
T10

DRAFT 1157D

Revision 0.3
May 6, 1997

Information technology -
SCSI-3 Architecture Model -2

Secretariat
National Committee for Information Technology Standards

This is a draft proposed American National Standard of Accredited Standards Committee NCITS.  As such this
is not a completed standard.  The T10 Technical Committee may modify this document as a result of comments
received during public review and its approval as a standard.  Use of the information contained here in is at
your own risk.

Permission is granted to members of NCITS, its technical committees, and their associated task groups to
reproduce this document for the purposes of NCITS standardization activities without further permission,
provided this notice is included.  All other rights are reserved.  Any commercial or for-profit duplication is strictly
prohibited.

ASC T10 Technical Editor: Charles Monia
Digital Equipment Corporation
SHR3-2/C5
334 South Street
Shrewsbury, MA 01545
USA

Telephone: 508-841-6757
Facsimile: 508-841-6100
Email: monia@shr.dec.com

Reference number
ISO/IEC **** : 199x

ANSI X3.270
Printed May, 6, 1997 8:49pm



T10/ 1157D revision 0.3 May 6, 1997

POINTS OF CONTACT:

T10 Chair T10 Vice-Chair
John B. Lohmeyer Larry Lamers
Symbios Logic Inc. Adaptec, Inc.
4420 ArrowsWest Dr. 4611 Park Norton, Place.
Colo Spgs, CO 80907-3444 San Jose, CA 95136
Tel: (719) 533-7560 Tel: (408) 957-7817
Fax: (719) 533-7036 Fax: (408) 957-7193
Email: john.lohmeyer@symbios.com Email: ljlamers@aol.com

NCITS Secretariat
Lynn Barra
Administrator Standards Processing
NCITS Secretariat Telephone: 202-626-5738
1250 Eye Street, NW   Suite 200 Facsimile: 202-638-4922
Washington, DC   20005

SCSI Reflector
Internet address for subscription to the SCSI reflector: majordomo@symbios.com
Internet address for distribution via SCSI reflector: scsi@symbios.com

SCSI Bulletin Board
719-533-7950

Document Distribution
Global Engineering Telephone: 303-792-2181 or 
15 Inverness Way East 800-854-7179
Englewood, CO   80112-5704 Facsimile: 303-792-2192

ABSTRACT

This standard specifies the SCSI Architecture Model. The purpose of the architecture is to provide a common
basis for the coordination of SCSI-3 standards and to specify those aspects of SCSI-3 I/O system behavior
which are independent of a particular technology and common to all implementations.

PATENT STATEMENT

CAUTION:  The developers of this standard have requested that holders of patents that may be required for
the implementation of the standard, disclose such patents to the publisher.  However, neither the developers
nor the publisher have undertaken a patent search in order to identify which, if any, patents may apply to this
standard.

As of the date of publication of this standard and following calls for the identification of patents that may be
required for the implementation of the standard, no such claims have been made.  No further patent search
is conducted by the developer or the publisher in respect to any standard it processes.  No representation is
made or implied that licenses are not required to avoid infringement in the use of this standard.



May 6, 1997 T10/1157D revision 0.3

working draft SCSI-3 Architecture Model -2 3

Change History

Revision 0.3, May 5, 1997

Added the following approved proposals:

X3T10/97-122R0 -- Addressing Model for SAM -2.

X3T10/94-236R3 -- Addressability of Logical Unit For Resets

Revision 0.2, March 28, 1997

Modified subclause 3.7.2 to simplify the notation for objects having a numerical value.

Modified subclause 3.5 to fully describe typographical conventions.

As instructed by the September 11, 1996 working group, backed out rev 01 changes in service and remote
procedure call names.

Revised object definition 6 (logical unit), to include the following supplemental wording in the Task Set object
description:

”There shall be one task set per logical unit.”

Revision 0.1, September 1, 1996

Modify the subclauses below to clarify the wording as indicated.

Subclause 5.6.1.1, seventh paragraph:

Previous wording:

“If the NACA bit was set to one in the CDB control byte of the faulting command, then a new task created
while the ACA condition is in effect shall be entered into the faulted task set provided:”

Revised wording:

“If the NACA bit was set to one in the CDB control byte of the faulting command, then a new task created
while the ACA condition is in effect shall not be entered into the faulted task set unless all of the following
conditions are true:”

Subclause 5.6.1.1, paragraph following list

Previous wording:

“The auto contingent allegiance condition shall not be cleared.  If the conditions listed above are not met,
the newly created task shall not be entered into the task set and shall be completed with a status of ACA
ACTIVE.

Revised wording:



T10/ 1157D revision 0.3 May 6, 1997

4 working draft SCSI-3 Architecture Model -2

“In any of the conditions listed above are not met, the newly created task shall not be entered into the task
set and shall be completed with a status of ACA ACTIVE. The auto contingent allegiance condition shall not
be cleared.”

Subclause 5.2, change the wording as noted below.

“CONDITION  MET.   This status  shall be returned whenever the requested operation specified by an
unlinked command is satisfied (see the SEARCH DATA ( SBC) and PRE-FETCH (SBC) commands).”

Make the changes described in T10/96-169R0

Modify subclauses 5.2, 5.6.1.1 and 5.6.1.2 to Incorporate applicable parts of T10/95-229R2, Persistent Reserve



May 6, 1997 T10/1157D revision 0.3

working draft SCSI-3 Architecture Model -2 5

Table of Contents

Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

0 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1 Scope of the Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.1 Scope of SCSI-3 Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2 Architecture Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3 Implementation Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.1 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.2 Device Access Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.3 SCSI-3 Protocol Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.4 Interconnect Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Normative References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Definitions, Keywords and Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 References to SCSI Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Acronyms and Abbreviations: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5 Editorial Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.6 Numeric Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.7 Objects and Object Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.7.1  Notation for Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.7.2 Objects Containing Addresses, Identifiers and Numeric Parameters . . . . . . . . . . . . . . . . . . . . . . . 25
3.7.3 Predefined Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.7.4 Hierarchy Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.8 Notation for Procedures and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.9 State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4  SCSI-3 Architecture Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 The SCSI-3  Distributed Service Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 The SCSI-3 Client-Server Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4  The SCSI-3 Structural Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.5 SCSI Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.6 The Service Delivery Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.6.1 Synchronizing Client and Server States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.6.2 Request/Response Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.7 SCSI Device Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.7.1 SCSI Initiator Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.7.2 SCSI Target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.7.3 The Task Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.7.4 Logical Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.7.5 Hierarchical Logical Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.7.5.1 SCSI device base address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.7.5.2  Eight byte LUN structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.7.5.3 Logical unit address method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.7.5.4 Peripheral device address methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.7.5.5 Logical Device Address Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.8 The SCSI-3 Model for Distributed Communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52



T10/ 1157D revision 0.3 May 6, 1997

6 working draft SCSI-3 Architecture Model -2

5 SCSI Command Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.1 Command Descriptor Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.1.1 Operation Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.1.2 Control Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2.1 Status Precedence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.3 Protocol Services in Support of Execute Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.3.1 Data Transfer Protocol Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3.2 Data-In Delivery Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3.3 Data-Out Delivery service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.4 Task and Command Lifetimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.5 Command Processing Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.5.1  Unlinked Command Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.5.2 Linked Command Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.6 Command Processing Considerations and Exception Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.6.1 Auto Contingent Allegiance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.6.1.1 Logical Unit Response to Auto Contingent Allegiance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.6.1.2 Clearing an Auto Contingent Allegiance Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.6.2 Overlapped Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.6.3 Incorrect Logical Unit Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.6.4 Sense Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.6.4.1 Asynchronous Event Reporting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.6.4.2 Autosense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.6.5 Unit Attention Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.6.6 Target Hard Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.6.7 Logical Unit Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6 Task Management Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.1 ABORT TASK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2 ABORT TASK SET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.3 CLEAR ACA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.4 CLEAR TASK SET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.5 LOGICAL UNIT RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.6 TARGET RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.7 TERMINATE TASK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.8 Task Management Protocol Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.9 Task Management Function Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7 Task Set Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.2 Task Management Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.3 Task Abort Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.4 Task States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.4.1 Enabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.4.2 Blocked . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.4.3 Dormant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.4.4 Ended . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.5 Task Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.5.1 SIMPLE Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.5.2 ORDERED  Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.5.3 HEAD OF QUEUE Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.5.4 ACA Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85



May 6, 1997 T10/1157D revision 0.3

working draft SCSI-3 Architecture Model -2 7

7.6 Task State Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.7 Task Set Management Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.7.1 Blocking Boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.7.2 HEAD OF QUEUE Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.7.3 Ordered Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.7.4 ACA Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.7.5 Deferred Task Completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Object Definitions
Object Definition 1  SCSI Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Object Definition  2: Service Delivery Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Object Definition 3 : SCSI Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Object Definition  4: Initiator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Object Definition 5 : Target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Object definition 6 : Logical Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Object Definition 7 : Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
 Object Definition  8: Task Identifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Object Definition  9: Initiator Identifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Object Definition  10: Task Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Figures

Figure 1 : Requirements Precedence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 2 : Functional Scope of SCSI-3 Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 3 : Example of Hierarchy Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 4 : State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 5 : Client-Server Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 6 : SCSI Client-Server Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 7 : SCSI I/O System and Domain Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 8 : SCSI Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 9 : Domain Functional Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 10 : Domain Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 11 : Service Delivery Subsystem Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 12 : SCSI Device Functional Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 13 : SCSI Device Hierarchy Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 14 : Target Object Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 15 : Logical Unit Object Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 16 : Nested Logical Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 17 : Eight Byte LUN Structure Adjustments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 18 : Logical Unit Addressing Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Figure 19 : Peripheral Device Addressing Model (Bus Number Field = 0) . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 20 : Peripheral Device Addressing Model (Non-zero Bus Number) . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 21 : Logical Device Addressing Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 22 : Protocol Service Reference Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 23 : Protocol Service Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 24 : Request-Response ULP Transaction and Related LLP Services . . . . . . . . . . . . . . . . . . . . . 55
Figure 25 : Model for buffered data transfers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Figure 26 : Command processing events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 27 : Linked Command Processing Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 28 : Task Management Request Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Figure 29 : Example of Dormant Task Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84



T10/ 1157D revision 0.3 May 6, 1997

8 working draft SCSI-3 Architecture Model -2

Figure 30 : Task States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Figure 31 : HEAD OF QUEUE Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Figure 32 : HEAD OF QUEUE Tasks and Blocking Boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Figure 33 : Ordered Tasks and Blocking Boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Figure 34 : ACA Task Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Figure 35 : Example of Deferred Task Completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



May 6, 1997 T10/1157D revision 0.3

working draft SCSI-3 Architecture Model -2 9

List of Tables

Table 1 -- Eight Byte LUN Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 2 -- Format of Addressing Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 3 -- ADDRESS METHOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 4 -- Logical Unit Addressing Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 5 -- Peripheral Device Addressing Format (Bus Number field = 0) . . . . . . . . . . . . . . . . . . . . 49
Table 6 -- Peripheral Device Addressing Format (Non-zero Bus Number) . . . . . . . . . . . . . . . . . . . . 50
Table 7 -- Format of Logical Device Address Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 8 -- Format of Command Descriptor Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 9 -- Operation Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 10 -- Control Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 11 -- Status Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

scope.wp 



T10/ 1157D revision 0.3 May 6, 1997

10 working draft SCSI-3 Architecture Model -2

Foreword

The purpose of this standard is to provide a basis for the coordination of SCSI-3 standards development and
to define requirements, common to all SCSI-3 technologies and implementations, which are essential for
compatibility with host  SCSI-3 application software and device-resident firmware across all SCSI-3 protocols.
These requirements are defined through a reference model which specifies the behavior and abstract structure
which is generic to all SCSI-3 I/O system implementations.

As with any other technical document, there may arise questions of interpretation as new products are
implemented.  The NCITS Committee has established procedures to issue technical opinions concerning the
standards developed by the NCITS organization.  These procedures may result in SCSI Technical Information
Bulletins being published by NCITS.

These Bulletins, while reflecting the opinion of the Technical Committee which developed the standard, are
intended solely as supplementary information to other users of the standard.  This standard, ANS
NCITS.270-199x, as approved through the publication and voting procedures of the American National
Standards Institute, is not altered by these bulletins.  Any subsequent revision to this standard may or may not
reflect the contents of these Technical Information Bulletins.

Technical Committee T10 on Lower Level Interfaces, which developed this standard, had the following
members:

John B. Lohmeyer, Chair
Lawrence J. Lamers, Vice-Chair
Ralph O. Weber, Secretary

I. Dal Allan Joe Lawlor Gary R. Stephens
Paul D. Aloisi David Lawson Clifford E. Strang Jr.
Ron Apt Robert Liu Thomas 'Rick' Tewell
Geoffrey Barton Bob Masterson Dean Wallace
Robert Bellino David McFadden Harvey Waltersdorf
Charles Brill James McGrath Gary M. Watson
Peter Brown Pete McLean Michael Wingard
Michael Bryan Patrick Mercer Mark Woithe
Joe Chen Gene Milligan Ezra Alcudia (Alt.)
Chris D'Iorio Charles Monia Michael Alexenko (Alt.)
Joe Dambach Dennis P. Moore Steven A. Anderson (Alt.)
Jan V. Dedek Ian Morrell David Andreatta (Alt.)
Stephen G. Finch John Moy Tak Asami (Alt.)
Edward Fong S. Nadershahi Akram Atallah (Alt.)
Louis Grantham Erich Oetting Paul Boulay (Alt.)
Norm Harris Alan R. Olson Kevin Calvert (Alt.)
Edward Haske Dennis Pak John Cannon (Alt.)
Dennis R. Haynes Duncan Penman Kurt Chan (Alt.)
Stephen F. Heil George Penokie Shufan Chan (Alt.)
Stephen Holmstead Doug Piper Ting Li Chan (Alt.)
David Hudson Donna Pope Mike Chenery (Alt.)
Peter Johansson Robert Reiseh Nancy Cheng (Alt.)
Gerry Johnsen Scott Smyers William Clemmey (Alt.)
Skip Jones Robert N. Snively Dan Colegrove (Alt.)
Edward Lappin Jeff Stai Roger Cummings (Alt.)



May 6, 1997 T10/1157D revision 0.3

working draft SCSI-3 Architecture Model -2 11

Zane Daggett (Alt.) Tom Hanan (Alt.) Gerald Marazas (Alt.)
William Dallas (Alt.) Rick Heidick (Alt.) John Masiewicz (Alt.)
Varouj Der-Hacopian (Alt.) Mike Hetzel (Alt.) Daniel E. Moczarny (Alt.)
Dhiru N. Desai (Alt.) Gerald Houlder (Alt.) E.J. Mondor (Alt.)
Mike Eneboe (Alt.) Paul Jackson (Alt.) Jay Neer (Alt.)
Timothy Feldman (Alt.) Kevin James (Alt.) Tim Norman (Alt.)
Edward A. Gardner (Alt.) Brian Johnson (Alt.) Vit Novak (Alt.)
John Geldman (Alt.) Mark Jordan (Alt.) Kevin R. Pokorney (Alt.)
Chuck Grant (Alt.) Richard Kalish (Alt.) Gary Porter (Alt.)
Peter Haas (Alt.) Greg Kapraun (Alt.) Doug Prins (Alt.)
Douglas Hagerman (Alt.) Thomas J. Kulesza (Alt.) Steven Ramberg (Alt.)
Kenneth J. Hallam (Alt.) Dennis Lang (Alt.) Ron Roberts (Alt.)
William Ham (Alt.) Bill Mable (Alt.)

John P. Scheible (Alt.) Nicos Syrimis (Alt.) Jeffrey L. Williams (Alt.)
J. R. Sims (Alt.) Pete Tobias (Alt.) Kurt Witte (Alt.)
Michael Smith (Alt.) Adrienne Turenne (Alt.) Devon Worrell (Alt.)
Allen Spalding (Alt.) Joseph Wach (Alt.) Charles I. Yang (Alt.)
Arlan P. Stone (Alt.) Roger Wang (Alt.) Danny Yeung (Alt.)
Joe Stoupa (Alt.) Dave Weber (Alt.) Mike Yokoyama (Alt.)
George Su (Alt.) Bob Whiteman (Alt.)



SCSI-3 Architecture Model

SCSI-3
Implementation

Generic
requirements

Implementation
requirements

SCSI-3 Implementation
Standard

SCSI-3 Implementation
Standard

SCSI-3 Implementation
Standard

T10/ 1157D revision 0.3 May 6, 1997

12 working draft SCSI-3 Architecture Model -2

Figure 1 : Requirements Precedence

0 Introduction

This specification describes a reference model for the coordination of standards applicable to SCSI-3 I/O
systems and a set of common behavioral requirements which are essential for the development of host
software and device firmware that can interoperate with any SCSI-3 interconnect or protocol.

1 Scope of the Architecture

The set of SCSI-3 standards consists of the SCSI-3 Architecture Model (this specification) and the SCSI-3
implementation standards described in 1.1.

This standard defines generic requirements, which pertain to SCSI-3 implementation standards, and
implementation requirements. An implementation requirement specifies behavior in terms of measurable or
observable parameters which apply directly to an implementation. Examples of implementation requirements
defined in this document are the command descriptor block format and the status values to be returned upon
command completion.

Generic requirements are transformed to implementation requirements by an implementation standard. An
example of a generic requirement is the target hard reset behavior specified in subclause 5.6.6.

As shown in figure 1, all SCSI-3 implementation standards shall reflect the generic requirements defined herein.
In addition, an implementation claiming SCSI-3 compliance shall conform to the applicable implementation
requirements defined in this standard and the appropriate SCSI-3 implementation standards. In the event of
a conflict between this document and other SCSI-3 standards under the jurisdiction of technical committee T10,
the requirements of this standard shall apply.



SCSI-3
Interlocked

Protocol
(SIP)

SCSI-3
Parallel

Interface
(SPI)

SCSI-3
Fibre Channel

Protocol
(FCP)

Fibre Channel
Physical and Signaling

Interface (FC-PH)

IEEE 1394
High

Performance
Serial Bus

SCSI-3
Serial Bus

Protocol
(SBP)

SCSI-3
SSP

Protocol

Serial Storage
Architecture Bus

(SSA-PH)

S
C

S
I-

3
A

rc
hi

te
ct

ur
e

M
od

el
(S

A
M

)

Protocols

Interconnects

SCSI-3 Block
Commands (SBC)

SCSI-3 Stream
Commands (SSC)

SCSI-3 Graphic
Commands (SGC)

SCSI-3 Medium
Changer

Commands (SMC)

SCSI-3 Primary Commands (SPC)

Commands

C
om

m
on

 A
cc

es
s 

M
et

ho
d 

(C
A

M
)

May 6, 1997 T10/1157D revision 0.3

working draft SCSI-3 Architecture Model -2 13

Figure 2 : Functional Scope of SCSI-3 Standards

1.1 Scope of SCSI-3 Standards

Figure 2 uses a representative set of specifications to show the functional partitions and the relationships
among SCSI-3 standards.

