
Working Draft T10
Project 1155D

Revision 2c
March 26, 1997

Information technology —
Serial Bus Protocol 2 (SBP-2)

This is an internal working document of T10, a Technical Committee of the National Committee for
Information Technology Standardization (NCITS). As such, this is not a completed standard and has not
been approved. The contents are actively under development by T10. This document is made available
for review and comment only.

Permission is granted to members of NCITS, its technical committees and their associated task groups to
reproduce this document for the purposes of NCITS standardization activities without further permission,
provided this notice is included. All other rights are reserved. Any commercial or for-profit replication or
republication is prohibited.

T10 Technical Editor: Peter Johansson
Congruent Software, Inc.
3998 Whittle Avenue
Oakland, CA 94602
USA

(510) 531-5472
(510) 531-2942 FAX

pjohansson@aol.com

Reference numbers
ISO/IEC xxxxx:199x

ANSI NCITS.xxx-199x

Printed March 26, 1997

Points of contact

T10 Chair: John B. Lohmeyer
Symbios Logic, Inc.
4420 Arrows West Drive
Colorado Springs, CO 80907
USA

(719) 533-7560
(719) 533-7036 FAX
john.lohmeyer@symbios.com

T10 Vice-chair: Lawrence J. Lamers
Adaptec, Inc.
691 South Milpitas Boulevard
Milpitas, CA 95035

(408) 957-7817
(408) 957-7193 FAX
ljlamers@aol.com

NCITS Secretariat: NCITS Secretariat
1250 I Street NW, Suite 200
Washington, DC 2000
USA

(202) 737-8888
(202) 638-4922 FAX

T10 Bulletin board: (719) 533-7950

T10 FTP: ftp.symbios.com/pub/standards/io/x3t10

T10 Home page: http://www.symbios.com/x3t10

T10 Reflector: scsi@symbios.com
majordomo@symbios.com (to subscribe)

IEEE 1394 Reflector: p1394@sun.com
bob.snively@sun.com (to subscribe)

Document distribution: Global Engineering
15 Inverness Way East
Englewood, CO 80112-5704
USA

(800) 854-7179
(303) 792-2181
(303) 792-2192 FAX

ANSI®

NCITS.xxx-199x

American National Standard
for Information Systems –

Serial Bus Protocol 2 (SBP-2)

Secretariat

Information Technology Industry Council

Not yet approved

American National Standards Institute, Inc.

Abstract

This standard specifies a protocol for the transport of commands, data and status between devices
connected by Serial Bus, a memory-mapped split-transaction bus defined by IEEE Std 1394-1995. In
order to take advantage of unique capabilities of Serial Bus for the transport of isochronous data, this
standard provides methods to manage isochronous connections and to control the flow of isochronous
data between devices.

American
National
Standard

Approval of an American National Standard requires verification by ANSI that the
requirements for due process, consensus and other criteria for approval have been
met by the standards developer.

Consensus is established when, in the judgment of the ANSI Board of Standards
Review, substantial agreement has been reached by directly and materially affected
interests. Substantial agreement means much more than a simple majority, but not
necessarily unanimity. Consensus requires that all views and objections be considered
and that effort be made towards their resolution.

The use of American National Standards is completely voluntary; their existence does
not in any respect preclude anyone, whether he has approved the standards or not,
from manufacturing, marketing, purchasing, or using products, processes, or
procedures not conforming to the standards.

The American National Standards Institute does not develop standards and will in no
circumstances give interpretation on any American National Standard. Moreover, no
person shall have the right or authority to issue an interpretation of an American
National Standard in the name of the American National Standards Institute. Requests
for interpretations should be addressed to the secretariat or sponsor whose name
appears on the title page of this standard.

CAUTION NOTICE: This American National Standard may be revised or withdrawn at
any time. The procedures of the American National Standards Institute require that
action be taken periodically to reaffirm, revise, or withdraw this standard. Purchasers
of American National Standards may receive current information on all standards by
calling or writing the American National Standards Institute.

CAUTION NOTICE: The developers of this standard have requested that holder’s of
patents that may be required for the implementation of this standard, disclose such
patents to the publisher. However, neither the developers nor the publisher has
undertaken a patent search in order to identify which, if any, patents may apply to this
standard.

Published by

American National Standards Institute
1430 Broadway, New York, NY 10018

Copyright © 1996, 1997 by American National Standards Institute
All rights reserved.

Printed in the United States of America

T10/1155D Revision 2c

i

Contents
Page

Foreword...v

Revision history... vii

1 Scope and purpose..1
1.1 Scope..1
1.2 Purpose...1

2 Normative references ..3
2.1 Approved references...3
2.2 References under development..3

3 Definitions and notation ...5
3.1 Definitions ...5

3.1.1 Conformance..5
3.1.2 Glossary ...5
3.1.3 Abbreviations..7

3.2 Notation...8
3.2.1 Numeric values...8
3.2.2 Bit, byte and quadlet ordering...8
3.2.3 Register specifications ...9
3.2.4 State machines...11

4 Model (informative) ..13
4.1 Unit architecture..13
4.2 Logical units ..13
4.3 Requests and responses ..13
4.4 Data buffers...14
4.5 Target agents ..16
4.6 Streams...17

4.6.1 Stream task set...19
4.6.2 Stream controller ..19
4.6.3 Error reporting ..19

5 Data structures ..21
5.1 Operation request blocks (ORB’s) ..22

5.1.1 Dummy ORB ..23
5.1.2 Command block ORB’s..24
5.1.3 Stream control ORB ...27
5.1.4 Management ORB’s ...31

5.2 Page tables ...39
5.3 Status block...41

6 Control and status registers...45
6.1 Core registers ...45
6.2 Serial Bus-dependent registers...45
6.3 MANAGEMENT_AGENT register...46
6.4 Command block and stream control agent registers47

6.4.1 AGENT_STATE register...47
6.4.2 AGENT_RESET register ..48
6.4.3 ORB_POINTER register...49
6.4.4 DOORBELL register ...50
6.4.5 UNSOLICITED_STATUS_ENABLE register ..50

T10/1155D Revision 2c

ii

7 Configuration ROM..51
7.1 Bus information block..51
7.2 Root directory..52

7.2.1 Module_Vendor_ID entry..52
7.2.2 Node_Capabilities entry..53
7.2.3 Node_Unique_ID entry ...53
7.2.4 Unit_Directory entry..53

7.3 Unit directory ...54
7.3.1 Unit_Spec_ID entry...54
7.3.2 Unit_SW_Version entry ..54
7.3.3 Command_Set_Spec_ID entry...55
7.3.4 Command_Set entry ..55
7.3.5 Command_Set_Revision entry...55
7.3.6 Management_Agent entry ..56
7.3.7 Logical_Unit_Characteristics entry...56
7.3.8 Logical_Unit_Directory entry...57
7.3.9 Logical_Unit_Number entry..57
7.3.10 Unit_Unique_ID entry ...57

7.4 Logical unit directory ...58
7.4.1 Command_Set_Spec_ID entry...58
7.4.2 Command_Set entry ..58
7.4.3 Command_Set_Revision entry...58
7.4.4 Logical_Unit_Characteristics entry...58
7.4.5 Logical_Unit_Number entry..59

7.5 Node unique ID leaf ..59
7.6 Unit unique ID leaf...59

8 Access ...61
8.1 Access protocols...61
8.2 Login requests...61

8.2.1 Login...61
8.2.2 Create stream...62

8.3 Reconnection ..63
8.4 Logout ...63

9 Command execution..65
9.1 Requests and request lists..65

9.1.1 Fetch agent initialization (informative) ..65
9.1.2 Dynamic appends to request lists (informative)66
9.1.3 Fetch agent use by the BIOS (informative) ..67
9.1.4 Fetch agent state machine ...67

9.2 Data transfer ...70
9.3 Completion status ...70
9.4 Unsolicited status ..71

10 Task management ...73
10.1 Task sets ...73
10.2 Basic task management model...73
10.3 Error conditions ...74
10.4 Task management requests..74

10.4.1 Abort task ...74
10.4.2 Abort task set ...76
10.4.3 Clear task set ...76
10.4.4 Logical unit reset ..77
10.4.5 Target reset ..77
10.4.6 Terminate task ..78

T10/1155D Revision 2c

iii

10.5 Task management event matrix..78

11 Isochronous data interchange format ..81
11.1 Cycle marks...81
11.2 Isochronous data packets ...81
11.3 Null packets...82
11.4 Common isochronous packets (CIP) ..83

12 Isochronous operations ...87
12.1 Stream command block requests ...87
12.2 Stream control...88

12.2.1 Channel masks...88
12.2.2 Flow control ..89
12.2.3 Isochronous data transformation..89

12.3 Error logs...90

Tables

Table 1 – Data transfer speeds...25
Table 2 – Management request functions...32

Figures

Figure 1 – Bit ordering within a byte ...8
Figure 2 – Byte ordering within a quadlet ...9
Figure 3 – Quadlet ordering within an octlet ...9
Figure 4 – CSR specification example ...10
Figure 5 – State machine example ...12
Figure 6 – Linked list of ORB’s ...14
Figure 7 – Directly addressed data buffer...15
Figure 8 – Indirectly addressed data buffer (via page table)15
Figure 9 – Components of an isochronous stream ..17
Figure 10 – Stream engine block diagram..18
Figure 11 – Address pointer..21
Figure 12 – ORB pointer...21
Figure 13 – ORB family tree ...22
Figure 14 – ORB format ...22
Figure 15 – Dummy ORB ...23
Figure 16 – Normal command block ORB..24
Figure 17 – Stream command block ORB..26
Figure 18 – Stream control ORB ..27
Figure 19 – Channel mask ...28
Figure 20 – Channel configuration map entry...29
Figure 21 – Management ORB...31
Figure 22 – Login ORB...33
Figure 23 – Login response..34
Figure 24 – Login query ORB ...34
Figure 25 – Login query response format...35
Figure 26 – Create stream ORB...36
Figure 27 – Create stream response..37
Figure 28 – Reconnect ORB...37
Figure 29 – Logout ORB...38
Figure 30 – Task management ORB ..39
Figure 31 – Page table element (when page_size equals four)40
Figure 32 – Status block format..41
Figure 33 – MANAGEMENT_AGENT format ...46

T10/1155D Revision 2c

iv

Figure 34 – AGENT_STATE format..48
Figure 35 – AGENT_RESET format...48
Figure 36 – ORB_POINTER format ...49
Figure 37 – DOORBELL format..50
Figure 38 – UNSOLICITED_STATUS_ENABLE format50
Figure 39 – Configuration ROM hierarchy..51
Figure 40 – Bus information block format...51
Figure 41 – Module_Vendor_ID entry format..52
Figure 42 – Node_Capabilities entry format ...53
Figure 43 – Node_Unique_ID entry format...53
Figure 44 – Unit_Directory entry format..54
Figure 45 – Unit_Spec_ID entry format ..54
Figure 46 – Unit_SW_Version entry format ..54
Figure 47 – Command_Set_Spec_ID entry format...55
Figure 48 – Command_Set entry format ..55
Figure 49 – Command_Set_Revision entry format ..55
Figure 50 – Management_Agent entry format ..56
Figure 51 – Logical_Unit_Characteristics entry format...56
Figure 52 – Logical_Unit_Directory entry format ..57
Figure 53 – Logical_Unit_Number entry format..57
Figure 54 – Unit_Unique_ID entry format ...58
Figure 55 – Node unique ID leaf format ...59
Figure 56 – Unit unique ID leaf format..60
Figure 57 – Fetch agent initialization with a dummy ORB66
Figure 58 – Fetch agent state machine ..68
Figure 59 – CYCLE MARK format ..81
Figure 60 – Format for recorded isochronous data ..82
Figure 61 – NULL packet format...83
Figure 62 – Common isochronous packet (CIP) format83
Figure 63 – Two-quadlet CIP header format...84
Figure 64 – Source packet header format ..84
Figure 65 – Synchronization time (syt) format ..85
Figure 66 – Unsolicited status format for isochronous errors...............................91

Figure B.1 – Sample configuration ROM..95
Figure C.2 – Status block format ..97

Annexes

Annex A (normative) Minimum Serial Bus node capabilities93

Annex B (informative) Sample configuration ROM..95

Annex C (informative) Status block for sense data..97

T10/1155D Revision 2c

v

Foreword (This foreword is not part of American National Standard NCITS.xxx-199x)

This standard defines such a transport protocol within the domain of Serial Bus,
IEEE Std 1394-1995, that is designed to permit efficient, peer-to-peer operation of
input output devices (disks, tapes, printers, etc.) by initiator(s) such as operating
systems or embedded applications. Vendors that wish to implement devices that
connect to Serial Bus may follow the requirements of this and other standards to
manufacture an SBP-2 compliant device.

This standard was developed by T10 during 1996 and 1997. Although some early
SBP mock-up devices were demonstrated in 1993, significant proof-of-concept, in
the form of prototype implementations, has proceeded contemporaneously with
the development of this standard.

There are three annexes in this standard. Annex A is normative and is considered
part of this standard. Annexes B and C are informative and are not considered
part of this standard.

Requests for interpretation, suggestions for improvement and addenda, or defect
reports are welcome. They should be sent to the NCITS Secretariat, Information
Technology Industry Council, 1250 I Street NW, Suite 200, Washington, DC
20005-3922.

This standard was processed and approved for submittal to ANSI by National
Committee for Information Technology Standardization (NCITS). Committee
approval of this standard does not necessarily imply that all committee members
voted for approval. At the time it approved this standard, NCITS had the following
members:

James D. Converse, Chair
Donald C. Loughry, Vice-chair
Joanne M. Flanagan, Secretary

Organization Represented Name of Representative
American Nuclear Society ..Geraldine C. Main
AMP, Inc. ..Edward Kelly
Apple Computer ...Karen Higginbottom
Association of the Institute for Certification of Professionals......Kenneth Zemrowski
AT&T/NCR..Thomas W. Kern
Boeing Company..Catherine Howells
Bull HN Information Systems, Inc...William George
Compaq Computer Corporation ...James Barnes
Digital Equipment Corporation ...Delbert Shoemaker
Eastman Kodak ..James D. Converse
GUIDE International ...Frank Kirshenbaum
Hewlett-Packard ...Donald C. Loughry
Hitachi America, Ltd. ..John Neumann
Hughes Aircraft Company...Harold L. Zebrack
IBM Corporation ...Joel Urman
National Communication Systems ...Dennis Bodson
National Institute of Standards and TechnologyRobert E. Roundtree
Northern Telecom, Inc. ...Mel Woinsky
Neville & Associates ...Carlton Neville
Recognition Technology Users Association................................Herbert P. Schantz
Share, Inc. ..Gary Ainsworth
Sony Corporation ...Michael Deese
Storage Technology Corporation ..Joseph S. Zajaczkowski
Sun Microsystems ..Scott Jameson

T10/1155D Revision 2c

vi

3M Company ... Eddie T. Morioka
Unisys Corporation .. John L. Hill
US Department of Defense.. William C. Rinehuls
US Department of Energy.. Alton Cox
US General Services Administration.. Douglas Arai
Wintergreen Information Services ... Joun Wheeler
Xerox Corporation.. Dwight McBain

Technical Committee T10 on Lower Level Interfaces, which developed and
reviewed this standard, had the following members:

John B. Lohmeyer, Chair
Lawrence J. Lamers, Vice-chair
Ralph O. Weber, Secretary

I. D. Allan
P. D. Aloisi
G. Barton
R. Bellino
C. Brill
J. Chen
R. Cummings
Z. Daggett
J. Dambach
J. V. Dedek
E. Fong
E. A. Gardner
L. Grantham
D. Guss
K. J. Hallam
N. Harris
E. Haske
S. F. Heil
S. Holmstead
P. Johansson
G. Johnsen
S. Jones
T. J. Kulesza
E. Lappin
R. Liu
B. McFerrin

J. McGrath
P. McLean
P. Mercer
G. Milligan
C. Monia
D. Moore
I. Morrell
J. Moy
S. Nadershahi
E. Oetting
D. Pak
G. Penokie
A. E. Pione
D. Piper
R. Reisch
S. D. Schueler
R. N. Snively
G. R. Stephens
C. E. Strang, Jr.
T. Totani
D. Wagner
D. Wallace
J. L. Williams
M. Wingard
M. Yokoyama

T10/1155D Revision 2c

vii

Revision history

Revision 1 (July 17, 1996)

First release of working draft.

Revision 1a (August 13, 1996)

Changes were incorporated from ad hoc discussions with diverse participants.
These were presented at the Redmond, WA, SBP-2 Working Group meeting for
discussion.

Data structure locations have been constrained to enable cost-reductions in
target silicon. ORB’s and associated parameter and response buffers shall be in
the same node as the initiator that logged-in to the target. The same restriction
shall also apply to the status FIFO. In a similar fashion, the data buffer and the
page table that describe it shall reside both in the same node—although this node
does not have to be the same as the initiator’s.

The ORB fields that describe the data buffer and page table were enhanced to
permit the description of data transfer alignment requirements in the case where
the data buffer is directly addressable as a contiguous range of Serial Bus
addresses.

Interrupt notification was modified to permit the return of status to be optional. An
error condition overrides this parameter; a status block shall always be stored in
the event of an error.

The ORB data structures were modified to compact the stream CDB and stream
control ORB’s to 32 bytes from 64 bytes.

New management ORB’s have been defined for security management and
access control. The accompanying work in section 8 still remains to be
completed.

The status block has been expanded to permit the return of autosense data when
appropriate to the device class. Targets are permitted to return portions of the
status block when appropriate.

Unsolicited status was added as a feature, along with an interlock through a new
register, STATUS_ACKNOWLEDGE, to let the initiator pace the receipt of
unsolicited status reports.

The login and management agents have been collapsed into one agent, the
management agent. Requests are signaled to the management agent via a new
register, the MANAGEMENT_AGENT register, whose address is obtained from
configuration ROM.

The target fetch agent (for normal CDB, stream CDB and stream control
requests) has been enhanced to permit its reactivation from a SUSPENDED state
by a single write to the ORB_POINTER register. This is an improvement over the
previous approach where a write to the DOORBELL register would cause the
fetch agent to refetch the next_ORB address before fetching the new request. A

T10/1155D Revision 2c

viii

Serial Bus transaction is eliminated and the restart latency is significantly
improved.

A new configuration ROM entry, Unit_Unique_ID was defined to support SBP-2
devices that have multiple Serial Bus connections.

The basic task management model, discussed by the T10 SCSI-3 Working
Group in Colorado Springs, CO, July 17, 1996, is now part of the draft.

Revision 1b (September 9, 1996)

Changes were incorporated as a result of working group discussions in
Redmond, WA and were subsequently presented in Natick, MA.

The definition of a logical unit has been expanded. A target shall always
implement logical unit zero.

Alignment restrictions on SBP-2 data structures (i.e., anything referenced by an
address pointer in an ORB other than the data buffer itself) have been relaxed
from 16- to 4-byte alignment.

The normal and stream CDB ORB’s have been simplified to permit a variable
length CDB to follow the first five quadlets of the ORB, whose definition remains
constant. This eliminated the need for both a 32- and 64-byte ORB.

The names page_table and page_table_elements have been changed throughout
the document to data_descriptor and data_size, respectively. The meaning and
usage of these fields has not changed. These global changes are not marked
with change bars.

Block read transactions used to access page tables shall not cross page
alignment boundaries expressed as 2 page_size+8 bytes.

SBP-2 status has been redefined into two parts, one dependent upon the
command set of the device and another used to present transport protocol status
common to all devices.

As a result of discussions in Redmond, the fetch agent CSR’s have been
simplified and mistakes in the fetch agent state machine corrected. The figure
that illustrates the fetch agent state machine and the accompanying text have
been relocated to be closer to the descriptions of the usage of target fetch agents
by initiators.

Section 8 has been expanded to document the usage of the login and security
ORB’s defined in 5.1.4.

Revision 1c (September 18, 1996)

Changes made per working group discussions in Natick, MA.

The acronym CDB has been changed throughout to command block or
command_block, as appropriate. This global change is not marked by change
bars.

T10/1155D Revision 2c

ix

The conformance glossary has been expanded to define the terms “reserved”
and “ignored” and to clarify the implications of “shall.”

A note has been added to emphasize that device designers are encouraged to
use 32-byte ORB’s.

The fetchable bit in the status block has been renamed end_of_list and its
meaning has been redefined. The status block has been modified to permit
SBP-2 errors to be reported concurrently with command set errors. The
sense_key, asc and ascq fields have been deleted and redefined as command
set-dependent.

The MANAGEMENT_AGENT register has been redefined so that a write
transaction, rather than a lock, is used to signal a request to the target.

The doorbell, fetched and status_acknowledge bits have been removed from
AGENT_STATE register.

Configuration ROM definitions in the unit directory have been modified and a
logical unit directory added to permit greater flexibility in the specification of
targets that implement multiple logical units. The sample configuration ROM in
the informative annex reflects the changes.

A new clause has been added to section 9 to describe the expected use of a
target fetch agent by the BIOS or similar single-threaded application at an initiator.

The section on task management has been updated to improve clarity and to
indicate that support for task management ORB’s with a function of ABORT
TASK is optional. Targets are still required to recognize an abort task request
when the initiator sets the value of rq_fmt to three.

A normative annex has been added to specify the minimum Serial Bus
requirements for both initiators and targets.

Revision 1d (October 5, 1996)

Editorial comments discussed in Irvine, CA, have been incorporated in this
revision.

The definition of “reserved” has been changed so that a target shall not check the
values of reserved fields.

The notify bit is advisory. That is, a target may return status even if notify is zero.

The initiator shall insure that max_payload does not specify a maximum data
transfer larger than the speed code permits.

The circumstances under which a target may retry a block write transaction to an
initiator’s status_FIFO have been clarified.

The requirement for targets to implement the STATE_CLEAR.dreq bit has been
stated in Annex A.

T10/1155D Revision 2c

x

Revision 1e (November 9, 1996)

Minor editorial changes throughout, per discussions in Redmond, WA. The name
of the CURRENT_ORB register has been changed to ORB_POINTER; this global
change is unmarked by change bars.

After substantial discussion, the ad hoc working group concluded that security
issues are best handled at the command set level. SBP-2 need provide only an
access control mechanism that is sufficient to validate the actual identity of the
initiator, EUI-64, and to provide a means whereby an initiator that had access
rights before a Serial Bus reset has priority to reestablish the same access rights
ahead of other, competing initiators. As a consequence, section 8 has been
substantially revised and corresponding changes made to the data structure and
configuration ROM descriptions in 5.1.4 and 7.3.7 respectively.

The fetch agent state machine diagram has been updated to simplify the actions
a target shall take upon a write to the DOORBELL register.

The error conditions under which a target shall not attempt a retry of a block write
transaction to store completion status have been clarified.

In Annex A, the target is required to support 8-byte block read and block write
requests only for the MANAGEMENT_AGENT or ORB_POINTER register.

Former Annex B, “SCSI-3 Architecture Model compliance," has been removed to
a separate document under development by T10 that includes a description of the
use of SBP-2 facilities to implement SCSI devices.

Revision 1f (November 14, 1996)

The definition of “reserved” has been updated to bring it into conformance with
contemporaneous standards such as T10 Project 1048D, SCSI-3 Multimedia
Commands.

A function value for management ORB’s has been set aside for command
set-dependent use.

New password and password_length fields have been defined in the login ORB.
The usage of these fields is command set-dependent but is intended to permit
additional validation of the login ORB by a target.

An exclusive bit has been defined in the login ORB. When exclusive is set to one
it causes multiple initiator targets to behave as if they supported only one login at
a time.

In order to enable lower cost target hardware implementations, the format of the
page table has been expanded and redundant information has been added. The
net result is that the parsing of page tables may be normalized by target
hardware. A requirement for octlet alignment of the page table elements was also
added.

Targets shall not support broadcast write requests except as already required by
IEEE Std 1394-1995 or future standards.

T10/1155D Revision 2c

xi

Logout requests are to be rejected if the source_ID does not match that of the
currently logged-in initiator.

Revision 1g (December 4, 1996)

The response status returned by a target when an ORB with rq_fmt equal to three
is processed (also known as a dummy ORB) is REQUEST ABORTED.

The previous revision had errors in the description of constraints that apply to
page table elements, dependent upon their position within the page table. These
errors have been corrected.

The descriptions of login and logout in section 8 have been clarified.

Portions of 10.4.1 have been rewritten in a simpler fashion that also permits
greater target implementation flexibility in response to a task management ORB
with the ABORT TASK function.

Revision 2 (January 9, 1997)

Subsequent to a vote by the T10 plenary to stabilize portions of SBP-2, this
revision has been prepared; it is essentially identical to Revision 1g but without
the change bars.

