token In Token Out
4
< A REQ A REQ
- N N Generation Xfr Length

Figure 4 - SCSI Write Pacing Functionality

The novenent of a token around the |oop is inpeded by | atencies.

Exanpl es are, the round trip delay through cable and el ectronics,

the tine to enpty the receiving buffer slot and del ays

synchroni zing events to Initiator and Target clock systens. It

should be noted that if the total l|atency incurred around the |oop

exceeds the Maxi mum O fset nunber of word tinmes, throttling

(reduced data rate) will occur, even if adequate data bandw dth

exi

sts at each end of the nexus.

Fai |l ure Mdes

The failures nodes of interest are:

M ssing REQ or ACK active edges, typically caused by |eve
shift due to I SI effects.

T10/97-216r0
Extra REQ or ACK active edges, typically caused by |eading
edge distortion due to reflections or by induced noi se.
O these, the dom nate node for any given transfer is undoubtedly a
single type of failure (mssing REQ(s), m ssing ACK(s), extra
REQ(s) or extra ACK(s)), but it is also possible that any
conbi nation of these failures can happen with sone reduced
probability. To be thorough, here is a | ook at all conbinations.
1. Equal nunbers of extra/m ssing REQs and/or equal nunbers of
extra/ m ssing ACKs.

These two conbi nations of errors are not detectable by
REQ ACK counting because their net effect, at either end
of the nexus, is zero. The effects of these errors can
only be detected by sone type of |ongitudinal redundancy
on the data itself.

2. Equal nunbers of extra REQ and m ssing ACKs.

This error conmbination is not detectable by REQ ACK
counting in the Target, because its net effect at the
Target is zero. It can be detected by the Initiator, at
Command Conpl ete only, provided that the Initiator can
count the REQs received and detect that the count
exceeded the total expected transfer count. Otherwi se it
falls into the first category.

3. Equal nunbers of m ssing REQs and extra ACKs.

This error conmbination is also not detectable by REQ ACK
counting in the Target, because its net effect at the
Target is zero. It can be detected by the Initiator, at
Command Conpl ete only, provided that the Initiator can
count the REQs received and detect that the count is |ess
than the total expected transfer count and provided that
t he expected transfer count is determnistic (i.e. fixed
bl ock type device). Oherwise it falls into the first

cat egory.

T10/97-216r0
4. AIll remaining errors, or conbinations of errors, cause a net

surplus or deficit of returned ACK pul ses at the Target and

can be detected by the Target's Avail abl e Token Count at the
end of each Data Phase. A subset of these errors nay al so be
detectable in the Initiator but such detection is redundant

and appears to be of little increnental benefit.

Error Detecting Grcuits

The purpose of detecting extra or m ssing REQ ACK edges is to
prevent the undetected corruption of data caused by the resulting
dropped or inserted interface words. To maxim ze the effectiveness
of this error checking, care nust be taken to ensure that the
circuitry used to detect the REQ ACK edges for the purpose of error

detection "see" the sane edges as the circuitry advanci ng the data
path. This may be difficult if nultiple circuits are used to detect
t he same edge because the perceived REQ ACK pul ses are likely to
contain margi nal energy and each circuit will have uni que

sensitivity to those pul ses.

There are three areas of functionality that have been identified as
useful in the detection of extra or m ssing REQ ACK edges:

Initiator's REQ counting nmechanism- this optional function
may already exist to protect buffer boundaries, etc. It can be
used to check the nunber of REQ received and report if the
nunber exceeds the requested transfer count. It can al so be
used to check if less REQs were received than the transfer
count, but only for devices with determ nistic block |Iengths.
These checks can only be made at the end of an entire
transfer, and not at the end of each Data Phase. Using this
counter to detect m ssing/extra REQ pul ses provides very
little increnmental benefit because the Target's Avail abl e
Token counting nechanismw || detect all the same errors,
except for the very narrow case of equal and opposite REQ and
ACK errors that cancel each others effect.