The functional areas define the scope of each standard as follows:

SCSI Architecture Model: Defines the SCSI systems model, the functional partitioning of the SCSI-3 standard
set and requirements applicable to all SCSI-3 implementations and implementation standards.

Commands: Implementation standards which define device classes including a device model for each class.
These standards specify the required commands and behavior that is common to all devices or unique to a
given class of devices and prescribe the rules to be followed by an initiator when sending commands to a
device.

Common Access Method: Implementation standard which defines a host architecture and set of services for
device access.

Protocols: Implementation standards which define the rules for exchanging information so that different SCSI-3
devices can communicate.

Interconnects: Implementation standards which define the electrical and signaling rules essential for devices
to interoperate over a given physical interconnect.

The diagram of figure 2 shows how the standards listed below fit within each category. The standards included
in the diagram are meant to serve as examples and may not reflect the full set of standards currently in force.



T10/ 1157D revision 0.3 May 6, 1997

14 working draft SCSI-3 Architecture Model -2

1.2 Architecture Standard

SCSI-3 Architecture Model (X3.270-199x) (SAM) : Defines the functional partitions and specifies a model
for SCSI-3 I/O system and device behavior which applies to all SCSI interconnects, protocols, access
methods and devices.

1.3 Implementation Standards

1.3.1 Commands

SCSI-3 Primary Commands (T10-995D) (SPC)  - Commands and device behavior common to all SCSI-3
target devices.

SCSI-3 Block Commands (T10-996D) (SBC)  - Block oriented SCSI-3 devices (e.g., disks).

SCSI-3 Stream Commands (T10-997D) (SSC)  - Stream-oriented SCSI-3 devices (e.g., tape).

SCSI-3 Graphics Commands (T10-998D) (SGC)  -  Graphical input or output SCSI-3 devices (e.g.,
printers).

SCSI-3 Medium Changer Commands (T10-999D) (SMC)  - SCSI-3 media changers such as CD/ROM
carousels.

SCSI-3 Controller Commands (T10-XXXD) (SCC)  - SCSI-3 I/O subsystem controllers such as a disk array
device controller.

1.3.2 Device Access Methods

SCSI-3 Common Access Method (X3.332-199x) (CAM) : A host architecture for performing SCSI device
I/O. CAM defines a layered environment and set of services, based on the C computer language, which
allow device drivers to be written that are independent of interconnects, protocols, operating systems and
host platforms.

1.3.3 SCSI-3 Protocol Standards

The following is a representative list of SCSI-3 protocol standards and the physical interconnects on which
these are implemented.

SCSI-3 Interlocked Protocol (T10-856D) (SIP)  - SCSI-3 Parallel Interface.
SCSI-3 Serial Bus Protocol (T10-992D) (SBP)  - High Performance Serial Bus (IEEE 1394).
Fibre Channel Protocol for SCSI (T10-993D) (FCP)  - Fibre Channel interconnects.
SCSI-3 Serial Storage Protocol (T10-XXXX) (SSP)  - SCSI-3 Serial Storage Architecture.

1.3.4 Interconnect Standards

SCSI-3 Parallel Interface (T10-885D) (SPI)
Fibre Channel - PH (T11-XXXX)
High Performance Serial Bus (IEEE 1394)
Serial Storage Architecture - PH (T10.1-XXX) (SSA)

WARNING -- glossary.wp must be created by merging glossary.pri and glossary.sec. 

glossary.pri 

DO NOT EDIT GLOSSARY.WP. 

This file is used as the formatting template to create glossary.wp, by merging with glossary.sec, which contains the alphabetically sorted glossary entries. To allow sorting with the WordPerfect sort tool, multi-word terms in the glossary are formatted with hard spaces between each word so sort will treat them as single-word entities. The last entry must be the delimiting string shown in the template. Sorting will cause this entry to always be placed last. 



May 6, 1997 T10/1157D revision 0.3

working draft SCSI-3 Architecture Model -2 15

2 Normative References

X3.131-1994 American National Standard Small Computer System Interface -2.

3 Definitions, Keywords and Conventions

3.1 Definitions

3.1.1 aborted command : An SCSI command that has been  ended by aborting the task created to execute
it.

3.1.2 ACA command : A command performed by a task with the ACA attribute (see subclause 3.4 and object
definition 6).

3.1.3 application client : An object that is the source of SCSI commands.

3.1.4 auto contingent allegiance : The condition of a task set following the return of a CHECK CONDITION
or COMMAND TERMINATED status.

3.1.5 blocked (task state) : The state of a task that is prevented from completing due to an ACA condition.

3.1.6 blocking boundary : A task set boundary denoting a set of conditions that inhibit tasks outside the
boundary from entering the Enabled state.

3.1.7 byte : An 8-bit construct.

3.1.8 call : The act of invoking a procedure. 

3.1.9 client-server : A relationship established between a pair of distributed  objects where one (the client)
requests the other (the server) to perform some operation or unit of work on the client's behalf.

3.1.10 client : An object that requests a service from a server.

3.1.11 command : A request describing a unit of work to be performed by a device server.

3.1.12 command descriptor block : A structure up to 16 bytes in length used to communicate a command
from an  application client to a device server.

3.1.13 completed command : A command that has ended by returning a status and service response of TASK

COMPLETE, LINKED COMMAND COMPLETE, or LINKED COMMAND COMPLETE (WITH FLAG).

3.1.14 completed task : A task that has ended by returning a status and service response of TASK COMPLETE.
The actual events  comprising the Task Complete response are protocol specific.

3.1.15 confirmation : A response returned to an object, which signals the completion of a service request.

3.1.16 confirmed protocol service : A service available at the protocol service interface, which requires
confirmation of completion.

3.1.17 current task : A task that is in the process of sending status or transferring command data to or from
the initiator. 



T10/ 1157D revision 0.3 May 6, 1997

16 working draft SCSI-3 Architecture Model -2

3.1.18 destination device : The SCSI device to which a service delivery transaction is addressed. See source
device.

3.1.19 device server : An object within the logical unit which executes SCSI tasks  according to the rules for
task management described in clause 7.

3.1.20 device service request : A request, submitted by an application client, conveying an SCSI command
to a device server.

3.1.21 device service response : The response returned to an application client by a device server on
completion of an SCSI command.

3.1.22 domain : An I/O system consisting of a set of SCSI devices  that interact with one another by means
of a service delivery subsystem.

3.1.23 dormant (task state) : The state of a task that is prevented from starting execution due to the presence
of certain other tasks in the task set.

3.1.24 enabled (task state) : The state of a task that may complete at any time. Alternatively, the state of a
task that is waiting to receive the next command in a series of linked commands.

3.1.25 ended command : A command that has completed or aborted.

3.1.26 faulted initiator : The initiator to which a COMMAND TERMINATED or CHECK CONDITION status was
returned.

3.1.27 faulted task set : A task set that contained a faulting task.

3.1.28 faulting command : A command that completed with a status of CHECK CONDITION or
COMMAND TERMINATED.

3.1.29 faulting task : A task that has completed with a status of CHECK CONDITION or
COMMAND TERMINATED.

3.1.30 function complete : A  logical unit response indicating that a task management function has finished.
The actual events  comprising this response are protocol specific.

3.1.31 hard reset : A target response to a reset event or a TARGET RESET in which the target performs the
operations described in subclause 5.6.6.

3.1.32 I/O operation : An operation defined by an unlinked SCSI command, a series of linked SCSI commands
or a task management function.

3.1.33 implementation : The physical realization of an object.

3.1.34 implementation-specific : A requirement or feature that is defined in an SCSI-3 standard but whose
implementation may be specified by the system integrator or  vendor.

3.1.35 implementation option : An option whose actualization within an implementation is at the discretion of
the implementor.

3.1.36 initiator : An SCSI device  containing application clients which originate device service  and task
management requests to be processed by a target SCSI device.



May 6, 1997 T10/1157D revision 0.3

working draft SCSI-3 Architecture Model -2 17

3.1.37 interconnect subsystem : One or more physical interconnects  which appear as a single path for the
transfer of information between SCSI devices in a domain. 

3.1.38 in transit : Information that has been sent to a remote object but not yet  received.

3.1.39 layer : A subdivision of the architecture constituted by subsystems of the same rank.

3.1.40 linked CDB : A CDB with the link bit in the control byte set to one.

3.1.41 linked command : One in a series of SCSI commands executed by a single task, which collectively
make up a discrete  I/O operation. In such a series, each  command has the same task identifier, and all,
except the last, have the link bit in the CDB control byte set to one.

3.1.42 logical unit : A target-resident entity which implements a device model and executes SCSI commands
sent by an application client.

3.1.43 logical unit number : A 64-bit identifier for a logical unit.

3.1.44 logical unit option : An option pertaining to a logical unit, whose actualization is at the discretion of the
logical unit implementor.

3.1.45 lower level protocol : A protocol used to carry the information representing upper level protocol
transactions.

3.1.46 mandatory : The referenced item is required to claim compliance with a standard.

3.1.47 media information : Information stored within an SCSI device, which is non-volatile (retained through
a power cycle) and  accessible to an initiator through the execution of SCSI commands. 

3.1.48 object : An architectural abstraction or "container" that encapsulates data types, services, or other objects
that are related in some way.

3.1.49 peer-to-peer protocol service : A service used by an upper level protocol implementation to exchange
information with its peer.

3.1.50 peer entities : Entities within the same layer.

3.1.51 pending task : A task that is not a current task.

3.1.52 physical interconnect : A single physical pathway for the transfer of information between SCSI devices
in a domain.

3.1.53 port : Synonymous with "service delivery port".

3.1.54 procedure : An  operation that can be invoked through an external calling interface.

3.1.55 protocol : The rules governing the content and exchange of information passed between distributed
objects through the service delivery subsystem.

3.1.56 protocol option : An option whose definition within an SCSI-3 protocol standard is discretionary.

3.1.57 protocol service confirmation : A signal from the lower level protocol service layer notifying the upper
layer that a protocol service request has completed.



T10/ 1157D revision 0.3 May 6, 1997

18 working draft SCSI-3 Architecture Model -2

3.1.58 protocol service indication : A signal from the lower level protocol service layer notifying the upper level
that a protocol transaction has occurred.

3.1.59 protocol service request : A call to the lower level protocol service layer to begin a protocol service
transaction.

3.1.60 protocol service response : A reply from the upper level protocol layer in response to a protocol service
indication.

3.1.61 queue : The arrangement of tasks within a task set, usually according to the temporal order in which they
were created. See "task set".

3.1.62 receiver : A client or server that is the recipient of a service delivery transaction.

3.1.63 reference model : A standard model used to specify system requirements in an implementation-
independent manner.

3.1.64 request : A  transaction invoking a service.

3.1.65 request-response transaction : An interaction between a pair of distributed, cooperating objects,
consisting of a request for service submitted to an object followed by a response conveying the result.

3.1.66 request-confirmation transaction : An interaction between a pair of cooperating objects, consisting of
a request for service submitted to an object followed by a response from the object confirming request
completion.

3.1.67 reset event : A protocol-specific event which may trigger a hard reset response from an SCSI device
as described in subclause 5.6.6.

3.1.68 response : A  transaction conveying the result of a request.

3.1.69 SCSI application layer : The protocols and procedures that implement or invoke SCSI commands and|
task management functions by using services provided by an SCSI protocol layer.|

3.1.70 SCSI Device : A device that is connected to a service delivery subsystem and supports an SCSI
application protocol.

3.1.71 SCSI device identifier : An address by which an SCSI device is referenced within a domain.

3.1.72 SCSI I/O system : An I/O system, consisting of two or more SCSI devices, an SCSI interconnect and
an SCSI protocol, which collectively  interact to perform SCSI I/O operations.

3.1.73 SCSI protocol layer : The protocol and services used by an SCSI application layer to transport data
representing an SCSI application protocol transaction.

3.1.74 sender : A client or server that originates a service delivery transaction.

3.1.75 server : An SCSI object that performs a service on behalf of a client.

3.1.76 service : Any operation or function performed by an SCSI-3 object, which can be invoked by other
SCSI-3 objects.



May 6, 1997 T10/1157D revision 0.3

working draft SCSI-3 Architecture Model -2 19

3.1.77 service delivery failure : Any non-recoverable error causing the corruption or loss of one or more
service delivery transactions while in transit.

3.1.78 service delivery port : a device-resident interface used by the application client, device server or task
manager to enter and retrieve requests and responses from the service delivery subsystem. Synonymous with
"port".

3.1.79 service delivery subsystem : That part of an SCSI I/O system which transmits service requests to  a
logical unit or target and returns  logical unit or target responses to an initiator.

3.1.80 service delivery transaction : A request or response sent through the service delivery subsystem.

3.1.81 signal : (n) A detectable asynchronous event possibly accompanied by descriptive data and parameters.
(v) The act of generating such an event.

3.1.82 source device : The SCSI device from which a service delivery transaction originates. See  destination
device.

3.1.83 subsystem : An element in a hierarchically partitioned system which interacts directly only with elements
in the next higher division or the next lower division of that system.

3.1.84 suspended information : Information stored within a logical unit that is not available to any pending
tasks.

3.1.85 target : An SCSI device which receives SCSI commands and directs such commands to one or more
logical units for execution.

3.1.86 task : An object within the logical unit representing the work associated with a command or group of
linked commands.

3.1.87 task abort event : An event or condition indicating that the task has been aborted by means of a task
management function.

3.1.88 task completion event : An event or condition indicating that the task has ended with a service response
of TASK COMPLETE.

3.1.89 task ended event : An event or condition indicating that the task has completed or aborted.

3.1.90 task management function : A task manager service which can be invoked by an application client to
affect the execution of one or more tasks.

3.1.91 task management request : A request submitted by an application client, invoking a task management
function to be executed by a task manager.

3.1.92 task management response : The response returned to an application client by a task manager on
completion of a task management request.

3.1.93 task manager : A  server  within the  target which executes task management functions.

3.1.94 task set : A group of tasks within a target device, whose interaction is dependent on the queuing and
auto contingent allegiance rules of clause 7.

3.1.95 task slot : Resources within  the logical unit  that  may be used to  contain a task.



T10/ 1157D revision 0.3 May 6, 1997

20 working draft SCSI-3 Architecture Model -2

3.1.96 third-party command : An SCSI command which requires a logical unit within the target device to
assume the initiator role and send an SCSI command to a target device.

3.1.97 transaction : A cooperative interaction between two objects, involving the exchange of information or
the execution of some service by one object on behalf of the other.

3.1.98 unconfirmed protocol service : A service available at the protocol service interface, which does not
result in a completion confirmation.

3.1.99 unlinked command : An SCSI-3 command having the link bit set to zero in the CDB control byte.

3.1.100 upper level protocol : An application-specific protocol executed through services provided by a lower
level protocol.

Warning: keywords.wpd must be created by merging keywords.pri and keywords.sec. 

keywords.pri 

DO NOT EDIT GLOSSARY.WP. 

This file is used as the formatting template to create keywords.wpd, by merging with keywords.sec, which contains the alphabetically sorted keyword entries. To allow sorting with the WordPerfect sort tool, multi-word terms in the keyword list are formatted with hard spaces between each word so sort will treat them as single-word entities. The last entry must be the delimiting string shown in the template. Sorting will cause this entry to always be placed last. 

notation.wp 



May 6, 1997 T10/1157D revision 0.3

working draft SCSI-3 Architecture Model -2 21

3.2 Keywords

Several keywords are used to differentiate between different levels of requirements and optionality, as follows:

3.2.1 vendor-specific : Specification of the referenced item is determined by the device vendor.

3.2.2 protocol-specific : Implementation of the referenced item is defined by an  SCSI-3 protocol standard (
see 1.3.3).

3.2.3 expected : A keyword used to describe the behavior of the models specified by this standard.

3.2.4 mandatory : A keyword indicating items required to be implemented as defined by this standard.

3.2.5 may : A keyword that indicates flexibility of choice with no implied preference.

3.2.6 obsolete : A keyword indicating items that were defined in prior SCSI standards but have been removed
from this standard.

3.2.7 option, optional : Keywords that describe features which are not required to be implemented by this
standard. However, if any optional feature defined by the standard is implemented, it shall be implemented as
defined by the standard.

3.2.8 reserved : A key word referring to bits, bytes, words, fields and code values that are set aside for future
standardization. Their use and interpretation may be specified by future extensions to this or other standards.
A reserved bit, byte, word or field shall be set to zero, or in accordance with a future extension to this standard.
The recipient shall not check reserved bits, bytes, words or fields. Receipt of reserved code values in defined
fields shall be treated as an error.

3.2.9 shall : A keyword indicating a mandatory requirement. Designers are required to implement all such
mandatory requirements to ensure interoperability with other standard conformant products.

3.2.10 should : A keyword indicating flexibility of choice with a strongly preferred alternative. Equivalent to the
phrase “it is recommended”.



T10/ 1157D revision 0.3 May 6, 1997

22 working draft SCSI-3 Architecture Model -2

3.3 References to SCSI Standards

The original Small Computer System Interface Standard, X3.131-1986, is referred to herein as SCSI-1.   SCSI-1
was revised resulting in the Small Computer System Interface -2 (X3.131-1994), referred to herein as SCSI-2.
The set of SCSI-3  standards  are collectively referred to as SCSI-3.  The term SCSI is used wherever it is not
necessary to distinguish between the versions of SCSI.

References to individual SCSI-3 standards within this document use one of the three-character mnemonics
shown in 1.1.

3.4 Acronyms and Abbreviations:

ACA : Auto contingent allegiance.

AER: Asynchronous event report.

CAM: Common Access Method.

CDB: Command descriptor block.

LLP: Lower level protocol.

LUN: Logical unit number.

SDP: service delivery port.

SDS: Service Delivery Subsystem.

ULP: Upper level protocol.

3.5 Editorial Conventions

Certain words and terms used in this standard have a specific meaning beyond the normal English meaning.
These words and terms are defined either in the glossary or in the text where they first appear. 

Upper case is used when referring to the name of a numeric value defined in this specification or a formal
attribute possessed by an object. When necessary for clarity, names of objects, procedures, parameters or
discrete states are capitalized or set in bold type.

Callable procedures are identified by a name in bold type, such as Execute Command  (see 5). Names of|
procedural arguments are denoted by capitalizing each word in the name.  For instance, Task Identifier is the|
name of an argument in the Execute Command  procedure call.|

|
Quantities having a defined numeric value are identified by large capital letters. CHECK CONDITION, for|
example, refers to the numeric quantity defined in table 11.  Quantities having a discrete but unspecified value|
are identified using small capital letters.  As an example, LINKED COMMAND COMPLETE (WITH FLAG), indicates a|
quantity returned by the Execute Command  remote procedure call (see 5).  Such quantities are usually|
associated with an event or indication whose observable behavior or value is specific to a given implementation|
standard.|



May 6, 1997 T10/1157D revision 0.3

working draft SCSI-3 Architecture Model -2 23

3.6 Numeric Conventions

Digits 0-9 in the text of this standard that are not immediately followed by lower-case "b" or "h" are decimal
values. Digits 0 and 1 immediately followed by lower case "b" are binary values.  Digits 0-9 and the upper case
letters "A"-"F" immediately followed by lower-case "h" are hexadecimal values.