The sections stabilized by the plenary exclude the portions of SBP-2 concerned
with isochronous data streams. The stabilized sections are enumerated below:

For readers unfamiliar with T10 process, stabilization is a significant milestone in
the development of a standard. Once a document or portions thereof are
stabilized they are not to be modified unless either a) there is a demonstrable flaw
in the draft standard or b) the changes are agreed to by a two-thirds vote of the
T10 plenary in which at least half of the membership votes.

Section Description

1 Scope and purpose

2 Normative references

3 Definitions and notation

4 Model (with the exception of 4.5)

5 Data structures (with the exception of 5.1.2.2 and 5.1.3)

6 Control and status registers (with the exception of 6.5)

7 Configuration ROM

8 Access (with the exception of 8.2.2)

9 Command execution

10 Task management

Annex A Minimum Serial Bus node capabilities

Annex B Sample configuration ROM

T10/1155D Revision 2c

xii

Revision 2a (February 10, 1997)

Accredited Standards Committee X3 – Information Technology has changed its
name to the National Committee for Information Technology Standardization
(NCITS). The global changes are not marked by change bars.

Various typographical errors noted by reviewers have been corrected and marked
with change bars.

The model of a target has been enhanced by a new clause that describes both
direct and indirect access to the data buffer and by new material in the
isochronous sections. As part of this, the name “isochronous login” has been
changed to “create stream.”

The MANAGEMENT_AGENT and ORB_POINTER registers are required to
support both block reads and block writes.

The numeric values used to encode data type in the common format for recorded
isochronous data have been changed to align them with tcode values used by
Serial Bus.

The stream control function, SET CHANNEL MASK, is restricted to only those
times when an isochronous stream is paused or stopped.

Error reporting for isochronous streams has been simplified. Instead of an error
log accumulated in initiator memory, unsolicited status is stored each time an
error occurs.

Annex C (informative), “Status block for sense data”, has been added. Although
this annex is informative within the context of SBP-2 its purpose is to provide
material that may be normatively referenced from other command set standards,
such as ATAPI, MMC-2 or SCSI.

Revision 2b (February 27, 1997)

The plug control registers (PCR’s) and the procedures for their use have been
removed because they do not add to the functionality already provided by SBP-2
stream control requests.

The model of the stream engine has been enhanced to show a functional
component that filters channels from previously recorded isochronous data before
it is made available to the Serial Bus LINK.

Fields in the stream command block ORB have been modified to permit cycle
mark synchronization locations to be specified. This has utility when an SBP-2
device has lost current position information within an isochronous stream as a
result of command block error(s).

Channel configuration information is conveyed as a single, 64-entry channel map
instead of the previous method that required a stream control ORB to configure
each channel.

A new field, delta_time, has been added to the CREATE STREAM request. Upon
playback, delta_time is used to shift the time-stamps of certain isochronous data
formats into the future.

T10/1155D Revision 2c

xiii

A note has been added to recommend that writes to the target’s RESET_START
register be qualified by the source_ID of the write in order to restrict access to
currently logged-in initiators.

Behavioral differences between normal command block agents and the pairs of
stream command block and stream control agents allocated by a create stream
request have been clarified. This includes a redefinition of ORB_POINTER
behavior such that its contents are unchanged by a bus reset. Stream task sets
are not aborted by a bus reset—they continue to execute but retain completion
status until a reconnect by the initiator.

Support for abort task by means of task management ORB’s with a function of
ABORT TASK is mandatory for stream command block and stream control fetch
agents.

While recording isochronous data, the target shall detect missed isochronous
cycle(s) and synthesize a CYCLE MARK packet to record on the medium.

Errors in the description of the isochronous data interchange format that are not
consonant with the CIP format specified by IEC-1883 have been corrected.

Revision 2c (March 26, 1997)

The name Command_Set_Version has been changed, globally, to
Command_Set; the changes are not marked.

References to REQUEST ABORTED have been remove since this response
code has never been defined. In conjunction, the description of abort task
processing in 10.4.1 has been clarified to distinguish between dummy ORB
completed and request aborted status.

The code values defined for the status block have been expanded to permit more
accurate description of Serial Bus transport errors. Errors detected by a stream
controller may also be reported by the use of unsolicited status.

A target’s permission to store unsolicited status has been modified so that it is
initially disabled at the time of a login or create stream request. Initiators that wish
to accept unsolicited status may subsequently write to the
UNSOLICITED_STATUS_ENABLE register each time a single instance of
unsolicited status may be stored.

A description of the optional LOGICAL UNIT RESET function has been added to
the task management section.

A tabular summary of fetch agent and task set states has been added to the
section on task management. The table collects in one place target state
information related to significant events such as power reset, bus reset or task
management functions.

All of the above technical changes to stabilized portions of the draft standard were
approved by the T10 plenary March 13, 1997, in San Diego, CA.

AMERICAN NATIONAL STANDARD T10/1155D Revision 2c

1

American National Standard for Information Systems –

Serial Bus Protocol 2 (SBP-2)

1 Scope and purpose

1.1 Scope

This standard defines a command and data transport protocol for High Performance Serial Bus, as
specified by IEEE Std 1394-1995. The transport protocol, Serial Bus Protocol 2 or SBP-2, conforms to the
requirements of the aforementioned standard as well as to ISO/IEC 13123:1994, Control and Status
Register (CSR) Architecture for Microcomputer Buses, and permits the exchange of commands, data and
status between initiators and targets connected to Serial Bus.

1.2 Purpose

Original development work for Serial Bus Protocol (SBP) was initiated out of a desire to adapt SCSI
capabilities and facilities to a serial environment. Serial interconnects offer a migration path for SCSI into
the future because they may be better suited to cost reduction and speed increases than the parallel
interconnects first utilized by SCSI.

As development of the standard progressed, the working group recognized the solutions provided by
SBP-2 were of general applicability to large classes of Serial Bus peripheral devices. With this in mind, the
development work was redirected to provide mechanisms for the delivery of commands, data and status
independent of the command set or device class of the peripheral. SBP-2 provides a generic framework
that may be referenced by other documents or standards that address the unique requirements of a
particular class of devices. Ranked below are enhanced goals set for the design of SBP-2:

– The protocol should permit the encapsulation of commands, data and status from a diversity of
command sets, legacy as well as future, in order to preserve the investment in an existing
application and operating system software base;

– The protocol should enable the initiator to form an arbitrarily large set of tasks without consideration
of implementation limits in the target;

– The protocol should allow the initiator to dynamically add tasks to this set while the target is active in
execution of earlier tasks. The addition of new tasks should not interfere with the target’s processing
of tasks currently active;

– Although the protocol should enable varying levels of features and performance in target
implementations, strong focus should be kept on a minimal set deemed adequate for entry-level
environments;

– Within the constraints posed by the preceding goal, the hardware and software design of the initiator
should not be unduly affected by variations in target capabilities;

– The protocol should take advantage of features of Serial Bus that offer improvement of functionality
or permit the inclusion of new functionality. In particular, the isochronous features of Serial Bus are
one of its key differentiators and should be fully supported by the protocol; and

– In order to promote the scalability of aggregate system performance, the protocol should distribute
the DMA context from the initiator adapter to the target devices.

T10/1155D Revision 2c

2

Although SBP-2 has been designed for Serial Bus as currently specified by IEEE Std 1394-1995, the
Technical Committee anticipates that it will be appropriate for use with future extensions to Serial Bus as
they are standardized.

T10/1155D Revision 2c

3

2 Normative references

The standards named in this section contain provisions which, through reference in this text, constitute
provisions of this American National Standard. At the time of publication, the editions indicated were valid.
All standards are subject to revision; parties to agreements based on this American National Standard are
encouraged to investigate the possibility of applying the most recent editions of the standards indicated
below.

Copies of the following documents can be obtained from ANSI:

Approved ANSI standards;

Approved and draft regional and international standards (ISO, IEC, CEN/CENELEC and ITUT); and

Approved and draft foreign standards (including BIS, JIS and DIN).

For further information, contact the ANSI Customer Service Department by telephone at (212) 642-4900,
by FAX at (212) 302-1286 or via the world wide web at http://www.ansi.org.

Additional contact information for document availability is provided below as needed.

2.1 Approved references

The following approved ANSI, international and regional standards (ISO, IEC, CEN/CENELEC and ITUT)
may be obtained from the international and regional organizations that control them.

IEEE Std 1394-1995, Standard for a High Performance Serial Bus

ISO/IEC 9899:1990, Programming Languages—C

ISO/IEC 13213:1994, Control and Status Register (CSR) Architecture for Microcomputer Buses

2.2 References under development

At the time of publication, the following referenced standards were still under development.

IEEE P1394a, Draft Standard for a High Performance Serial Bus (Supplement)

T10/1155D Revision 2c

5

3 Definitions and notation

3.1 Definitions

3.1.1 Conformance

Several keywords are used to differentiate levels of requirements and optionality, as follows:

3.1.1.1 expected: A keyword used to describe the behavior of the hardware or software in the design
models assumed by this standard. Other hardware and software design models may also be
implemented.

3.1.1.2 ignored: A keyword that describes bits, bytes, quadlets, octlets or fields whose values are not
checked by the recipient.

3.1.1.3 may: A keyword that indicates flexibility of choice with no implied preference.

3.1.1.4 reserved: A keyword used to describe objects—bits, bytes, quadlets, octlets and fields—or the
code values assigned to these objects in cases where either the object or the code value is set aside for
future standardization. Usage and interpretation may be specified by future extensions to this or other
standards. A reserved object shall be zeroed or, upon development of a future standard, set to a value
specified by such a standard. The recipient of a reserved object shall not check its value. The recipient of
a defined object shall check its value and reject reserved code values.

3.1.1.5 shall: A keyword that indicates a mandatory requirement. Designers are required to implement all
such mandatory requirements to assure interoperability with other products conforming to this standard.

3.1.1.6 should: A keyword that denotes flexibility of choice with a strongly preferred alternative. Equivalent
to the phrase “is recommended.”

3.1.2 Glossary

The following terms are used in this standard:

3.1.2.1 byte: Eight bits of data.

3.1.2.2 doublet: Two bytes, or 16 bits, of data.

3.1.2.3 initial node space: The 256 terabytes of Serial Bus address space that is available to each node.
Addresses within initial node space are 48 bits and are based at zero. The initial node space includes
initial memory space, private space, initial register space and initial units space. See either
ISO/IEC 13213:1994 or IEEE Std 1394-1995 for more information on address spaces.

3.1.2.4 initial register space: A two kilobyte portion of initial node space with a base address of
FFFF F000 000016. Core registers defined by ISO/IEC 13213:1994 are located within initial register space
as are Serial Bus-dependent registers defined by IEEE Std 1394-1995.

3.1.2.5 initial units space: A portion of initial node space with a base address of FFFF F000 040016. This
places initial units space adjacent to and above initial register space. The CSR’s and other facilities
defined by unit architectures are expected to lie within this space.

3.1.2.6 isochronous channel: A relationship between a node that is the talker and one or more nodes
that are listeners, identified by a channel number. One isochronous packet, identified by the channel

T10/1155D Revision 2c

6

number, may be sent by the talker during each isochronous cycle. Channel numbers are allocated
cooperatively through isochronous resource management facilities.

3.1.2.7 isochronous cycle: An operating mode of Serial Bus that occurs, on average, every 125
microseconds. During an isochronous cycle, the bus is available to isochronous talkers, only. Cooperative
allocation of isochronous bandwidth guarantees a bounded worst-case latency for isochronous data.

3.1.2.8 kilobyte: A quantity of data equal to 2 10 bytes.

3.1.2.9 listener: A node that receives an isochronous packet for an isochronous channel during an
isochronous cycle. There may be zero, one or more listeners for any given isochronous channel.

3.1.2.10 login: The process by which an initiator obtains access to a set of target fetch agents. The target
fetch agents and their control and status registers provide a mechanism for an initiator to convey ORB’s to
the target.

3.1.2.11 login ID: A value assigned by the target during a login or create stream process. For all logins ,
the login ID establishes a relationship between an initiator and a task set: an initiator ID. In the case of a
create stream request, the login ID (or, synonymously, the stream ID) establishes a relationship between
an initiator and an isochronous stream. Either kind of login ID is used to identify subsequent requests from
an initiator; in some cases the login ID is not present in the operation request block and its value is
implicit.

3.1.2.12 node ID: The 16-bit node identifier defined by IEEE Std 1394-1995 that is composed of a bus ID
portion and a physical ID portion. The physical ID is uniquely assigned as a consequence of Serial Bus
initialization.

3.1.2.13 octlet: Eight bytes, or 64 bits, of data.

3.1.2.14 operation request block: A variable length data structure fetched from system memory by a
target in order to execute the command encapsulated within it.

3.1.2.15 quadlet: Four bytes, or 32 bits, of data.

3.1.2.16 register: A term used to describe quadlet aligned addresses that may be read or written by Serial
Bus transactions. In the context of this standard, the use of the term register does not imply a specific
hardware implementation. For example, in the case of split transactions that permit sufficient time
between the request and response subactions, the behavior of the register may be emulated by a
processor within the module.

3.1.2.17 split transaction: A transaction that consists of separate request and response subactions.
Subactions are considered separate if ownership of the bus is relinquished between the two. A transaction
that is not split is called a unified transaction.

3.1.2.18 status block: A fixed length data structure written to system memory by a target when an
operation request block has been completed.

3.1.2.19 stream: An object that represents a target’s functions and resources necessary to transfer
isochronous data from one or more Serial Bus channels to the device medium (the target is a listener) or
to transfer isochronous data from the device medium to one or more Serial Bus channels (the target is a
talker).

3.1.2.20 stream ID: A synonym for login ID when the login ID has been returned by the target in response
to a create stream request.

T10/1155D Revision 2c

7

3.1.2.21 system memory: The portions of any node’s memory resource that are directly addressable by a
Serial Bus address and which accepts, at a minimum, quadlet read and write access. Computers are the
most common example of nodes that make system memory addressable from Serial Bus, but any node,
including those usually thought of as peripheral devices, may have system memory.

3.1.2.22 talker: A node that transmits an isochronous packet for an isochronous channel during an
isochronous cycle. There shall be no more than one talker for any given isochronous channel.

3.1.2.23 task: A task is an organizing concept that represents the work to be done by a target to carry out
a command. In order to perform a task, a target maintains context information for the task, which includes
(but is not limited to) the command, parameters such as data transfer addresses and lengths, completion
status and ordering relationships to other tasks. A task has a lifetime, which commences when the task is
signaled to the target, proceeds through a period of execution by the target and finishes when completion
status is signaled to the initiator. While a task is active, it makes use of both target resources and initiator
resources.

3.1.2.24 task set: A group of tasks available for execution by a logical unit of a target. There may be
dependencies between individual tasks within the task set specified by this standard.

3.1.2.25 terabyte: A quantity of data equal to 2 40 bytes.

3.1.2.26 transaction: An exchange between a requester and a responder that consists of a request and a
response subaction. The request subaction transmits a Serial Bus transaction such as quadlet read, block
write or lock, from the requesting node to the node intended to respond. Some Serial Bus commands
include data as well as transaction codes. The response subaction returns completion status and
sometimes data from the responding node to the requesting node.

3.1.2.27 unified transaction: A transaction in which the request and response subactions are completed
as an indivisible sequence. Between the initiation of the request and the completion of the response,
subactions by nodes other than the requester or the responder are blocked. A transaction that is not
unified is called a split transaction.

3.1.2.28 unit: A component of a Serial Bus node that provides processing, memory, I/O or some other
functionality. Once the node is initialized, the unit provides a CSR interface that is typically accessed by
device driver software at an initiator. A node may have multiple units, which normally operate
independently of each other.

3.1.2.29 unit architecture: The specification of the interface to and the behaviors of a unit implemented
within a Serial Bus node. This standard is a unit architecture for SBP-2 targets.

3.1.2.30 unit attention: A state that a logical unit maintains while it has unsolicited status information to
report to one or more logged-in initiators. A unit attention condition shall be created as described
elsewhere in this standard or in the applicable command set- and device-dependent documents. A unit
attention condition shall persist for a logged-in initiator until a) unsolicited status that reports the unit
attention condition is successfully stored at the initiator or b) the initiator’s login becomes invalid or is
released. Logical units may queue unit attention conditions. After the first unit attention condition is
cleared, another unit attention condition may exist.

3.1.3 Abbreviations

The following are abbreviations that are used in this standard:

CDB Command descriptor block

CIP Common isochronous packet format

T10/1155D Revision 2c

8

CSR Control and status register

CRC Cyclical redundancy checksum

DVCR Digital video cassette recorder

EUI-64 Extended Unique Identifier, 64-bits

LUN Logical unit number

MPEG Motion picture experts group

ORB Operation request block

SBP-2 Serial Bus Protocol 2 (this standard itself)

3.2 Notation

The following conventions should be understood by the reader in order to comprehend this standard.

3.2.1 Numeric values

Decimal, hexadecimal and, occasionally, binary numbers are used within this standard. By editorial
convention, decimal numbers are most frequently used to represent quantities or counts. Addresses are
uniformly represented by hexadecimal numbers. Hexadecimal numbers are also used when the value
represented has an underlying structure that is more apparent in a hexadecimal format than in a decimal
format. Binary numbers are used infrequently and generally limited to the representation of bit patterns
within a field.

Decimal numbers are represented by Arabic numerals without subscripts or by their English names.
Hexadecimal numbers are represented by digits from the character set 0 – 9 and A – F followed by the
subscript 16. Binary numbers are represented by digits from the character set 0 and 1 followed by the
subscript 2. For the sake of legibility, binary and hexadecimal numbers are separated into groups of four
digits separated by spaces.

As an example, 42, 2A16 and 0010 10102 all represent the same numeric value.

3.2.2 Bit, byte and quadlet ordering

SBP-2 is defined to use the facilities of Serial Bus, IEEE Std 1394-1995, and therefore uses the ordering
conventions of Serial Bus in the representation of data structures. In order to promote interoperability with
memory buses that may have different ordering conventions, this standard defines the order and
significance of bits within bytes, bytes within quadlets and quadlets within octlets in terms of their relative
position and not their physically addressed position.

Within a byte, the most significant bit, msb, is that which is transmitted first and the least significant bit,
lsb, is that which is transmitted last on Serial Bus, as illustrated below. The significance of the interior bits
uniformly decreases in progression from msb to lsb.

Figure 1 – Bit ordering within a byte

lsbmsb
most significant least significant

interior bits (decreasing significance left to right)

T10/1155D Revision 2c

9

Within a quadlet, the most significant byte is that which is transmitted first and the least significant byte is
that which is transmitted last on Serial Bus, as shown below.

Figure 2 – Byte ordering within a quadlet

Within an octlet, which is frequently used to contain 64-bit Serial Bus addresses, the most significant
quadlet is that which is transmitted first and the least significant quadlet is that which is transmitted last on
Serial Bus, as the figure below indicates.

Figure 3 – Quadlet ordering within an octlet

Increasing Serial Bus addresses for quadlets correspond to increasing addresses on other buses bridged
to Serial Bus, but the correlation of addresses is problematical when block transfers take place that are
not quadlet aligned or not an integral number of quadlets. In such cases, no assumptions can be made
about the ordering (significance within a quadlet) of bytes at the unaligned beginning or fractional quadlet
end of such a block transfer, unless an application has knowledge (outside of the scope of this standard)
of the ordering conventions of the other bus.

3.2.3 Register specifications

This standard precisely defines the format and function of control and status registers, CSR’s. Some of
these registers are read-only, some are both readable and writable and some generate special side
effects subsequent to a write.

In order to precisely define CSR’s, their bit fields, their initial values and the effects of read, write or other
transactions, the format illustrated by Figure 4 below is used.

most significant quadlet

least significant quadlet

next to
least significant byte

second
most significant byte

most significant least significant

most significant byte least significant byte

most significant

least significant

T10/1155D Revision 2c

10

Figure 4 – CSR specification example

The register definition contains the names of register fields. The names are intended to be descriptive, but
the fields are defined in the text; their function should not be inferred solely from their names. However,
the following register definition field names have defined meanings.

CSR’s shall assume initial values upon the restoration of power (a power reset) or upon a write to the
node’s RESET_START register (a command reset). If the power reset values differ from the command
reset values, they shall be separately and explicitly defined. Initial values for register fields may be
described as numeric constants or with one of the terms defined for the register definition. Values for
register fields subsequent to a reset may be described in the same terms or as defined below.

In addition to numeric values for constant fields, the read values returned in response to a quadlet read
transaction may be specified by the terms below.

Name Abbreviation Definition

bus-dependent bus-depend The meaning of the field shall by defined by the bus standard, in this
case IEEE Std 1394-1995

reserved r The field is reserved for future standardization (see definitions)

unit-dependent unit-depend The meaning of the field shall be defined by the company or
organization responsible for the unit architecture

vendor-dependent vendor-depend
or v

The meaning of the field shall be defined by the node’s vendor

Name Abbreviation Definition

unchanged x The field retains whatever value it had just prior to the power reset,
bus reset or command reset.

definition

initial values

read values

write effects

most significant least significant

notwhyrsigvendor-dependent bus-dependunit-dependent

0001zeros 31F316

uu0wlast update last writelast write

eiisignored storedstored

T10/1155D Revision 2c

11

The effects of data written to the register shall be specified by the terms below.

Reserved fields within a register shall be explicitly described with respect to initial values, read values and
write effects. Initial values and read values shall be zero while write effects shall be ignored. CSR’s that
are not implemented, either because they are optional or they fall within a reserved address space, shall
abide by these same conventions if a successful completion response is returned for a read, write or lock
transaction.

3.2.4 State machines

All state machines in this standard are defined in the style illustrated by Figure 5.

1 For clarity, read values for a field in a register that accepts lock transactions may be described as last successful

lock rather than last write. However, the abbreviation in both cases remains w. Similar liberties may be taken with
the use of conditionally stored in place of stored when the action occurs as the result of a lock transaction, but the
corresponding one-letter abbreviation, s, is also unchanged.

Name Abbreviation Definition

last write w The value of the field shall be either the initial value or, if a write or
lock transaction addressed to the register has successfully
completed, the value most recently stored in the field.1

last update u The value of the field shall be that most recently updated by the node
hardware or software. An updated field value may be the result of a
write effect to the same register address, a different register address
or some other change of condition within the node.

Name Abbreviation Definition

effect e The value of the data written to the field may have an effect on the
node’s state, but the effect may not be immediately visible by a read
of the same register. The effect may be visible in another register or
may not be visible at all.

ignored i The value of the data written to the field shall be ignored; it shall
have no effect on the node’s state.

stored s The value of the data written to the field shall be immediately visible
by a read of the same register; it may also have other effects on the
node’s state.

T10/1155D Revision 2c

12

Figure 5 – State machine example

The state machines in this standard make three assumptions:

– Time elapses only within a discrete state;

– State transitions are conceptually instantaneous; the only actions taken during the transition are the
setting of flags or variables and the sending of signals; and

– Each time a state is entered (or reentered from itself), the actions of that state are performed.

Multiple transitions may connect two states. In this case, the transitions are uniquely labeled by appending
a character to the transition label, e.g., S0:S1a and S0:S1b.

Condition for transition from S1 back to itself
S1:S1

Action taken on this transition

S1: State one
Actions started on entry to S1

S0: State zero
Actions started on entry to S0

Action taken on this transition

Condition for transition from S1 to S0
S1:S0

Action taken on this transition

Condition for transition from S0 to S1
S0:S1

transition label

state label

NOTE – S1 actions are
restarted following this transition

T10/1155D Revision 2c

13

4 Model (informative)

Serial Bus Protocol 2 (SBP-2) is a transport protocol defined for IEEE Std 1394-1995, Standard for a High
Performance Serial Bus. It defines facilities for requests originated by Serial Bus devices (initiators) to be
communicated to other Serial Bus devices (targets) as well as the facilities required for the transfer of data
or status information between the devices.

The remainder of this clause is informative and describes components of the SBP-2 model. It is intended
to enhance the usefulness of the other, normative parts of this standard. In addition to the information in
this clause, users of this standard should also be familiar with the CSR architecture and Serial Bus
standards.

4.1 Unit architecture

In CSR architecture and Serial Bus terminology, devices implemented to this standard (targets) are units.
A Serial Bus node that implements a target shall have a unit directory in configuration ROM that identifies
the presence and capabilities of the target.

The unit directory in configuration ROM permits initiators to detect the presence of targets during Serial
Bus configuration, whether part of system initialization or subsequent to a Serial Bus reset. The node’s
64-bit identifier, EUI-64, permits detected targets to be uniquely recognized despite changes in physical
addresses that may occur as the result of Serial Bus resets.

4.2 Logical units

A logical unit is part of the unit architecture and is an instance of a device model, e.g., mass storage,
CD-ROM or printer. A logical unit consists of a device server that is responsible to execute commands for
the device, one or more stream controllers, one or more task sets that hold commands available for
execution by the device server or stream controller(s) and an identifier that is unique within the domain of
the target.