T10/97-216r0
Initiator's Tokens Oned counting nmechani sm- proper
i npl ementation of this required function is critical to the
robust detection of extra REQs (detection of mssing REQs or
ACKs is not problematic). It nmust be able, under al
conditions, to pass at |east one extra token back to the
Target as an extra ACK, so that the Target can detect the
error condition. It should never reduce its count (e.gqg.
rollover) in response to any nunber of extra REQ pul ses. Using
this circuit to detect extra REQs (as opposed to passing that
i ndication back to the Target) has little benefit because it
must be at the Maxi mum O fset count when the extra REQ
arrives, giving very narrow coverage. Using this counter to
check for nore ACKs sent than REQs received is just a test of
the Initiators internal circuitry and not part of this

di scussi on.

Target's Avail abl e Token counting mechani sm - proper

i npl ementation of this required function is also critical to

t he robust detection of extra REQs or ACKs. It nust be able to
detect, under all conditions, that nore ACKs were received
than REQs were sent during any Data Phase (i.e. one, or nore,
ACKs received while the Avail abl e Token count was al ready
equal to Max O fset). It should never decrease its count (e.gqg.
rollover) in response to any nunber of extra ACK pul ses.

The detection of |ess ACKs received is already done in
properly inplenented devices because the Target nust not
exit the Data Phase until the Avail able Token count is at
Maxi mum Of fset. Mssing REQs or ACKs will then result in
an interface "hang" waiting for ACKs that will never be
sent. Because the maximumtinme to conplete a SCSI Data
Phase or a SCSI Command is not specified, this condition
will typically be discovered by a system software tineout

T10/97-216r0
whi ch must then cause the Initiator to Reset the entire

SCSI interface.

The detection of nore ACKs received has probl ens because
the Target will assune the transfer is over after the
proper nunber of ACKs are received and it will then | eave
the Data Phase. The remaining ACK(s) may cone at any tine
after this, |eaving open the possibility that they wll
go undetected as the Target noves on to send the Status
or Message byte (see Figure 5). To mnimze expose to
this problemthe Initiator should be able to detect, and
report as an error, the condition of the interface

| eaving the Data Phase while ACK(s) are still owed. It
shoul d al so abort sending any remai ning ACK(s) to reduce
the chance that they are confused with the subsequent
Status or Message Phase. The Target should continue to
monitor the ACK signal after it has left the Data Phase.
Any active edges on ACK that occur before the Target
asserts REQ for the Status or Message byte, should be
reported as an error. The Target could wait |onger before
nmovi ng out of Data Phase or before asserting REQ for the
Status or Message Phase, in hopes of increasing the
chance of detecting this error. However, the increase in
detection probability would have to be understood and
traded off carefully against the reduced perfornance.

T10/97-216r0

Bus Settle
delay (min)

Data Phase X Status or Msg Phase
Extra ACK | T T T T
pulse is seen by
Target |
Target leaves Data Phase Last ACK pulse(s) can come at any
before last real ACK pulse(s) time (e.g. Initiator could have been

waiting for buffer resource)

Figure 5 - Extra ACKs at the end of the Data Phase

Recomendat i ons

1. Asingle circuit should be used in the Initiator and Target to
detect the active edges of REQs or ACKs. This indication should be
passed unanbi guously to all other circuits requiring notification.

2. The Initiator's Tokens Owned counting nechani smmnust faithfully
remenber that at |east one extra ACK is owed, regardl ess of how
many extra REQs are received.

3. The Initiator should detect that the interface has |eft Data Phase
while it still owes ACK pul ses and report this as an error. It
should al so refrain from sending any remai ni ng owed ACK pul ses
after the interface | eaves the Data Phase.

4. The Target's Avail abl e Tokens counting mechani smnust faithfully
detect that at |east one extra ACK was received while the Avail able
Token Count was at Maxi num O fset, regardl ess of how many extra
ACKs are received.

5. The Target should continue to nonitor the ACK signal after |eaving
the Data Phase to detect that additional ACK pul ses have occurred.
This nmonitoring should continue until as close as possible to the
assertion of the REQ signal for the subsequent Status or Message
Phase.