Large numbers are not separated by commas or spaces (e.g., 12345; not 12,345 or 12 345).

3.7 Objects and Object Notation

The SCSI architecture is defined in terms of objects. As  specified in this standard, objects  are abstractions
encapsulating a set of related  functions, data types and other objects. Certain objects, such as an interconnect,
may correspond to a physical entity while  others, such as a task, may only exist conceptually. That is, although
such objects exhibit a well-defined, observable set of behaviors, they do not exist as separate physical
elements.

An object is a  container that may enclose  single entities  and other objects. For  example, an SCSI device
may contain logical units. A logical unit may have tasks, a task set and so forth. The following clauses describe
notational and graphical conventions for specifying  objects.

3.7.1  Notation for Objects

The following symbols are used to define the composition of an object.

= "is composed This symbol indicates that the object named on the left is
of" composed of the objects named of the right.

+ "together with" This symbol collects objects into a group. No ordering is implied.
In the expression:

A = B + C

object A is composed of B together with C.

[ | ] "select one of" This is equivalent to an "exclusive or" operation. In the
expression:

A = [B|C|D]

object A is composed of one object selected from B, C or D.



T10/ 1157D revision 0.3 May 6, 1997

24 working draft SCSI-3 Architecture Model -2

() "optional" The objects enclosed in parenthesis are optional. In the
expression:

A = B + (C)

object A includes B and, optionally, C.

{ } "instances of" A set of objects enclosed within curly brackets may occur any
number of times in a given instance. No physical ordering is
implied. The brackets may be indexed. For example, M{...}N
indicates any number of instances from M to N. Thus:

{...}3 implies 0, 1, 2 or 3 instances.

3{...} implies 3 or more instances. The upper limit is
implementation  or protocol specific.

3{...}3 implies exactly 3 instances.

3{...}5 implies from 3 to 5 instances.

"xxx" ASCII character Object consists of the ASCII encodings for the characters
string enclosed in quotation marks.

nn binary encoded Object consists of the binary encoding representing the specified
value value. For example

A = 54

defines object A as the binary encoding of the decimal value 54.

... range Denotes a sequential set of discrete values. Thus:

[1|...|100] implies one out of a set of binary encoded integers
between 1 and 100.

["A"|...|"Z"] implies one out of a set of ASCII-encoded alphabetic
characters between "A" and "Z".

Unless stated otherwise, literals outside the range of specified
values are reserved for future standardization.

← " p h y s i c a l l y
contains"

As in A ← B. Object A physically contains object B.

Use of this notation is restricted to the specification of object
addresses and identifiers as described below.



May 6, 1997 T10/1157D revision 0.3

working draft SCSI-3 Architecture Model -2 25

<nn> vector of objects Denotes "nn" physically contiguous instances of the object. Thus,
for example:

byte<10>  defines a physically contiguous vector of ten bytes.

/*...*/ remark Encloses a comment.

There is no physical ordering implied by the sequence in which objects are specified in a grouping. Thus, the
term "8{byte}8" or the expression "A + B + C" in an object definition says nothing about the physical ordering
of these objects. A physically contiguous vector of items is denoted by means of the array notation specified
above.

3.7.2 Objects Containing Addresses, Identifiers and Numeric Parameters

This  standard defines certain externally referenced numeric objects, such as addresses.  By convention, such
an object is made up of two components: a storage object specifying the maximum size of the numeric field
and a set of allowable values. The following is an example of an identifier object definition.

Ident_a  = byte  ← [ 0 | ... | 243 ]

The object "Ident_a" is an identifier composed of an 8-bit "container" (the 'byte' object) and  the binary encoding
of a single value from 0 to 243. Values  not in the range are reserved. The left arrow operator ("←") indicates
that the storage object physically contains the encoding for one of the allowed values.  Unless specified |
otherwise in the object definition, the range of permissible values is implicitly all those that can be held by the |
container.  For example, the definition |

Ident_a  = byte |
|

is equivalent to |
|

Ident_a  = byte  ← [ 0 | ... | 255 ] |

3.7.3 Predefined Objects

The following predefined objects are used throughout this standard:

Constant: Object containing a fixed value. The container size and contents are
implementation-specific.

Buffer = Byte<nn> : Byte array of size nn.

Value: Numeric quantity.

Flag = bit ← [0|1]: A two-valued quantity as shown.



Chapter Index

Section Introductory
Text

Figure

Book

Preface Table of
Contents

T10/ 1157D revision 0.3 May 6, 1997

26 working draft SCSI-3 Architecture Model -2

Figure 3 : Example of Hierarchy Diagram

3.7.4 Hierarchy Diagrams

Hierarchy diagrams show how objects are related to each other. The hierarchy diagram of figure 3, for example,
shows the relationships among the objects comprising the "Book" object described in the following definition.

Book = 1{Chapter} + (Index) + Table of Contents + (Preface)

Chapter = 1{Section} + 0{Figure}

Preface = 1{Introductory Text} + 0{Figure}

As given in the object definition, a Book object consists of one or more Chapters, a Table of Contents, an
optional  Preface and optional Index.  In the corresponding  hierarchy diagram, labeled boxes denote the above
objects. The composition and relation of one object to others is shown by the connecting lines. In this case,
the connecting lines indicate the relationship between "Book" and its constituent objects "Chapter", "Index",
"Table of Contents" and “Preface”. Similarly, connecting lines show that "Chapter" contains objects "Section"
and "Figure". Note that the Figure object may also be a component of Preface.

The hierarchy diagram does not show multiple instances of an object or the fact that certain objects are
optional. In this example,  the Figure object is shown only once, even though a chapter or preface may have
several (or no) instances of this object. Similarly, the Index object is shown even though it too is optional.

3.8 Notation for Procedures and Functions

In this standard, the model for functional interfaces between objects is the callable procedure. Such interfaces
are specified using the following notation:

[Result = ] Procedure Name ([input-1] [,input-2] ...] || [output-1] [,output-2] ...)

Where:

Result: A single value representing the outcome of the procedure or function.



May 6, 1997 T10/1157D revision 0.3

working draft SCSI-3 Architecture Model -2 27

Procedure Name: A descriptive name for the function to be performed.

"(...)": Parentheses enclosing the lists of input and output arguments.

Input-1, Input-2, ...: A comma-separated list of names identifying caller-supplied  input data
objects.

Output-1, Output-2, ...: A comma-separated list of names identifying  output data objects to be
returned by the procedure.

"||": A separator providing the demarcation between inputs and outputs. Inputs
are listed to the left of the separator; outputs are listed to the right.

"[...]": Brackets enclosing optional or conditional parameters and arguments.

The data objects are specified using the notation of 3.7.1. This notation allows any data objects to be specified as
inputs and outputs. The following is an example of a procedure specification:

Found = Search (Pattern, Item List || [Item Found] )

Where:

Found  = Flag

Flag , which, if set,  indicates that a matching item was located.

Input Arguments:

Pattern = ... /* Definition of Pattern  object */

Object containing the search pattern.

Item List = Item<NN> /* Array of NN Item  objects*/

Contains the items to be searched for a match.

Output Arguments:

Item Found  = Item  ... /* Item located by the search procedure */

This object is only returned if the search succeeds.

Predefined objects commonly used as arguments are defined in 3.7.3.

3.9 State Diagram 



S0: State 0 S1: State 1
Actions taken on entry to S0 Actions taken on entry to S1

E0: Condition for transition of S0 back to itself E0: Condition for transition of S1 to S0

E1: Condition for transition of S0 to S1

S0:S0

S0:S1

S1:S0

transition label
The S0 entry actions are executed

following this transition.

T10/ 1157D revision 0.3 May 6, 1997

28 working draft SCSI-3 Architecture Model -2

Figure 4 : State Diagram

All state diagrams use the notation shown in figure 4.

A system specified in this manner has the following properties:

a) Time elapses only within discrete states.
b) State transitions are logically instantaneous.
c) Every time a state is entered, the actions of that state are started. Note that this means that a transition that

points back to the same state will restart the actions from the beginning.

archmod.wp 



May 6, 1997 T10/1157D revision 0.3

working draft SCSI-3 Architecture Model -2 29

4  SCSI-3 Architecture Model 

4.1 Introduction

The purpose of the SCSI-3 architecture model is to:

d) Provide a basis for the coordination of SCSI-3 standards development which allows each standard to be placed
into perspective within the overall SCSI-3 Architecture model. 

e) Identify areas for developing standards and provide a common reference for maintaining consistency among
related standards so that independent teams of experts may work productively and independently on the
development of standards within each functional area.

f) Provide the foundation for application compatibility across all SCSI-3 interconnect and protocol environments
by specifying  generic requirements that apply uniformly to all implementation standards within each functional
area. 

The development of this standard is assisted by the use of an abstract model. To specify the external behavior of a
real SCSI-3 system, elements in a real system are replaced by  functionally equivalent components within this model.
Only externally observable behavior is retained as the standard of behavior. The description of internal behavior in this
standard is provided only to support the definition of the observable aspects of the model. Those aspects are limited
to the generic properties and characteristics needed for host applications to interoperate with SCSI-3 devices in any
SCSI-3 interconnect and protocol environment. As such, the model does not address other requirements which may
be essential to some I/O system implementations such as the mapping from SCSI device addresses to network
addresses, the procedure for discovering SCSI-3 devices on a network and the definition of network authentication
policies for SCSI initiators or targets. These considerations are outside the scope of the architecture model.

The reader not familiar with the concept of abstract modeling is cautioned that concepts introduced in the description
of an SCSI-3 I/O system constitute an abstraction despite a similar appearance to concepts possibly found in real
systems. Therefore, a real SCSI-3 I/O system need not be implemented as described by the model. Such a system,
regardless of how it is implemented, shall, however, comply with the requirements of this and all other applicable
standards. 

The SCSI-3  architecture model is described in terms of objects, protocol layers and service interfaces between
objects. As discussed in 3.7, an object may be a  single numeric parameter, such as a logical unit number, or a
complex entity that performs a set of operations or services on behalf of another object. 

Service interfaces are defined between distributed objects and protocol layers. The template for a distributed service
interface  is the client-server model described in 4.2. Subclause 4.4 specifies the structure of an SCSI I/O system by
defining the relationship among objects.  The set of distributed services to be provided are specified in clauses 5 and
6.

Requirements that apply to each SCSI-3  protocol standard are specified in the protocol service model described in
subclauses 5.3 and 6.8. The model describes required behavior in terms of  layers, objects within layers and protocol
service transactions between layers. 

4.2 The SCSI-3  Distributed Service Model



Client Server
Server Request

Server Response

Client-Server Transaction

Service Delivery Subsystem

Protocol Service
Interface

T10/ 1157D revision 0.3 May 6, 1997

30 working draft SCSI-3 Architecture Model -2

Figure 5 : Client-Server Model

Service interfaces between distributed objects are represented by the client-server model shown in figure 5. Dashed
horizontal arrows  denote a single request-response transaction as it appears to the client and server. The solid arrows
indicate the actual transaction path through the service delivery subsystem. In such a model, each client or server is
a single thread of execution which runs concurrently with all other  clients or servers.

A client-server transaction is  represented as a remote procedure call with inputs supplied by the caller (the client).
The procedure executed by the server returns outputs and a procedure status. A client directs requests to a remote
server, via the client's service delivery subsystem, and receives a completion  response or a failure notification. The
request, which identifies the server and the service to be performed,  includes the input data. The response conveys
the output data and request status. The function of the service delivery subsystem is to transport an error-free copy
of the request or response  between sender  and receiver.  A failure notification  indicates that a condition has been
detected, such as a reset, or service delivery failure, that precludes request completion.

As seen by the client, a request becomes pending when it is passed to the service delivery subsystem for transmission.
The request is complete when the server response is received or when a failure notification  is sent. As seen by the
server, the request becomes pending upon receipt and completes when the response is passed to its service delivery
subsystem for return to the client. As a result there will usually be a time skew between the server and client's
perception of request status and logical unit state. All allusions to a pending command or task management function
in this standard are in the application client's frame of reference.

Client-server relationships are not symmetrical. A client may only originate requests for service. A server may only
respond to such requests. The client calls the server-resident procedure and waits for completion. From the client's
standpoint, the behavior of a remote service invoked in this manner is indistinguishable from a conventional procedure
call. In this model, confirmation of successful request or response delivery by the sender is not required. The model
assumes that delivery failures will be detected by the client's service delivery  port. 

4.3 The SCSI-3 Client-Server Model



Application
Client

Task
Manager

Initiator Target

Device Service Request

Task Management Req.

Device Service Response

Task Management Resp.

Logical
Unit

Device
Server

May 6, 1997 T10/1157D revision 0.3

working draft SCSI-3 Architecture Model -2 31

Figure 6 : SCSI Client-Server Model

As shown in figure 6, each SCSI-3 target device provides two classes of service, device services executed by the
logical units under the control of the target and task management functions performed by the task manager.  A logical
unit is an object that implements one of the device functional models described in the SCSI-3 command standards and
executes SCSI-3 commands such as reading from or writing to the media.   Each pending SCSI command or series
of linked commands defines a unit of work to be performed by the logical unit. As described below, each unit of work
is represented within the target by a task which can be externally referenced and controlled through requests issued
to the task manager.

All requests  originate from application clients residing within an initiator device. An application client represents a
thread of execution whose functionality is independent of the interconnect and SCSI-3 protocol. In an implementation,
that thread could correspond to the device driver and any other code within the operating system that is capable of
managing I/O requests without requiring knowledge of the interconnect or SCSI-3 protocol. In the architecture model,
an application client is created to issue a single SCSI-3 command or task management function; it ceases to exist once
the command or task management function ends. Consequently, there is one application client for each  pending
command or task management request. Within the initiator, one or more controlling entities, whose definition is outside
the scope of the architecture model,  oversee the creation of and interaction among application clients.

As described in 4.2, each request  takes the form of a procedure call with arguments and a status to be returned.  An
SCSI-3 command is issued  as a request for device service directed to a device server within a logical unit. Each
device service request contains a command descriptor block, defining the operation to be performed, along with a list
of command-specific inputs  and other parameters specifying how the command is to be processed. If supported by
a logical unit, a sequence of linked commands  may be used to define an extended I/O operation.

A task is an object within the logical unit representing the work associated with a command or series of linked
commands. A new command or the first in a series of linked commands causes the creation of a task. The task
persists until a command completion response is sent or until the task is ended  by a task management function or
exception condition. Subclause 5.5.1 gives an example of the processing for a single command. Subclause 5.5.2 gives
an example of linked command processing.



T10/ 1157D revision 0.3 May 6, 1997

32 working draft SCSI-3 Architecture Model -2

An application client may request execution of a task management function through a request directed to the task
manager.  Subclause 6.9  shows the interactions between the task manager and application client when a task
management request is processed.



Power Power

DATADATA

SCSI Device SCSI Device SCSI Device SCSI Device

Service Delivery Subsystem

I/O System

Domain

May 6, 1997 T10/1157D revision 0.3

working draft SCSI-3 Architecture Model -2 33

Figure 7 : SCSI I/O System and Domain Model

4.4  The SCSI-3 Structural Model

This clause  uses the notation for hierarchy diagrams of 3.7.4 and the object notation specified in 3.7.1 to formally
define the structure of an SCSI-3 I/O system as seen by an application client. Certain object definitions may include
one or more numeric parameters defining an allowable range for addresses or identifiers. The range of addresses or
identifiers that shall be supported by an SCSI-3 protocol implementation shall be  defined in the SCSI-3 protocol
standard that applies to that implementation. Such objects, however, shall not exceed the values specified in this
standard. In addition, unless specified otherwise in this standard, an address or identifier supported by an SCSI-3
protocol may be less than the maximum defined herein. To ensure compatibility with any SCSI-3 protocol, the protocol-
independent portions of a system implementation should be designed to use the address or identifier specifications
as they appear in this standard. 

The SCSI-3 structural model represents a view of the elements comprising an SCSI-3 I/O system as seen by the
application clients interacting with the system through the service delivery port. In an implementation, this view is
similar to that seen by a CAM device driver interacting with the system through the CAM SIM layer. This model is
defined as a hierarchy of objects. As shown in figure 7, the fundamental object is the SCSI domain, which represents
an I/O system. A domain is made up of SCSI devices and a service delivery subsystem, which transports commands
and data.  An SCSI device, in turn, may consist of logical units and so forth.



Domain

Service
Delivery

Subsystem

Service
Delivery

Port

Interconnect
Subsystem

SCSI
Device

Initiator

Application
Client

Target

Logical
Unit

Task
Manager

Task Set
(Queue)

Device
Server

T10/ 1157D revision 0.3 May 6, 1997

34 working draft SCSI-3 Architecture Model -2

Figure 8 : SCSI Hierarchy

Figure 8 shows the main functional components of the SCSI hierarchy. The following clauses define these components
in greater detail using the conventions of 3.7.

4.5 SCSI Domain



SCSI
Device

SCSI
Device

SCSI
Device

SCSI
Device

Service
Delivery

Port

Service
Delivery

Port

Service
Delivery

Port

Service
Delivery

Port

Service Delivery Subsystem

SCSI Domain

Service Delivery
Subsystem

SCSI Device

May 6, 1997 T10/1157D revision 0.3

working draft SCSI-3 Architecture Model -2 35

Figure 9 : Domain Functional Model

Figure 10 : Domain Hierarchy

Object Definition 1  SCSI Domain

SCSI Domain = 2{SCSI Device} + Service Delivery Subsystem

Object Descriptions:

SCSI Device: A device that originates or services  SCSI-3 commands. As described in
4.7, an  SCSI-3 device originating a command is called an initiator; a
device containing logical units that service commands  is called a target.

Service Delivery Subsystem through which clients and servers communicate (see 4.6).
Subsystem:

The domain boundaries are established by the system implementor, within the constraints of a specific SCSI-3 protocol
and interconnect standard.



Service Delivery
Subsystem

Service Delivery
Port

Interconnect
Subsystem

T10/ 1157D revision 0.3 May 6, 1997

36 working draft SCSI-3 Architecture Model -2

Figure 11 : Service Delivery Subsystem Hierarchy

Object Definition  2: Service Delivery Subsystem

4.6 The Service Delivery Subsystem

Service Delivery Subsystem = 2{Service Delivery  Port} + Interconnect Subsystem

Object Descriptions:

Service Delivery Port: Device-resident component of the service delivery subsystem (see object
definition 3). This object may contain hardware and software that
implements the protocols and interface to the interconnect subsystem.