A target shall implement at least one logical unit, addressable as logical unit number (or LUN) zero.
Additional logical units may be implemented, which may be addressable by their logical unit numbers. The
logical units may implement different device models; for example, a single unit architecture might contain
both a CD-ROM logical unit and an associated medium-changer logical unit. The presence of logical units
within a target may be described by configuration ROM or may be discoverable by command set-
dependent requests directed to the target.

4.3 Requests and responses

Target actions, such as a disk read that transfers data from device medium to system memory, are
specified by means of requests created by the initiator and signaled to the target. The request is contained
within a data structure called an operation request block or ORB. The eventual completion status of a
request is indicated by means of a status block stored by the target at an address provided by the initiator.

This standard defines several different formats for request blocks, whose principal uses are:

– to obtain access to target resources (login requests);

– to transport command blocks (normal and stream command block requests);

– to manage task sets or to release target resources (management requests); or

– to control the flow of isochronous data (stream control requests).

T10/1155D Revision 2c

14

Login and management requests are directed to agents that can service only a single request at a time.
The ORB’s for the other requests, normal command block, stream command block and stream control,
provide a field that shall contain a null pointer or the address of another ORB. This permits these requests
to be in a linked list, as illustrated below.

Figure 6 – Linked list of ORB’s

Requests in a linked list are serviced by a target fetch agent, which reads the request(s) from initiator
memory when the initiator signals the availability of request(s). The target is permitted to read ahead in the
linked list; consequently the device server may reorder the execution of requests to improve performance.

When the request is complete, either in success or failure, the target stores a status block at an address
specified by the initiator.

4.4 Data buffers

The ORB’s described in the preceding clause contain the device command and the address of the data
buffer for the command. The data buffer may be a single, contiguous buffer that is addressed directly by
the ORB or it may be a collection of (possibly disjoint) buffers that are addressed indirectly through a page
table. The figures below illustrate both cases.

As an example, consider a command intended to transfer image data to a printer. If we assume that the
image data is 308816 bytes long and the buffer starts at an address of 23 617416, the relationship between
the ORB and the data buffer might appear as in Figure 7 below.

0000 0000 8000 000016 0000 0000 8000 002016

ORB A1

0000 0000 8000 004016

ORB A2

FFFF FFFF FFFF FFFF16

ORB A3

T10/1155D Revision 2c

15

Figure 7 – Directly addressed data buffer

In the preceding example, two fields in the ORB specify the 64-bit address of the data buffer and its
length, in bytes. The data buffer is shown with a node ID of FFC016, which is node zero on the local bus.
The printer uses block read transactions to fetch data from the buffer before printing; the maximum size of
the data payload for each request is controlled by a field in the ORB. The dotted lines within the data
buffer indicate page boundaries. Although the data buffer is contiguous, the printer is not permitted to
cross a page boundary in any one block read request.

When the data buffer consists of disjoint segments, it is necessary to indirectly address the data buffer
through a page table, as shown in Figure 8 below. This figure could be an illustration of data read from a
disk into various pages of an initiator’s file system cache. In the example, assume that 296016 bytes of
data are to be read from disk.

Figure 8 – Indirectly addressed data buffer (via page table)

ORB

4

FFC0 0000 0023 304816
Page table

0000 00CE AA9C16

0000 00CE C00016

0000 00CE D00016

0000 00CE F00016

00CE B00016

00CE C00016

00CE D00016

00CE E00016

00CE F00016

Data buffer

ORB

308816

FFC0 0000 0023 617416

0023 900016

0023 800016

0023 700016

Data buffer

len

len

len

len

T10/1155D Revision 2c

16

The fields in the ORB that directly addressed a data buffer in the first example now point to a page table.
Note that the ORB field that contains the data length when direct addressing is employed instead contains
the number of elements in the page table—in this case, four. Each of the four page table elements points
to the start of a segment of the data buffer. Each page table element also contains the length of the
segment. The first segment ends on a page boundary, all other segments start on page boundaries (and
the middle segments also end on page boundaries) while the last segment may end on any boundary. In
this example, the segment lengths are 056416, 100016, 100016 and 03FC16, respectively.

When a page table is used, both the page table and the data buffer it describes reside in the same node.
The node ID of the page table, FFC016, is not repeated in the page table elements. The space that would
have otherwise been occupied by the node ID instead is used to contain the length of each segment.

4.5 Target agents

Target agents are facilities provided by SBP-2 devices that enable initiators to signal the availability of
requests. There are two fundamental types of target agent, one that can execute a single request at a time
and the other that can manage queues (linked lists) of requests, as illustrated by Figure 6 above. In the
first case, the initiator signals the request to the agent by means of a Serial Bus block write request with
the address of the request. In the other case, the initiator appends new requests to an active list and the
target agent in turn fetches the requests from system memory as target resources permit their execution.

Those target agents that manage linked lists of requests utilize context maintained at both the initiator and
target to fetch requests from memory and make the request locally available to the target for execution.
Although other components not visible to an initiator may form part of this context, the context minimally
consists of these three elements:

– a linked list of ORB’s;

– a current ORB address; and

– a doorbell.

This standard defines procedures for both the initiator and the target that permit new requests to be added
to a linked list of ORB’s while the target is actively fetching or executing previously enqueued requests.
The procedures avoid the possibility of race conditions between the producer (initiator) and consumer
(target) of the ORB’s.

There are three types of target agent:

– management;

– command block; and

– stream control.

Management agents accept a variety of requests: login, task management and logout. Before any other
requests can be made, it is necessary for an initiator to complete a login via the management agent. Once
this is done, the management agent also accepts create stream requests and task management requests
directed to either a normal (or asynchronous) task set or to a task set associated with an isochronous
stream. Ultimately, management agents accept logout requests; these indicate the initiator‘s intent to
release target resources previously acquired by a login or create stream request. Management agents
service a single request at a time and do not support linked lists.

Command block agents service the majority of target requests, either normal or stream command block
requests, according to the type of login that granted access to the command block agent. Command block
agents manage linked lists of requests.

T10/1155D Revision 2c

17

Stream control agents are associated with isochronous operations, only, and are one of two agents
necessary to coordinate isochronous operations. The other, the stream command block agent, accepts
commands that govern the movement of isochronous data to or from the device medium. Its associated
stream control agent accepts requests that meter the flow of isochronous data to or from Serial Bus. The
time-critical nature of these operations requires that stream control agents support linked lists of requests,
just as command block agents. Both agents are necessary to completely support isochronous operations
for a target.

4.6 Streams

Streams are objects that are based upon the isochronous capabilities of Serial Bus. A stream consists of
all of the target functions and resources that are necessary to transfer isochronous data from one or more
Serial Bus channels to the device’s medium (the target is a listener) or to transfer isochronous data from
the device’s medium to one or more Serial Bus channels (the target is a talker). Although the direction,
listener or talker, of any stream is independent of any other stream within each stream all of the channels
shall be configured for the same direction.

Streams require Serial Bus resources as well as target resources. These include the aggregate bandwidth
necessary for the stream, the channel numbers utilized by the stream and the isochronous connections
that characterize the stream. An application shall allocate all necessary resources before activating a
target isochronous stream.

A stream of isochronous data appears on Serial Bus as packet(s) during each isochronous cycle. This in
turn represents an ordered byte stream of data on the device medium. The presentation of this data is
controlled by ORB’s that describe the data location on the medium and other ORB’s that control its flow on
Serial Bus. The relationship between these different components during playback by a target is given by
Figure 9 below.

Figure 9 – Components of an isochronous stream

The figure shows that the order of presentation of bytes in a stream is determined by the order of stream
command ORB’s—but that this order is independent of the location of the data on device medium. The
quantity of stream data assembled into an isochronous packet each cycle is determined by information
previously recorded on the medium as part of the stream. The example shows a stream with only one

Device medium (LBA —>)

Serial Bus (time —>)

125 µs

Stream command ORB’s

LBA

length

LBA

length

LBA

length

… …

T10/1155D Revision 2c

18

channel (one packet per isochronous cycle) and a fixed packet size, but streams may consist of more than
one channel and the packet size may be different each isochronous cycle.

Streams differ fundamentally from the data transfers described by normal command blocks in two
important respects. First, streams do not require any address context for the transfer of data to or from
system memory; stream data is identified by a channel number and the time-ordered location of the data
within the stream. Second, streams permit flow control that is synchronized to time or other time-
dependent events.

Because of these differences from normal operations, two functional components are required within the
target to fully control a stream: a stream task set and a stream controller. Figure 10 below illustrates the
way in which these target components cooperate to form a functional unit, the stream engine.

Figure 10 – Stream engine block diagram

The stream engine components that are shown within the dotted lines represent target resources
necessary for each instance of an isochronous stream. The two execution agents each have separate
queues of ORB’s that direct their operation. The stream command block ORB’s specify the length and
location of isochronous data as it is transferred to or from the device medium while the flow control ORB’s
synchronize and meter the isochronous data on Serial Bus as the target listens or talks. These two
components do not communicate directly with each other—they coordinate their operations by using a
common isochronous data format for the information in the FIFO’s that separate them. Although the
details of the FIFO’s (or buffers) are implementation-dependent, this model assumes that the byte
ordering of the isochronous data is preserved.

The individual components of the stream engine are described in more detail in the clauses that follow.

Flow control
ORB’s

Flow control

Execution
agent

Fetch
agent

Stream command block
ORB’s

STREAM ENGINE
(shown within dotted lines)

Stream task set

Execution
agent

Fetch
agent

FIFO
1394
LINK FIFO

Medium
Access and

Control

Channel
Filter

T10/1155D Revision 2c

19

4.6.1 Stream task set

Just as a normal (or asynchronous) task set consists of a set of commands that request data transfer to or
from a device’s medium, a stream task set also consists of a set of commands that specify medium
locations for isochronous data. There are two differences:

– no system memory addresses; and

– implicit order relationships.

No system memory addresses are needed because data transferred to or from the device medium is
associated with one or more Serial Bus isochronous channels. When isochronous data is read from the
device medium it is made available, in order, to the stream controller described below. When isochronous
data is written to the device medium it is obtained, in order, from the stream controller. In neither case is a
system memory address necessary.

Isochronous data is essentially time-ordered. As a consequence, the isochronous data transferred to or
from the device medium must be presented in correct order. Therefore no reordering of isochronous
commands is permitted within the task set associated with an isochronous stream and the failure of any
one task requires that all subsequent tasks be aborted.

This behavior required of a stream task set is that all tasks shall be executed in order and their completion
status reported in the same order.

4.6.2 Stream controller

By means that are implementation dependent, an ordered data pipe is assumed to exist between a
target’s stream task set and the associated stream controller. The function of the stream controller is to
mediate the flow of isochronous data between this data pipe and Serial Bus.

The format of data transported through the data pipe is similar to that of Serial Bus isochronous packets.
The data is identified by time stamps (cycle times) and channel numbers and the payload is described in
terms of its length, in bytes.

The stream controller shall:

– filter isochronous data according to channel numbers;

– transform time stamps and channel numbers in the isochronous data; and

– synchronize the flow of the isochronous data with external, time-dependent events.

Any of these operations may take place whether the stream controller is a listener or a talker. Stream
control ORB’s that specify these operations are independent of the stream command block ORB’s in the
stream task set. The stream task set and the stream controller communicate with each other through the
data pipe.

Stream controller actions may be queued by the target. This permits time-critical operations to be specified
in advance and avoids latency problems that could arise if the stream controller could accept no more
than one request at a time. Within the queue of requests to the stream controller, each is executed in
order as the preceding stream control ORB completes.

4.6.3 Error reporting

In addition to the data transfer errors that may be encountered by any of the stream command block
ORB’s, errors may occur within the isochronous stream itself as it is transferred to or from Serial Bus.
These errors might include, but are not limited to:

T10/1155D Revision 2c

20

– a missing isochronous packet or cycle start indication;

– an isochronous packet with a header CRC error;

– when the target is a talker, an underflow in the availability of data from the stream command block
ORB’s that causes no data to be transmitted for one or more channels during an isochronous cycle;
or

– when the target is a listener, an overflow in which isochronous data from Serial Bus must be
discarded because of an internal buffer overflow or a lack of stream command block ORB(s) to
transfer the data to the medium.

In any of these cases, the initiator may wish to ignore all errors, report all errors but continue the
isochronous stream or report the first error and halt isochronous operations. All of these are possible; if an
error reporting option is selected, the target may store an unsolicited status block each time an error
occurs.

T10/1155D Revision 2c

21

5 Data structures

There are three classes of data structures defined by Serial Bus Protocol:

– operation request blocks (ORB’s);

– page tables;

– status blocks.

These data structures may be allocated and initialized by an initiator in system memory at Serial Bus
nodes. ORB’s and status blocks shall be allocated at the initiator’s node; page tables shall be allocated at
the same node as the data buffer to which they refer.

All data structures defined by this standard shall be aligned on quadlet boundaries. These alignment
requirements permit all 64-bit address pointers within ORB’s to conform to the format specified below.

Figure 11 – Address pointer

The node_ID field shall specify the Serial Bus node for which the address pointer is valid, as defined by
IEEE Std 1394-1995. In many cases, additional constraints on the location of data structures render the
information in node_ID redundant. In these cases, node_ID is considered a reserved field or is explicitly
redefined for other uses.

The offset_hi and the offset_lo fields shall together specify the most significant 46 bits of the Serial Bus
offset and shall be combined with two low-order bits of zero to derive the 48-bit Serial Bus offset.

ORB’s are a special case of data structures: they shall all be allocated at the initiator’s node and may be
organized into a linked list. Since the node ID is known for all ORB’s in a given list, the address pointer
format is redefined to reuse the node_ID field. An address pointer that references an ORB shall follow the
format below.

Figure 12 – ORB pointer

The null bit (abbreviated as n in the figure above) shall indicate a null pointer when it is one. In this case
the target shall ignore the ORB offset fields.

offset_lo

offset_lo

offset_hi

offset_hi

r

r

most significant

most significant

least significant

least significant

node_ID

reservedn

T10/1155D Revision 2c

22

5.1 Operation request blocks (ORB’s)

All initiator requests for target actions are expressed within ORB’s fetched by the target via Serial Bus
read transaction(s). This standard defines different ORB formats for different uses; these ORB formats
may be viewed in hierarchical relationship to each other, as illustrated below.

Figure 13 – ORB family tree

In the preceding figure, the ORB’s that pertain solely to isochronous operations are shown shaded in gray
The formats of all of the ORB’s are described in the clauses that follow. This clause specifies fields that
are common to all ORB’s, illustrated in the figure below.

Figure 14 – ORB format

The notify bit (abbreviated as n in the figure above) advises the target whether or not completion
notification is required upon request completion. When notify is zero, the target may elect to suppress
completion notification (except in the case of an error). If notify is one, the target shall always store a
status block in initiator memory. When the target stores a status block, it shall store it at the status_FIFO
address specified in the ORB or (if not specified in the ORB to which the status pertains) at the address
supplied in the login or create stream request. If the request completes with an error condition, the value
of notify is ignored and a status block shall be unconditionally stored at the status_FIFO address.

The rq_fmt field specifies ORB format, as defined by the table below.

rq_fmt-dependent

rq_fmt-dependent

n

most significant

least significant

rq_fmt rq_fmt-dependent

Dummy ORB
Stream control

ORB
Command block

ORB’s

Stream
command block

ORB’s

Normal
command block

ORB’s

Management
ORB’s

Task
management

ORB’s

Access ORB’s

ORB formats

T10/1155D Revision 2c

23

The format of an ORB is uniquely determined by a combination of rq_fmt, the command set implemented
by the target and the target agent to which the ORB is signaled. This standard specifies those parts of the
ORB that are invariant across command set and device type differences between targets.

5.1.1 Dummy ORB

Dummy ORB’s are most frequently used as place holders within linked lists of requests. A typical example
is the use of a dummy ORB in the initialization of a target fetch agent (see 9.1.1). Although the only
meaningful information within a dummy ORB is contained within the first 20 bytes, the target may fetch
more than this amount of data (see 7.4.3). The initiator shall insure that system memory beyond the
address of a dummy ORB is accessible to the target for at least the maximum ORB fetch size
implemented by the target. The format of a dummy ORB is illustrated below.

Figure 15 – Dummy ORB

The next_ORB field shall specify a null pointer or the address of an ORB and shall conform to the address
pointer format illustrated by Figure 12. In typical usage, a dummy ORB is initialized with a null next_ORB
pointer.

The notify bit is as previously defined for all ORB formats.

The rq_fmt field is as previously defined for all ORB formats and shall be three.

In addition to its use to indicate a dummy ORB, an rq_fmt value of three is also used to indicate an
ABORT TASK request to a target. See 10.4.1 for details of ORB processing by the target and for
permissible completion status values.

Barring catastrophic target failure, dummy requests shall complete with a status of REQUEST ABORTED.
This is the normal completion status for an ORB whose rq_fmt field is equal to three; it is not an error.

Value ORB format

0 Format specified by this standard

1 Reserved for future standardization

2 Vendor-dependent

3 Dummy (NOP) request format

ignored

next_ORB

ignored

ignored

most significant

least significant

rq_fmt
(3)

n

T10/1155D Revision 2c

24

5.1.2 Command block ORB’s

Command block ORB’s are used to encapsulate data transfer or device control commands for transport to
the target. A target’s command set and device type determine the length of the commands; this
consequently determines the length of the command block ORB, which shall be fixed for a particular
command set and device type. A target reports this size in configuration ROM (see 7.3.7).

NOTE – Although device designers may select arbitrary ORB lengths, system considerations may favor some
ORB sizes over others. For example, as a result of commonly implemented cache line sizes, a 32-byte ORB is
particularly appropriate to contemporary systems.

There are two kinds of command block ORB, one for normal (sometimes referred to as asynchronous)
operations and one for isochronous operations.

Normal command block ORB’s permit the specification of a data buffer in system memory, from which or
to which data is transferred by the target.

Stream command block ORB’s do not specify a data buffer in system memory. The essential nature of
isochronous operations is that they involve a stream of data without system memory address context.
Data bytes within a stream have relative ordering with respect to each other, but there is no explicit system
memory address that is the source or the sink for the stream. Instead, an isochronous stream is coupled
to a stream controller that can start, stop or pause the isochronous stream on Serial Bus. For this reason,
stream command block ORB’s have no data buffer address, only a stream length that governs the data
transfer.

5.1.2.1 Normal command block ORB’s

The format of the normal command block ORB is illustrated by the figure below.

Figure 16 – Normal command block ORB

The next_ORB field shall specify a null pointer or the address of a dummy ORB or a normal command
block ORB and shall conform to the address pointer format illustrated by Figure 12.

The data_descriptor field shall specify, directly or indirectly, the address of a buffer in system memory. If
data_size is zero, the contents of data_descriptor are undefined and shall be ignored by the target. The
format of the data_descriptor field shall be as specified by Figure 11. If the page_table_present bit is zero,

next_ORB

data_descriptor

command_block

n

most significant

least significant

rq_fmt
(0)

r data_sized spd max_payload page_sizep

T10/1155D Revision 2c

25

data_descriptor shall contain the address of the data buffer associated with the ORB. If the
page_table_present bit is one, data_descriptor shall contain the address of the page table that describes
the (possibly discontiguous) memory segments that make up the data buffer. When data_descriptor
specifies the address of a page table, the format of the page table shall conform to that described in 5.2.

The notify bit and rq_fmt field are as previously defined for all ORB formats. The rq_fmt field shall be zero.

The direction (abbreviated as d in the figure above) bit specifies direction of data transfer for the buffer
described by the data_descriptor and data_size fields. If the direction bit is zero, the target shall use Serial
Bus read transactions to fetch data destined for the device medium. Otherwise, when the direction bit is
one, the target shall use Serial Bus write transactions to store data obtained from the device medium.

The spd field specifies the speed that the target shall use for data transfer transactions addressed to the
data buffer or page table associated with the ORB, as encoded by Table 1 below.

Table 1 – Data transfer speeds

The max_payload field specifies the maximum data transfer length, in bytes, that may be requested by the
target in a single Serial Bus read or write transaction addressed to the data buffer associated with the
ORB. The maximum data payload is specified as 2 max_payload + 2 bytes. The initiator shall insure that
max_payload specifies a maximum data transfer length less than or equal to that permissible at the data
transfer rate specified by spd.

The page_table_present bit (abbreviated as p in the figure above) shall be zero if data_descriptor directly
addresses the data buffer associated with the ORB. When data_descriptor indirectly addresses the data
buffer, this bit shall be one.

If the page_table_present bit is zero, page_size shall specify the underlying page size of the data buffer
memory directly addressed by the data_descriptor field. A page_size value of zero indicates that the
underlying page size is not specified. When page_table_present is one, page_size shall specify the page
size of segments described by the page table. In both cases, if page_size is nonzero the page size is
calculated as 2 page_size+8 bytes.

If page_table_present is zero, the data_size field shall specify the size, in bytes, of the system memory
addressed by the data_descriptor field. Otherwise data_size shall contain the number of elements in the
page table addressed by data_descriptor.

The command_block field provides room for a command descriptor block whose content and meaning are
not specified by this standard.

5.1.2.2 Stream command block ORB

A stream command block ORB is a structure that has the format illustrated below.

Value Speed

0 S100

1 S200

2 S400

3 – 7 Reserved for future standardization

T10/1155D Revision 2c

26

Figure 17 – Stream command block ORB

The next_ORB field shall specify a null pointer or the address of a dummy ORB or a stream command
block ORB and shall conform to the address pointer format illustrated by Figure 12.

The cycle_mark_offset field, when cm has a value of two or three, specifies the location of the first CYCLE
MARK packet as a quadlet offset relative to the starting medium location indicated by the command_block.

NOTE – The cycle_mark_offset field may be useful to reestablish synchronization within the recorded
isochronous data if a prior stream command block terminated in error.

The cm field (together with the cycle_mark_offset field) specifies the location of the first byte of
isochronous data (stream offset) as encoded by the table below. A cm value of one is invalid and shall not
be used.

The stream offset derived from the combination of cm and cycle_mark_offset specifies the location of the
first byte of the isochronous data as a byte offset relative to the starting medium location indicated by the
command_block.

NOTE – The command block transported by the stream command block ORB specifies a starting location on
the medium and an associated transfer length. Particularly in the case of block devices, such as mass storage,
the relevant isochronous data may be a subset of the data length and may commence at a nonzero offset
relative to the natural block boundaries of the medium—hence the necessity for the additional values,
stream_length and stream offset, to completely characterize the request.

The stream_length field specifies the quantity of isochronous data, in bytes, that is to be transferred to or
from the logical unit’s stream controller.

The notify bit and rq_fmt field are as previously defined for all ORB formats. The rq_fmt field shall be zero.

Value cycle_mark_offset Stream offset

0 Undefined Zero

1 Invalid (not to be used) Invalid (not to be used)

2 Location of first CYCLE MARK Zero

3 Location of first CYCLE MARK cycle_mark_offset

rq_fmt
(0)

reserved

next_ORB

cycle_mark_offset

command_block

most significant

least significant

stream_length

n

cm

T10/1155D Revision 2c

27

The command_block field provides room for a command descriptor block.

5.1.3 Stream control ORB

Stream control ORB’s are used to direct the action of a logical unit stream controller. The stream controller
is configured at login as either a talker or a listener. When listening, the stream controller accepts
isochronous data from Serial Bus in accordance with stream control ORB’s, transforms the isochronous
stream and then records the data on the medium as specified by isochronous requests. When talking, this
process is reversed and an isochronous data stream obtained from the medium is filtered and
transformed by the stream controller before isochronous packets are transmitted on Serial Bus.

The format of the stream control ORB is illustrated below.

Figure 18 – Stream control ORB

The next_ORB field shall specify a null pointer or the address of a dummy ORB or a stream control ORB
and shall conform to the address pointer format illustrated by Figure 12.

The usage of the stream_ctrl-dependent field varies according to the value of stream_ctrl and is described
in more detail for each stream control function.

The notify bit and rq_fmt field are as previously defined for all ORB formats. The rq_fmt field shall be zero.

The stream_ctrl field shall specify a stream control function for the stream, as encoded below.

reserved

next_ORB

most significant

least significant

stream_ctrl-dependent

second_count cycle_count

second_count_hi reserved

reserved

rptsy reservedstream_eventstream_ctrlrq_fmt
(0)

n reserved

T10/1155D Revision 2c

28

The START control function instructs the logical unit’s stream controller to commence (or resume) talking
or listening on Serial Bus. The time at which the action is to occur shall be specified by the stream_event
field in conjunction with other stream control ORB fields.