Interconnect A set of one or more physical interconnects that appear to a client or
Subsystem: server as a single  path for the transfer of data between SCSI devices.

The  service delivery subsystem is assumed to provide error-free transmission of requests and responses
between client and server. Although a device driver in an SCSI-3 implementation may perform these
transfers through several interactions with its SCSI-3 protocol layer, the architecture model portrays each
operation, from the viewpoint of the application client, as occurring in one discrete step. In this model, the
data comprising an outgoing request is sent in a single "package" containing all the information required
to execute the remote procedure call. Similarly, an incoming server response is returned in a package
enclosing the output data and status. The request or response package is "sent" when it is passed to the
service delivery  port for transmission; it is "in transit"  until delivered and  "received" when it has been
forwarded to the receiver via the destination device's service delivery  port. 

4.6.1 Synchronizing Client and Server States

The client is usually informed of changes in server state through the arrival of server responses. In the
architecture model such state changes occur after the server has sent the associated response and
possibly before the response has been received by the initiator. Some SCSI-3 protocols, however, may
require the target to verify that the response has been received successfully before completing a state
change. State changes controlled in this manner are said to be synchronized. Since synchronized state
changes are not assumed or required by the architecture model, there may be a time lag between the
occurrence of a state change within the target and the initiator’s awareness of that change.

The model assumes that state synchronization, if required by an SCSI-3 protocol standard, is enforced by
the service delivery subsystem transparently to the server. That is, whenever the server invokes a protocol
service to return a response as described in subclauses 6.8 and 5.3,  it is assumed that the service delivery



May 6, 1997 T10/1157D revision 0.3

working draft SCSI-3 Architecture Model -2 37

port for such a protocol will not return control to the server until the response has been successfully
delivered to the initiator.

4.6.2 Request/Response Ordering

In this standard, request or response transactions are said to be in order if, relative to a given pair of
sending  and receiving devices,  transactions are delivered in the order  they were sent.

A sender may occasionally require control over the order in which its requests or responses are presented
to the receiver. For example, the sequence in which requests are received is often important whenever an
initiator issues a series of SCSI-3 commands with the ORDERED attribute to a logical unit as described
in clause 7. In this case, the order in which these commands are completed, and hence the final state of
the logical unit,  may depend on the order in which these commands  are received. Similarly, the initiator
acquires knowledge about the state of pending commands and task management functions and may
subsequently  take action based on the nature and sequence of target responses. For example,  if the
initiator aborts a command whose completion response is in transit and the abort response is received out
of order, the initiator could incorrectly conclude that no further responses are expected  from that command.

The manner in which ordering constraints are established is implementation-specific. An implementation
may choose to delegate this responsibility to the application client (e.g., the device driver) or the service
delivery  port. In some cases, in-order delivery may be an intrinsic property of the transport subsystem or
a requirement established by the SCSI-3 protocol standard.

For convenience, the SCSI-3 architecture model assumes in-order delivery to be a property of the service
delivery subsystem. This assumption is made to simplify the description of behavior and does not constitute
a requirement. In addition, this specification makes no assumption about, or places any requirement on the
ordering of requests or responses between one sending device and several receiving devices.



Service
Delivery

Port

SCSI
Device

Logical
Unit

Service
Delivery

Subsystem

Target
Model

SCSI
Device

Initiator
Model

Applica-
tion

Client

Initiator

SCSI
Device

Target

Logical
Unit

Combined
Model

Applica-
tion

Client

Service
Delivery

Subsystem

Service
Delivery

Port

Service
Delivery

Port

Service
Delivery

Subsystem

SCSI
Device

Initiator Target Service
Delivery

Port

T10/ 1157D revision 0.3 May 6, 1997

38 working draft SCSI-3 Architecture Model -2

Figure 12 : SCSI Device Functional Models

Figure 13 : SCSI Device Hierarchy Diagram

4.7 SCSI Device Models

Figure 12 shows the functional models for SCSI devices that can perform only target or initiator  functions
or are capable of supporting both functions. The definition and hierarchy are shown in object definition 3
and figure 13.



May 6, 1997 T10/1157D revision 0.3

working draft SCSI-3 Architecture Model -2 39

Object Definition 3 : SCSI Device

Object Definition  4: Initiator

SCSI Device =  [Initiator | Target | Target + Initiator] + 1{Service Delivery Port}

Service Delivery Port = Implementation-specific hardware and software

Object Descriptions:

Initiator: An SCSI-3 device which is capable of originating SCSI-3 commands and
task management requests (see 4.7.1).

Target: An SCSI-3 device which is capable of executing SCSI-3 commands and
task management requests (see 4.7.2).

Service Delivery  Port: Device-resident component of the Service Delivery Subsystem containing
the hardware and software needed to implement an SCSI-3 protocol and
an interface to the interconnect subsystem (see object definition 2).

A device is referred to by its role when it participates in an I/O operation. That is, such a device is called a
target when it executes an SCSI-3 command or task management function and an initiator when it issues an
SCSI-3 command or task management request.

The following sections formally define the target and initiator device models.

4.7.1 SCSI Initiator Model

Initiator = 0{Application Client}

Object Descriptions:

Application Client: Source of commands and task management functions. There is one
application client for each  pending command or task management
function.



Logical
Unit

Target

Target
Identifier

Task
Manager

T10/ 1157D revision 0.3 May 6, 1997

40 working draft SCSI-3 Architecture Model -2

Figure 14 : Target Object Hierarchy

Object Definition 5 : Target

4.7.2 SCSI Target

Target = 0{Logical Unit} +  Logical Unit 0 + 1{Target Identifier} + Task Manager

Target Identifier = bit<64> ← [0|...|2 -1]64

Object Descriptions:

Target Identifier: 64 bits identifying the target device. 

As implied by object definition 5 above, a target device may respond to
more than one target identifier. Each target identifier shall be unique within
the scope of the domain. The set of identifiers by which a target device is
referenced shall be the same for every initiator in the domain.

Task Manager: Server  that controls one or more tasks in response to task management
requests.

Logical Unit: Object to which SCSI-3 device commands  are directed.

Logical Unit 0: A logical unit whose logical unit number is zero (see 4.7.4).

4.7.3 The Task Manager

The task manager controls the execution of one or more tasks by servicing the task management functions
specified in clause 6. Its external address is equal to the target identifier. As specified in object definition
5, there is one task manager per target device.



Logical
Unit

Device
Server

Logical Unit
Number

Task Set

Tagged
Task

Untagged
Task

May 6, 1997 T10/1157D revision 0.3

working draft SCSI-3 Architecture Model -2 41

Figure 15 : Logical Unit Object Hierarchy

Object definition 6 : Logical Unit

The order in which task management requests are executed is not specified by this standard. In particular,
this standard does not require in-order delivery of such requests, as defined in 4.6.2,  or execution by the
task manager in the order received. To guarantee the execution order of task management requests 
referencing a specific logical unit, an initiator should, therefore, not have more than one such request
pending to that logical unit.

4.7.4 Logical Unit

Logical Unit = Device server  + Logical Unit Number + (Logical Unit) + Task Set

Logical Unit Number = bit<64> ← [0|...|2 -1]64

Logical Unit Identifier = Target Identifier + Logical Unit Number

Task Set = [0{Tagged Task} + 0{Untagged Task} | 0{Untagged Task} ]

Object Descriptions:

Logical Unit: | A nested logical unit as specified in 4.7.4. |

Device Server: Object that executes SCSI commands and manages the task set
according to the rules defined in clause 7.

Task Set : A set of tasks whose interaction is determined by the rules for task set
management specified in clause 7 and the auto contingent allegiance
rules specified in subclause 5.6.1. As defined in object definition 6, there |
shall be one task set per logical unit. |

Tagged task: A task whose identifier includes an initiator-specified component (tag) and
one of the task attributes specified in object definition 7.



T10/ 1157D revision 0.3 May 6, 1997

42 working draft SCSI-3 Architecture Model -2

Object Definition 7 : Task

Untagged task: A task whose identifier does not include a tag component (see object
definition 7). 

Logical Unit Number: An encoded identifier for the logical unit.  If the logical unit is nested, the|
logical unit number shall have one of the formats described in 4.7.4.|

Logical Unit Identifier: External identifier used by an initiator to reference the logical unit.



May 6, 1997 T10/1157D revision 0.3

working draft SCSI-3 Architecture Model -2 43

 Object Definition  8: Task Identifier

Object Definition  9: Initiator Identifier

Object Definition  10: Task Address

Task = [ Tagged Task | Untagged Task ]

Tagged Task = Tagged Task Identifier + Task Attribute

Untagged Task = Untagged Task Identifier + SIMPLE

Tag = bit<64> ← [0|...|2 -1]64

Task Attribute = [SIMPLE | ORDERED | HEAD OF  QUEUE| ACA ]

Task Identifier = [ Untagged Task Identifier | Tagged Task Identifier ]

Tagged Task Identifier = Initiator Identifier + Logical Unit Identifier + Tag

Untagged Task Identifier = Initiator Identifier + Logical Unit Identifier

Initiator Identifier = bit<64> ← [0|...|2  -1]64

Task Address = [Untagged Task Address | Tagged Task Address]

Tagged Task Address = Logical Unit Identifier + Tag

Untagged Task Address = Logical Unit Identifier

Object Descriptions:

Tag: 64-bit identifier assigned by the initiator. 

Initiator Identifier: Protocol-specific identifier of the initiator from which the command
originated (see 4.7.1).

Logical Unit Identifier: Logical unit identifier as defined in object definition 6.

Task  Attribute: One of the attributes described in subclause 7.5

Task Address: The address used by an application client to reference a task.



Level 1 Device

Level 2 Device

Level 3 Device Level 3 Device

Level 4 Device

Level 2 Device Level 2 Device

T10/ 1157D revision 0.3 May 6, 1997

44 working draft SCSI-3 Architecture Model -2

Figure 16 : Nested Logical Units

Tagged Task Address: The address used by an application client to reference a tagged task.
When used as an argument in a device server or task manager request,
the service delivery subsystem will convert this parameter to a tagged task
identifier before passing it to the server.

Untagged Task The address used by an application client to reference an untagged task.
Address: When used as an argument in a device server or task manager request,

the service delivery subsystem will convert this parameter to an untagged
task identifier before passing it to the server.

Every SCSI-3 protocol shall support tagged and untagged tasks. Support for the creation of tagged tasks by
a logical unit, however, is a logical unit implementation option.

A task identifier that is in use shall be unique as seen by the initiator originating the command and the target
to which the command was addressed. (A task identifier is in use over the interval bounded by the events
specified in 5.4). A task identifier  is unique if one or more of its components is unique within the scope
specified above. By implication, therefore, an initiator shall not cause the creation of more than one untagged
task having identical values for the target and logical unit identifiers. Conversely, an initiator may create more
than one task with the same tag value, provided at least one of the remaining identifier components is unique.

|
4.7.5 Hierarchical Logical Units|

|
[ed. note: with respect to the original proposal (X3T10/97-122r0), noteworthy additions are underlined and|
deletions are indicated with a strike-through]|

|
Depending on the device type, a logical unit may be a single, monolithic device, referenced by an unstructured|
binary value or it may contain additional nested logical units (see, for example, the SCSI controller device|
model described in the SCC standard).  This subclause defines the structure of such logical units and the|
methods by which their component logical units are addressed.|

|
As shown in figure 44, the structure of a hierarchical logical unit is an inverted tree containing up to four|
addressable tiers.|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

. |



May 6, 1997 T10/1157D revision 0.3

working draft SCSI-3 Architecture Model -2 45

A device at leach level in the tree is referenced by one of the following address methods: |
|

a) Logical Unit Address |
b) Peripheral Device Address; |
c) Logical Device Address |

|
The following paragraphs specify the address fields within the logical unit number and the format of each |
address type. |

|
[All peripheral device addresses, except the base address, default to vendor specific values. All component |
device, redundancy group, spare, and volume set addresses may default to vendor specific values or may be |
defined by an application client during configuration.] <--[ ed. Note: rewrite to remove SCC-specific references |
and move this paragraph]. |

|
|

4.7.5.1 SCSI device base address |
|

 [Ed. Note -- move this subclause] |
|

All SCSI devices shall accept a LUN value of zero as a valid address. |
|
|

4.7.5.2  Eight byte LUN structure |
|
|

The eight byte LUN structure (see table 1) allows up to four levels of devices to be addressed under a single |
target. At each level,  bytes 0 - 1 define the address and/or location of the SCSI device to be addressed on |
that level. |

|
A command that must be forwarded to a device at a lower level in the hierarchy is called a “pass through |
request”.  If the LUN indicates that the command is such a request then the current layer shall use bytes 0-1 |
of the eight byte LUN structure, after the adjustment shown in figure 17,  to determine the address of the device |
to which the command is to be sent. When the command is sent to the target [ed. Note: should this be “logical |
unit”?] the eight byte LUN structure that was received shall be adjusted to create the new eight byte LUN |
structure as shown in  figure 17. After adjustment, bytes six and seven of each new eight byte LUN structure |
shall be set to zero. |

|
Devices shall keep track of the necessary addressing information to allow reconnection to the correct task |
during reselection.    <---- [Ed. this needs to be neutered to be non-interconnect specific] |

|



Bytes         0         1            2          3           4           5           6          7

A         B           C          D          E           F          G          H

C          D          E           F          G          H          0           0

E           F          G          H          0           0           0          0

G          H          0           0           0          0           0          0

Level 1

Level 2

Level 3

Level 4

T10/ 1157D revision 0.3 May 6, 1997

46 working draft SCSI-3 Architecture Model -2

Figure 17 : Eight Byte LUN Structure Adjustments

Bit
Byte

7 6 5 4 3 2 1 0

0
FIRST LEVEL ADDRESSING FIELD

1

2
SECOND LEVEL ADDRESSING FIELD 

3

4
THIRD LEVEL ADDRESSING FIELD

5

6
FOURTH LEVEL ADDRESSING FIELD

7

Table 1 -- Eight Byte LUN Structure

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

The address of a logical unit consists of the four components shown in table 1.  Each address field corresponds|
to one of the levels shown in figure 16.  The format of each field is shown in table 18. [ed. Note: cross|
reference should be to table 2(?)].|

|
The FIRST LEVEL ADDRESSING field indicates the first level address of a device. See table 18 for a definition of the|
FIRST LEVEL ADDRESSING field.|

|
The SECOND LEVEL ADDRESSING field indicates the second level address of a device. See table 18 for a definition|
of the SECOND LEVEL ADDRESSING field.|

|



May 6, 1997 T10/1157D revision 0.3

working draft SCSI-3 Architecture Model -2 47

Bit
Byte

7 6 5 4 3 2 1 0

n-1 ADDRESS
METHOD

n ADDRESS METHOD SPECIFIC

Table 2 -- Format of Addressing Fields

Codes Description

10b Logical unit addressing method

00b Peripheral device addressing method

01b Logical device addressing method

11b Reserved

Table 3 -- ADDRESS METHOD

The THIRD LEVEL ADDRESSING field indicates the third level address of adevice. See table 18 for a definition of the |
THIRD LEVEL ADDRESSING field. |

|
The FOURTH LEVEL ADDRESSING field indicates the fourth level address of a device. See table 18 for a definition |
of the FOURTH LEVEL ADDRESSING field. |

|
The device pointed to in the FIRST LEVEL ADDRESSING field, SECOND LEVEL ADDRESSING field, THIRD LEVEL |
ADDRESSING field, and FOURTH LEVEL ADDRESSING fields may be any physical or logical device addressable by an |
application client. |
The device pointed to by each field may be any physical or logical device addressable by an application client. |

|
|
|
|
|
|
|
|
|
|
|
|

The value encoded in the ADDRESS METHOD field defines the contents of the ADDRESS METHOD SPECIFIC field.  The |
codes for defined address methods are given in table 3. |

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

See 4.7.5.2, 4.7.5.3,  and 4.7.5.4 for the definitions of the ADDRESS METHOD SPECIFIC field. |
|
|

4.7.5.3 Logical unit address method |
|

The model for devices addressed by the Logical Unit method is shown in figure 18.  The format is given in table |
4. |

|
All SCSI commands are allowed when this method is selected, however logical units are only required to |
support mandatory SCSI commands. Devices referenced in this manner are not required to honor pass-through |
requests from the application client. Any command that is not supported or passed-through shall be terminated |
with a CHECK CONDITION status. The sense key shall be set to ILLEGAL REQUEST and the additional sense |
code shall be set to INVALID COMMAND OPERATION CODE. |

|



Target
X

Lun a

Lun b

Lun c

Lun a

Lun b

Lun c

Lun a

Lun b

Lun c

Lun a

Lun b

Lun c

Target
Y

Bus J

Target
X

Target
Y

Bus K

Logical Unit at Level L -1

Devices at
Level L

T10/ 1157D revision 0.3 May 6, 1997

48 working draft SCSI-3 Architecture Model -2

Figure 18 : Logical Unit Addressing Model

Bit
Byte

7 6 5 4 3 2 1 0

n-1 1 0 TARGET

n BUS NUMBER LUN

Table 4 -- Logical Unit Addressing Format

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

If the logical unit addressing method is selected the device shall relay the received command, if supported, to|
the addressed logical unit. See table 4 for the definition of the ADDRESS METHOD SPECIFIC field used when the|
logical unit addressing method is selected.|

|
|
|
|
|
|
|
|
|
|
|

The TARGET field indicates the target address of the device to which the received command shall be relayed.|
The TARGET field indicates the address of the target on the bus indicated by the BUS NUMBER fieldthat the received|
command shall be relayed. [ed. note.  --  needs work.]|

|
NOTE - The value of targets within the TARGET field are defined by individual standards. (e.g., SCSI-3 Parallel Interface|
Standard defines targets to be in the range 0-7, 0-15, and 0-31).|

|
The BUS NUMBER field indicates the location of the bus that shall be used to relay the received command.|
The LUN field indicates the address of the logical unit within the target indicated by the TARGET field that the|
received command shall be relayed to. [ed. note: needs work]|

|
4.7.5.4 Peripheral device address methods|

|
As shown in tables 5 and 6, there are two variants of peripheral addressing. Figures 19 and 20 show the|
addressing models for each.|

|



Target Device at Level L

Logical Unit
L1

Logical Unit
L1

Logical Unit
L2

Logical Unit
L 3

Logical Unit at Level L -1

Target
J

Lun 0

Target
K

Lun 0

Bus N

Peripheral Devices
at Level L

May 6, 1997 T10/1157D revision 0.3

working draft SCSI-3 Architecture Model -2 49

Figure 19 : Peripheral Device Addressing Model (Bus Number
Field = 0)

Bit
Byte

7 6 5 4 3 2 1 0

n-1 0 0 Bus Number (0)

n Logical Unit Number

Table 5 -- Peripheral Device Addressing Format (Bus Number field = 0)

Figure 20 : Peripheral Device Addressing Model (Non-zero Bus
Number)

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

As shown in figure 19, a value of zero in the BUS NUMBER field of table 5 indicates that byte n contains the |
logical unit number of a device attached to the target at the current level. |

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



Logical Device at Level L - 1

Logical Device at
Level L

Logical Device at
Level L

Logical Device at
Level L

T10/ 1157D revision 0.3 May 6, 1997

50 working draft SCSI-3 Architecture Model -2

Bit
Byte

7 6 5 4 3 2 1 0

n-1 0 0 BUS NUMBER (non-zero)

n TARGET DEVICE BUS ADDRESS

Table 6 -- Peripheral Device Addressing Format (Non-zero Bus Number)

Figure 21 : Logical Device Addressing Model

|
|
|
|
|
|
|
|
|
|

As shown in table 6, a non-zero value for BUS NUMBER specifies the location of the bus that shall be used to|
relay the received command. In that case, byte n contains the TARGET DEVICE BUS ADDRESS.  The value of this|
field is equal to the target address of a device residing on the identified bus to which the received command|
shall be relayed.  The value of the target device LUN is implicitely zero.|

|
All SCSI commands are allowed when either peripheral device address method is selected, however peripheral|
devices are only required to support mandatory SCSI commands. Devices are not required to honor pass-|
through requests from the application client. Any command that is not supported or passed-through shall be|
terminated with a CHECK CONDITION status. The sense key shall be set to ILLEGAL REQUEST and the|
additional sense code shall be set to INVALID COMMAND OPERATION CODE.|

|
[The base device located within the current level shall be addressed by a BUS NUMBER field and a TARGET or LUN|
field of all zeros.] [ed. note: need to write a section explaining “base address”]|

|
[NOTE 2 - The value of targets within the TARGET field are defined by individual standards. (e.g., SCSI-3 Parallel Interface|
Standard defines targets to be in the range 0-7, 0-15, and 0-31).] [ed. note: need to move this note]|

|
|

4.7.5.5 Logical Device Address Method|
   |
Figure 21 and table 7 give the model and format for the Logical Device addressing method..|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



May 6, 1997 T10/1157D revision 0.3

working draft SCSI-3 Architecture Model -2 51

Bit
Byte

7 6 5 4 3 2 1 0

n-1 0 1 (MSB)

n LUN (LSB)

Table 7 -- Format of Logical Device Address Method |
|
|
|
|
|
|
|
|
|
|

The LUN field indicates the address of the logical unit at the next level to receive the pass-through command. |
|

All SCSI commands are allowed when the logical device address method is used, however logical devices are |
not required to support all SCSI commands. Any command that is not supported shall be terminated with a |
CHECK CONDITION status. The sense key shall be set to ILLEGAL REQUEST and the additional sense code |
shall be set to INVALID COMMAND OPERATION CODE. |

|
In the response to an INQUIRY command the addressed logical devce shall return a valid SCSI peripheral |
device type.(e.g., direct access device, streaming device, etc.) |

|
When the logical device addressing method is selected the device at the current level addresses peripheral |
devices as required to execute the received command. |

|
[See table 7 for the definition of the ADDRESS METHOD SPECIFIC field used when the [volume set addressing |
method is selected] [ed. note: Should this be “logical device addressing method”?]. |

|
|



T10/ 1157D revision 0.3 May 6, 1997

52 working draft SCSI-3 Architecture Model -2

|
|

The device at the current level shall direct the received command to the logical device whose address is|
contained in the LUN field.|

|
|

4.8 The SCSI-3 Model for Distributed Communications

The SCSI-3 model for communications between distributed objects is based on the technique of layering.
According to this technique, the initiator and target I/O systems are viewed as being logically composed of the
ordered set of subsystems represented for convenience by the vertical sequence shown in figure 22.

The layers comprising this model and the specifications defining the functionality of each layer are denoted by
horizontal sequences. A layer consists of peer entities which communicate with one another by means of a
protocol. Except for the physical interconnect layer,  such communication is accomplished by invoking services
provided by the adjacent lower layer. By convention, the layer from which a request for service originates is
called the upper level protocol layer or ULP layer. The layer providing the service is referred to as the lower
level protocol layer or LLP layer. The following layers are defined:

a) SCSI-3 application layer: Contains the clients and servers that originate and execute SCSI-3 I/O
operations by means of an SCSI-3 application protocol;

b) SCSI-3 protocol layer: Consists of the services and protocols through which clients and servers
communicate;

c) Physical interconnect layer: Comprised of the services, signaling mechanism and interconnect subsystem
needed for the physical transfer of data from sender to receiver.

The subsystems that make up the protocol and interconnect layers are collectively referred to as the service
delivery subsystem. The service delivery port is the device-resident portion of this system.

The set of protocol services implemented by the service delivery subsystem are intended to identify external
behavioral requirements that apply to  SCSI-3 protocol specifications. While these protocol services may serve
as a guide for designing reusable software or firmware that can be adapted to different SCSI-3 protocols, there
is no requirement for an implementation to provide the service interfaces specified in this standard.



SCSI-3
Application

SCSI-3
Application

SCSI-3
Protocol
Services

SCSI-3
Protocol
Services

Physical
Interconnect

Services

Physical
Interconnect

Services

Protocol Service Interface

Physical Interconnect
Service Interface

Physical Interconnect

SCSI Protocol

SCSI-3 Application
Protocol

SAM

SCSI-3 Application
Layer

SCSI-3 Protocol
Layer

Physical Interconnect
Layer

SCSI-3
Protocol
Standard

Physical
Interconnect

Standard

Initiator I/O System Target I/O System

May 6, 1997 T10/1157D revision 0.3

working draft SCSI-3 Architecture Model -2 53

Figure 22 : Protocol Service Reference Model



LLP Layer

ULP Layer

Protocol Service
Request

Protocol Service
Confirmation

Protocol Service
Indication

Protocol Service
Response

T10/ 1157D revision 0.3 May 6, 1997

54 working draft SCSI-3 Architecture Model -2

Figure 23 : Protocol Service Model

An interaction between layers can originate from an entity within the LLP or ULP layer. Such interactions are
defined with respect to the ULP layer as outgoing or incoming interactions. An outgoing interaction takes the
form of a procedure call invoking an LLP service. An incoming interaction appears as a signal sent by the LLP
layer, which may be accompanied by parameters and data. Both types of interaction are described using the
notation for procedures specified in  3.8. In this model, input arguments are defined relative to the layer
receiving an interaction. That is, an input is a parameter supplied to the receiving layer by the layer initiating
the interaction.

The following types of service interactions between layers are defined:

a) Protocol service request:  A request from the ULP layer invoking some service provided by the LLP layer;

b) Protocol service indication: A signal from the LLP layer informing the ULP layer that an asynchronous
event has occurred, such as a reset or the receipt of a peer-to-peer protocol transaction;

c) Protocol service response: A call to the LLP layer invoked by the ULP layer in response to a protocol
service indication. A protocol service response may be invoked to return a reply to the ULP peer; 

d) Protocol service confirmation: A signal from the LLP layer notifying  the ULP layer that a protocol service
request has completed. A confirmation may communicate parameters that indicate the completion status
of the protocol service request or any other status. A protocol service confirmation may be used to
convey a response from the ULP peer.

The services provided by an  LLP layer are either confirmed or unconfirmed. A ULP service request invoking
a confirmed service always results in a  confirmation from the LLP layer.

All four protocol service types are related as shown in the following diagram:



Protocol Service
Request

Protocol Service
Indication

LLP Protocol
Transactions

Protocol Service
Response

Protocol Service
Confirmation

LLP Protocol
Transactions

Server Request

Server Response

LLP Layer

ULP Layer

Client Server

Protocol Service
Interface

May 6, 1997 T10/1157D revision 0.3

working draft SCSI-3 Architecture Model -2 55

Figure 24 : Request-Response ULP Transaction and Related LLP Services

Figure 24 shows how protocol services may be used to execute a client-server request-response transaction
at the SCSI application layer.

The dashed lines show an SCSI application protocol transaction as it might appear to sending and receiving
entities within the client and server. The solid lines show the corresponding protocol services and LLP
transactions that are used to physically transport the data.

procmod.wp 



T10/ 1157D revision 0.3 May 6, 1997

56 working draft SCSI-3 Architecture Model -2

5 SCSI Command Model

An application client invokes the following remote procedure to execute an SCSI command:

Service response = Execute Command  (Task Address, CDB, [Task Attribute], [Data-Out Buffer],

[Command Byte Count], [Autosense Request] || [Data-In Buffer], 

[Sense Data], Status)

Input Arguments:

Task Address : See object definition 7.

CDB: Command descriptor block (see 5.1).

Task Attribute : A value specifying one of the task attributes defined in subclause 7.5.
This argument shall not be specified for an untagged command or the
next command in a sequence of linked commands. (Untagged tasks shall
implicitly  have the SIMPLE attribute. The attribute of a task  that executes
linked commands shall be set according to the Task Attribute argument
specified for the first command in the sequence.)

Data-Out Buffer  : A buffer containing command-specific information to be sent to the logical
unit, such as data or parameter lists needed to service the command.

Command Byte
Count :

The maximum number of bytes to be transferred by the command.

Autosense Request : An argument requesting the automatic return of sense data by means of
the autosense mechanism specified in 5.6.4.2. It is not an error for the
application client to provide this argument when autosense is not
supported by the SCSI-3 protocol or logical unit.

Output Arguments:

Data-In buffer  : A  buffer  containing command-specific information returned by the logical
unit on command completion. The application client shall not assume that
the buffer contents are valid unless the command completes with a status
of GOOD, INTERMEDIATE, or INTERMEDIATE-CONDITION MET. While
some valid data may be present for other values of status, the application
client will usually have to obtain additional information from the logical unit,
such as sense data, to determine the state of the buffer contents.

.



May 6, 1997 T10/1157D revision 0.3

working draft SCSI-3 Architecture Model -2 57

Sense Data : A buffer containing sense data returned by means of  the autosense
mechanism (see 5.6.4.2).

Status : A one-byte field  containing command completion status (see 5.2). If the
command ends with a service response of SERVICE DELIVERY OR

TARGET FAILURE, the application client shall consider this parameter to be
undefined.  

An  SCSI-3 command shall not allow both the Data-In Buffer  and the Data-Out Buffer   arguments.

Service Response  assumes one of the following values:

TASK COMPLETE: A logical unit response indicating that the task has ended. The status
parameter shall have one of the values specified in 5.2 other than
INTERMEDIATE or INTERMEDIATE-CONDITION MET.

LINKED COMMAND Logical unit responses indicating that a linked command has completed
COMPLETE: successfully. As specified in 5.2, the status parameter shall have a value

LINKED COMMAND LINKED COMMAND COMPLETE (WITH FLAG) indicates that a linked command
COMPLETE (WITH FLAG): with the flag bit set to one in the CDB control byte has completed.

of INTERMEDIATE or INTERMEDIATE-CONDITION MET. A value of

SERVICE DELIVERY OR The command has been ended due to a service delivery failure or target
TARGET FAILURE: device malfunction.  All output parameters may be invalid.

The actual protocol events corresponding to a response of  TASK COMPLETE, LINKED COMMAND COMPLETE, LINKED

COMMAND COMPLETE (WITH FLAG) or SERVICE DELIVERY OR TARGET FAILURE shall be specified in each protocol
standard.

An application client requests execution of a linked command by setting the link bit to one in the CDB control
byte as specified in 5.1.2. The task attribute is  determined by the Task Attribute argument specified for the first
command in the sequence. Upon receiving a response of LINKED COMMAND COMPLETE or LINKED COMMAND

COMPLETE (WITH FLAG), an application client may issue the next command in the series through an Execute
Command  remote procedure call having the same task identifier. The Task Attribute argument shall be omitted.
If the application client issues the next command without waiting for one of the linked command complete
responses, the overlapped command condition described in 5.6.2 may result.

5.1 Command Descriptor Block

The command descriptor block defines the operation to be performed by the device server. For some
commands, the command descriptor block is accompanied by a list of command parameters contained in the
Data-Out buffer defined in clause 5. The parameters required for each command are specified in the applicable
SCSI-3 command standards.

Validation of reserved fields in a CDB is a logical unit option. If a logical unit validates reserved CDB fields and
receives a reserved field within the CDB that is not zero or receives a reserved CDB code value, the logical
unit shall terminate the command with CHECK CONDITION status; the sense key shall be set to ILLEGAL
REQUEST with an additional sense code of INVALID FIELD IN CDB (see the SPC standard).  It shall also be
acceptable for a logical unit to interpret a field  or code value in accordance with a future revision to an SCSI-3
standard.



T10/ 1157D revision 0.3 May 6, 1997

58 working draft SCSI-3 Architecture Model -2

Bit
Byte

7 6 5 4 3 2 1 0

0 Operation Code

1
Command-Specific Parameters

n -1

n Control

Table 8 -- Format of Command Descriptor Block

Bit 7 6 5 4 3 2 1 0

Group Code Command Code

Table 9 -- Operation Code

For all commands, if the logical unit detects an invalid parameter in the command descriptor block, then the
logical unit shall complete the command without altering the medium.

As shown in table 8, all command descriptor blocks shall have an operation code as the first byte and a control
byte as the last byte. The remaining parameters depend on the command to be executed. All SCSI protocol
specifications shall accept command descriptor blocks less than or equal to 16 bytes in length.  Command
descriptor blocks shall not exceed sixteen bytes in length.

5.1.1 Operation Code

The first byte of an SCSI command descriptor block shall contain an operation code.  The operation code (table
9) of the command descriptor block has a group code field and a command code field.  The three-bit group
code field provides for eight groups of command codes.  The five-bit command code field provides for thirty-two
command codes in each group.   A total of 256 possible operation codes exist.  Operation codes are defined
in the SCSI command standards. The group code for CDBs specified therein shall correspond to the length of
the command descriptor as set forth in the following list.

The group code specifies one of the following groups:
Group 0 - six-byte commands
Group 1 - ten-byte commands
Group 2 - ten-byte commands
Group 3 - reserved
Group 4 - sixteen-byte commands
Group 5 - twelve-byte commands 
Group 6 - vendor specific 
Group 7 - vendor specific



May 6, 1997 T10/1157D revision 0.3

working draft SCSI-3 Architecture Model -2 59

Bit 7 6 5 4 3 2 1 0

Vendor Specific Reserved NACA Flag Link

Table 10 -- Control Field

5.1.2 Control Field

The control field is the last byte of every command descriptor block.  The control field is defined in table 10.

All SCSI-3 protocol specifications and protocol implementations shall provide the functionality needed for a
logical unit to implement the NACA bit, link bit and flag bit as described herein.

The NACA (Normal ACA) bit is used to control the rules for handling an ACA condition caused by the
command. Subclause 5.6.1.1 specifies the actions to be taken by a logical unit in response to an auto
contingent allegiance condition for NACA bit values of one or zero. All logical units shall implement support for
the Normal ACA value of zero and may support the Normal ACA value of one. The ability to support a Normal
ACA value of one is indicated in standard INQUIRY data.

If the NACA bit is set to a value which is not supported, the logical unit shall complete the command with a
status of CHECK CONDITION and a sense key of ILLEGAL REQUEST. The rules for handling the resulting
auto contingent allegiance condition shall be in accordance with the supported bit value.

The link bit is used to continue the task across multiple commands.  The flag bit may be used, in conjunction
with the link bit, to notify the initiator in an expedited manner that the command has completed. 

Support for the link bit is a logical unit option. A link bit of one indicates that the initiator requests continuation
of the task across two or more SCSI commands. If the link bit is one and the flag bit is zero and if the
command completes successfully, a logical unit that supports the link bit shall continue the task and return a
status of INTERMEDIATE or INTERMEDIATE-CONDITION MET and a service response of LINKED COMMAND

COMPLETE (see 5.2.).

Support for the flag bit is a logical unit option.  If the link bit and flag bit are both set to one and if the command
completes with a status of INTERMEDIATE or INTERMEDIATE-CONDITION MET a logical unit that supports
the flag bit shall return a service response of LINKED COMMAND COMPLETE (WITH FLAG).

The logical unit shall complete the command with a status of CHECK CONDITION and a sense key of ILLEGAL
REQUEST if:

e) The link bit is set to one and the logical unit does not support linked commands or,
f) The flag bit is set to one and the logical unit does not support the flag bit or,
g) The flag bit is set to one and the link bit is set to zero.

5.2 Status
  



T10/ 1157D revision 0.3 May 6, 1997

60 working draft SCSI-3 Architecture Model -2

Status byte codes Status

0h
2h
4h
8h
10h
14h
18h
22h
28h
30h

All other codes

GOOD
CHECK CONDITION
CONDITION MET
BUSY
INTERMEDIATE
INTERMEDIATE-CONDITION MET
RESERVATION CONFLICT
COMMAND TERMINATED
TASK SET FULL
ACA ACTIVE

Reserved

Table 11 -- Status Codes

The status   codes are  specified in table 11.   Status shall be sent from the  logical unit to the  application
client whenever a command ends with a service response of TASK COMPLETE, LINKED COMMAND COMPLETE, or
LINKED COMMAND COMPLETE (WITH FLAG). The receipt of any status, except INTERMEDIATE or
INTERMEDIATE-CONDITION MET, shall indicate that the associated task has ended.

Definitions for each status byte code are given below.

GOOD.  This status indicates that the  Device Server has successfully completed the task.

CHECK CONDITION.  This status indicates that an auto contingent allegiance condition has occurred (see
5.6.1).

CONDITION  MET.  This status  shall be returned whenever the requested operation specified by an unlinked
command is satisfied (see the SEARCH DATA ( SBC) and PRE-FETCH (SBC) commands).  

BUSY.  This status indicates that the  logical unit is busy.  This status shall be returned whenever a  logical
unit is unable to accept a command from an otherwise acceptable initiator (i.e., no reservation conflicts).  The
recommended initiator recovery action is to issue the command again at a later time.

INTERMEDIATE.  This status or INTERMEDIATE-CONDITION MET shall be returned for  each successfully
completed command in a series of linked commands (except the last command), unless the command is
terminated with CHECK CONDITION, RESERVATION CONFLICT, TASK SET FULL, BUSY or
COMMAND TERMINATED status.  If INTERMEDIATE or INTERMEDIATE-CONDITION MET status is not
returned, the series of linked commands is terminated and the task is ended.

INTERMEDIATE-CONDITION MET.  This status is returned whenever the operation requested by a linked
command is satisfied (see the SEARCH DATA (SBC) and PRE-FETCH (SBC) commands), unless the
command is terminated with CHECK CONDITION, RESERVATION CONFLICT, TASK SET FULL, BUSY or
COMMAND TERMINATED status. If INTERMEDIATE or INTERMEDIATE-CONDITION MET status is not
returned, the series of linked commands is terminated and the task is ended.