The STOP control function instructs the logical unit’s stream controller to terminate the isochronous
stream and to flush the stream buffers. If the target had been listening, any isochronous data already
received from Serial Bus shall be made available to the isochronous commands previously enqueued at
the stream command block agent. If the target had been talking, any isochronous data obtained from
isochronous commands shall be discarded. The time at which the action is to occur shall be specified by
the stream_event field in conjunction with other stream control ORB fields.

The PAUSE control function instructs the logical unit’s stream controller to suspend the transfer of
isochronous data with the expectation that isochronous data transfer will resume. If the target is a talker,
the stream controller shall pause on the requested stream event and shall not send any isochronous
packets for the stream while paused. Subject to target implementation limitations, data from isochronous
commands previously enqueued at the stream command block agent may continue to accumulate at the
target while the data stream is paused. If the target is a listener, the target shall pause on the requested
stream event and shall discard any isochronous packets for the stream while paused. The target may
flush any isochronous data already received from Serial Bus in order to make it available to any
isochronous commands previously enqueued at the stream command block agent.

The UPDATE CHANNEL MASK control function instructs the logical unit’s stream controller to change the
set of enabled channels. The enabled channels shall be specified by the channel_mask field. The time at
which the action is to occur shall be specified by the stream_event field in conjunction with other stream
control ORB fields. When stream_ctrl specifies a value of UPDATE CHANNEL MASK, the stream_ctrl-
dependent field shall contain a 64-bit channel mask, as shown below.

Figure 19 – Channel mask

A one in the bit position that corresponds to one of the numbered Serial Bus isochronous channels, zero
to 63, indicates that the channel is to be enabled. When a channel is enabled for listening, isochronous
packets observed for that channel are transferred to the medium under control of isochronous commands
for the stream specified by login_ID. Conversely, when a channel is enabled for talking, an isochronous
stream is obtained from the medium as directed by isochronous commands and isochronous packets are

Value Stream control function

0 START

1 STOP

2 PAUSE

3 UPDATE CHANNEL MASK

4 CONFIGURE CHANNELS

5 SET ERROR MODE

6 QUERY STREAM STATUS

7 – F16 Reserved for future standardization

channel_mask

most significant

least significant

T10/1155D Revision 2c

29

transmitted on Serial Bus for the enabled channel. The channel number specified is the channel number
prior to any transformation that is a result of values in the logical unit’s stream controller channel map.

The CONFIGURE CHANNELS control function instructs the logical unit’s stream controller to update the
64-entry channel map maintained internally for the isochronous stream. The channel map specifies a
transformation from a external channel (on Serial Bus)to a internal channel(on the medium). When
listening, channel numbers observed in Serial Bus isochronous packets are replaced with numbers
specified by the channel map before the isochronous data is recorded on the medium. When talking,
channel numbers encountered in recorded isochronous data are replaced with numbers specified by the
channel map before the isochronous packets are transmitted on Serial Bus.

NOTE – It is possible for a mapping of two or more source channels into a single destination channel to be
meaningful. For example, isochronous data recorded at different times from different channels may be
concatenated on the medium and subsequently replayed as a single channel.

When stream_ctrl specifies a value of CONFIGURE CHANNELS, the stream_ctrl-dependent field shall
contain the address of 64-entry channel configuration map. In this case the stream_ctrl-dependent field
shall conform to the format for address pointers specified by Figure 11 and shall address the same node
as the initiator; consequently the node_ID field of this address pointer shall be reserved.

The channel configuration map consists of 64 quadlet entries. The channel configuration map is indexed
by the source channel. When the target is a listener, the source channel is that observed in the
isochronous packet header on Serial bus. When the target is a talker, the source channel is that previously
recorded on the medium. The format of the channel configuration map entries is illustrated below.

Figure 20 – Channel configuration map entry

The spd field is valid only if the target is configured as a talker. In this case spd determines the speed at
which the isochronous packets shall be transmitted, as encoded by Table 1.

The dest_channel field shall specify the channel number transformation for either listening or talking.
When the target is a listener, the observed channel number in the isochronous packet header shall be
replaced with dest_channel as the data is recorded on the medium. When the target is a talker, the
channel number obtained from the medium shall be replaced with dest_channel at the time the
isochronous packet is transmitted.

The sid field is valid only if the target is configured as a talker. If the recorded isochronous data conforms
to the CIP format specified in 11.4, the sid field in the previously recorded CIP header shall be replaced
with the sid value specified by the channel map when the packet is transmitted.

The SET ERROR MODE control function instructs the logical unit’s stream controller to configure its error
handling mode as specified by the rpt field.

The QUERY STREAM STATUS control function instructs the logical unit’s stream controller to return
status information that indicates the whether or not the stream controller is ready to accept a START
control function.

NOTE – Assume that a target is to be instructed to listen to isochronous data and transfer the stream to device
medium. If the starting medium location is at a nonzero byte offset relative to a block boundary, some
implementations may require time to read previously recorded data from the medium before being ready to
commence recording the new isochronous data. Subsequent to enqueuing an isochronous command at the

sidreserved dest_channel reservedspd
most significant least significant

T10/1155D Revision 2c

30

stream command block agent, the QUERY STREAM STATUS control function may be used to determine if the
target is ready to accept a START control function.

The stream_event field is valid only if the stream_ctrl field specifies a value of START, STOP, PAUSE or
UPDATE CHANNEL MASK. When one of these control functions is specified, the stream_event field
specifies the time at which the action is to take place, as encoded below.

A value of IMMEDIATE instructs the logical unit’s stream controller to perform the specified action as soon
as possible, within the capabilities of the target implementation.

A value of CYCLE MATCH instructs the logical unit’s stream controller to perform the specified action at
the cycle time specified by second_count_hi, second_count and cycle_count.

A value of SY MATCH instructs the logical unit’s stream controller to perform the specified action on the
isochronous cycle for which the sy field of an isochronous packet for any enabled channel matches the sy
field in the stream control ORB. A stream_event value of SY MATCH is valid only if the logical unit’s
stream controller is configured as a listener.

A value of FIRST DATA instructs the logical unit’s stream controller to perform the specified action when
isochronous data is observed for any enabled isochronous channel. A stream_event value of FIRST DATA
is valid only if the logical unit’s stream controller is configured as a listener.

NOTE – A stream_event field value of FIRST DATA may have effects similar to IMMEDIATE, in that it is
possible for isochronous data to be recorded immediately. The difference between the two stream events is
apparent if no isochronous packets for any of the enabled channels are present when the stream control ORB
is executed. If IMMEDIATE is specified, CYCLE MARK packets are recorded as each cycle start is observed. If
FIRST DATA is specified, no packets are recorded until the first isochronous packet for an enabled channel is
observed. When this event occurs, a CYCLE MARK packet with the most recent cycle start data is recorded
followed by a DATA packet for the enabled channel.

The sy field is valid only if the logical unit’s stream controller is configured as a listener and the
stream_event field specifies SY MATCH. See the preceding description of stream_event.

The rpt field specifies an operational mode for the logical unit’s stream controller, as described in the table
below. The rpt field is valid only if the stream_ctrl field specifies SET ERROR MODE.

Value Stream event code

0 IMMEDIATE

1 CYCLE MATCH

2 SY MATCH

3 FIRST DATA

4 – F16 Reserved for future standardization

Value Error handling mode

0 Report errors and halt stream

1 Report errors and continue stream

2 Ignore all errors

3 Reserved for future standardization

T10/1155D Revision 2c

31

Different sorts of errors may be detected when the logical unit’s stream controller is configured as a talker
or a listener. If an error occurs, the stream controller shall take one of three actions, as specified by the
value of rpt:

– Report the error by writing unsolicited status to the initiator and then halting isochronous data
transfers by performing the equivalent of a STOP control function with a stream_event value of
IMMEDIATE;

– Report the error by writing unsolicited status to the initiator but continue isochronous data transfers;
or

– Ignore the error and continue isochronous data transfers.

A more detailed description of isochronous errors and how they are handled is provided in 12.3.

The second_count_hi, second_count and cycle_count fields are valid only if the stream_ctrl field specifies
START, STOP, PAUSE or UPDATE CHANNEL MASK and the stream_event field specifies CYCLE
MATCH. Together, these fields specify a cycle time for comparison with the target’s cycle clock. An equal
comparison occurs if the second_count_hi field matches the field of the same name in the target’s
BUS_TIME register and if both the second_count and cycle_count fields match their corresponding fields
in the target’s CYCLE_TIME register.

5.1.4 Management ORB’s

Management ORB’s are 32-byte data structures that encapsulate several types of management request:

– access requests (which include login and logout requests); and

– task management requests.

Unlike the normal command block, stream command block and stream control ORB’s (which are all
implicitly associated with a particular task set or stream by virtue of the fetch agent to which they are
addressed), most management ORB’s explicitly declare the task set or stream for which they are
intended.

Management ORB’s have the general format illustrated below. Note that since they lack a next_ORB field,
these ORB’s cannot be linked together to form a list.

Figure 21 – Management ORB

rq_fmt
(0)

reserved

function-dependent

status_FIFO

function function-dependent

most significant

least significant

function-dependent

n

T10/1155D Revision 2c

32

The notify bit and rq_fmt field are as previously defined for all ORB formats. The rq_fmt field shall be zero.

The function field specifies the management function requested, as defined by the table below.

Table 2 – Management request functions

The status_FIFO field shall specify an address allocated for the return of status information. Except when
an ORB format explicitly specifies a status_FIFO address, this same address shall be used by the target
for the return of status for all subsequent requests associated with this login. The status_FIFO field shall
conform to the format for address pointers specified by Figure 11 and shall address the same node as the
initiator; consequently the node_ID field of this address pointer shall be reserved.

5.1.4.1 Login ORB

Before any other requests (except QUERY LOGINS) can be made of a target, the initiator shall first
complete a login procedure that uses the ORB format shown below.

Value Management function

0 LOGIN

1 QUERY LOGINS

2 CREATE STREAM

3 RECONNECT

4 Command set-dependent

5 – 6 Reserved for future standardization

7 LOGOUT

8 – 9 Reserved for future standardization

A16 TERMINATE TASK

B16 ABORT TASK

C16 ABORT TASK SET

D16 CLEAR TASK SET

E16 LOGICAL UNIT RESET

F16 TARGET RESET

T10/1155D Revision 2c

33

Figure 22 – Login ORB

The password and password_length fields may specify optional, command set-dependent information
used to validate the login request. If password_length is zero, the password field may contain immediate
data. When password_length is nonzero, the password field shall specify the address of a buffer. The
buffer shall be accessible to a Serial Bus block read request with a data transfer length less than or equal
to password_length. The format and usage of password data, whether immediate or indirectly addressed,
are beyond the scope of this standard.

The login_response and login_response_length fields specify the address and size of a buffer allocated
for the return of the login response. The buffer shall be accessible to a Serial Bus block write request with
a data transfer length less than or equal to login_response_length. If the status block stored at the
status_FIFO address indicates an unsuccessful login, no login response data shall be stored.

The notify bit, rq_fmt and status_FIFO fields are as previously defined for management ORB formats.

The exclusive bit (abbreviated as x in the figure above) shall specify target behavior with respect to
concurrent login to a logical unit. When exclusive is zero, the target, subject to its own implementation
capabilities, may permit more than one initiator to login to a logical unit. If exclusive is one the target shall
permit only one login to a logical unit at a time; see 8.2.1 for a description of target behavior.

The login_response and status_FIFO fields shall conform to the format for address pointers specified by
Figure 11. All of these buffers shall be in the same node as the initiator; consequently the node_ID field of
these addresses shall be reserved.

The lun field specifies the logical unit number (LUN) to which the request is addressed.

Upon successful completion of a login, the login response is returned in the format illustrated below.

reserved

password

login_response

status_FIFO

lun

most significant

least significant

function
(0)

login_response_lengthpassword_length

n rq_fmt
(0)

x

T10/1155D Revision 2c

34

Figure 23 – Login response

The length field shall specify the length, in bytes, of the login response data. If login_response_length in
the login request is too small for the transfer of all the login response data, the length field shall not be
adjusted to reflect the truncation.

The initiator shall use the login_ID value returned by the target to identify all subsequent requests directed
to the target’s management agent that pertain to this login.

The command_block_agent field specifies the base address of the agent’s CSR’s, which are defined in
6.4.

5.1.4.2 Login query ORB

An initiator may determine the EUI-64 and node ID of all currently logged-in initiators by means of a login
query request, whose format is illustrated below.

Figure 24 – Login query ORB

The query_response and query_response_length fields specify the address and size of a buffer for the
return of the query results. The buffer shall be accessible to a Serial Bus block write request with a data
transfer length less than or equal to query_response_length.

The notify bit, rq_fmt and status_FIFO fields are as previously defined for management ORB formats.

The query_response and status_FIFO fields shall conform to the format for address pointers specified by
Figure 11. All of these buffers shall be in the same node as the initiator; consequently the node_ID field of
these addresses shall be reserved.

login_ID

reserved query_response_length

reserved

query_response

status_FIFO

lun

most significant

least significant

function
(1)

n

length
most significant

least significant

command_block_agent

rq_fmt
(0)

reserved

T10/1155D Revision 2c

35

The lun field specifies the logical unit number (LUN) to which the request is addressed.

The query response data returned shall have the following format.

Figure 25 – Login query response format

The length field shall specify the length, in bytes, of the query response data. If query_response_length in
the login query request is too small for the transfer of all the query response data, the length field shall not
be adjusted to reflect the truncation. The value of the length field shall be equal to 4 + 12 * n, where n is
the number of logged-in initiators.

The max_logins field shall specify the maximum concurrent logins that may be accepted by the logical
unit.

The remainder of the query response is a variable-length array of 12-byte entries, each of which contains
a node_ID, login_ID and initiator_EUI_64 field, one for each logged-in initiator.

The node_ID field of an entry shall specify the node ID of a logged-in initiator. If a Serial Bus reset has
occurred since the login was established and the initiator has not reconnected the login, the node_ID field
shall have a value of FFFF16.

The login_ID field of an entry shall specify the login ID provided to the initiator as a result of its successful
login.

The initiator_EUI_64 field of an entry shall specify the EUI-64 obtained by the target from the initiator’s
configuration ROM at the time the login was validated.

5.1.4.3 Create stream ORB

Before any stream requests can be made of a target, the initiator shall first complete a create stream
procedure that uses the ORB format shown below.

login_ID[0]node_ID[0]

length max_logins

least significant

most significant

initiator_EUI_64[n - 1]

initiator_EUI_64[0]

…

login_ID[n - 1]node_ID[n - 1]

T10/1155D Revision 2c

36

Figure 26 – Create stream ORB

The delta_time field shall be valid when the talker bit is one and shall specify a value in the range zero
through 7999, inclusive. The delta_time value is used in conjunction with certain isochronous data formats
to shift a time-stamp value into the future by a constant number of 125 µs intervals (see 12.2.3).

The talker bit (abbreviated as t in the figure above) shall specify the type of isochronous stream requested.
If the target resources are to be configured for listening, talker shall be zero.

The channels field specifies the maximum number of isochronous channels that are to be simultaneously
transmitted or received.

The max_aggregate_payload field is the aggregate maximum isochronous payload that the target is
requested to support for the stream. That is, the sum of all the data_length fields of Serial Bus
isochronous packets transmitted or received for all of the stream’s isochronous channels shall not exceed
max_aggregate_payload in a single isochronous cycle.

The create_stream_response and create_stream_response_length fields specify the address and size of
a buffer allocated for the return of the login response. The buffer shall be accessible to a Serial Bus block
write transaction with a data transfer length less than or equal to create_stream_response_length. If the
status block stored at the status_FIFO address indicates an unsuccessful login, no login response data
shall be stored.

The notify bit, rq_fmt and status_FIFO fields are as previously defined for management ORB formats.

The login_ID field shall specify a login ID value obtained as the result of a successful login.

The login_response and status_FIFO fields shall conform to the format for address pointers specified by
Figure 11. All of these buffers shall be in the same node as the initiator; consequently the node_ID field of
these addresses shall be reserved.

Upon successful completion of a create stream request, the response is returned in the format illustrated
below.

reserved

create_stream_response

status_FIFO

login_ID

most significant

least significant

function
(2)

create_stream_response_lengthreserved

n

channels

reserved

max_aggregate_payloadt

rq_fmt
(0)

reserved

delta_time

T10/1155D Revision 2c

37

Figure 27 – Create stream response

The login_ID identifies an isochronous stream for which target resources have been allocated. The
initiator shall use this value to identify all subsequent requests directed to the target’s management agent
that pertain to this login.

The command_block_agent and stream_control_agent fields specify the base address of the agent’s
CSR’s, which are defined in 6.4.

The min_transfer_length field specifies the minimum stream_length value required by the target in stream
command block ORB’s in order to sustain the isochronous data rate requested by the login. If the initiator
presents any stream command block ORB’s whose stream_length value is less than this minimum, the
target may experience underflow or overflow in isochronous data while talking or listening at the requested
rate.

5.1.4.4 Reconnect ORB

After a Serial Bus reset it is possible for an initiator’s 16-bit node ID to change. Since a target validates all
writes to agent CSR’s by the node ID of the initiator, an initiator shall reestablish validated access before it
may signal new requests to the target. This is accomplished by means of a reconnect request, with the
format shown below.

Figure 28 – Reconnect ORB

login_IDlength
most significant

least significant

stream_control_agent

min_transfer_length

reserved

status_FIFO

login_ID

most significant

least significant

function
(3)

reserved

n rq_fmt
(0)

reserved

command_block_agent

T10/1155D Revision 2c

38

The notify bit, rq_fmt and status_FIFO fields are as previously defined for management ORB formats.

The login_ID field shall specify a login ID value obtained as the result of a successful login. The target
shall verify that the EUI-64 of the initiator requesting the login reestablishment matches the EUI-64
previously saved by the target for the login_ID.

Upon successful reestablishment of the login, the initiator may signal requests to the target agent at the
same CSR addresses returned in the original login response data. The initiator shall also use the login_ID
value to identify all requests directed to the target’s management agent that pertain to the reestablished
login.

Any isochronous streams established with the same login_ID value specified in the reconnect ORB are
also reestablished. The login ID’s of the isochronous streams remain the same.

5.1.4.5 Logout ORB

When an initiator wishes to relinquish its access privileges for a logical unit or an isochronous stream, it
shall perform a logout with the ORB format shown below.

Figure 29 – Logout ORB

The notify bit, rq_fmt and status_FIFO fields are as previously defined for management ORB formats.

The login_ID field shall specify a login ID value obtained as the result of a successful login or create
stream request.

5.1.4.6 Task management ORB

The task management ORB is used to control task sets. This ORB shall have the format defined below.

login_ID

reserved

status_FIFO

most significant

least significant

function
(7)

reserved

n rq_fmt
(0)

reserved

T10/1155D Revision 2c

39

Figure 30 – Task management ORB

The ORB_offset_hi and ORB_offset_lo fields together form the ORB_offset field, which identifies the task
to which the management function applies. ORB_offset is derived by taking the least significant 48 bits of
the Serial Bus address of the ORB and discarding the least significant two bits. The ORB_offset field is
ignored unless the function field is TERMINATE TASK or ABORT TASK. All tasks are uniquely identified
by their Serial Bus address of the ORB that initiated the task.

The notify bit, rq_fmt and status_FIFO fields are as previously defined for management ORB formats.

The function field shall contain a value of TERMINATE TASK, ABORT TASK, ABORT TASK SET, CLEAR
TASK SET, LOGICAL UNIT RESET or TARGET RESET, as defined by Table 2.

The login_ID shall be set to the value returned in the login response data for the task set to which the task
management request is directed.

NOTE – In the case of TARGET RESET, which does not pertain to any one task set, login_ID shall be set to a
value obtained as the result of any successful login completed by the initiator.

5.2 Page tables

The data buffer associated with an ORB is specified by the data_descriptor, page_table_present,
page_size and data_size fields. The data buffer is a logically contiguous area in system memory. As
previously described, when page_table_present is zero, the data buffer is also contiguous within Serial
Bus address space. In this case, data_descriptor contains the 64-bit address of the data buffer and
data_size specifies its length, in bytes.

In the other case, when page_table_present is equal to one, the data buffer is composed of segments that
may be discontiguous within Serial Bus address space or it is necessary to use a page table to describe
the segments that form the data buffer. The page table is a variable-length array of elements whose
format is shown below. Each element describes one segment that is contiguous within Serial Bus address
space. Page table elements shall be octlet aligned.

ORB_offset

ORB_offset_hi

r

reserved

reserved

status_FIFO

login_ID

most significant

least significant

function

reserved

n rq_fmt
(0)

reserved

T10/1155D Revision 2c

40

Figure 31 – Page table element (when page_size equals four)

NOTE – In the figure above, the field widths of segment_base_lo and segment_offset, 20 and 12 bits,
respectively, are chosen only for the purposes of illustration. The size of segment_base_lo and segment_offset
vary according to page_size. The field width, in bits, of segment_offset shall be page_size+8. In the example
shown above, the page size is assumed to be 4096 bytes.

The segment_length field shall specify the length, in bytes, of the portion of the data buffer (segment)
described by the page table element. The value of segment_length shall be less than or equal to
2 page_size+8.

The segment_base_hi and segment_base_lo fields together shall specify the base address of the
segment within the node’s 48-bit system memory address range.

The segment_offset field shall specify the starting address for data transfer within the segment.

The 64-bit system memory address used to address the data is formed by the concatenation of the 16-bit
node_ID field from the data_descriptor field in the ORB, segment_base_hi, segment_base_lo and
segment_offset.

In all page table elements, the sum of segment_length and segment_offset shall be less than or equal to
2 page_size+8.

In addition to the preceding requirements, the values of segment_length and segment_offset are
constrained by their position within the page table. These additional restrictions are summarized below.

The presence of a page table is indicated by the value of page_table_present in the ORB. When
page_table_present is nonzero, the data_descriptor field in the ORB shall contain the address of the page
table and the data_size field shall contain the number of elements in the page table.

When a page table is used it shall be located in the same node as the data buffer it describes. The spd
and max_payload fields of the ORB shall describe data transfer capabilities for both the data buffer and
the page table. The page table shall be contiguous within Serial Bus address space and shall be
accessible to Serial Bus block read transactions with a data_length less than or equal to 2 page_size+8 bytes
so long as they do not cross Serial Bus address boundaries that occur every 2 page_size+8 bytes.

Total page table elements

Element 1 2 n (where n >= 3)

0 No additional restrictions segment_length = 2 page_size+8 - segment_offset

1 – n-2 — segment_offset = 0 segment_offset = 0
segment_length = 2 page_size+8

n-1 — — segment_offset = 0

segment_length segment_base_hi

segment_base_lo segment_offset

most significant

least significant

T10/1155D Revision 2c

41

5.3 Status block

Upon completion of a request, if the notify bit in the ORB is one or if there is error status to report, the
target shall signal the initiator by storing all or part of the status block shown below. If the status_FIFO
address is explicitly provided as part of the ORB to which the status pertains, the target shall store the
status block at the address specified. Otherwise, the target shall store the status block at the status_FIFO
address provided by the initiator as part of the login or create stream request. The target may also store
unsolicited status at this address, as defined in 9.4.

Figure 32 – Status block format

The target shall store a minimum of eight bytes of status information and may store up to the entire 32
bytes defined above so long as the amount of data stored is an integral number of quadlets. A truncated
status block shall be interpreted as if the omitted fields had been stored as zeros. The target shall use a
single Serial Bus block write transaction to store the status block at the status_FIFO address.

The src field indicates the origin of the status block, as encoded by the table below.

The unsolicited bit (abbreviated as u in the figure above) shall specify the usage of the ORB_offset field. If
the unsolicited bit is zero, the status block pertains to a request identified as described below. When
unsolicited is one, the status block is not related to any outstanding request and the contents of
ORB_offset shall be ignored.

The end_of_list bit (abbreviated as e in the figure above) shall specify the value of the next_ORB field of
the ORB to which the status block pertains at the time the ORB was most recently fetched. When

Value Description

0 The status block pertains to an ORB identified by ORB_offset; at the time the ORB was
most recently fetched by the target the next_ORB field did not contain a null pointer.

1 The status block pertains to an ORB identified by ORB_offset; at the time the ORB was
most recently fetched by the target the next_ORB field was null.

2 The status block is unsolicited and contains device status information; the contents of
the ORB_offset field shall be ignored.

3 The status block is unsolicited and contains isochronous error report information as
specified by X.

src ORB_offset_hi

command set-dependent

most significant

least significant

sbp_status

ORB_offset_lo

resp

r

lend

T10/1155D Revision 2c

42

end_of_list is zero, the next_ORB field did not contain a null pointer. Otherwise next_ORB was null when
last fetched.

The resp field shall specify the SBP-2 response status for the request identified by ORB_offset. Response
values are encoded by resp as shown by the table below.

The dead bit (abbreviated as d in the figure above) shall indicate whether or not the target fetch agent
transitioned to the dead state upon storing the status block. When dead is zero, the reported status has
not affected the state of the fetch agent. If the dead bit is set to one, the fetch agent transitioned to the
dead state as a consequence of the error condition reported by the status block.

The len field shall specify the quantity of valid status block information stored at the status_FIFO address.
The size of the status block is encoded as len + 1 quadlets.

The sbp_status field provides additional information that qualifies the response status in resp. The
meanings assigned to sbp_status vary according to the value of resp and are described beloware
specified by the table below.

When resp is equal to zero, REQUEST COMPLETE, the possible values for sbp_status are specified by
the table below. Any value not enumerated is reserved for future standardization.

Value Name Description

0 REQUEST COMPLETE The request completed without transport protocol error
(Either sbp_status or command set-dependent status
information may indicate the success or failure of the request)

1 TRANSPORT FAILURE The target detected a nonrecoverable transport failure that
prevented the completion of the request

2 ILLEGAL REQUEST There is an unsupported field or bit value in the ORB; the
sbp_status field may provide additional information

3 VENDOR DEPENDENT The meaning of sbp_status shall be specified by the vendor

Value Description

0 No additional sense to report

1 Request type not supported
Invalid request type

2 Speed not supported

3 Page size not supported

4 Access denied

5 Logical unit not supported

6 Maximum payload too small

7 Too many channels

8 Resources unavailable

9 Function rejected

10 Login ID not recognized

11 Dummy ORB completed

12 Request aborted

FF16 Unspecified error

T10/1155D Revision 2c

43

If a Serial Bus error occurs in the transport (resp is equal to one, TRANSPORT FAILURE), the sbp_status
field either shall have a value of FF16, unspecified error, or else the field shall be redefined as illustrated
below. This format provides for the return of additional information about the transport failure.

Figure 29 – TRANSPORT FAILURE format for sbp_status

The object field shall specify which component of an SBP-2 request, the ORB, the data buffer or the page
table, was referenced by the target when the error occurred. The value of object shall be as defined by the
following table.

The serial_bus_error field shall specify the error response for the failed request, as encoded by the table
below.

In the cases of conflict error and data error, these are errors that the target may retry up to an
implementation-dependent limit before reporting TRANSPORT FAILURE.

No additional information is provided in sbp_status when resp equals two, ILLEGAL REQUEST. In this
case, sbp_status shall be set to FF16.

Value Referenced object

0 Operation request block (ORB)

1 Data buffer

2 Page table

3 Unable to specify

Value Serial Bus error Comment

0 Missing acknowledge

1 Reserved; not to be used

2 Time-out error An ack_pending was received for the request but no response was
received within the time-out limit

3 Reserved; not to be used

4 – 6 Busy retry limit exceeded The value reflects the last acknowledge, ack_busy_X, ack_busy_A
or ack_busy_B.

7 – B16 Reserved for future
standardization

C16 Conflict error A resource conflict was detected by the addressed node

D16 Data error The data field failed the CRC check or the observed length of the
payload did not match the data_length field

E16 Type error A field in the request was set to an unsupported value or an invalid
transaction was attempted (e.g., a write to a read-only address)

F16 Address error The destination_offset field specified an inaccessible address in
the addressed node

serial_bus_errorobject
most significant least significant

reserved

T10/1155D Revision 2c

44

NOTE – An SBP-2 response code of ILLEGAL REQUEST shall not be used to indicate unsupported fields or bit
values in the command set-dependent portion of the ORB. This response code shall be used only to indicate
an error in the first 20 bytes of the ORB.

The ORB_offset_hi and ORB_offset_lo fields together form an ORB_offset field that uniquely identifies the
ORB to which the status block pertains. If src is zero or oneunsolicited is zero, the target shall form
ORB_offset from the least significant 48 bits of the Serial Bus address used to fetch the ORB; the least
significant two bits shall be discarded. When the status block contains unsolicited device status (src is
equal to two), the ORB_offset field shall be ignored by the initiator. Otherwise, when src equals three, the
status block contains an isochronous error report in the format illustrated below.

Figure 30 – Unsolicited status format for isochronous errors

The src field shall be three to indicate unsolicited status that describes an isochronous error.

The resp field shall specify a response status of TRANSPORT FAILURE.

The len field shall be equal to one.

The stream_error field shall specify the nature of the isochronous error, as encoded by the table below.

The seconds field shall contain the least significant 19 bits of the BUS_TIME register at the time of the
isochronous stream error.

The cycle_count field shall contain the cycle count, between zero and 7999, at the time of the error. The
cycle count shall be obtained from the target’s free-running cycle timer and shall not be latched from the
last observed CYCLE START packet.

For all status block formats, the remainder of the status block after the first two quadlets, up to an overall
maximum of 32 bytes, is command set-dependent.

Value Stream error description

0 Reserved (not to be used)

1 Missing CYCLE START packet

2 Data CRC error in received isochronous packet

3 Data length error in received isochronous packet

4 Internal underflow with the result that recorded isochronous
data was not transmitted on Serial Bus

5 Internal overflow with the result that isochronous data
observed on Serial Bus was not recorded on the medium

6 — FE16 Reserved for future standardization

FF16 Unspecified error

src

seconds cycle_count

reserved
most significant

least significant

stream_errorresp lenr

T10/1155D Revision 2c

45

6 Control and status registers

The control and status registers (CSR’s) implemented by a target shall conform to the requirements
defined by this standard and its normative references. The CSR’s may be arranged in four principal
categories:

– core registers required by ISO/IEC 13213:1994;

– bus-dependent registers required by IEEE Std 1394-1995; and

– unit architecture registers required by this standard.

Unless otherwise specified, all registers shall support quadlet read and quadlet write transactions. The
registers defined in 6.3 and 6.4 shall ignore broadcast write requests.

These registers are described in turn in the clauses that follow.

6.1 Core registers

The CSR architecture standardizes the locations and functions of core registers. The addresses of these
registers are specified in terms of byte offsets within initial register space, where the base address of initial
register space is FFFF F000 000016 relative to initial node space. IEEE Std 1394-1995 should be
consulted for detailed descriptions of these core registers; the table below summarizes which core
registers are mandatory for targets.

The CSR architecture and IEEE Std 1394-1995 broadly define the effects of a write to the RESET_START
register. In addition to those requirements, a write to RESET_START should cause all of a node’s SBP-2
units to reset in the same fashion as a power reset.

NOTE – Because of the potential for malicious interference in target operations by an unauthorized node, it is
recommended that a write to RESET_START have no effect upon a target unless either a) there are no logged-
in initiators or b) the source_ID of the write matches that of one of the currently logged-in initiators.

6.2 Serial Bus-dependent registers

The CSR architecture reserves a portion of initial register space for bus-dependent uses. Serial Bus
defines registers within this address space, whose addresses are specified in terms of byte offsets within
initial register space, where the base address of initial register space is FFFF F000 000016 relative to initial
node space. IEEE Std 1394-1995 should be consulted for detailed descriptions of these core registers; the
table below summarizes which Serial Bus-dependent registers are mandatory for targets.

Offset Register name Description

0 STATE_CLEAR State and control information

4 STATE_SET Sets STATE_CLEAR bits

8 NODE_IDS Contains the 16-bit node_ID value used to address
the node

0C16 RESET_START Resets the node’s state

1816 – 1C16 SPLIT_TIMEOUT Time limit for split transactions

Offset Register name Description

21016 BUSY_TIMEOUT Controls transaction layer retry protocols

T10/1155D Revision 2c

46

Isochronous capabilities are optional for targets. If a target supports isochronous operations, it shall be
cycle master capable and isochronous resource manager capable as well as isochronous capable. These
capabilities require that additional Serial Bus-dependent registers shall be implemented, as summarized
by the table below.

6.3 MANAGEMENT_AGENT register

The MANAGEMENT_AGENT register permits the initiator to signal the address of a management ORB to
the target. This register shall support 8-byte block read and block write requests whose destination_offset
is equal to the address of the MANAGEMENT_AGENT register and shall reject quadlet write requests and
all other block read and block write requests. The format of this register is illustrated below.

Figure 33 – MANAGEMENT_AGENT format

The ORB_offset_hi and ORB_offset_lo fields together form an ORB_offset field from which a Serial Bus
address is derived when the management ORB is fetched. The Serial Bus address shall be formed from

Offset Register name Description

20016 CYCLE_TIME 24.576 MHz clock required for isochronous
operation

20416 BUS_TIME System time in seconds

21C16 BUS_MANAGER_ID Contains the node_ID of the bus manager, if one is
present

22016 BANDWIDTH_AVAILABLE Known location for Serial Bus isochronous
bandwidth allocation

22416 – 22816 CHANNELS_AVAILABLE Known location for Serial Bus isochronous channel
allocation

ORB_offset_lo r

reserved ORB_offset_hi

zeros

definition

bus reset, command reset and initial values

read values

write effects

most significant

least significant

last write z

zeros last write

stored i

ignored stored

T10/1155D Revision 2c

47

the concatenation of the 16-bit node ID of the initiator (available to the target as the source_ID field of the
block write request that updated the register), the ORB_offset field and two least significant bits of zero.

An initiator may signal a request by means of an 8-byte block write transaction that specifies the address
of the request. If the management agent is busy with another request, the block write shall be rejected
with a response of resp_conflict_error. If the write transaction is successful, the management agent shall
fetch the request specified by ORB_offset and execute it. Unsuccessful write transactions shall not affect
the execution of any request(s) in progress.

Because IEEE Std 1394-1995 reserves a portion of initial units space for bus-dependent use, the
MANAGEMENT_AGENT register shall be located at address FFFF F001 000016 or above within the
node’s 48-bit address range. The address of the management agent is specified by the csr_offset field in
the Management_Agent entry in configuration ROM (see 7.3.3).

6.4 Command block and stream control agent registers

Unlike the management agent, which services a single request at a time, the command block and stream
control agents manage linked lists of requests from which they fetch requests. For this reason they are
referred to as fetch agents. Each target fetch agent has a set of control and status registers that lie within
the target’s initial units space; the fetch agent CSR’s shall be located at address FFFF F001 000016 or
above within the node’s 48-bit address range.

Although the location of each fetch agent’s CSR’s is not fixed, the relative relationship of the registers is
fixed within a contiguous block of eight quadlets, as defined by the table below.

The base address of each set of fetch agent’s CSR’s is obtained from the login response returned by the
target as part of a successful login.

6.4.1 AGENT_STATE register

The AGENT_STATE register is a read-only register that provides information about the current condition
of the fetch agent. The definition is given by Figure 34 below.

Relative
offset Name Description

0016 AGENT_STATE Reports fetch agent state

0416 AGENT_RESET Resets fetch agent

0816 ORB_POINTER Address of ORB

1016 DOORBELL Signals fetch agent to refetch an address pointer

1416 UNSOLICITED_STATUS_ENABLE
STATUS_ACKNOWLEDGE

Acknowledges the initiator’s receipt of unsolicited status

1816 – 1C16 Reserved for future standardization

T10/1155D Revision 2c

48

Figure 34 – AGENT_STATE format

The st field shall specify the current operational state of the fetch agent, as encoded by the values in the
table below.

6.4.2 AGENT_RESET register

The AGENT_RESET register permits an initiator to reset the operational state of a target fetch agent. The
definition of this write-only register is given by Figure 35 below.

Figure 35 – AGENT_RESET format

A quadlet write of any value to this register shall cause all fetch agent CSR’s to be reset to their initial
values, after which the fetch agent shall transition to the reset state.

Value Fetch agent state

0 RESET

1 ACTIVE

2 SUSPENDED

3 DEAD

zeros

reserved

definition

bus reset, command reset and initial values

read values

write effects

most significant least significant

reserved

definition
most significant least significant

effect

write effects

st

read values

zeros

undefined

u

ignored

T10/1155D Revision 2c

49

6.4.3 ORB_POINTER register

The ORB_POINTER register contains the address of an ORB in system memory. This register shall
support 8-byte block read and block write requests whose destination_offset is equal to the address of the
ORB_POINTER register and shall reject quadlet write requests and all other block read and block write
requests. The definition is given by Figure 36 below.

Figure 36 – ORB_POINTER format

The ORB_offset_hi and ORB_offset_lo fields together form an ORB_offset field from which a Serial Bus
address is derived when the ORB is fetched. The Serial Bus address shall be formed from the
concatenation of the 16-bit node ID of the initiator (available to the target as a result of a login), the
ORB_offset field and two least significant bits of zero.

The effects of a write transaction to the ORB_POINTER register are dependent upon the value of st in the
AGENT_STATE register. If the target agent is in the DEAD state, writes to the ORB_POINTER register
shall be ignored. If the target agent is in the RESET or SUSPENDED state, a write to this register shall
cause the ORB_offset to be stored and the agent to transition to the ACTIVE state. If the target agent is in
the ACTIVE state, a write to the ORB_POINTER register may cause unpredictable target behavior.

reserved

definition

command reset and initial values

zeros

ORB_offset_lo

ORB_offset_hi
most significant

least significant

r

effectignored

effect

write effects

i

last updatezeros

last update

read values

z

bus reset values

unchanged

T10/1155D Revision 2c

50

6.4.4 DOORBELL register

The DOORBELL register provides a location at which the initiator may signal the target that a linked list of
requests has been updated. The definition of this write-only register is given by Figure 37 below.

Figure 37 – DOORBELL format

A quadlet write of any value to this register shall cause the fetch agent’s doorbell variable to be set to one.

6.4.5 UNSOLICITED_STATUS_ENABLESTATUS_ACKNOWLEDGE register

The UNSOLICITED_STATUS_ENABLESTATUS_ACKNOWLEDGE register provides a location at which
the initiator may grant the target permission to store an unsolicited status blocksignal the target that
unsolicited status has been received. The definition of this write-only register is given by Figure 38 below.

Figure 38 – UNSOLICITED_STATUS_ENABLE STATUS_ACKNOWLEDGE format

A quadlet write of any value to this register shall cause the fetch agent’s unsolicited status enabledstatus
acknowledgment variable to be set to one. A successful login or create stream request shall zeroset the
unsolicited status enabledstatus acknowledgment variable to one. As described in 9.4, any time a target
stores an unsolicited status block it shall zero the unsolicited status enabled variable for that login. Before
the target may store a subsequent unsolicited status block it is necessary for the initiator to write to the
UNSOLICITED_STATUS_ENABLE register.

reserved

reserved

definition

definition

most significant

most significant

least significant

least significant

effect

effect

write effects

write effects

read values

read values

undefined

undefined

T10/1155D Revision 2c

51

7 Configuration ROM

All nodes that implement SBP-2 targets as a unit architecture shall implement general format configuration
ROM in accordance with ISO/IEC 13213:1994, IEEE Std 1394-1995 and this standard. General format
configuration ROM is a self-descriptive structure as illustrated below. The bus information block and root
directory are at fixed locations; all other directories and leaves are addressed by entries in their parent
directory.

Figure 39 – Configuration ROM hierarchy

The figure above shows the potential of the general ROM format to accommodate a diversity of directory
and leaf entries in a tree structure. In practice a target need implement only those configuration ROM
entries described in the clauses that follow.

7.1 Bus information block

All targets shall implement a bus information block at a base address of FFFF F000 040416. For
convenience of reference, the format of the bus information block defined by IEEE Std 1394-1995 is
reproduced below. However, the current version of the referenced standard shall be consulted for the most
recent information.

Figure 40 – Bus information block format

The first quadlet contains the string “1394” in ASCII characters.

Bus information
block

Root directory Root
leaf

Root
leaf

Root dependent
directory

Root
leaf

Unit
leaf

Unit directory

Unit
leaf

Unit
leaf

Unit
leaf

Unit dependent
directory

Unit directory

3116 (“1”) 3316 (“3”) 3916 (“9”) 3416 (“4”)

cyc_clk_acc reservedmax_rec

chip_ID_hi

reserved

chip_ID_lo

node_vendor_ID

m c i b

most significant

least significant

T10/1155D Revision 2c

52

The irmc bit (abbreviated as m in the figure above) shall be one if the node is isochronous resource
manager capable; otherwise, the irmc value shall be zero.

The cmc bit (abbreviated as c in the figure above) shall be one if the node is cycle master capable;
otherwise, this value shall be zero.

The isc bit (abbreviated as i in the figure above) shall be one if the node supports isochronous operations;
otherwise, this value shall be zero.

The bmc bit (abbreviated as b in the figure above) shall be one if the node is bus manager capable;
otherwise, this value shall be zero.

The cyc_clk_acc field specifies the node’s cycle master clock accuracy in parts per million. If the cmc bit is
one, the value in this field shall be between zero and 100. If the cmc bit is zero, this field shall be all ones.

The max_rec field defines the maximum payload size of a block write transaction addressed to the node.
The range of the maximum payload size is from four bytes to 2048 bytes. A max_rec value of zero
indicates that the maximum payload size is not specified. Otherwise, within the range of defined payload
sizes, the maximum size is equal to 2 max_rec + 1. The max_rec field does not place any limits on the
maximum payload size in asynchronous data packets, either requests or responses, that the node may
transmit.

The node_vendor_ID field is a copy of the company ID present in the node unique ID leaf of configuration
ROM.

The chip_ID_hi and chip_ID_lo fields are copies of the 40-bit chip ID present in the node unique ID leaf of
configuration ROM.

Taken as a whole, the node_vendor_ID, chip_ID_hi and chip_ID_lo form a 64-bit node unique identifier.
Because physical addresses on Serial Bus may change after a bus reset, this unique identifier is the only
secure method of node identification.

7.2 Root directory

Configuration ROM for targets shall contain a root directory. The root directory immediately follows the bus
information block and has a base address of FFFF F000 041416. The root directory shall contain
Module_Vendor_ID, Node_Capabilities and Node_Unique_ID entries.

The root directory shall also contain a Unit_Directory entry that specifies the location of a unit directory
whose format is specified by this standard.

7.2.1 Module_Vendor_ID entry

The Module_Vendor_ID entry is an immediate entry in the root directory that provides the company ID of
the vendor that manufactured the module. Figure 41 shows the format of this entry.

Figure 41 – Module_Vendor_ID entry format

0316 is the concatenation of key_type and key_value for the Module_Vendor_ID entry.

module_vendor_ID
most significant least significant

0316

T10/1155D Revision 2c

53

The IEEE/RAC uniquely assigns the module_vendor_ID to each module vendor, as specified by
ISO/IEC 13213:1994. Unique identifiers for a company or organization may be obtained from:

Institute of Electrical and Electronic Engineers, Inc.
Registration Authority Committee
445 Hoes Lane
Piscataway, NJ 08855-1331

7.2.2 Node_Capabilities entry

The Node_Capabilities entry is an immediate entry in the root directory that describes node capabilities.
Figure 42 shows the format of this entry.

Figure 42 – Node_Capabilities entry format

0C16 is the concatenation of key_type and key_value for the Node_Capabilities entry.

The node_capabilities field contains subfields specified by ISO/IEC 13213:1994. Targets shall implement
the spt, 64, fix, lst and drq bits.

Targets shall set the spt, 64, fix, lst and drq bits to one. These indicate, respectively, that the node
implements the SPLIT_TIMEOUT register, the 64-bit fixed addressing scheme, the STATE_CLEAR.lost bit
and the STATE_CLEAR.dreq bit.

7.2.3 Node_Unique_ID entry

The Node_Unique_ID entry is a leaf entry in the root directory that describes the location of the node
unique ID leaf within configuration ROM. Figure 43 shows the format of this entry.

Figure 43 – Node_Unique_ID entry format

8D16 is the concatenation of key_type and key_value for the Node_Unique_ID entry.

The indirect_offset field specifies the number of quadlets from the address of the Node_Unique_ID entry
to the address of the node unique ID leaf within configuration ROM.

7.2.4 Unit_Directory entry

The Unit_Directory entry is a directory entry in the root directory that describes the location of a unit
directory within configuration ROM. There may be more than one unit directory; each unit directory shall
be located by a separate Unit_Directory entry. Figure 44 shows the format of this entry.

node_capabilities
most significant least significant

0C16

indirect_offset
most significant least significant

8D16

T10/1155D Revision 2c

54

Figure 44 – Unit_Directory entry format

D116 is the concatenation of key_type and key_value for the Unit_Directory entry.

The indirect_offset field specifies the number of quadlets from the address of the Unit_Directory entry to
the address of the unit directory within configuration ROM.

7.3 Unit directory

Configuration ROM for targets shall contain a unit directory in the format specified by this standard. The
unit directory shall contain Unit_Spec_ID and Unit_SW_Version entries, as specified by
ISO/IEC 13213:1994, and a Management_Agent entry, as specified by this standard.

Targets shall implement at least one logical unit, logical unit zero. Additional logical units may be
implemented. A logical unit is described by entries in the unit directory or by entries in a logical unit
directory dependent upon the unit directory or by entries taken in combination from both places. The
properties of logical units are established by Command_Set_Spec_ID, Command_Set and
Logical_Unit_Characteristics entries; an instance of a specific logical unit is established by a
Logical_Unit_Number entry.

The unit directory may also contain a Unit_Unique_ID entry.

7.3.1 Unit_Spec_ID entry

The Unit_Spec_ID entry is an immediate entry in the unit directory that specifies the organization
responsible for the architectural definition of the target. Figure 45 shows the format of this entry.

Figure 45 – Unit_Spec_ID entry format

1216 is the concatenation of key_type and key_value for the Unit_Spec_ID entry.

00 609E16 is the unit_spec_ID obtained by NCITS from the IEEE/RAC. The value indicates that the NCITS
Secretariat is responsible for the software interface definition.

7.3.2 Unit_SW_Version entry

The Unit_SW_Version entry is an immediate entry in the unit directory that, in combination with the
unit_sw_version, specifies the software interface of the target. Figure 46 shows the format of this entry.

Figure 46 – Unit_SW_Version entry format

1316 is the concatenation of key_type and key_value for the Unit_SW_Version entry.

00 609E16

most significant least significant

1216

01 048316

most significant least significant

1316

indirect_offset
most significant least significant

D116

T10/1155D Revision 2c

55

01 048316 is the unit_sw_version value that indicates that the target conforms to this standard.

7.3.3 Command_Set_Spec_ID entry

The Command_Set_Spec_ID entry is an immediate entry that, when present in the unit directory, specifies
the organization responsible for the command set definition for the target. Figure 47 shows the format of
this entry.

Figure 47 – Command_Set_Spec_ID entry format

3816 is the concatenation of key_type and key_value for the Command_Set_Spec_ID entry.

The command_set_spec_ID is an organizationally unique identifier obtained from the IEEE/RAC. The
organization to which this 24-bit identifier has been granted is responsible for the definition of the
command set implemented by the target.

7.3.4 Command_Set entry

The Command_Set entry is an immediate entry in the unit directory that, when present in the unit directory,
in combination with the command_set_spec_ID specifies the command set implemented by the target.
Figure 48 shows the format of this entry.

Figure 48 – Command_Set entry format

3916 is the concatenation of key_type and key_value for the Command_Set entry.

The meaning of command_set shall be specified by the owner of command_set_spec_ID.

7.3.5 Command_Set_Revision entry

The Command_Set_Revision entry is an immediate entry that, when present in the unit directory, specifies
the revision level of the command set implemented by the target. Figure 49 shows the format of this entry.

Figure 49 – Command_Set _Revision entry format

3B16 is the concatenation of key_type and key_value for the Command_Set entry.

The meaning of command_set_revision shall be specified by the owner of command_set_spec_ID.

command_set_spec_ID
most significant least significant

3816

command_set

command_set_revision

most significant

most significant

least significant

least significant

3916

3B16

T10/1155D Revision 2c

56

7.3.6 Management_Agent entry

The Management_Agent entry is an immediate entry in the unit directory that specifies the base address
of the target’s management agent CSR. Figure 50 shows the format of this entry.

Figure 50 – Management_Agent entry format

5416 is the concatenation of key_type and key_value for the Management_Agent entry.

The csr_offset field shall contain the quadlet offset, from the base address of initial register space,
FFFF F000 000016, to the base address of the MANAGEMENT_AGENT register for the target. All target
CSR’s shall be located at or above address FFFF F001 000016; therefore the value of csr_offset shall not
be less than 400016.

NOTE – If a device implements additional control and status registers that are dependent upon the device
class, it is recommended that these registers be placed at one of two locations within the device’s address
space. If the additional register(s) pertain to a logical unit, the recommended locations are at offset 2016 and
above following the base address of the logical unit’s command block agent registers. Additional register(s) that
are associated with the device, and not a particular logical unit, may be located immediately after the
MANAGEMENT_AGENT register. If this recommendation is used, there is no necessity for additional
configuration ROM entries to describe the location of device-dependent registers.