RESERVATION CONFLICT.   



May 6, 1997 T10/1157D revision 0.3

working draft SCSI-3 Architecture Model -2 61

This status shall be returned whenever an initiator attempts to access a logical unit, an extent within a logical
unit or an element of a logical unit  that is reserved with a conflicting reservation type for another SCSI initiator.
(see the RESERVE, RELEASE, PERSISTENT RESERVE OUT and PERSISTENT RESERVE IN commands
in the SPC  standard). The recommended initiator recovery action is to issue the command again at a later
time.  Removing a persistent reservation belonging to a failing initiator may require the execution of a
PERSISTENT RESERVE OUT command with the Preempt or Preempt and Clear actions.

COMMAND TERMINATED.   This status shall be returned whenever the  logical unit terminates a task in
response to a TERMINATE TASK  task management request (see 6.7).    This status  also indicates that an
auto contingent allegiance has occurred (see 5.6.1).

TASK SET FULL.   This status shall be implemented if the logical unit supports the creation of tagged tasks
(see object definition 7).  This status shall be returned when the  logical unit receives a command and does
not have enough resources to  enter the associated task in the task set. 

ACA ACTIVE.   This status shall be returned when an auto contingent allegiance exists within a task set and
an initiator issues a command for that task set when at least one of the following is true:

a) There is a task with the ACA attribute in the task set;
b) The initiator issuing the command did not cause the ACA condition;
c) The task created to execute the command did not have the ACA attribute and the NACA bit was set to

one in the CDB control byte of the faulting command (see 5.6.1).
The initiator may reissue the command after the ACA condition has been cleared.

5.2.1 Status Precedence

If more than one condition applies to a completed task, the report of a BUSY, RESERVATION CONFLICT,
ACA ACTIVE or TASK SET FULL status shall take precedence over the return of any other status for that task.

5.3 Protocol Services in Support of Execute Command

This section describes the protocol services  which support the  remote procedure call.  All SCSI-3 protocol
specifications shall define the protocol-specific requirements for implementing the Send SCSI Command
Protocol service request  and the Command Complete Received confirmation described below. Support for
the SCSI Command Received indication and Send Command Complete response by an SCSI-3 protocol
standard is optional. All SCSI-3 I/O systems shall implement these protocols as defined in the applicable
protocol specification.

Unless stated otherwise, argument definitions and the circumstances under which a conditional argument must
be present are the same as in clause 5.

Protocol Service Request:

Send SCSI Command  (Task Address, CDB, [Task Attribute],  [Data-Out Buffer ], [Command Byte

Count], [Autosense Request] ||)

Protocol Service Indication:

SCSI Command Received (Task Identifier, [Task Attribute], CDB, [Autosense Request] ||)



Device Server
Data Buffer

Application Client
Data Buffer

Application Client
Buffer Offset

Command Byte
Count

Byte Count
Requested by
Device Server

T10/ 1157D revision 0.3 May 6, 1997

62 working draft SCSI-3 Architecture Model -2

Figure 25 : Model for buffered data transfers

Autosense Request : This parameter is only present if the Autosense Request  parameter was
specified in the Send SCSI Command  call and autosense delivery is
supported by the SCSI-3 protocol and logical unit.

Protocol Service Response (from device server):

Send Command Complete (Task Identifier, [Sense Data ],  Status, Service Response ||)

The Sense Data argument, if present, instructs the target's service delivery port to return sense information to
the initiator automatically (see 5.6.4.2).

Protocol Service Confirmation:

Command Complete Received (Task Address, [Data-In Buffer], [Sense Data], Status,

Service Response ||)

5.3.1 Data Transfer Protocol Services

The data transfer services described in this section are provided to complete the functional model of target
protocol services which support the Execute Command  remote procedure call. All SCSI-3 protocol standards
shall define the protocols required to implement these services.
 

It is assumed that the buffering resources available to the device server are limited and may be much less than
the amount of data that can be transferred in one SCSI command. In this case, such data must be moved
between the application client and the media in segments that are smaller than the transfer size specified in
the SCSI command. The amount of data moved per request is usually a function of the buffering resources
available to the logical unit. Figure 25 shows the model for such incremental data transfers.

As shown in figure 25, the application client's buffer  appears to the device server as a single,  logically
contiguous block of memory large enough to hold all the data required by the command. The model requires



May 6, 1997 T10/1157D revision 0.3

working draft SCSI-3 Architecture Model -2 63

unidirectional data transfer. That is, the execution of  an SCSI-3 command shall not require the transfer of data
for that command both to and from the application client.

The movement of data between the application client and device server is controlled by the following
parameters:

Application client buffer Offset in bytes from the beginning of the application client's buffer to the
offset: first byte of transferred data.

Byte count requested Number of bytes to be moved by the data transfer request.
by device server:

Command byte count: Upper limit on the extent of the data to be transferred by the SCSI
command.

If an SCSI-3 protocol supports random buffer access, as described below, the offset and byte count specified for each
data segment to be transferred may overlap. In this case the total number of bytes moved for a command is not a
reliable indicator of transfer extent and shall not be used by an initiator or target implementation to determine the
command byte count.

All SCSI-3 protocol specifications and initiator implementations shall support a resolution of one byte for the above
parameters. A target device may support any convenient resolution.

Random buffer access occurs when the device server requests data transfers to or from segments of the application
client's buffer which have an arbitrary offset and extent. Buffer access is sequential when successive  transfers access
a series of monotonically increasing, adjoining buffer segments. Support for random buffer access by an SCSI-3
protocol specification is optional. A device server implementation designed for any protocol implementation should be
prepared to use sequential buffer access when necessary.

The following clauses  specify the LLP confirmed services used by the device server to request the transfer of
command data to or from the application client. The initiator protocol service interactions are unspecified.

5.3.2 Data-In Delivery Service

Request:

Send Data-In (Task Identifier, Device Server Buffer , Application Client Buffer Offset, Request Byte

Count ||)

Argument Descriptions:

Task Identifier: See object definition 7.

Device server buffer :  Buffer from which data is to be transferred.



T10/ 1157D revision 0.3 May 6, 1997

64 working draft SCSI-3 Architecture Model -2

Application client buffer Offset in bytes from the start of the buffer to the location within the
offset: application client’s buffer to receive the first byte of data.

Request byte count: Number of bytes to be moved by this request.

Confirmation:

Data-Out Received (Task Identifier ||) 

This confirmation notifies the device server that the specified data was successfully delivered to the application client
buffer. 

5.3.3 Data-Out Delivery service

Request:

Receive Data-Out (Task Identifier, Application Client Buffer Offset, Request Byte Count,

Device Server Buffer  ||)

Argument Descriptions:

See 5.3.2.

Confirmation:

Data-Out Received (Task Identifier ||)

This confirmation notifies the device server that the requested data has been successfully delivered to its buffer.

5.4 Task and Command Lifetimes

This clause specifies the events delimiting the beginning and end of a task or pending SCSI-3 command from the
viewpoint of the device server and application client.

The device server shall create a task upon receiving an SCSI Command Received indication unless the command
represents a continuation of a linked command as described in clause 5.

The task shall exist until:

a) The device server sends a protocol service response for the task of TASK COMPLETE.

b) A power on condition occurs.

c) The logical unit executes a logical unit reset operation as described in 5.6.7.

d) The task manager executes an ABORT TASK referencing the specified task

e) The task manager executes an ABORT TASK SET or CLEAR TASK SET task management function directed
to the task set containing the specified task.



May 6, 1997 T10/1157D revision 0.3

working draft SCSI-3 Architecture Model -2 65

An SCSI-3 command is pending when the associated SCSI Command Received indication is passed to the device
server. The command ends on the occurrence of one of the conditions described above or when the device server
sends a service response for the task of LINKED COMMAND COMPLETE or LINKED COMMAND COMPLETE (WITH FLAG).

The application client assumes that the task exists from the time the Send SCSI Command  protocol service request
is invoked until it receives one of the following target responses: 

a) A service response of  TASK COMPLETE  for that task,

b) A unit attention condition with one of the following additional sense codes:

COMMANDS CLEARED BY ANOTHER INITIATOR (if in reference to the task set containing the task),
POWER ON,
RESET,
TARGET RESET.

c) A service response of SERVICE DELIVERY OR TARGET FAILURE  for the command,

In this case, system implementations shall guarantee that the task associated with the failed command has
ended.

d) A service response of FUNCTION COMPLETE  following an ABORT TASK task management request directed to
the specified task

e) A service response of FUNCTION COMPLETE following an ABORT TASK SET or CLEAR TASK SET task
management function directed to the task set containing the specified task.

f) A service response of FUNCTION COMPLETE  in response to a TARGET RESET.

The application client assumes the command is pending from the time it calls the Send SCSI Command  protocol
service until one of the above responses or a service response of LINKED COMMAND COMPLETE or LINKED COMMAND

COMPLETE (WITH FLAG) is received.

As discussed in 4.6.1, when an SCSI-3 protocol does not require state synchronization, there will usually be a time
skew between the completion of a device server request-response transaction as seen by the application client and
device server. As a result, the lifetime of a task or command as it appears to the application client will usually be
different from the lifetime observed by the device server.

5.5 Command Processing Examples

The following clauses give examples of the interactions for linked and unlinked commands.

5.5.1  Unlinked Command Example

An  unlinked command is used  to show the events associated with the processing of a single device service request.
This example does not include error or exception conditions.



Time

Time

Application Client

Task

Waiting

Working

Activity

Activity

Initiator

Target

1

2 3

4

T10/ 1157D revision 0.3 May 6, 1997

66 working draft SCSI-3 Architecture Model -2

Figure 26 : Command processing events

The numbers in figure 26 identify the events described below.

1. The application client performs an Execute Command  remote procedure call by invoking the Send SCSI
Command  protocol service to send the CDB and other input parameters to the logical unit.

2. The Device Server is notified through an SCSI Command Received  indication containing the CDB and
command parameters. A task is created and entered into the task set. The device server may invoke the
appropriate data delivery service one or more times to complete command execution.

3. The task ends upon completion of the  command.  On command completion, the Send Command Complete
protocol service  is invoked to return a status of GOOD and a service response of TASK COMPLETE.

4. A  confirmation of Command Complete Received  is passed to the ULP by the initiator's service delivery
subsystem.

5.5.2 Linked Command Example

A task may consist of multiple commands "linked" together.  After the  logical unit notifies the  application client that
a linked command has successfully completed, the application client issues the next command in the series.

The following example shows the events in a sequence of two linked commands.



Time

Time

Application
Client

Application
Client

Task A

Waiting Waiting

Working Waiting Working

Activity

Activity

Initiator

Device Server

1 84 5

2 3 6 7

May 6, 1997 T10/1157D revision 0.3

working draft SCSI-3 Architecture Model -2 67

Figure 27 : Linked Command Processing Events

The numbers in figure 27 Identify the events described below.

1. The application client performs an Execute Command  remote procedure call by invoking the  Send SCSI
Command  protocol service to send the CDB and other input parameters to the logical unit. The link bit is set
to one in the CDB control byte (see 5.1.2). 

2. The target's service delivery port issues SCSI Command Received  to the device server. The device server
creates a task (task A) and enters it into the task set.

3. Upon completion of the first command,  the  device server invokes the Send Command Complete  protocol
service  with the Status argument set to INTERMEDIATE or INTERMEDIATE-CONDITION MET and a Service
Response of LINKED COMMAND COMPLETE.  Task A is not terminated.

4. The initiator's service delivery port returns the  status and service response to the ULP by means of a
Command Complete Received  confirmation.

5. The Application Client performs an Execute Command  remote procedure call by means of the Send SCSI
Command  protocol service as described in step 1. The Task Attribute argument is omitted. The link bit in the
CDB control byte is clear.

6. The device server receives the last command in the sequence and executes the  operation.

7. The command completes successfully.  Task A is terminated. A  Send Command Complete  protocol service
response of  TASK COMPLETE, with status GOOD, is sent to the application client.

8. The LLP delivers an Command Complete Received  confirmation to the application client, which contains the
service response and status.



T10/ 1157D revision 0.3 May 6, 1997

68 working draft SCSI-3 Architecture Model -2

5.6 Command Processing Considerations and Exception Conditions

The following  clauses describe some exception conditions and errors associated with command processing and the
sequencing of commands.

5.6.1 Auto Contingent Allegiance

The auto contingent allegiance condition shall exist within the task set when the logical unit completes a command
by returning a COMMAND TERMINATED or CHECK CONDITION status (see 5.2). 

In the following discussion, the term "faulting command" refers to the command that completed with a CHECK
CONDITION or COMMAND TERMINATED status. The term "faulted initiator" refers to the initiator receiving the
COMMAND TERMINATED or CHECK CONDITION status. The term "faulted task set" refers to the task set having
the auto contingent allegiance condition.

5.6.1.1 Logical Unit Response to Auto Contingent Allegiance

The auto contingent allegiance condition shall not cross task set boundaries and shall be preserved until it is cleared
as described in 5.6.1.2. If requested by the application client and supported by the protocol and logical unit, sense data
shall be returned as described in 5.6.4.2.

Notes:

1. The SCSI-2 contingent allegiance condition and extended contingent allegiance condition have been replaced in SCSI-3 by auto
contingent allegiance.

2. If the SCSI-3 protocol does not enforce state synchronization as described in 4.6.1, there may be a time delay between the occurrence
of the auto contingent allegiance condition and the point at which the initiator becomes aware of the condition.

After sending status and a service response of  TASK COMPLETE, the logical unit shall modify the state of all tasks in
the faulted task set as described in clause 7.

A task created by the faulted initiator while the auto contingent allegiance condition is in effect may be entered into
the faulted task set under the conditions described below.   Except for a PERSISTENT RESERVE command with a
Preempt and Clear action as described in subclause 5.6.1.2, tasks created by other initiators while the ACA condition
is in effect shall not be entered into the task set and shall be completed with a status of ACA ACTIVE.

Tasks created by other initiators while the ACA condition is in effect shall not be entered into the faulted task set and
shall be completed with a status of ACA ACTIVE.

As described in 5.6.1.2, the setting of the NACA bit in the control byte of the faulting command determines the rules
that apply to an ACA condition caused by that command. If the NACA bit was set to zero the SCSI-2 contingent
allegiance rules shall apply. In that case, the completion of a subsequent command from the faulted initiator with a
status of CHECK CONDITION or COMMAND TERMINATED shall cause a new auto contingent allegiance condition
to exist. The rules for responding to the new auto contingent allegiance condition shall be determined by the state of
the NACA bit in the new faulted command.

If the NACA bit was set to one in the CDB control byte of the faulting command, then a new task created while the
ACA condition is in effect shall not be entered into the faulted task set  unless all of the following conditions are true:

a) The command was originated by the faulted initiator,
b) The task has the ACA attribute,
c) No other task having the ACA attribute is in the task set.



May 6, 1997 T10/1157D revision 0.3

working draft SCSI-3 Architecture Model -2 69

If any of the conditions listed above are not met, the newly created task shall not be entered into the task set and shall
be completed with a status of ACA ACTIVE.

If a task having the ACA attribute is received and no auto contingent allegiance condition is in effect for the task set
or if the NACA bit was set to zero in the CDB for the faulting command, then the ACA task shall be completed with
a status of CHECK CONDITION. The sense key shall be set to ILLEGAL REQUEST with an additional sense code
of INVALID MESSAGE ERROR. As noted in 5.6.1.2, a new auto contingent allegiance condition shall be established.

5.6.1.2 Clearing an Auto Contingent Allegiance Condition

An auto contingent allegiance condition shall always be cleared after a power on condition or a logical unit reset (see
5.6.7).

If the NACA bit is set to zero in the CDB control byte of the faulting command, then the SCSI-2 rules for clearing
contingent allegiance shall apply. In this case, the logical unit shall also clear the associated auto contingent allegiance
condition upon  sending sense data by means of the autosense mechanism described in 5.6.4.2.

While the SCSI-2 rules for clearing the ACA condition are in effect, a logical unit that supports the CLEAR ACA task
management function shall ignore all CLEAR ACA requests and shall return a service response of FUNCTION COMPLETE

(see 6.3).

If the logical unit accepts a value of one for the NACA bit and this bit was set to one in the CDB control byte of the
faulting command, then the SCSI-2 rules for clearing an auto contingent allegiance condition shall not apply.  In this
case, the ACA condition shall only be cleared:

a) As the result of a power on or a logical unit reset as described above
b) Through a CLEAR ACA task management function issued by the faulting initiator as described in 6.3.
c) Through a Preempt and Clear action of a PERSISTENT RESERVE OUT command that clears the tasks of the

faulting initiator (see SPC).
The state of all tasks in the task set when an auto contingent allegiance condition is cleared shall be modified as
described in clause 7. 

5.6.2 Overlapped Commands

An overlapped command occurs when an application client reuses a task address in a new command  while a previous
command to which that address was assigned is still pending as specified in 5.4. (The format of a task address is
described in object definition 7.)

Each SCSI-3 protocol standard shall specify whether or not a logical unit is required to detect overlapped commands.
A  logical unit that detects an overlapped command shall abort all tasks for the initiator  in the task set and shall return
CHECK CONDITION status for that command. If the overlapped command condition was caused by an untagged task
or a tagged task with a tag value exceeding FFh, then the sense key shall be set to ABORTED COMMAND and the
additional sense code shall be set to OVERLAPPED COMMANDS ATTEMPTED. Otherwise, an additional sense code
of TAGGED OVERLAPPED TASKS shall be returned with the additional sense code qualifier byte set to the value of
the duplicate tag.

IMPLEMENTORS NOTES:

1) An overlapped command may be indicative of a serious error and, if not detected, could result in corrupted data.  This is considered a
catastrophic failure on the part of the initiator.  Therefore, vendor-specific error recovery procedures may be required to guarantee the data
integrity on the medium.  The target logical unit may return additional sense data to aid in this error recovery procedure (e.g., sequential-
access devices may return the residue of blocks remaining to be written or read at the time the second command was received).



T10/ 1157D revision 0.3 May 6, 1997

70 working draft SCSI-3 Architecture Model -2

2) Some logical units may not detect an overlapped command until after the command descriptor block has been received.

5.6.3 Incorrect Logical Unit Selection

The target's response to  an incorrect logical unit  identifier is described in the following paragraphs.

The logical unit  identifier may be incorrect because: 

a) The target does not support the logical unit (e.g., some targets support only one peripheral device).

In response to any other command except REQUEST SENSE and INQUIRY, the target shall terminate the
command with CHECK CONDITION status. Sense data shall be set to the values specified for the REQUEST
SENSE command in item b below;

b) The target supports the logical unit, but the peripheral device is not currently attached to the target.
In response to an INQUIRY command the target shall return the INQUIRY data with the peripheral qualifier set
to the value required in the SPC standard. In response to a REQUEST SENSE command, the target shall return
sense data. The sense key shall be set to ILLEGAL REQUEST and the additional sense code shall be set to
LOGICAL UNIT NOT SUPPORTED.