7.3.7 Logical_Unit_Characteristics entry

The Logical_Unit_Characteristics entry is an immediate entry that, when present in the unit directory,
specifies characteristics of the target implementation. Figure 51 shows the format of this entry.

Figure 51 – Logical_Unit_Characteristics entry format

3A16 is the concatenation of key_type and key_value for the Logical_Unit_Characteristics entry.

The q bit shall specify the task management (queuing) model implemented by the target. If q is zero, the
target implements the basic task management model defined by this standard in 10.2. When q is one, the
task management model is dependent upon the command set specified by the Command_Set_Spec_ID
and Command_Set entries.

The ordered bit (abbreviated as o in the figure above) specifies the manner in which the target executes
tasks signaled to the normal command block agent. If the target executes and reports completion status
without any ordering constraints, the ordered bit shall be zero. Otherwise, if the target both executes all
tasks in order and reports their completion status in the same order, the ordered bit shall be one.

The isochronous bit (abbreviated as i in the figure above) specifies whether or not the target supports
isochronous operations. When isochronous is one, create stream requests, stream command block
requests and stream control requests shall all be supported. If the isochronous bit is one, the irmc, cmc
and isc bits in the bus information block shall also be one, as described in 7.1.

reserved login_timeout ORB_sizeioq3A16

most significant least significant

csr_offset
most significant least significant

5416

T10/1155D Revision 2c

57

The login_timeout field shall specify, in units of 500 milliseconds, the maximum time an initiator allows for
a target to store a status block in response to the initiator’s login request.

The ORB_size field shall specify, in quadlets, the fetch size used by the target to obtain ORB’s from
initiator memory. The initiator shall allocate, on a quadlet aligned boundary, at least this much memory for
each ORB signaled to the target.

7.3.8 Logical_Unit_Directory entry

The Logical_Unit_Directory entry is an optional directory entry in the root directory that describes the
location of the unit directory within configuration ROM. Figure 52 shows the format of this entry.

Figure 52 – Logical_Unit_Directory entry format

D416 is the concatenation of key_type and key_value for the Logical_Unit_Directory entry.

The indirect_offset field specifies the number of quadlets from the address of the Logical_Unit_Directory
entry to the address of the unit directory within configuration ROM.

7.3.9 Logical_Unit_Number entry

The Logical_Unit_Number entry is an immediate entry that, when present in the unit directory, specifies
the peripheral device type and logical unit number of a logical unit implemented by the target. Figure 53
shows the format of this entry.

Figure 53 – Logical_Unit_Number entry format

1416 is the concatenation of key_type and key_value for the Logical_Unit_Number entry.

The device_type field indicates the peripheral device type implemented by the logical unit. This field shall
contain a value specified by the table below.

The lun field shall identify the logical unit to which the information in the Logical_Unit_Number entry
applies.

7.3.10 Unit_Unique_ID entry

The Unit_Unique_ID entry is an optional leaf entry in the unit directory that describes the location of the
unit unique ID leaf within configuration ROM. If a vendor implements a device with multiple Serial Bus

Value Peripheral device type

0 – 1E16 The meaning of device_type is command set-dependent

1F16 Unknown device type; command set-dependent means are
necessary to determine the peripheral device type

indirect_offset
most significant least significant

D416

most significant least significant

1416 lundevice_typereserved

T10/1155D Revision 2c

58

access paths, i.e., multiple links to Serial Bus each of which receives a distinct node_ID as the result of
Serial Bus initialization or bus enumeration, the Unit_Unique_ID entry shall be implemented. Figure 54
shows the format of this entry.

Figure 54 – Unit_Unique_ID entry format

8D16 is the concatenation of key_type and key_value for the Unit_Unique_ID entry.

The indirect_offset field specifies the number of quadlets from the address of the Unit_Unique_ID entry to
the address of the unit unique ID leaf within configuration ROM.

7.4 Logical unit directory

The logical unit directory provides one of two methods by which a logical unit implemented by the target
may be described (the other is a Logical_Unit_Number entry in the unit directory, already described in
7.3.8).

The logical unit directory shall contain a Logical_Unit_Number entry.

The logical unit directory may additionally contain Command_Set_Spec_ID, Command_Set or
Logical_Unit_Characteristics entries.

7.4.1 Command_Set_Spec_ID entry

The Command_Set_Spec_ID entry is an immediate entry that, when present in a logical unit directory,
specifies the organization responsible for the command set definition for the logical unit. If there is no
Command_Set_Spec_ID entry in the logical unit directory, the Command_Set_Spec_ID entry in the unit
directory shall apply; otherwise the entry in the logical unit directory shall take precedence. Figure 47
shows the format of this entry the fields are defined in 7.3.3.

7.4.2 Command_Set entry

The Command_Set entry is an immediate entry that, when present in a logical unit directory and in
combination with the command_set_spec_ID, specifies the command set implemented by the logical unit.
If there is no Command_Set entry in the logical unit directory, the Command_Set entry in the unit directory
shall apply; otherwise the entry in the logical unit directory shall take precedence. Figure 48 shows the
format of this entry; the fields are defined in 7.3.4.

7.4.3 Command_Set_Revision entry

The Command_Set_Revision entry is an immediate entry that, when present in a logical unit directory,
specifies the revision level of the command set implemented by the logical unit. If there is no
Command_Set_Revision entry in the logical unit directory, the Command_Set_Revision entry in the unit
directory shall apply; otherwise the entry in the logical unit directory shall take precedence. Figure 49
shows the format of this entry; the fields are defined in 7.3.5.

7.4.4 Logical_Unit_Characteristics entry

The Logical_Unit_Characteristics entry is an immediate entry that, when present in a logical unit directory,
specifies characteristics of the logical unit implementation. If there is no Logical_Unit_Characteristics entry
in the logical unit directory, the Logical_Unit_Characteristics entry in the unit directory shall apply;

indirect_offset
most significant least significant

8D16

T10/1155D Revision 2c

59

otherwise the entry in the logical unit directory shall take precedence. Figure 51 shows the format of this
entry; the fields are defined in 7.3.7.

7.4.5 Logical_Unit_Number entry

The Logical_Unit_Number entry is an immediate entry in a logical unit directory that specifies peripheral
device type and logical unit number of the logical unit implementation. Figure 53 shows the format of this
entry; the fields are defined in 7.3.9.

7.5 Node unique ID leaf

As specified by ISO/IEC 13213:1994, the node unique ID is a 64-bit number appended to a company ID
value to create a globally unique 88-bit number. While conforming to this definition, Serial Bus additionally
constrains the 64-bit node unique ID values so that they are unique within the global context of all Serial
Bus nodes. Figure 55 shows the format of the node unique ID leaf.

Figure 55 – Node unique ID leaf format

The first quadlet of the node unique leaf shall contain the number of following quadlets in the leaf and a
CRC calculated for those quadlets, as specified by ISO/IEC 13213:1994.

The node_vendor_ID value shall be the same as the module_vendor_ID value from the root directory.

The chip_ID_hi field is concatenated with the chip_ID_lo field to create a 40-bit chip ID value. The vendor
specified by the node_vendor_ID value shall administer the chip ID values. When appended to the
node_vendor_ID value, these shall form a unique 64-bit value called EUI-64 (Extended Unique Identifier,
64 bits). These EUI-64 values are, by definition, unique from other EUI-64 identifiers derived from the
IEEE/RAC-provided company ID value.

7.6 Unit unique ID leaf

Although the node unique ID described in the preceding section is sufficient to uniquely identify nodes
attached to Serial Bus, it is insufficient to identify a target when a vendor implements a device with multiple
Serial Bus node connections. In this case initiator software requires information by which a particular
target may be uniquely identified, regardless of the Serial Bus access path used. The figure below shows
the format of the unit unique ID leaf.

CRC2
most significant

least significant

node_vendor_ID chip_ID_hi

chip_ID_lo

T10/1155D Revision 2c

60

Figure 56 – Unit unique ID leaf format

The first quadlet of the unit unique leaf shall contain the number of following quadlets in the leaf and a
CRC calculated for those quadlets, as specified by ISO/IEC 13213:1994.

The node_vendor_ID value shall be the same as the module_vendor_ID value from the root directory.

The unit_ID_hi field is concatenated with the unit_ID_lo field to create a 40-bit unit ID value. The vendor
specified by the node_vendor_ID value shall administer the unit ID values. When appended to the
node_vendor_ID value, these shall form a unique 64-bit value called EUI-64 (Extended Unique Identifier,
64 bits). These EUI-64 values are, by definition, unique from other EUI-64 identifiers derived from the
IEEE/RAC-provided company ID value.

As a consequence of the implementation of multiple Serial Bus nodes, there is configuration ROM
accessible for each node. Parts of these configuration ROM’s shall differ from each other, e.g., the node
unique ID leaf, but the value in the unit unique ID leaf shall be the same regardless of which node is used
to access the information.

CRC2
most significant

least significant

node_vendor_ID unit_ID_hi

unit_ID_lo

T10/1155D Revision 2c

61

8 Access

Before an initiator may signal commands or other requests to a target, access privileges shall first be
granted by the target. The criteria for the grant of access may include resource availability or other target
requirements. This section specifies the target facilities that support access control and the methods by
which an initiator requests access to a target and eventually relinquishes access when it is no longer
required.

8.1 Access protocols

Targets shall implement a logical unit reservation protocol that supports neither persistent reservations nor
passwords; it is a simple mechanism that can be used to guarantee single initiator access to the logical
unit and to preserve that initiator’s access rights across a Serial Bus reset.

In order to support the logical unit reservation protocol, a target shall implement resources to manage one
or more logins from initiators. These resources are described below and are used in the specification of
target actions in response to login requests signaled by an initiator to the target’s management agent:

– The target implements a set of one or more login_descriptors that are used to hold context for
logins. The context of a login stored in a login_descriptor consists of the lun, the login_owner_ID, the
login_owner_EUI_64, an exclusive variable, the base addresses of the fetch agent CSR’s returned
to the initiator in the login_response data and the login_ID used by the initiator to identify the login.

– The login_owner_ID is the 16-bit node ID of the current owner of a login. Upon either a Serial Bus
reset or a power reset, the login_owner_ID for all login_descriptors is reset to all ones. The target
shall use the login_owner_ID to qualify all write requests addressed to the login_descriptor fetch
agent CSR’s.

– The login_owner_EUI_64 is the unique 64-bit identifier of the current owner of a login. Upon a power
reset, the login_owner_EUI_64 for all login_descriptors is reset to all ones. Upon a Serial Bus reset,
the login_owner_EUI_64 persists for two seconds and is then reset to all ones unless it has been
reestablished.

A login_descriptor is considered free if both its login_owner_ID and login_owner_EUI_64 are all ones. The
resources of this login_descriptor may be allocated to any initiator that successfully completes a login or a
create stream request. If a login_descriptor‘s login_owner_ID is all ones but its login_owner_EUI_64 holds
a valid EUI-64, the login_descriptor is reserved—the initiator identified by login_owner_EUI_64 may
reestablish the login. Active login_descriptors are those whose login_owner_ID and login_owner_EUI_64
are both valid; the initiator that owns the login may signal requests to the fetch agent(s) associated with
the login_descriptor.

8.2 Login requests

The clauses that follow describe the use of the login ORB’s defined in 5.1.4.

8.2.1 Login

Before an initiator may signal any other requests to a target it shall first perform a login. The login request,
whose format is specified in 5.1.4.1, shall be signaled to the target’s MANAGEMENT_AGENT register by
means of an eight-byte block write transaction that specifies the Serial Bus address of the login request.
The address of the management agent shall be obtained from configuration ROM.

NOTE – The speed at which the block write request to the MANAGEMENT_AGENT register is received shall
determine the speed used by the target for all subsequent requests to read the initiator’s configuration ROM,
fetch ORB’s from initiator memory or store status at the initiator’s status_FIFO. Command block ORB’s
separately specify the speed for requests addressed to the data buffer or page table.

T10/1155D Revision 2c

62

The login ORB shall specify the lun of the logical unit for which the initiator desires access.

The target shall perform the following to validate a login request:

a) The target shall read the initiator’s unique ID, EUI-64, from the bus information block by means of
two quadlet read transactions. The source_ID from the write transaction used to signal the login
ORB to the target’s MANAGEMENT_AGENT register shall be used as the destination_ID in the
quadlet read transactions;

b) The target shall determine whether or not the initiator already owns a login by comparing the EUI-64
just obtained against the login_owner_EUI_64 for all login_descriptors. If the initiator is currently
logged-in to the same logical unit, the login request shall be rejected.

c) If the exclusive bit is set in the login ORB, the target shall reject the login request if there are any
active login_descriptors for the logical unit;

d) If an active login_descriptor with the exclusive attribute exists for the lun specified in the login ORB,
the target shall reject the login request; and

e) The target shall determine if a free login_descriptor is available. If a login_descriptor is free, the
initiator’s source_ID is stored in login_owner_ID, the initiator’s EUI-64 is stored in
login_owner_EUI_64, the lun from the login ORB is stored in the login_descriptor, the exclusive
variable in the login_descriptor is set to the value of the exclusive bit from the login ORB and the
addresses of the fetch agent(s) are also stored in the login_descriptor. Lastly the target assigns a
unique login_ID to this login and stores it in the login_descriptor.

If the target is able to satisfy the login request, it shall return a login response as specified in 5.1.4.1. A
critical component of a login response returned to the initiator is the base address of the target agent that
the initiator shall use to signal any subsequent requests to the target for the indicated login_ID.

8.2.2 Create stream

An isochronous stream may be created for an initiator only after completion of the login process just
described. The initiator shall supply a login_ID previously obtained as the result of a successful login as
well as other information in the create stream request that characterizes the isochronous operations to be
performed.

The isochronous information consists of three items:

– whether the target is to function as a talker or a listener;

– the maximum number of channels that may be simultaneously enabled; and

– the aggregate maximum isochronous payload for all channels to be transferred between Serial Bus
and the medium in a single isochronous cycle.

The maximum number of channels are required in order for the target to allocate sufficient resources. The
initiator must also specify which role, talker or listener, the target shall assume for this stream.

The aggregate maximum isochronous payload is the worst-case amount of data the target may have to
transfer to or from Serial Bus and from or to the medium in an isochronous cycle. Implementation-
dependent constraints may limit the performance of the target, which requires this information in order to
determine if the login may be accepted.

NOTE – Upon playback (when the target is a talker), the aggregate maximum isochronous payload shall reflect
the total of all channels recorded on the medium—not just the aggregation of payload(s) for the channels to be
transmitted on Serial Bus. This is essential since the target reads all of the data from the medium even though
the channel mask may select a small subset for playback.

T10/1155D Revision 2c

63

The target shall perform the following to validate a create stream request:

a) The target shall validate the login_ID supplied in the create stream ORB by comparing the
destination_ID in the read request(s) used to fetch the ORB with the source_ID retained when
login_ID was assigned to the initiator. If the node ID’s do not match, the login_ID is invalid.

b) If the login_ID is valid, the target shall determine if a free login_descriptor is available. If a
login_descriptor is free, the initiator’s source_ID is stored in login_owner_ID, the initiator’s EUI-64 is
stored in login_owner_EUI_64, the lun from the login_descriptor is copied to the login_descriptor for
the create stream request and the addresses of the fetch agent(s) are also stored in the
login_descriptor. Lastly the target assigns a unique login_ID to this login and stores it in the
login_descriptor,

In addition to the addresses of the stream command block and stream control fetch agents, the target
shall also specify in the login_response data the minimum transfer length that the initiator should specify
in the stream_length field of any stream command block request signaled to the target.

8.3 Reconnection

Upon a Serial Bus reset, the target shall abort all task sets for all command block agents created as the
result of login request(s). Task sets associated with isochronous streams shall not be aborted. Both the
stream command block and stream control requests shall continue to be executed by the target but the
return of status shall be deferred until a successful reconnection.

For one second subsequent to a bus reset the target shall retain sufficient information to permit an initiator
to reconnect its login ID and associated stream ID’s. After one second the target shall perform an implicit
logout for all login ID’s and stream ID’s that have not been successfully reconnected to their original
initiator(s).

NOTE – The basis of the one second time-out is to permit initiators to reallocate isochronous channels and
bandwidth and to reestablish isochronous connections.

The target shall perform the following to validate a reconnect request:

a) The target shall read the initiator’s unique ID, EUI-64, from the bus information block by means of
two quadlet read transactions. The source_ID from the write transaction used to signal the reconnect
ORB to the target’s MANAGEMENT_AGENT register shall be used as the destination_ID in the
quadlet read transactions;

b) The target shall determine whether or not the login_ID is valid by comparing the just obtained EUI-64
against the login_owner_EUI_64 for the login_descriptor identified by login_ID;

c) If the login_ID is valid, the target shall store the initiator’s source_ID in login_owner_ID for the
referenced login_descriptor and for all stream descriptors associated with the same initiator; and

d) Fetch agents for stream command block and stream control requests for the reconnected initiator
may resume; status for completed ORB’s that had not been stored in the initiator’s status_FIFO
(because the initiator’s source_ID had been invalidated by the bus reset) may also be stored.

No login_response data is stored for a reconnect request; the completion status is indicated by the status
block stored at the status_FIFO address.

8.4 Logout

When an initiator no longer requires access to a target’s resources, it shall signal a logout request to the
management agent. The login or stream resources to be released shall be identified by login_ID in the
logout ORB. A target shall reject a logout request if login_ID does not match that of any active
login_descriptor or if the source_ID of the write request used to signal the logout ORB to the

T10/1155D Revision 2c

64

MANAGEMENT_AGENT register is not equal to the source_ID of the matching login_descriptor. If any
tasks or stream control ORB’s are active at the time of the logout request, they shall be aborted in the
same fashion as if the task set had been aborted. Upon successful completion of a logout request, all
resources allocated to the initiator are free once again and may be used by the target to satisfy
subsequent login requests.

T10/1155D Revision 2c

65

9 Command execution

This section describes the procedures used by an initiator to request command execution by a target. As
described in the model, requests are specified by data structures in system memory that are subsequently
fetched by the target. While a target executes a request, it is responsible for any data transfer associated
with the request. Once a request completes, successfully or in error, a status block is stored in system
memory by the target. The data structures are defined in section 5; the initiator procedures for the use of
these request and status blocks are described in the clauses that follow

9.1 Requests and request lists

Management requests (which include login and logout requests) are signaled to the target agent by means
of a Serial Bus block write transaction that specifies the address of the management ORB. The
management agent becomes busy while executing a request and refuses subsequent Serial Bus
transactions until the current request is completed. The management agent does not require any
initialization procedures.

The other target agents, command block and stream control, are characterized as fetch agents since they
manage linked lists of requests in system memory and are responsible to fetch the ORB’s. For normal
command block, stream command block and stream control ORB’s, the initiator produces requests and
the target consumes them. These processes are asynchronous and independent of each other. Target
efficiency is improved if the target can be kept occupied with an ample working set of requests. To this
end, the initiator is permitted to arrange ORB’s in linked lists and to dynamically append new requests to
the lists while the target remains active.

Each normal command block, stream command block or stream control ORB contains an address pointer,
next_ORB, which shall either be null or point to another ORB. A linked list of ORB’s, previously illustrated
by Figure 6 , implicitly orders the ORB’s—the fact that the ORB’s are in order permits the target to execute
them in order (or not) according to its device-dependent characteristics.

The target is responsible to fetch ORB’s from system memory, as described in more detail in 9.1.3. This
remainder of this clause describes what the initiator shall do to:

– initialize a target fetch agent; and

– dynamically append new requests to an active list and notify a target fetch agent of the new
requests; or

– notify a target fetch agent of a single new request.

9.1.1 Fetch agent initialization (informative)

After successful completion of a login procedure and the return of the base address of the fetch agent
CSR’s, the initiator may initialize the fetch agent as follows:

a) The initiator allocates space for a dummy ORB and initializes it per the format described in 5.1.1.
Although only the next_ORB field, notify bit and the rq_fmt field are significant within a dummy ORB,
the initiator allocates at least the minimum ORB size specified by the target’s configuration ROM.
The initiator sets the next_ORB field to the null pointer value;

b) The initiator resets the target fetch agent by a quadlet write to the fetch agent’s AGENT_RESET
register;

T10/1155D Revision 2c

66

c) The initiator writes the address of the dummy ORB to the fetch agent’s ORB_POINTER register by
means of an 8-byte block write request. In the example in Figure 57, this is the value
0000 0000 8004 00C016. This causes the fetch agent to transition to the ACTIVE state.

The figure below illustrates the result of these actions:

Figure 57 – Fetch agent initialization with a dummy ORB

When the fetch agent transitions to the active state as a result of the write to the ORB_POINTER register,
it uses the value to fetch the dummy ORB (as target resources permit). The dummy ORB, by definition,
completes immediately and the target fetch agent stores a status block for the request. However, the null
pointer in the next_ORB field of the dummy ORB causes the fetch agent to transition to the suspended
state. The ORB_POINTER register still points to the dummy ORB and the initiator may subsequently
append additional requests, as described in 9.1.2.

9.1.2 Dynamic appends to request lists (informative)

Once a target fetch agent has been initialized and made active as described above, it is possible for the
initiator to append new requests to the linked list while the fetch agent remains active. Assume that the
initiator intends to add three new requests previously illustrated by Figure 6.

An initiator may append new requests to an active request list as follows:

a) The initiator constructs a linked list of ORB’s in system memory, as illustrated in the example. The
next_ORB field of the last ORB contains a null pointer. The next_ORB fields of all other ORB’s
contain a valid pointer to a subsequent ORB;

b) The initiator updates the next_ORB field of what had been the last ORB, in this example the dummy
ORB in Figure 57, with the address of the first request in the new request list, in this example
0000 0000 8000 000016; and

c) Lastly, the initiator transmits a quadlet write request, with any data value, to the fetch agent’s
DOORBELL register.

The final step informs the target that address pointers in the request list have been updated by the initiator.
If the target fetch agent had not encountered a null pointer, the activation of the doorbell is redundant.
However, if the target fetch agent is already suspended at the time next_ORB is updated, the activation of
the doorbell is essential to reactivate the fetch agent. In this latter case, it is necessary for the target fetch
agent to refetch all or part of an ORB from system memory in order to ascertain if a previously null pointer
contains a valid address of an ORB.

NOTE – If the initiator has knowledge that the fetch agent is in the suspended state, the algorithm described
above may be modified to write the address of the new ORB to the ORB_POINTER register in place of the
write to the DOORBELL register. This has the virtue of avoiding a refetch of the next_ORB field from the ORB
at which the fetch agent is suspended, but would produce unpredictable results if the fetch agent were not in
the suspended state.

FFFF FFFF FFFF FFFF16

Dummy ORB

0000 0000 8004 00C016

ORB_POINTER register

T10/1155D Revision 2c

67

9.1.3 Fetch agent use by the BIOS (informative)

The BIOS, or any similar initiator application that executes in a single-threaded environment, has little
need of the target fetch agent’s capabilities to manage multiple outstanding requests. The BIOS may take
advantage of this and use a simpler procedure than that described in 9.1.2 to signal requests to the target.
Subsequent to initialization of the target fetch agent by means of a write to the AGENT_RESET register,
the BIOS may signal one request at a time to the target as follows:

a) The BIOS allocates space for the request in an ORB and initializes it according to the ORB format.
The next_ORB field contains a null pointer;

b) The BIOS signals the request to the target agent by writing the address of the ORB to the
ORB_POINTER register in an 8-byte block write transaction. This causes the target agent to
transition to the ACTIVE state and to execute the request; and

c) Subsequent to the return of a status block to the status_FIFO address specified when the login was
performed, the BIOS may signal additional requests by repeating this procedure.

The performance improvements yielded by the above procedure (which are accomplished by the
elimination of a read transaction to fetch an ORB) are minor; the principal benefit to the BIOS is code
simplification.

9.1.4 Fetch agent state machine

The operations of a target fetch agent are specified by the figure below. The state of a fetch agent is
visible in the context displayed by the AGENT_STATE and ORB_POINTER registers described in 6.4. The
state machine diagram and accompanying text explicitly specify the conditions for transition from one state
to another and the actions taken within states.

The target shall qualify all writes to fetch agent CSR’s by the source_ID of the currently logged-in initiator.
A write to a fetch agent CSR by any other Serial Bus node shall be rejected by the target by one of the
following methods:

– an acknowledgment of ack_type_error;

– an acknowledgment of ack_complete (although the write is ignored); or

– an acknowledgment of ack_pending. If the target subsequently responds, the response code shall
be resp_type_error.

The recommended target action is to indicate a type error, either by an acknowledgment of ack_type_error
or an acknowledgment of ack_pending followed by resp_type_error.

T10/1155D Revision 2c

68

Figure 58 – Fetch agent state machine

Transition Any:F0a. A power reset shall cause the fetch agent to transition to the RESET state from any
other state. The registers that control and make visible the operations of the fetch agent shall be reset to
known values, zeros in the case of the AGENT_STATE register and a null pointer in the case of the
ORB_POINTER register.

TransitionAny:F0b. A quadlet write request by the initiator to the AGENT_RESET register shall cause the
fetch agent to transition to state F0 from any other state. The fetch agent shall zero the AGENT_STATE
register and set the ORB_POINTER register to a null pointer value before the transition to state F0.

State F0: Reset. Upon entry to this state, the st field in the AGENT_STATE register shall be set to
RESET. The fetch agent is inactive and available to be initialized by an initiator.

Transition F0:F1. An 8-byte block write of a valid ORB_offset to the ORB_POINTER register shall update
the register and cause the fetch agent to transition to state F1. The target shall confirm the block write
request with a response of COMPLETE.

NOTE – When the fetch agent is reset, it is not necessary to write to the DOORBELL register when a transition
is made to the ACTIVE state.

TR_DATA.indication(WRITE, AGENT_RESET)

AGENT_STATE = zeros
ORB_POINTER = NULL

TR_DATA.response(COMPLETE)

Any:F0b
Target resources available

F1:F1
Clear doorbell variable to zero

TR_DATA.request(READ, ORB_POINTER)

F0: Reset
AGENT_STATE.st = RESET

TR_DATA.response(COMPLETE)

TR_DATA.indication(WRITE, ORB_POINTER)
F0:F1

F1: Active
AGENT_STATE.st = ACTIVE

AGENT_STATE = zeros
ORB_POINTER = NULL

Power reset
Any:F0a

doorbell variable equal to one

Clear doorbell variable to zero
TR_DATA.request(READ, ORB_POINTER)

F3:F4

F3: Wait for doorbell
AGENT_STATE.st = SUSPENDED F2: Verify next_ORB

next_ORB is null
F2:F3

F5: Dead
AGENT_STATE.st = DEAD

Fatal error
Any:F5

next_ORB is valid

ORB_POINTER = next_ORB
F2:F1

TR_DATA.confirmation(COMPLETE)

Set next_ORB to response data
 Initiate device request

F1:F2

TR_DATA.confirmation(COMPLETE)

Set next_ORB to response data
F4:F2

Clear doorbell variable to zero
Set next_ORB to ORB_POINTER
TR_DATA.response(COMPLETE)

TR_DATA.indication(WRITE, ORB_POINTER)
F3:F2

F4: Wait for next_ORB

T10/1155D Revision 2c

69

State F1: Active. Upon entry to state F1, the st field in the AGENT_STATE register shall be set to
ACTIVE. In this state, the fetch agent is assumed to have valid address information in the ORB_POINTER
register and may fetch ORB’s from the initiator as resources permit.

Transition F1:F1. The availability of target resources is an implementation-dependent decision. Typically,
the resources might be space in device memory to hold an image of the ORB while the command is
scheduled for execution and subsequently completed. In any case, the fetch agent clears the doorbell
variable to zero and then issues a block read request to obtain the ORB from system memory.

Transition F1:F2. Subsequent to a block read request, issued as described above, the fetch agent may
accept a block read response that contains the desired ORB. If a read response is received whose
source_ID, destination_ID and tl fields match the destination_ID, source_ID and tl fields, respectively, of
the read request, the fetch agent shall make the ORB available to the device server for execution and
shall copy the next_ORB field from the response data to the next_ORB variable before making the
transition to state F2. The target shall not initiate execution of the command contained within the ORB until
these actions are complete.

State F2: Verify next_ORB. The next_ORB variable contains information about a subsequent ORB that
may be linked in order after the one just fetched. As described in 5.1, the next_ORB pointer encodes the
address of the next ORB. The actions of this state determine whether or not the next_ORB pointer is null.

Transition F2:F3. The fetch agent shall transition to a suspended state, F3, if next_ORB contains a null
pointer. A null pointer is defined in 5.1 and exists if the most significant bit of the variable is one.

Transition F2:F1. If the next_ORB variable does not indicate a null pointer, presumably it is a valid
pointer. In this case, the fetch agent shall update the ORB_POINTER register with the value of next_ORB.

State F3: Wait for doorbell. The fetch agent is suspended, the ORB_POINTER register contains valid
address information that should not be updated by the initiator and a null pointer has signaled the end of a
linked list of ORB’s in system memory.

Transition F3:F2. If an indication of a write to the ORB_POINTER register is received, the fetch agent
shall clear the doorbell variable to zero, set the next_ORB variable to the value of the ORB_POINTER
register and then confirm the write transaction with a response of COMPLETE. After the confirmation, the
fetch agent shall transition to state F2 in order to verify the next_ORB variable. If, as expected, next_ORB
is not null an immediate F2:F1 transition follows.

Transition F3:F4. Whenever the doorbell variable is equal to one, the fetch agent shall clear the doorbell
variable to zero and then issue a read request to obtain a fresh copy of the next_ORB field from the ORB
whose address is contained in the ORB_POINTER register and shall transition to state F4. The doorbell
variable is set to one as the result of a quadlet write request of any value to the DOORBELL register,
whether the write request is received in this or any other state.

NOTE – The fetch agent may issue either an 8-byte block read request (to fetch just the next_ORB field) or it
may reread the entire ORB. The initiator shall insure that system memory occupied by the ORB remains
accessible, as described in 9.3.

State F4: Wait for next_ORB. The fetch agent is suspended and awaiting a read response for a block
read directed to the address contained in the ORB_POINTER register.

Transition F4:F2. Subsequent to a block read request, issued as described above, the fetch agent may
accept a block read response that contains the next_ORB data. If a read response is received whose
source_ID, destination_ID and tl fields match the destination_ID, source_ID and tl fields, respectively, of
the read request, the fetch agent shall copy the next_ORB field from the response data to the next_ORB

T10/1155D Revision 2c

70

variable before making the transition to state F2 in order to verify the next_ORB variable. If, as expected,
next_ORB is not null an immediate F2:F1 transition follows.

Transition Any:F5. Upon the detection of any fatal error, the fetch agent shall transition to state F5.
Examples of fatal errors include, but are not limited to:

– the failure of the addressed node to acknowledge a read request;

– the failure of the addressed node to respond to a read request (split time-out);

– a busy condition at the addressed node that exceeds the target’s busy retry limit;

– a data CRC error in a response.

Some of these errors may be recoverable if retried by the target.

State F5: Dead. The dead state is a unique state that preserves fetch agent information in the
AGENT_STATE and ORB_POINTER registers. All writes to these registers shall have no effect while in
state F5.

9.2 Data transfer

The transfer of data associated with a command is entirely the responsibility of the target. The target shall
use Serial Bus read transactions to fetch data from system memory and Serial Bus write transactions to
store data in system memory.

The total transfer length may be larger than the maximum data payload that can be accommodated in a
single transaction. The target is responsible to manage the size and number of read or write transactions
to transfer all the requested data. The target may choose any appropriate size for these data transfer
transactions, subject to constraints specified by the ORB.

The target shall observe alignment requirements specified by the page_table_present bit and the
page_size field. If page_table_present is one, the target shall observe alignment boundaries that occur
every 2 page_size+8 bytes; no single Serial Bus block read or block write transaction shall cross such a
boundary. When page_table_present is zero, a page_size value of zero indicates that there are no
alignment requirements. Nonzero page_size values specify alignment boundaries in the same fashion as
when a page table is present.

The target shall issue data transfer requests with a speed equal to that specified by the spd field in the
ORB. The target shall not issue block read or write requests with a data payload length greater than that
specified by the max_payload field in the ORB.

Within the above speed and size constraints, the target is free to issue the data transfer requests in any
order and to retry failed data transfer requests according to vendor-dependent algorithms.

9.3 Completion status

Upon completion of an ORB, the target shall examine the notify bit in the ORB to determine whether or not
to store a status block. If notify is zero, the target may store a status block. Otherwise, if notify is one or if
the ORB completed with an error condition, the target shall store a status block. The address for the
status block is specified by status_FIFO, supplied by the initiator as part of the login or create stream
request. The status block, previously described in 5.3, contains sufficient information to indicate
successful command completion or, in the case of a faulted command, to permit the initiator to select the
appropriate error handling strategy.

T10/1155D Revision 2c

71

In all cases, the status FIFO allocated by the initiator shall be accessible to a single Serial Bus block write
transaction with any data_length that is a multiple of four and less than or equal to 32 bytes. The target
shall store the status block by means of a single block write and shall not attempt any retries if either:

a) no acknowledge packet is received immediately after the write request; or

b) subsequent to the receipt of an ack_pending immediately after the write request, no
corresponding response packet is received within the split time-out limit.

Other errors, including the link layer busy conditions, ack_data_error, resp_conflict_error and
resp_data_error, may be retried up to a vendor-dependent limit. If no retry is attempted or if the retry limit
is exhausted without success, the target fetch agent shall transition to the DEAD state.

The return of completion status to the initiator may also signal that the system memory allocated to the
ORB may be reused. If the end_of_list bit is clear the initiator may reuse or deallocate the system memory
occupied by an ORB.

9.4 Unsolicited status

In addition to status associated with a particular ORB, described in the preceding section, a fetch agent
may store unsolicited status at the address specified by status_FIFO. A status block that contains
unsolicited status shall be identified by setting the unsolicited bit to one.

A fetch agent may store unsolicited status at any time that its unsolicited status enabledstatus
acknowledgment variable is one. Upon successful completion of the Serial Bus block write transaction
used to store the status block, the fetch agent shall zero its unsolicited status enabledstatus
acknowledgment variable. The initiator may set the fetch agent’s unsolicited status enabledstatus
acknowledgment variable to one by writing any data value to the corresponding
UNSOLICITED_STATUS_ENABLESTATUS_ACKNOWLEDGE register.

The action taken by a target when unsolicited status is generated but cannot be stored because the
unsolicited status enable variable is zero depends upon the nature of the status. If the status is for a unit
attention condition, the target shall retain the information with the intent to store it as soon as the
unsolicited status enable variable is set to one. The unit attention condition shall persist until the
corresponding status block is stored at the initiator’s status_FIFO. Other status information that does not
constitute a unit attention may be discarded by the target. The definition of unit attention conditions is
beyond the scope of SBP-2 and is usually the province of the command-set standard for the target.

T10/1155D Revision 2c

73

10 Task management

The preceding section describes the procedures used by the initiator to signal the target that tasks are to
be executed and the procedures by which the target performs data transfer or device control for the tasks
and ultimately signals their completion back to the initiator. Section 9 gives no consideration to the larger
perspective of how these tasks interact with each other and how the initiator may manage the tasks.

This section defines how individual tasks are collected together as task sets and how both tasks and task
sets may be managed by the initiator.

10.1 Task sets

A task set is a collection of tasks, each of which has an associated command in an ORB, that is available
to the target for execution. The interactions among these tasks and the ordering relationships, if any, are
governed by the task management model implemented by the target.

A task enters the task set when it is linked into an active request list. The extent of a task set includes all
the uncompleted ORB’s linked into a request list in system memory, not solely the ORB’s already fetched
by the target.

Historically, there has been one task set associated with each logical unit of a device. The concept of a
task set is extended by SBP-2 to permit multiple stream task sets per logical unit. Each time target
resources are allocated for isochronous operations (by means of a create stream request), a task set is
created that is associated both with a logical unit and a stream identifier. There is a one-to-one
relationship between a stream identifier and a stream task set, but there may be multiple stream task sets
associated with a logical unit. Each stream task set is separate and distinct from the normal task set and
from other stream task sets: there are no interactions between tasks that belong to different stream task
sets.

10.2 Basic task management model

Targets shall support, at a minimum, a basic task management model. Under this model, the following
rules apply:

– All tasks within a task set share the same execution characteristics: either they are all reorderable or
else they are all ordered;

– The reorderable or ordered execution characteristics of a task set are implicit in the target
implementation and are not subject to control by the initiator;

– For stream task sets, the target shall execute all tasks in order and report their completion status in
the same order. For normal task sets, configuration ROM shall specify whether the target may
reorder task execution or not;

– All tasks within a task set are uniquely identified by the Serial Bus address of the ORB that initiated
the task. This address shall be unique for the life of the task;

– The abort task, abort task set and target reset task management functions, described later in this
section, shall be implemented;

The only element of choice in the implementation of a task set is under this model is whether or not the
target may reorder task execution.. An unordered model is usually appropriate for devices, such as mass
storage, where no positional or other context information is inherited from one command to the next. An
ordered model may be more appropriate for devices, such as sequential storage, where the outcome of
one command affects the next. The same ordering considerations apply to stream task sets, within which
the data is time-ordered by its very nature.

T10/1155D Revision 2c

74

The unordered model is characterized by unrestricted reordering of the active tasks. The target may
reorder the actual execution sequence of any tasks in a task set in any manner. Unrestricted reordering
places the responsibility for the assurance of data integrity on the initiator. If the integrity of data on the
device medium could be compromised by unrestricted reordering involving a set of active tasks, {T0, T1,
T2, … TN} and a new task T´, the initiator shall wait until {T0, T1, T2, … TN} have completed before
appending T´ to an active request list.

NOTE – In multitasking operating system environments, independent execution threads may generate tasks
that have ordering constraints within each thread but not with respect to other threads. If this is the case, an
initiator may manage the constraints of each thread yet still keep the target substantially busy. This avoids the
undesirable latencies that occur if the target is allowed to become idle before new ORB’s are signaled.

The ordered model requires both that tasks be executed in order and that completion status be returned in
order. However, the split-transaction nature of Serial Bus inherently makes it possible for Serial Bus
transactions to be reordered. Because of this, the target shall insure that completion status is reported in
order. When a task in an ordered task set completes, the target shall successfully store the completion
status in system memory before initiating a Serial Bus write transaction to store completion status for any
other task in the task set.

10.3 Error conditions

Upon an error condition or fault detected during the execution of any task within a task set, the entire task
set shall be cleared as follows:

a) The target shall halt the operation of the fetch agent associated with the task set by making a
transition to the DEAD state;

b) For all recently completed tasks, the target shall wait until the completion status of each command
has been successfully stored in system memory or until the implementation-dependent retry
algorithms have been exhausted in the attempt to store completion status; and

c) Finally, the target shall return error completion status for the faulted task.

The return of error status for a faulted task is an indication to the initiator that the task set has been
cleared and that any remaining active tasks in the request list have been aborted.

10.4 Task management requests

The clauses that follow describe the use of the task management ORB’s defined in 5.1.4.6.

10.4.1 Abort task

Abort task is a task management function that permits an initiator to abort a specified task. A modification
to the rq_fmt field of the ORB to be aborted is the basic method; in addition, targets may also recognize
task management ORB’s to abort tasks. All targets shall support abort task.

Because the task to be aborted may not have been fetched by the target when the initiator wishes to abort
the task, the following procedure shall be used to abort the task:

a) The rq_fmt field shall be set to a value of three in the ORB for the task to be aborted. Note that this
field and the next_ORB field are the only two portions of an ORB that may be modified by the
initiator once the ORB is linked into an active request list;

b) The initiator may construct a management ORB in system memory for the abort task function. The
initiator shall set the appropriate values in the rq_fmt, login_ID and ORB_offset fields of the ORB, as
described in 5.1.4.6. The function field shall be set to ABORT TASK; ORB_offset shall contain the
Serial Bus address of the ORB for the task to be aborted;

T10/1155D Revision 2c

75

c) The initiator may signal the abort task management ORB to the management agent.

Mandatory support for abort task is dependent upon the target’s ability to recognize an rq_fmt value of
three in an ORB and take the actions described below.

– If the ORB to be aborted has already been fetched by the target, the task may be completed by the
target without recognition of the abort task request; otherwise

– When the ORB is firstultimately fetched, the target shall recognize the rq_fmt field value of three and
shall not execute the command. That target shall store completion status for the aborted ORB; the
request status shall be REQUEST COMPLETE and the sbp_status field shall indicate dummy ORB
completedREQUEST ABORTED.

A second method to abort task(s) is available by means of task management ORB’s with a function of
ABORT TASK. If the login_ID supplied in such a task management ORB was obtained as the result of a
login request, target support for this method of abort task is optional. Otherwise, if the login_ID was
obtained as the result of a create stream request, the target shall implement support as specified below.
Targets that support abort task in this manner shall store a completion status of FUNCTION COMPLETE
for the abort task request in the status buffer provided.

If the task to be aborted, identified by ORB_offset, is not recognized by the target as part of its local
working set, one of two conditions may exist: either the ORB has not been fetched or completion status
has already been stored. In either case the target is not required to take any immediate action. In the first
case, when the ORB is ultimately fetched, the rq_fmt field has a value of three and the target shall not
execute the command. The target shall store completion status for the aborted ORB; the request status
shall be REQUEST COMPLETE and the sbp_status field shall indicate dummy ORB completedREQUEST
ABORTED. In the second case, no action whatsoever need be taken by the target.

If the task to be aborted is recognized by the target as part of its local working set, the target should
attempt to abort the task according to the steps below. Note that timing conditions may exist that prevent
targets from aborting the specified task. In particular, if the target has already issued a write request to
store completion status for the task to be aborted, the target shall take no other action in response to the
abort task request Otherwise, the target should perform the following actions in response to a task
management ORB with the ABORT TASK function:

a) The target should not issue additional data transfer requests for the task;

b) The target shall wait for responses to pending data transfer requests and, once all such responses
are received, shall not issue additional data transfer requests for the task;

c) So long as none of the target medium, data buffer or status FIFO have been modified as the result
of partial execution of the task, the target shall store completion status of REQUEST COMPLETE
with an sbp_status field that indicates dummy ORB completed;

d) Otherwise, if task execution has commenced and any one of the target medium, data buffer or
status FIFO has been modified, then the target shall store completion status of REQUEST with an
sbp_status field that indicates request aborted.

e) The target shall store completion status for the task to be aborted and shall wait for the transaction
complete acknowledgment or response. If the target successfully aborted the task, the request
status stored shall be REQUEST ABORTED.

Regardless of which abort task methods are supported by the target, the initiator shall not reuse the
system memory occupied by the ORB, data buffer or page table of the task to be aborted until completion
status is returned for that ORB.

T10/1155D Revision 2c

76

10.4.2 Abort task set

Abort task set is a task management function that permits an initiator to abort all of its tasks within a task
set. All targets shall support abort task set.

To abort a task set, the initiator shall construct a management ORB in system memory for the abort task
set function. The initiator shall set the appropriate values in the rq_fmt and login_ID fields of the ORB, as
described in 5.1.4.6. The function field shall be set to ABORT TASK SET.

The initiator shall signal the abort task set ORB to the management agent.

Upon receipt of an abort task set request, the target shall perform the following actions:

a) The target shall halt the operation of the fetch agent associated with the task set by making a
transition to the DEAD state;

b) The target shall not issue data transfer requests for any task in the task set whose login_ID is equal
to that specified in the abort task set request;

c) The target shall wait for responses to pending data transfer requests for any task in the task set
whose login_ID is equal to that specified in the abort task set request;

d) For all recently completed tasks whose login_ID is equal to that specified in the abort task set
request, the target shall wait until the completion status of each command has been successfully
stored in system memory or until the implementation-dependent retry algorithms have been
exhausted in the attempt to store completion status; and

e) When all of the above events have completed, the target shall store completion status for the abort
task set request in the status buffer provided. The completion status shall indicate FUNCTION
COMPLETE.

The initiator shall not reuse the system memory occupied by any of the ORB’s, data buffers or page tables
of the tasks to be aborted until completion status is returned for the abort task set request.

10.4.3 Clear task set

Clear task set is a task management function that permits an initiator to abort all tasks within a task set.
Targets may support clear task set.

To clear a task set, the initiator shall construct a management ORB in system memory for the clear task
set function. The initiator shall set the appropriate values in the rq_fmt and login_ID fields of the ORB, as
described in 5.1.4.6. The function field shall be set to CLEAR TASK SET.

The initiator shall signal the clear task set ORB to the management agent.

Upon receipt of a clear task set request, the target shall perform the following actions:

a) The target shall halt the operation of all fetch agents associated with the task set by making
transitions to the DEAD state;

b) The target shall not issue data transfer requests for any task in the task set;

c) The target shall wait for responses to pending data transfer requests for any task in the task set;

d) For all recently completed tasks, the target shall wait until the completion status of each command
has been successfully stored in system memory or until the implementation-dependent retry
algorithms have been exhausted in the attempt to store completion status;

T10/1155D Revision 2c

77

e) The target shall create a unit attention condition for all logged-in initiators other than the initiator,
identified by login_ID, that signaled the clear task set request; and

f) When all of the above events have completed, the target shall store completion status for the clear
task set request in the status buffer provided. The completion status shall indicate FUNCTION
COMPLETE.

The initiator shall not reuse the system memory occupied by any of the ORB’s, data buffers or page tables
of the tasks to be aborted until completion status is returned for the clear task set request.

10.4.4 Logical unit reset

Logical unit reset is a task management function that causes a logical unit to perform the actions
described below and to create unit attention conditions for all initiators logged-in to the logical unit. Support
for logical unit reset is a target option.

To reset a logical unit, the initiator shall construct a management ORB in system memory for the logical
unit reset function. The initiator shall set the appropriate values in the rq_fmt and login_ID fields of the
ORB, as described in 5.1.4.6. The function field shall be set to LOGICAL UNIT RESET.

The initiator shall signal the logical unit reset ORB to the management agent.

Upon receipt of a logical unit reset request, the logical unit shall perform the following actions:

a) The target shall halt the operation of all of the logical unit’s fetch agents by making transitions to the
DEAD state;

b) The target shall not issue data transfer requests for any task in any of the logical unit’s task sets;

c) The target shall create a unit attention condition for all initiators logged-in to the logical unit other
than the initiator, identified by login_ID, that signaled the logical unit reset request; and

d) When all of the above events have completed, the target shall store completion status for the logical
unit reset request in the status buffer provided. The completion status shall indicate FUNCTION
COMPLETE.

The initiator shall not reuse the system memory occupied by any of the affected ORB’s, data buffers or
page tables of the tasks until completion status is returned for the target reset request.

10.4.5 Target reset

Target reset is a task management function that causes a target to perform the actions described below
and to create unit attention conditions for all initiators. All targets shall support target reset.

To reset a target, the initiator shall construct a management ORB in system memory for the target reset
function. The initiator shall set the appropriate values in the rq_fmt and login_ID fields of the ORB, as
described in 5.1.4.6. The function field shall be set to TARGET RESET.

The initiator shall signal the target reset ORB to the management agent.

Upon receipt of a target reset request, the target shall perform the following actions:

a) The target shall halt the operation of all fetch agents for all logical units by making transitions to the
DEAD state;

b) The target shall not issue data transfer requests for any task in any task set;

T10/1155D Revision 2c

78

c) The target shall create a unit attention condition for all logged-in initiators other than the initiator,
identified by login_ID, that signaled the target reset request; and

d) When all of the above events have completed, the target shall store completion status for the target
reset request in the status buffer provided. The completion status shall indicate FUNCTION
COMPLETE.

The initiator shall not reuse the system memory occupied by any of the affected ORB’s, data buffers or
page tables of the tasks until completion status is returned for the target reset request.

10.4.6 Terminate task

Terminate task is a task management function that permits an initiator to request early completion of a
specified task. Targets that implement the basic task management model shall not support terminate task
and shall reject all terminate task requests with a completion status of FUNCTION REJECTED.

To request task termination, the initiator shall construct a management ORB in system memory for the
terminate task function. The initiator shall set the appropriate values in the rq_fmt, login_ID and
ORB_offset fields of the ORB, as described in 5.1.4.6. The function field shall be set to TERMINATE
TASK; ORB_offset shall contain the Serial Bus address of the ORB for the task to be terminated. Once the
terminate task ORB has been initialized, the initiator shall signal the ORB to the management agent.

Upon receipt of a terminate task request, the target shall store a completion status of FUNCTION
COMPLETE or FUNCTION REJECTED for the terminate task request in the status buffer provided.

If the terminate task function is accepted by the target, the completion status of FUNCTION COMPLETE
does not necessarily indicate that the specified task has completed. The ultimate completion of the
specified task shall be signaled when the target stores completion status for the task.

If an error condition is detected for the specified task, the terminate task request shall be ignored and the
target shall perform the actions previously described in 10.3.

If the specified task completes prior to the receipt of the terminate task request, the target shall wait until
completion status is successfully stored for the specified task before completion status shall be stored for
the terminate task request.

Otherwise, the target shall complete the specified task as follows:

a) The target shall not issue data transfer requests for the task;

b) The target shall wait for responses to pending data transfer requests;

c) The target shall store completion status of REQUEST COMPLETE and appropriate command set-
dependent status that indicates command termination.

When a terminated task creates an error condition, the target shall clear the task set and take the actions
described in 10.3.