In response to any other command except REQUEST SENSE and INQUIRY, the target shall terminate the
command with CHECK CONDITION status. Sense data shall be set to the values specified for the REQUEST
SENSE command above;

c) The target supports the logical unit and the peripheral device is attached, but not operational.

In response to an INQUIRY command the target shall return the INQUIRY data with the peripheral qualifier set
to the value required in the SPC standard.  In response to REQUEST SENSE, the target shall return sense
data.

The target's response to any command other than INQUIRY and REQUEST SENSE is vendor specific;

d) The target supports the logical unit but is incapable of determining if the peripheral device is attached or is not
operational when it is not ready.

In response to an INQUIRY command the target shall return the INQUIRY data with the peripheral qualifier set
to the value specified in the SPC standard. In response to a REQUEST SENSE command  the target shall
return the REQUEST SENSE data with a sense key of NO SENSE unless an auto contingent allegiance exists.
The target's response to any other command is vendor specific.

5.6.4 Sense Data

Sense data shall be made available by the logical unit in the event a command completes with a CHECK CONDITION
status, COMMAND TERMINATED status or other conditions. The format, content and conditions under which sense
data shall be prepared by the logical unit are specified in this standard,  the SPC standard, the applicable device
command standard and applicable SCSI-3 protocol standard.

Sense data shall be preserved by the logical unit for the initiator until it is  transferred by one of the methods listed
below or until another task from that initiator is entered into the task set.

This information may be obtained by the initiator through:



May 6, 1997 T10/1157D revision 0.3

working draft SCSI-3 Architecture Model -2 71

a) The REQUEST SENSE command specified in the SPC standard;
b) An asynchronous event report;
c)  Autosense delivery.

The following clauses describe the last two delivery methods. 

5.6.4.1 Asynchronous Event Reporting

Asynchronous event reporting is used by a logical unit to signal another device that an asynchronous event has
occurred. The mechanism automatically returns sense data associated with the event. Each SCSI protocol specification
shall provide a mechanism for asynchronous event reporting, including a procedure  whereby an SCSI device can
selectively enable or disable asynchronous event reports from being sent to it by a specific target. (In this subclause,
references to asynchronous event reporting assume that the device to be notified has enabled asynchronous event
reports from the target.) Support for asynchronous event reporting is a logical unit option.

IMPLEMENTORS NOTE: An SCSI device which can  produce asynchronous event reports at initialization time should provide means to
defeat these reports. This can be done with a switch or jumper wire.  Devices which implement saved parameters may alternatively save
the asynchronous event  reporting permissions either on a per SCSI device basis or as a system wide option.

Parameters affecting the use of asynchronous event reporting are contained in the control mode page (see the SPC
standard).

Asynchronous event reporting is used to signal a device that one of the four events listed below has occurred:

a) an error condition was encountered after command completion;
b) a newly initialized device is available;
c) some other type of unit attention condition has occurred;
d) an asynchronous event has occurred.

An example of the first case above is a device that implements a write cache.  If the target is unable to write cached
data to the medium, it may use an asynchronous event report to inform the initiator of the failure. 

An example of the second case above is a logical unit that generates an asynchronous event report, following a power-
on cycle, to notify other SCSI devices that it is ready to accept I/O commands.

An example of the third case above is a device that supports removable media.  Asynchronous event  reporting may
be used to inform an initiator of a not-ready-to-ready transition (medium changed) or of an operator initiated event (e.g.,
activating a write protect switch or activating a start or stop switch).

An example of the fourth case above is a sequential-access device performing a REWIND command with the
immediate bit set to one.  An asynchronous event  report may be used to inform an initiator that the beginning of
medium has been reached.  Completion of a CD-ROM AUDIO PLAY command started in the immediate mode is
another example of this case.

Sense data accompanying the  report identifies the condition (see 5.6.4).

An error condition or unit attention condition shall be reported to a specific initiator once per occurrence of the event
causing it. The  logical unit may choose to use an asynchronous event report or to return CHECK CONDITION status
on a subsequent command, but not both.  Notification of command-related error conditions shall be sent only to the
device that initiated the affected task. 



T10/ 1157D revision 0.3 May 6, 1997

72 working draft SCSI-3 Architecture Model -2

Asynchronous event  reports  may be used to notify devices that a system resource has become available.  If a  logical
unit uses this method of reporting,  the sense key in the AER sense data shall be set to UNIT ATTENTION.

5.6.4.2 Autosense

Autosense is the automatic return of sense data to the application client coincident with the completion of an SCSI-3
command under the conditions described below. The return of sense data in this way is equivalent to an explicit
command from the application client requesting sense data immediately after being notified that an ACA condition has
occurred. Inclusion of autosense support in an SCSI-3 protocol standard is optional.

As specified in clause 5, the application client may request autosense service for any SCSI command. If supported
by the protocol and logical unit and requested by the application client, the device server shall only return sense data
in this manner coincident with the completion of a command with a status of CHECK CONDITION or
COMMAND TERMINATED. The sense data shall then be cleared.

Protocol standards that support autosense shall require an autosense implementation to:
a) Notify the logical unit when autosense data has been requested for a command and
b) Inform the application client when autosense data has been returned upon command completion (see 5).

It is not an error for the application client to request the automatic return of sense data when autosense is not
supported by the SCSI-3 protocol or logical unit implementation. If the application client requested the return of sense
data through the autosense facility and the protocol service layer does not support this feature, then the confirmation
returned by the initiator's service delivery port should indicate that no sense data was returned. If the protocol service
layer supports autosense but the logical unit does not, then the target should indicate that no sense data was returned.
In either case, sense information shall be preserved and the application client  may issue a command to retrieve it.

5.6.5 Unit Attention Condition

Each logical unit shall generate a unit attention condition whenever the  logical unit has been reset as described in
5.6.6 or by a power-on reset. In addition, a logical unit shall generate a unit attention condition for each initiator
whenever one of the following events occurs:

a) A removable medium may have been changed;
b) The mode parameters in effect for this initiator have been changed by another initiator;
c) The version or level of microcode has been changed;
d) Tasks for this initiator were cleared by another initiator;
e) INQUIRY data has been changed;
f) The mode parameters in effect for the initiator have been restored from non-volatile memory;
g) A change  in the condition of a synchronized spindle;
h) Any other event requiring the attention of the initiator.

Logical units may queue unit attention conditions. After the first unit attention condition is cleared, another unit attention
condition may exist (e.g., a power on condition followed by a microcode change condition).

A unit attention condition shall persist on the logical unit for each initiator until that initiator clears the condition as
described in the following paragraphs.

If an INQUIRY command is received from an initiator to a logical unit with a pending unit attention condition (before
the  logical unit generates the auto contingent allegiance condition), the  logical unit shall perform the INQUIRY
command and shall not clear the unit attention condition.  

If a request for sense data is received from an initiator with a pending unit attention condition (before the  logical unit
establishes the automatic contingent allegiance condition), then the  logical unit shall either:



May 6, 1997 T10/1157D revision 0.3

working draft SCSI-3 Architecture Model -2 73

a) report any pending sense data and preserve the unit attention condition on the logical unit, or,
b) report the unit attention condition.

If the second option is chosen (reporting the unit attention condition), the logical unit may discard any pending sense
data and may clear the unit attention condition for that initiator.

If the logical unit has already generated the auto contingent allegiance condition for the unit attention condition, the
logical unit shall perform the second action listed above.

If an initiator issues a command other than INQUIRY or REQUEST SENSE while a unit attention condition exists for
that initiator (prior to generating the auto contingent allegiance condition for the unit attention condition), the  logical
unit shall not perform the command and shall report CHECK CONDITION status unless a higher priority status as
defined by the  logical unit is also pending (see 59).

If a  logical unit successfully sends an asynchronous event report informing the initiator of the unit attention condition,
then the  logical unit shall clear the unit attention condition for that initiator on the logical unit (see  5.6.4.1).

5.6.6 Target Hard Reset

A target hard reset is a target response  to a TARGET RESET task management request (see 6.6), or a reset event
within the service delivery subsystem. The definition of target reset events is protocol and interconnect specific. Each
SCSI-3 protocol standard shall specify the response to a target reset event including the conditions under which a
target hard reset  shall be executed.

To execute a hard reset a target shall initiate a logical unit reset for all attached logical units as described in 5.6.7.

a) Abort all tasks in all task sets;
b) Clear all auto contingent allegiance conditions;
c) Release all SCSI device reservations;
d) Return any device operating modes to their appropriate initial conditions, similar to those conditions that would

be found following device power-on. The MODE SELECT conditions (see the SPC standard) shall be restored
to their last saved values if saved values have been established. MODE SELECT conditions for which no saved
values have been established shall be returned to their default values;

e) Unit Attention condition shall be set (see 5.6.5).

In addition to the above, the target shall execute any additional functions required by the applicable protocol or
interconnect specifications. 

|
5.6.7 Logical Unit Reset |

|
A logical unit reset is a response  to a LOGICAL UNIT RESET task management request (see 6.5), or a some other |
logical unit reset event, such as a target hard reset (see 5.6.6). The definition of such events may be device-specific |
or dependant on the protocol and interconnect. Each appropriate SCSI-3  standard shall specify the conditions under |
which a logical unit reset shall be executed. |

|
To execute a logical unit reset the logical unit shall: |

|
a) Abort all tasks in its task set; |
b) Clear an auto contingent allegiance condition, if one is present; |
c) Release all SCSI device reservations; |
d) Return the device’s operating mode to the appropriate initial conditions, similar to those conditions that would |

be found following device power-on. The MODE SELECT conditions (see the SPC standard) shall be restored |



T10/ 1157D revision 0.3 May 6, 1997

74 working draft SCSI-3 Architecture Model -2

to their last saved values if saved values have been established. MODE SELECT conditions for which no saved|
values have been established shall be returned to their default values;|

e) set a Unit Attention condition (see 5.6.5).|
f) Initiate a logical unit reset for all nested logical units (see 4.7.4).|

|
In addition to the above, the logical unit shall execute any additional functions required by the applicable standards.|

taskfunc.wp 



May 6, 1997 T10/1157D revision 0.3

working draft SCSI-3 Architecture Model -2 75

6 Task Management Functions

Task management functions provide an initiator with a way to explicitly control the execution of one or more tasks. An
application client invokes a task management function by means of a procedure call having the following format:

Service response = Function name(Object Identifier [,Input-1] [,Input-2-]... || [Output-1] [,Output-2]...)

Service Response:

One of the following protocol-specific responses   shall be returned:

FUNCTION COMPLETE: A   task manager response indicating that the requested function is
complete.  The task manager shall unconditionally return this response
upon completion of a task management request supported by the logical
unit or target device to which the request was directed. Upon receiving a
request to execute an unsupported function, the task manager may return
this response or the Function Rejected response described below.

FUNCTION REJECTED:  An optional task manager response indicating that the operation is not
supported by the object to which the function was directed (e.g., the
logical unit or target device).

SERVICE DELIVERY OR The request was terminated due to a service delivery failure or target
TARGET FAILURE: malfunction. The target may or may not have successfully performed the

specified function.

Each SCSI protocol standard shall define the actual events comprising each of the above service responses.

The following task management functions are defined:

ABORT TASK(Task Address || ) - Abort the specified task.  This function shall be supported if the logical unit
supports tagged tasks and may be supported if the logical unit does not support tagged tasks (see object definition
7).

ABORT TASK SET( Logical Unit Identifier || ) - Abort all tasks in the task set for the requesting initiator. This
function shall be supported by all logical units.

CLEAR ACA ( Logical Unit Identifier || ) - Clear auto contingent allegiance condition. This function shall be
supported if the logical unit accepts an NACA bit value of one in the CDB control byte and may be supported if the
logical unit does not accept an NACA bit value of one in the CDB control byte (see 5.1.2).

CLEAR TASK SET ( Logical Unit Identifier || ) - Abort all tasks in the specified task set. This function shall be
supported by all logical units that support tagged tasks (see object definition 7) and may be supported by logical
units that do not support tagged tasks.

LOGICAL UNIT RESET (Logical Unit Identifier || ) - Perform a logical unit reset as described in 5.6.7 by |
terminating all tasks in the task set and propagating the reset to all nested logical units.  Support for this function |
is mandatory for hierarchical logical units and may be supported by non-hierarchical logical units. |



T10/ 1157D revision 0.3 May 6, 1997

76 working draft SCSI-3 Architecture Model -2

TARGET RESET (Target Identifier || ) - Reset the target device and terminate all tasks in all task sets. All target
devices shall support this function.

TERMINATE TASK (Task Address || ) - Terminate the specified task. Implementation of this function is a logical
unit option.

Argument descriptions:

Target Identifier: Target device identifier defined in object definition 5.

Logical Unit Identifier: Logical Unit identifier defined in object definition 6.

Task Address: Task address defined in object definition 7.

IMPLEMENTORS NOTES:  The TARGET RESET, CLEAR TASK SET,  ABORT TASK and ABORT TASK SET functions provide a means
to terminate one or more tasks prior to normal completion. The TARGET RESET command clears all tasks for all initiators on all task sets
of the target.  The CLEAR TASK SET function terminates all tasks for all initiators on the specified task set of the target.  An ABORT TASK
SET function  terminates all tasks for the initiator on the specified task set of the target. An ABORT TASK function  terminates only  the
specified task.

All SCSI-3 protocol specifications shall provide the functionality needed for a task manager to implement all of the task
management functions defined above. 

6.1 ABORT TASK

Function Call:

Service Response = ABORT TASK(Task Address || )

Description:

This function shall be supported by a logical unit that supports tagged tasks and may be supported by a logical unit
that does not support tagged tasks.

The task manager shall abort the specified task if it exists. Previously established conditions, including MODE
SELECT parameters, reservations, and auto contingent allegiance shall not be changed by the ABORT TASK
function.

If the logical unit supports this function, a response of FUNCTION COMPLETE shall indicate that the task was aborted
or was not in the task set. In either case, the target shall guarantee that no further responses from the task are sent
to the initiator.

6.2 ABORT TASK SET

Function Call:

Service Response = ABORT TASK SET(Logical Unit Identifier || )

Description:



May 6, 1997 T10/1157D revision 0.3

working draft SCSI-3 Architecture Model -2 77

This function shall be supported by all logical units.

The task manager shall terminate all tasks in the task set which were created by the initiator.

The task manager shall perform an action equivalent to receiving a series of ABORT TASK requests. All tasks from
that initiator in the task set serviced by the logical unit shall be  aborted. Tasks  from other initiators or in other task
sets shall not be terminated. Previously established conditions, including MODE SELECT parameters, reservations,
and auto contingent allegiance shall not be changed by the ABORT TASK SET function.

6.3 CLEAR ACA

Function Call

Service response = CLEAR ACA (Logical Unit Identifier || )

Description:

This function shall only be implemented by a logical unit that accepts an NACA bit value of one in the CDB control
byte (see 5.1.2).

The initiator invokes CLEAR ACA to clear an auto contingent allegiance condition from the task set serviced by the
logical unit according to the rules specified in  5.6.1.2. The function shall always be terminated with a service
response of FUNCTION COMPLETE.

If the  task manager clears the auto contingent allegiance condition, any task within that task set may be completed
subject to the rules for task set management specified in clause 7. 

6.4 CLEAR TASK SET

Function Call:

Service response = CLEAR TASK SET ( Logical Unit Identifier || )

Description:

This function shall be supported by all logical units that support tagged tasks (see object definition 7) and may be
supported by logical units that do not support tagged tasks.

The target shall perform an action equivalent to receiving a series of ABORT TASK requests from each initiator.
All tasks, from all initiators, in the specified task set shall be aborted.  The medium may have been altered by
partially executed commands.  All pending status and data for that logical unit for all initiators  shall be cleared.
No status shall be sent for any task. A unit attention condition shall be generated for all other initiators with tasks
in that task set. When reporting the unit attention condition the additional sense code shall be set to COMMANDS
CLEARED BY ANOTHER INITIATOR.

Previously established conditions, including MODE SELECT parameters (see the SPC standard), reservations, and
auto contingent allegiance shall not be changed by the CLEAR TASK SET function.



T10/ 1157D revision 0.3 May 6, 1997

78 working draft SCSI-3 Architecture Model -2

|
6.5 LOGICAL UNIT RESET|

|
Function Call:|

|
Service Response = LOGICAL UNIT RESET ( Logical Unit Identifier || )|

|
Description:|

|
This function shall be supported by all logical units that support hierarchical logical units (see 4.7.4) and may be|
supported by non-hierarchical logical units.|

|
Before returning a Function Complete  response the logical unit shall perform the logical unit reset functions|
specified in 5.6.7. A unit attention condition for all initiators shall be created on each logical unit as specified in|
5.6.5.|

6.6 TARGET RESET

Function Call:

Service Response = TARGET RESET (  Target Identifier || )

Description:

This function shall be supported by all target devices.

Before returning a Function Complete  response the target shall perform the target hard reset functions specified
in 5.6.6. A unit attention condition for all initiators shall be created on each logical unit as specified in 5.6.5.

6.7 TERMINATE TASK

Function Call:

Service response = TERMINATE TASK (Task Address ||)

Description:

Support for this function is a logical unit option.

The TERMINATE TASK function is invoked by the initiator to request task completion.  A response of
FUNCTION COMPLETE indicates that the request has been accepted and does not  imply that the referenced task has
ended. Assuming the task existed when the TERMINATE TASK function was invoked, the initiator shall consider
the task to continue in existence until one of the events specified in 5.4 is detected.

With the following exceptions, the  logical unit shall complete the specified task and  send COMMAND
TERMINATED status.  The sense key shall be set to NO SENSE.  The additional sense code and qualifier are set
to TASK TERMINATED.

If the  work performed by the terminated task involves the transfer of data, the  logical unit shall set the valid bit
in the sense data to one and set the information field as follows:



May 6, 1997 T10/1157D revision 0.3

working draft SCSI-3 Architecture Model -2 79

g) If the command descriptor block specifies an allocation length or parameter list length, the information field shall
be set to the difference (residue) between the number of bytes successfully transferred and the requested
length;

h) If the command descriptor block specifies a transfer length field, the information field shall be set as defined in
the REQUEST SENSE command (see the SPC standard).

If an error is detected for the specified task, the  logical unit shall ignore the TERMINATE TASK request and  send
a service response of FUNCTION COMPLETE.

If the operation requested for the  specified task has been completed but status has not been  sent, the  logical
unit shall ignore the TERMINATE TASK request and return a service response of FUNCTION COMPLETE.

If the target does not support this function or is unable to stop the task, the target shall return a service response
of  FUNCTION REJECTED to the initiator and continue the task in a normal manner.

The effect of a TERMINATE TASK request on the task set  depends on the task set  error recovery option specified
in the control mode page (see the SPC standard) and on whether or not an auto contingent allegiance condition
is generated.

IMPLEMENTORS NOTE:  The TERMINATE TASK function provides a means for the initiator to request the  logical unit to reduce the
transfer length of the referenced command to the amount that has already been transferred.  The initiator can use the sense data to
determine the actual number of bytes or blocks that have been transferred.  This function is normally used by the initiator to stop a lengthy
read, write, or verify operation when a higher-priority command is available to be executed.  It is up to the initiator to complete the terminated
command at a later time, if required.

6.8 Task Management Protocol Services

The confirmed service described in this subclause is used by an application client to issue a task management remote
procedure call. The following arguments are passed:

Object Address: A Task Address, Logical Unit Identifier or Target Identifier supplied by the
application client to identify the object to be operated upon. The initiator's
service delivery port will convert a Task Address to a Task Identifier
before forwarding the request to the target.

Object Identifier: A Task Identifier, Logical Unit Identifier or Target Identifier passed to the
task manager by the  protocol service indication.

Function Identifier: Parameter encoding the task management function to be performed.

All SCSI-3 protocol specifications shall define the protocol-specific requirements for implementing the Send Task
Management Request protocol service and the Received Function-Executed confirmation described below. Support
for the Task Management Request Received indication and Task Management Function Executed protocol service
response by the SCSI-3 protocol standard is optional. All SCSI-3 I/O systems shall implement these protocols as
defined in the applicable protocol specification.

The argument definitions correspond to those of clause 6.

Request:

                    Send Task Management Request (Object Address, Function Identifier ||)



Time

Time

Application Client

Task Manager

Waiting

Working

Activity

Activity

Initiator

Target

4

32

1

T10/ 1157D revision 0.3 May 6, 1997

80 working draft SCSI-3 Architecture Model -2

Figure 28 : Task Management Request Processing

Indication received by task manager:

                     Task Management Request Received (Object Identifier, Function Identifier ||)

Response from task manager:

                  Task Management Function Executed (Object Identifier, Service Response ||)

The Service Response  parameter encodes a value representing one of the following (see 6):

FUNCTION REJECTED: The task manager does not implement the requested function.

FUNCTION COMPLETE: The requested function has been completed.

Confirmation:

Received Function-Executed   (Object Address,  Service Response ||)

Since the object identifier does not uniquely identify the transaction, there may be no way for an initiator to associate
a confirmation with a request. An SCSI protocol that does not provide such an association should not allow an initiator
to have more than one pending task management request per logical unit.

6.9 Task Management Function Example

The following diagram shows the sequence of events associated with a task management function.

The numbers in figure 28 Identify the events described below.

1. The application client issues a task management request by invoking the Send Task Management Request
protocol service.

taskmod.wp 



May 6, 1997 T10/1157D revision 0.3

working draft SCSI-3 Architecture Model -2 81

2. The task manager is notified through a Task Management Request Received and begins executing the
function. 

3. The task manager performs the requested operation and  responds by invoking the Task Management
Function Executed  protocol service  to notify the application client. The Service Response  parameter is set
to a value of FUNCTION COMPLETE

4. A Received Function-Executed  confirmation is  received by the application client. 



T10/ 1157D revision 0.3 May 6, 1997

82 working draft SCSI-3 Architecture Model -2

7 Task Set Management

This clause specifies task set management requirements in terms of task states, task attributes and events that cause
task state transitions.

Task behavior, as specified herein, refers to the functioning of a task as observed by an application client within the
initiator -- including the results of command execution and interactions with other tasks. Examples of behavior not
observable by the application client are the physical activity on the interconnect or the format of transmitted data
packets associated with a command. To define these and other aspects of behavior, SCSI-3 protocol and interconnect
standards may impose other requirements, outside the scope of this standard, which are related to observable behavior
within the protocol or interconnect layers.

The rules for task set management only apply to a task after it has been entered into the task set. A task shall be
entered into the task set unless a condition exists which causes that task to be completed with a status of BUSY,
RESERVATION CONFLICT, TASK SET FULL,  ACA ACTIVE or CHECK CONDITION (if caused by the detection of
an overlapped command). A task may also be completed in this manner because of a CHECK CONDITION status
caused by certain protocol-specific errors. In these cases, the task shall be completed as soon as the condition is
detected.

7.1 Terminology

The following definitions are used extensively in this clause.

suspended information: Information within the logical unit that is not available to a pending task.

current task: A task that has a data transfer protocol service request in progress (see
5.3.1) or is in the process of  sending command status. Each SCSI-3
protocol standard shall define the protocol-specific conditions under which
a task is considered a current task.

pending task: Any task that is not a current task.

7.2 Task Management Events

 The following is a description of the events that drive changes in task state.

All older tasks ended: All tasks have ended that were accepted into the task set earlier in time
than the referenced task.

All older Head of All Head of Queue and Ordered tasks have ended that were accepted into
Queue and older the task set earlier in time than the referenced task.

Ordered tasks ended:

ACA : An auto contingent allegiance condition has occurred .

task abort: One of the events described in subclause 7.3 has occurred. 



May 6, 1997 T10/1157D revision 0.3

working draft SCSI-3 Architecture Model -2 83

task completion: The device server has  sent a service response of TASK COMPLETE for the
task (see clause 5 and subclause 5.4). 

task ended: A task has completed or aborted.

ACA cleared: An ACA condition has been cleared. 

Subclause 7.4 describes the events, changes in task state and device server actions for a Simple, Ordered, ACA or
Head of Queue task. 

7.3 Task Abort Events

A Task Abort event is one of the following:

i) Completion of an ABORT TASK task management function directed to the specified task;
j) Completion of an ABORT TASK SET task management function under the conditions specified in subclause 6.2;
k) Completion of a CLEAR TASK SET task management function referencing the  task set containing the specified

task;
l) Completion of a PERSISTENT RESERVE with a Preempt and Clear action directed to the specified task;
m) An ACA condition was cleared and the QErr bit was set to one in the control mode page (see the SPC

standard);
n) An ACA condition was cleared and the task had the ACA attribute;
o) A logical unit reset (see 5.6.7);
p) The return of an Execute Command  service response of SERVICE DELIVERY OR TARGET FAILURE as described in

clause 5.
q) A power on condition.

7.4 Task States

7.4.1 Enabled

A task in the Enabled state may become a current task and may complete at any time, subject to the task completion
constraints specified in the control mode page (see the SPC standard). A task that has been accepted into the task
set shall not complete or become a current task unless it is in the enabled state. 

Except for the use of target resources required to preserve task state, a task shall produce no effects detectable by
the application client  before the task's first transition to the Enabled state. Although, before entering this state for the
first time, the task may perform other activities visible to lower layers -- such as pre-fetching data to be written to the
media -- this activity shall not result in a detectable change in device state as perceived by an application client. In
addition, the behavior of a completed task, as defined by the commands it has executed, shall not be affected by the
task's states before it became enabled.



Task
Created

Task
Enabled

Task
Completed

Task Dormant

Time Line

Application Client
observes system state

A B C

Task Created
and Enabled

Task
Completed

Time Line

A B C

Case 1

Case 2

T10/ 1157D revision 0.3 May 6, 1997

84 working draft SCSI-3 Architecture Model -2

Figure 29 : Example of Dormant Task Behavior

Figure 29 shows the events corresponding to two task execution sequences. Except for the Dormant state between
times A and B in case 1, logical unit conditions and the commands executed by the task are identical. Assuming in
each case the task completes with a status of GOOD at time C, the system state observed by the application client
for case 1 shall be indistinguishable from the state observed for case 2.

7.4.2 Blocked

A task in the Blocked state is prevented from completing due to an auto contingent allegiance condition. A task in this
state shall not become a current task. While a task is in the Blocked state, any information the logical unit has or
accepts for the task shall be suspended.

7.4.3 Dormant

A task in the Dormant state is prevented from completing due to the presence of certain other tasks in the task set.
A task in this state shall not become a current task. While a task is in the Dormant state, any information the logical
unit has or accepts for the task shall be suspended.

7.4.4 Ended

A task in the Ended state is removed from the task set.

7.5 Task Attributes

A task shall have one of the attributes defined below.



S2: Blocked

S0: Dormant S1: Enabled
S0:S1

S1:S2
ACA

S2:S1

ACA
Cleared

S3: Ended
Remove task from task set

S0:S3
Task Abort Task End

S1:S3

Task Abort

S2:S3

ACA Clear and:

Simple Task: All older Head of Queue and
older Ordered tasks ended

Ordered Task: All older tasks ended

May 6, 1997 T10/1157D revision 0.3

working draft SCSI-3 Architecture Model -2 85

Figure 30 : Task States

7.5.1 SIMPLE Task

A task having the Simple attribute shall be accepted into the task set in the Dormant state. The task shall not enter
the Enabled state until all older Head of Queue and older Ordered tasks in the task set have ended (see 7.2).

7.5.2 ORDERED  Task

A task having the Ordered attribute shall be accepted into the task set in the Dormant state. The task shall not enter
the Enabled state until all older tasks in the task set have ended (see 7.2).

7.5.3 HEAD OF QUEUE Task

A task having the Head of Queue attribute shall be accepted into the task set in the Enabled state.

7.5.4 ACA Task

A task having the ACA attribute shall be accepted into the task set in the Enabled state. As specified in 5.6.1.1, there
may be no more than one ACA task per task set.

7.6 Task State Transitions

The task state diagram of figure 30 shows the behavior of a single task in response to an external event.



T10/ 1157D revision 0.3 May 6, 1997

86 working draft SCSI-3 Architecture Model -2

The following clauses describe task state transitions, actions and associated triggering events as they appear to an
application client. Although the logical unit response to events affecting multiple tasks, such as a Clear Task Set, may
be different from the response to an event affecting a single task, from the viewpoint of the application client the
collective behavior appears as a series of state changes occurring to individual tasks.

In the discussion below, "dormant task" refers to a task in the Dormant state, "enabled task" to a task in the Enabled
state, and so forth.

7.6.1 Transition S0:S1 (Ordered Task):  Provided an ACA condition does not exist,  a dormant task having the
ORDERED attribute shall enter the Enabled state when all older tasks have ended. This transition shall not occur while
an ACA condition is in effect for the task set.

7.6.2 Transition SO:S1 (Simple task):  Provided an ACA condition does not exist, a dormant task having the SIMPLE
attribute shall enter the Enabled state when all older Head of Queue and older Ordered tasks have ended. This
transition shall not occur while an ACA condition is in effect for the task set.

7.6.3 Transitions S0:S3, S2:S3:  A task abort event shall cause the task to unconditionally enter the Ended state.

7.6.4 Transition S1:S2:  An ACA condition shall cause an enabled task to enter the Blocked state.

7.6.5 Transition S1:S3:  A task that has completed or aborted shall enter the Ended state. This is the only state
transition that applies to an ACA task.

7.6.6 Transition S2:S1:  When an ACA condition is cleared and the QErr bit is set to zero in the control mode page
(see the SPC standard), a task in the Blocked state shall re-enter the Enabled state.

7.7 Task Set Management Examples

The following subclauses give several task set management scenarios.  These are valid for single or multi-initiator
cases. That is, the interaction among tasks in a task set is independent of the initiator originating a task. The figure
accompanying each example shows successive snapshots of a task set after various events, such as task creation
or completion. In all cases, the constraints on task completion order settable through the control mode page (see the
SPC standard) are not in effect.

A task set is shown as an ordered list or queue of tasks with the head of the queue towards the top of the page. A
new Head of Queue task always enters the task set at the head, displacing older Head of Queue tasks . Simple,
Ordered and ACA tasks always enter the task set at the end of the queue. 

Tasks, denoted by rectangles, are numbered in ascending order from oldest to most recent.  Fill, shape and line weight
are used to distinguish task states and attributes as follows: 

Task attributes:

a) Simple tasks --  rounded corners;
b) Ordered and ACA tasks -- square corners and thin lines; 
c) Head of Queue -- square corners and thick lines. 

Task states:

a) Enabled -- no fill;
b) Dormant -- grey (50 percent fill);
c) Blocked -- black.



1 2

Task Set

Task Set

Simple Task 2

Simple Task 4

Simple Task 4

Head of Queue
Task 3

Head of Queue
Task 1

Blocking boundary
task 1

Blocking boundary
task 3

3

Simple Task 2

Head of Queue
Task 1

Blocking boundary
task 1

Task Set

Head of Queue
Task 1

Simple Task 2

Blocking boundary
task 1

May 6, 1997 T10/1157D revision 0.3

working draft SCSI-3 Architecture Model -2 87

Figure 31 : HEAD OF QUEUE Tasks 

7.7.1 Blocking Boundaries

The conditions preventing a dormant task from becoming enabled (in the absence of an ACA condition) are shown
by means of  “blocking boundaries”. Such boundaries appear as dotted horizontal lines with an arrow on both ends.
The accompanying text identifies the tasks  causing the barrier condition. A task is impeded by the barrier if it is
between the boundary and the end of the queue. When no ACA is in effect, a task enters the Enabled state after all
intervening barriers have been removed.

Blocking boundaries are not shown while an ACA condition exists. In this case, the blocking effect of an ACA condition
takes precedence.

7.7.2 HEAD OF QUEUE Tasks

Figure 31 shows task set conditions when several Head of Queue tasks are executed, 



Task Set

Head of Queue
Task 1

Simple Task 2

1 2

Task Set

Simple Task 2

Simple Task 4

Simple Task 4

Head of Queue
Task 3

Head of Queue
Task 1

3

Task Set

Simple Task 2

Head of Queue
Task 3

Blocking boundary
task 1

Blocking boundary
task 1

Blocking boundary
task 3

Blocking boundary
task 3

T10/ 1157D revision 0.3 May 6, 1997

88 working draft SCSI-3 Architecture Model -2

Figure 32 : HEAD OF QUEUE Tasks and
Blocking Boundaries

In snapshot 1  the task set initially contains one Head of Queue and one Simple task.  As shown by the blocking
boundary, simple task 2 is Dormant because of the older Head of Queue task. Snapshot 2 shows the task set after
Head of Queue task 3 and Simple task 4 are created.  The new Head of Queue task is placed at the front of the queue
in the Enabled state, displacing task 1. Snapshot 3 shows the task set after task 3 completes. Since the conditions
indicated by  the task 1 blocking boundary are still in effect, tasks 2 and 4 are held in the Dormant state.

Figure 32 is the same as  the previous example, except that task 1 completes instead of  task 3.

The completion of task 1 allows task 2 to enter the Enabled state. Simple task 4 is held in the Dormant state until task
3 completes..

7.7.3 Ordered Tasks

An example of Ordered and Simple task interaction is shown in figure 33. 



Task Set

Simple Task 1

Ordered Task 2

Ordered Task 5

Ordered Task 5

Simple Task 3

Simple Task 4

3

Ordered Task 2

Simple Task 3

Simple Task 4

Task Set

1 2

Simple Task 3

Simple Task 4

Ordered Task 5

Task Set

Blocking boundary
Tasks 3 and 4, task 5

Blocking boundary
tasks 1 and 2

Blocking boundary
task 2

Blocking boundary
task 2

Blocking boundary
tasks 1 - 4, task 5

Blocking boundary
tasks 2 - 4, task 5

May 6, 1997 T10/1157D revision 0.3

working draft SCSI-3 Architecture Model -2 89

Figure 33 : Ordered Tasks and Blocking Boundaries

The state of dormant tasks 2 through 5 is determined by the following rules:

Tasks 2 and 5 -- An Ordered task cannot enter the Enabled state until all older tasks have ended.
Tasks 3 and 4 -- A Simple task cannot enter the Enabled state until all older Head of Queue and older Ordered

tasks have ended.

These constraints are shown by the blocking boundaries in snapshot 1.

In snapshot 2, the completion of task 1 allows ordered task 2 to become Enabled. Since the initial constraints on tasks
3, 4 and 5 are still in effect, these tasks must remain Dormant. As shown in snapshot 3, the completion of task 2
triggers two state changes: -- namely, the transitions of task 3 and task 4 to the Enabled state. Task 5 must be held
in the Dormant state until these tasks end.

7.7.4 ACA Task

Figure 34 shows the effects of an ACA condition on the task set. This example assumes the QErr flag is set to zero
in the control mode page (see the SPC standard). Consequently, clearing an ACA condition will not cause tasks to
be aborted.



Task Set

Simple Task 4

Simple Task 1

4

Simple Task 4

Task Set

Ordered Task 3

Simple Task 5

Simple Task 1

ACA Task 5

3

Task Set

Simple Task 1

Simple Task 4

2

Ordered Task 3

Simple Task 4

Task Set

Simple Task 1

Simple Task 2

1

Ordered Task 3

Blocking boundary
tasks 1 and 2, task 3

Blocking boundary
task 3

T10/ 1157D revision 0.3 May 6, 1997

90 working draft SCSI-3 Architecture Model -2

Figure 34 : ACA Task Example

The completion of task 2 with CHECK CONDITION status causes task 1 to enter the Blocked state shown in snapshot
2. In snapshot 3, Ordered task 3 is aborted and ACA task 5 is created to handle the exception. Once the ACA
condition is cleared, (snapshot 4) Simple task 1 can reenter the Enabled state. Since there are no Head of Queue or
Ordered  tasks older than task 4, it too can be placed in the Enabled state.



Task SetTask Set

Simple Task 3

ORDERED Task 1

Simple Task 2

21

Simple Task 3

Simple Task 2

3

Task Set

Simple Task 2

Blocking boundary
task 1

May 6, 1997 T10/1157D revision 0.3

working draft SCSI-3 Architecture Model -2 91

Figure 35 : Example of Deferred Task Completion

7.7.5 Deferred Task Completion

In the example of figure 35, the logical unit must defer task completion in response to an exception condition until the
task enters the Enabled state. In this case,  completion is caused by a TERMINATE TASK task management function
directed to a dormant task. The example would also apply to other cases, such as a task to be completed with CHECK
CONDITION status because of an error in a CDB parameter.

In snapshot 1, a TERMINATE TASK task management request has been directed to Dormant  task 3. Because of
Ordered task 1,  task 3 cannot enter the Enabled state and therefore cannot complete.  The eventual completion of
task 1 allows tasks 2 and 3 to become enabled as shown in snapshot 2.  The pending TERMINATE TASK request
can now be executed.  The resulting auto contingent allegiance condition causes task 2 to enter the Blocked state
shown in snapshot 3.

Begin annexes after this comment 



T10/ 1157D revision 0.3 May 6, 1997

92 working draft SCSI-3 Architecture Model -2

Because tasks in the Enabled state may complete in any order Simple task 2 may complete before task 3. In that case,
the following alternate outcomes are possible:

a) Simple task 2 may complete with GOOD status, followed by the completion of task 3 with CHECK CONDITION
status;

b) Simple task 2 may complete with CHECK CONDITION status; task 3 is placed in the Blocked state.