The initiator shall not reuse the system memory occupied by the ORB, data buffer or page table of the task
to be terminated until completion status is returned for that ORB.

10.5 Task management event matrix

Common events that affect the state of target fetch agents and their associated task set(s) are
summarized below. Refer to the governing clauses in sections 8 and 9 as well as this section for detailed
information.

T10/1155D Revision 2c

79

With respect to events supported by the target’s management agent, e.g., logout, there is an assumption
of successful completion. In the case of a function rejected response or other indication of failure, the
preceding table does not apply.

Bus resets affect target fetch agents and task sets according to the kind of request, login or create stream,
by which the initiator first acquired access privileges. A login request allocates normal command block
resources while a create stream request allocates stream command block and stream control resources.

Immediately upon detection of a bus reset, all normal command block fetch agents transition to the reset
state and their associated task sets are cleared. Stream command block and stream control fetch agents
do not fetch any additional ORB’s subsequent to a bus reset but otherwise preserve their state. The task
sets associated with these stream agents continue execution, but status for completed commands is held
by the target and not stored to the initiator’s status_FIFO.

For one second subsequent to a bus reset, targets save state information for initiators that were logged-in
at the time of the bus reset. If an initiator successfully completes a reconnect request during this period,
the actions described in 8.3 occur. For normal command block requests, the task set is empty and the
initiator may signal new ORB’s to the target. For both stream command block and stream control agents,
fetching operations resume from the same point as before the bus reset. Any completion status held by
the target during this one second period may also be stored to the initiator’s status_FIFO after the
successful reconnection.

One second after a bus reset, the target shall automatically perform a logout operation for all login ID’s
and stream ID’s that have not been reconnected with their initiator. This returns all the affected fetch
agents to the reset state and aborts any associated stream task sets.

AGENT_STATE.st Task set(s)

Event Normal Stream Normal Stream

Power reset RESET Clear all task sets

Command reset
(write to RESET_START) RESET Clear all task sets

Bus reset (immediate) RESET — Clear all task sets —

Bus reset (after one second) — Logout any initiator that has failed
to successfully reconnect

Login — —

Create stream — —

Reconnect — —

Logout RESET Abort initiator’s task set

Faulted command
(CHECK CONDITION) DEAD Abort faulted initiator’s task set

ABORT TASK — —

ABORT TASK SET DEAD Abort initiator’s task set

CLEAR TASK SET DEAD Clear all task sets

LOGICAL UNIT RESET DEAD Abort all the logical unit’s task sets

TARGET RESET DEAD Clear all task sets

TERMINATE TASK — —

T10/1155D Revision 2c

81

11 Isochronous data interchange format

Isochronous data stored on the medium is kept in a form essentially similar to the format of isochronous
packets on Serial Bus, but the tcode field present in Serial Bus packets is reused to identify the type of
recorded isochronous data. Three different packet formats may be present in recorded isochronous data,
encoded by tcode as shown below.

The values used to indicate CYCLE MARK and DATA are identical to the tcode values defined for Serial
Bus cycle start packets and isochronous data packets, respectively.

In addition to the reuse of the tcode , the header and data CRC fields observed as part of Serial Bus
isochronous packets are not recorded on the medium. Recorded isochronous data packets shall be stored
on quadlet boundaries on the medium and shall contain an integral number of quadlets.

11.1 Cycle marks

Whenever a cycle start packet is observed on Serial Bus for an enabled isochronous stream, a CYCLE
MARK packet shall be recorded on the medium. The CYCLE MARK packet is a single quadlet that stores
the time transported by the cycle start packet, as shown by the figure below.

Figure 59 – CYCLE MARK format

The second_count and the cycle_count fields shall contain the values of the corresponding fields from the
most recently observed cycle start packet. No more than one CYCLE MARK packet shall be recorded for
a single cycle start packet.

NOTE – The time information in the CYCLE MARK packet is not necessary for a target to recreate an
isochronous stream during playback, but it may be useful to applications that search for known time and cycle
boundary locations in recorded isochronous data.

The tcode field shall be equal to eight.

When a target is a listener and detects a missed isochronous cycle, it shall synthesize and record a
CYCLE MARK packet on the medium. The second_count and cycle_count values shall be taken from the
target’s free-running cycle timer.

11.2 Isochronous data packets

The format of an isochronous data packet recorded on the medium is illustrated below.

Value Name Description

8 CYCLE MARK Marks the time of a cycle start event

A16 DATA Isochronous data packet

E16 NULL Null (or filler) packet

All other values — Reserved for future standardization

most significant

cycle_count 0

least significant

second_count tcode F16

T10/1155D Revision 2c

82

Figure 60 – Format for recorded isochronous data

The data_length field shall specify the length, in bytes, of the data field for the packet.

The tag field shall specify the format of the data field, encoded as indicated by the following table.

The channel field shall identify the isochronous channel number for the packet. The channel field recorded
on the medium may have been transformed by the mapping from source channel (observed on Serial
Bus) to dest_channel specified by a stream control ORB with a CONFIGURE CHANNELS control function
(see 5.1.3). Upon playback, the channel field shall be transformed by the mapping to dest_channel
specified by a stream control ORB with a CONFIGURE CHANNELS control function.

The tcode field shall be equal to A16.

The sy, or synchronization code, field is an application-dependent field, the details of whose use are
beyond the scope of this standard.

NOTE – A synchronization point may be defined as a boundary between video or audio frames, or any other
point in the isochronous stream the application may consider appropriate.

The data field shall contain data_length bytes of information and shall be padded with trailing zero bytes,
as necessary, to occupy an integral number of quadlets on the medium.

Dependent upon the value of tag, the target may require additional knowledge of isochronous data
formats. When tag is zero, the data payload of the isochronous packet is unformatted and requires no
transformations upon either recording or playback. When tag is one, the format of the data payload shall
conform to the common isochronous packet (CIP) format standardized by ISO/IEC 1883:199x. The
components of the CIP format pertinent to targets are described in the clause that follows.

11.3 Null packets

When the tcode field has a value of E16, the data that is stored on the medium shall be ignored during
playback. The format of a null packet is shown below.

Value Data field format

0 Unformatted data

1 Common isochronous packet (CIP) format

2 – 3 Reserved for future standardization

tagdata_length
most significant

least significant

data

channel tcode sy

zero pad bytes (if necessary)

…

…

T10/1155D Revision 2c

83

Figure 61 – NULL packet format

The data_length field shall be a multiple of four. Zero is a permissible value for data_length; in this case,
the null packet shall consist of only the header and shall be a single quadlet in length.

The tcode field shall be equal to E16.

When data_length is greater than or equal to four, the data field shall consist of data_length / 4 quadlets.
The values of quadlets within the data field are unspecified for NULL packets.

NOTE – NULL packets serve no particular purpose for targets, but they may be useful to some applications,
such as nonlinear editing. Excessive quantities or sizes of NULL packets may cause some target
implementations to experience underflow or other errors in the playback of isochronous data.

11.4 Common isochronous packets (CIP)

Isochronous data packets (already described in 11.2) may also conform to a CIP format that divides the
data payload into two parts: the CIP header and the application-dependent data that follows. Figure 62
illustrates the organization of the common isochronous packet format.

Figure 62 – Common isochronous packet (CIP) format

The CIP header is a variable number of quadlets (although only two are shown in the preceding figure).
The most significant bit of each quadlet of the CIP header is called the eoh bit. For an n quadlet CIP
header, eoh shall be zero for quadlets zero through n - 2, inclusive, and eoh shall be one for quadlet n - 1.
The next most significant bit of each quadlet is called the form bit. Together, the eoh and form bits specify
the format of the CIP header quadlet. At present, CIP header formats are defined for form values of zero;
form values of one are reserved for future standardization.

The only CIP header format currently defined is a two-quadlet header shown below.

…

1data_length
most significant

least significant

channel tcode

…

sy

data_length
most significant

least significant

application data

data

…

ignored tcode

CIP_header

ignored

…

T10/1155D Revision 2c

84

Figure 63 – Two-quadlet CIP header format

The sid, or source ID, field shall specify the Serial Bus physical ID of the source (talker) for the
isochronous data. Upon playback, the target shall substitute the sid value specified by the channel
configuration map (see 5.1.3) for the recorded sid value in all transmitted isochronous packets.

The dbs, or data block size, field shall specify the size of each of the application-dependent data block(s)
that follow the CIP header. A dbs value of zero encodes a size of 256 quadlets; for all other values of dbs
the number of quadlets is the value of dbs itself. More than one data block may be encapsulated within a
single Serial Bus isochronous packet. following the CIP header.

The fn, or fraction number, field shall specify the number of data blocks that form a higher level,
application-dependent object—the isochronous source packet. The number of data blocks that form an
isochronous source packet is specified as 2 fn; when there is a one-to-one correspondence between
isochronous source packets and data blocks, fn shall have a value of zero.

The qpc, or quadlet padding count, field shall specify the number of pad quadlets appended to an
isochronous source packet before it is divided into data blocks. The quadlet padding count shall be less
than the data block size and shall specify a value that results in equal sizes for the data blocks. If fn is
zero, qpc shall also be zero.

The sph, or source packet header, bit (abbreviated as s in Figure 63) shall be one if the isochronous
source packet begins with a header quadlet of the format shown below; otherwise, it shall be zero.

Figure 64 – Source packet header format

The source packet header shall contain a time stamp encoded in the same fashion as the least significant
25 bits of the CYCLE TIME register.

The dbc, or data block continuity counter, field shall specify the sequence number of the isochronous
source packet and the sequence number of the of the data block within the isochronous source packet.
The least significant fn bits of dbc hold the sequence number of the data block while the most significant
8 - fn bits hold the sequence number of the isochronous source packet itself. The data block continuity
counter labels the first data block that follows the CIP header; the continuity counter of additional data
blocks after the first increases monotonically from the value of dbc..

NOTE – The data block that immediately follows the CIP header is not necessarily the first data block of the
isochronous source packet. The location of the starting data block of an isochronous source packet can be
determined from the values of dbc and fn. Relative to the first data block after the CIP header (counting from
zero), the ordinal of this data block is given by (2 fn - (dbc modulus 2 fn)) modulus 2 fn. If a source packet header
is present (as indicated by the sph bit), it shall be the first quadlet of this data block.

The fmt field shall specify the formats of both the fmt-dependent field with the same quadlet of the CIP
header and the application-dependent data contained within the common isochronous packets. An fmt

fndbs

cycle_countreserved
most significant

least significant

cycle_offset

0
most significant

least significant

r dbcsid qpc s

fmt-dependent2 fmt

T10/1155D Revision 2c

85

value of 3F16 indicates that no application-dependent data follows the CIP header and that the dbs, fn, qpc
fields, the sph bit and the dbc field in the CIP header shall all be ignored. Other values of fmt encode the
application-dependent format of the isochronous data, e.g., DVCR or MPEG. The details of most
application-dependent formats are not relevant to targets and are beyond the scope of this standard.
However, the most significant bit of fmt specifies the format of the fmt-dependent field within same quadlet
of the CIP header; this field is meaningful to targets when it contains a time stamp, since the time stamp
shall be transformed during playback. The table below summarizes the meanings of fmt for targets.

Value Description

0 – 1F16 Application data is present; the fmt-dependent field
contains a time stamp defined by syt below

2016 – 3E16 Application data is present; the contents of the fmt-
dependent field are unspecified

3F16 No application data is present

When fmt is in the range zero to 1F16, inclusive, the second quadlet of the CIP header has the format
illustrated below.

Figure 65 – Synchronization time (syt) format

The two fields, cycle_count and cycle_offset, are collectively referred to as the syt, or synchronization
time, field. When syt has a value of FFFF16, no synchronization time information is present and the syt
field value shall be preserved upon playback. Otherwise, the syt field represents a time stamp encoded in
the same fashion as the least significant 16 bits of the CYCLE_TIME register. Just as in the case of the
CYCLE_TIME register, the value of cycle_offset is constrained to be in the range zero to 3071 inclusive;
Values of syt for which cycle_offset is greater than 3071 are invalid. When syt contains valid cycle_count
and cycle_offset fields, the target shall transform these values upon playback, as described in 12.2.3.

cycle_countfmt-dependent
most significant

least significant

cycle_offset2 fmt

T10/1155D Revision 2c

87

12 Isochronous operations

For each active channel on Serial Bus, isochronous data consists of zero or one isochronous packet
transmitted by a talker each isochronous cycle and received by zero or more listeners in the same
isochronous cycle. This section describes how an initiator may control isochronous data when a target
participates, as either the talker or a listener, with other isochronous device(s) on Serial Bus..

Control of isochronous streams involves many different elements:

– the allocation of target resources (create stream requests);

– the establishment or breaking of connections between the target and other isochronous devices
(connection management); and

– the transfer of isochronous data to or from the target’s medium (stream command block requests);

– the starting, stopping and synchronization of isochronous data reception or transmission by the
target from or to Serial Bus (stream control ORB’s);

– the allocation of Serial Bus resources, such as channel numbers or bandwidth.

The first item, login, has already been defined as part of the access procedures in section 7.6. The last,
channel and bandwidth allocation, are specified by IEEE Std 1394-1995. This section describes the
remaining procedures of isochronous operations.

12.1 Stream command block requests

With the notable exception of the lack of data_descriptor and data_size fields, stream command block
requests are essentially similar to and operate in a like fashion as normal command block requests that
transfer data to or from the medium.

The target agent that is responsible to fetch stream command block ORB’s operates in the same way as
the command block agent(s). The initiator may build linked lists of stream command block ORB’s, signal
them to the target and dynamically append new stream command block ORB’s while the target is active.
See section 9 for a more detailed description; the information is equally applicable to normal command
block requests and stream command block ORB’s.

Stream command block requests shall be completed in order. The target shall insure that data is
transferred in the same order as specified by the linked list of stream command block ORB’s. Each
isochronous stream active at a logical unit shall have its own task set that is disjoint from all other task
sets for the logical unit. The task set for an isochronous stream is instantiated when a successful create
stream request completes. The details of a task set for isochronous streams are explained at length in
10.1.

A stream command block ORB that transfers data from the device medium shall return completion status
to the initiator when stream_length bytes of data have been successfully transferred or an error condition
occurs. The return of completion status to the initiator does not provide any information as to how many of
the stream_length bytes of data have been transmitted on Serial Bus.

A stream command block ORB that transfers data to the device medium shall return completion status to
the initiator when stream_length bytes of data have been successfully transferred or an error condition
occurs.

NOTE – A bus reset can prevent the target from fetching new stream command block requests from the initiator
for up to one second—until the initiator successfully completes a reconnection. In order to provide for the
uninterrupted flow of isochronous data when a bus reset occurs, the initiator should insure that sum of

T10/1155D Revision 2c

88

stream_length for all the uncompleted stream command block ORB’s represents a minimum of slightly more
than one second’s isochronous data at the configured data rate(s).

12.2 Stream control

The stream controller is implemented within the target to mediate the transfer of data between Serial Bus
and the stream command block ORB’s that govern the transfer of data to or from the medium. The stream
controller’s responsibilities include:

– the synchronization, starting and stopping of either the reception or transmission of isochronous data
from or to Serial Bus. The synchronization may occur at a specified time or may occur in response to
a specified data patter in observed isochronous data;

– the selective enablement of specified isochronous channels. When listening, the stream controller
selects which channels to receive and provide to the stream command block ORB’s. When talking,
the stream controller selects which channels to transmit from the data provided by stream command
block ORB’s; and

– the transformation of Serial Bus header and common isochronous packet (CIP) header information
between the representation of the isochronous data on Serial Bus and on the device medium. This
may include the channel number and time-stamp information and the generation or elimination of
null packets, as appropriate.

The target agent that is responsible to fetch stream control ORB’s supports a linked list of requests that
the initiator may build in system memory. This capability is essential for stream control ORB’s, since
synchronization boundaries may occur with as little separation as 125 µs. See section 9 for a more
detailed description; the information is as applicable to stream control ORB’s as it is to normal command
block requests and stream command block ORB’s.

The clauses below describe the procedures that an initiator shall use to govern the actions of the stream
controller. In addition, the stream controller shall transform isochronous header information independent of
any stream control ORB’s issued by the initiator.

12.2.1 Channel masks

Targets are configured to receive or transmit isochronous channels independently of the selective
enablement or disablement of the individual channels. The selection of an active set of channels shall be
performed by the stream controller according to a channel mask maintained for each stream.

The channel mask may be updated by a stream control ORB with a SET CHANNEL MASK control
function, as described in 5.1.3. The channel mask may be updated only when the stream controller is
stopped or paused. At all other times the target shall reject any attempts to modify the channel mask and
shall leave it unchanged. .

When the target is a listener, the channel mask refers to channel numbers as they are observed on Serial
Bus. The channel mask is applied to select isochronous packets from Serial Bus before any
transformations are performed and before the data is recorded on the medium.

When the target is a talker, the channel mask refers to channel numbers as they are recorded on the
medium. The channel mask is applied to the stream of isochronous data presented to the stream
controller before any transformations are performed and before isochronous packets are transmitted on
Serial Bus.

T10/1155D Revision 2c

89

12.2.2 Flow control

The execution of the stream control ORB functions START, STOP, PAUSE and UPDATE CHANNEL mask
can be synchronized with external events, as described in 5.1.3. This section describes the effect of
synchronization on the transfer of data between the stream controller and Serial Bus.

When the target is a talker, data flows from the device medium (under the control of stream command
block ORB’s) to the stream controller. If the stream controller is in a state where isochronous data
transmission is enabled (typically as the result of a stream control ORB with a START control function),
isochronous data is selected according to the stream’s channel mask, is then transformed as described in
12.2.3 and transmitted on Serial Bus. If the stream controller is in a state where isochronous data
transmissions are disabled (typically as the result of a stream control ORB with a STOP or PAUSE control
function), isochronous data transfer from the medium may continue within the limitations of target buffer
resources. Once these buffers are full, the execution of stream command block ORB’s shall be
suspended.

When the target is a listener, data flows from Serial Bus to the stream controller. If the stream controller is
in a state where isochronous data reception is enabled (typically as the result of a stream control ORB
with a START control function), isochronous data is selected according to the stream’s channel mask, is
then transformed as described in 12.2.3 and is transferred to the device medium under the control of
stream command block ORB’s.

12.2.3 Isochronous data transformation

The stream controller is responsible to both filter and transform isochronous data as it is recorded on or
played from the device medium. Filtering is performed according to the channel number of the source,
Serial Bus or device medium, before any transformations are applied. Once a set of enabled channel(s) is
selected, the stream controller shall:

– replace the channel number found in the source isochronous data with the remapped channel
number for the destination isochronous data. This may be the identity map;

– upon playback, if the isochronous data conforms to the common isochronous packet (CIP) format,
replace the sid (or source ID) field in the CIP header with the source ID specified by a CONFIGURE
CHANNELS request;

– when recording, transform all instances of time stamps in the CIP or source packet headers to
reflect the delta, or time difference, between the time stamp and the Serial Bus isochronous cycle
time at which the data is observed; and

– upon playback, add the Serial Bus isochronous cycle time at which the data is transmitted to all
instances of time stamps in the CIP or source packet headers, in order to recreate an absolute time
stamp.

The first two transformations are straightforward and require no additional explanation. The
transformations to be applied to time stamps are more complex and are explained below.

The common isochronous packet (CIP) format, as currently standardized, contains isochronous time
stamp information that is absolute rather than relative. That is, the time stamps contained within header
data are a fixed offset ahead of, in the most significant bits, the isochronous cycle times contained in the
cycle start packet that signals the cycle in which the packets are transmitted. Time stamps are found in
two places in packets that conform to CIP format:

– the syt field of the second quadlet of a two-quadlet CIP header if the fmt field in that quadlet has a
value between zero and 1F16, inclusive; and

– the cycle_count and cycle_offset fields of the isochronous source packet header.

T10/1155D Revision 2c

90

See 11.3 for the exact specifications of these fields and the circumstances under which they are present in
isochronous data.

In order to permit the subsequent recreation of absolute time stamps upon playback, the stream controller
shall calculate and store the delta, or time difference between the time stamp in the observed data and the
CYCLE_TIME register when the data is observed.

For the syt field, the delta time shall be obtained by applying the following formula (shown in C code
notation):1F40

sytstored = (sytobserved & 0xF000) - (CYCLE_TIME & 0x0000F000);

For the cycle_count and cycle_offset fields of source packet headers, the procedure is essentially the
same but the size of the fields permits 25 bits of cycle time to be expressed rather than the 16 bits that syt
accommodates. If the cycle_count and cycle_offset fields are together considered as if they were one
field, sph_time, the delta time shall be obtained by applying the following formula:

The transformation upon playback is simpler. In each case, for either the syt field in a CIP header or a
source packet header, the value of the CYCLE_TIME register for the isochronous cycle in which the
packet is transmitted shall be masked with 01FF F00016 and the result shall be added to the time stamp
obtained from the medium. The resultant value, now an absolute time in terms of current isochronous
cycle time, shall be transmitted in the outbound isochronous packets. The most significant bits of the sum
shall be discarded so the result fits within the 16-bit syt field or the 25-bit field formed by the cycle_count
and cycle_offset fields, as appropriate.

12.3 Error logs

When an isochronous stream is active, a stream controller may detect error conditions on Serial Bus or
internally. Typical errors include but are not limited to:

– a missing isochronous packet or cycle start indication;

– an isochronous packet with a data CRC error;

– when the target is a talker, an underflow in the availability of data from the stream command block
ORB’s that causes no data to be transmitted for one or more channels during an isochronous cycle;
or

– when the target is a listener, an overflow in which isochronous data from Serial Bus must be
discarded because of an internal buffer overflow or a lack of stream command block ORB(s) to
transfer the data to the medium.

The stream controller reports these and other errors by storing unsolicited status at the status_FIFO
address specified at the time the stream was created. The stream controller may be placed in one of three
error reporting modes by means of a stream control ORB with a SET ERROR MODE control function:

– report the first error and stop execution of the current stream control ORB;

– report all errors but continue executing the current stream control ORB; or

– ignore all errors and continue executing the current stream control ORB.

if (cycle_countobserved < CYCLE_TIME.cycle_count)
 sph_timestored = 0x1F40000 - (sph_timeobserved & 0x1FFF000) + (CYCLE_TIME & 0x01FFF000);
else
 sph_timestored = (sph_timeobserved & 0x1FFF000) - (CYCLE_TIME & 0x01FFF000);

T10/1155D Revision 2c

91

The rpt field in the stream control ORB establishes one of the three error reporting modes . See 5.1.3 for
details of the SET ERROR MODE control function.

Upon detection of an isochronous error while talking or listening, if error reporting has been enabled the
target shall signal the initiator by storing the status block shown below at the status_FIFO address
provided by the initiator as part of the create stream request.

Figure 66 – Unsolicited status format for isochronous errors

The target shall store eight bytes of status information and shall use a single Serial Bus block write
transaction to store the status block at the status_FIFO address.

The unsolicited bit (abbreviated as u in the figure above) shall be one to indicate that the status block is
not related to any outstanding request.

The isochronous bit (abbreviated as i in the figure above) shall be one to indicate that the unsolicited
status block describes an isochronous error.

The resp field shall specify a response status of TRANSPORT FAILURE.

The len field shall specify the quantity of valid status block information stored at the status_FIFO address
and shall be equal to one.

The stream_error field shall specify the nature of the isochronous error, as encoded by the table below.

The seconds field shall contain the least significant 19 bits of the BUS_TIME register at the time of the
isochronous stream error.

The cycle_count field shall contain the cycle count, between zero and 7999, at the time of the error. The
cycle count shall be obtained from the target’s free-running cycle timer and shall not be latched from the
last observed CYCLE START packet.

Value Stream error description

0 Reserved (not to be used)

1 Missing CYCLE START packet

2 Data CRC error in received isochronous packet

3 Data length error in received isochronous packet

4 Internal underflow with the result that recorded isochronous
data was not transmitted on Serial Bus

5 Internal overflow with the result that isochronous data
observed on Serial Bus was not recorded on the medium

6 — FE16 Reserved for future standardization

FF16 Unspecified error

seconds cycle_count

reserved
most significant

least significant

stream_erroru respi lenr

T10/1155D Revision 2c

93

Annex A
(normative)

Minimum Serial Bus node capabilities

In addition to those minimum capabilities defined by IEEE Std 1394-1995, this annex specifies the
minimum capabilities that an initiator or a target shall support in order to implement SBP-2.

A.1 Initiator capabilities

An initiator shall be capable of responding to block read or write requests with a data_length less than or
equal to 32 bytes.

For the largest value of max_payload specified in any normal command block ORB signaled to the target,
the initiator shall be capable of responding to block read and write requests with a data_length less than or
equal to 2 max_payload + 2 bytes.

The initiator shall report the larger of these two possible data_length values by setting the value of the
max_rec field in the bus information block in configuration ROM to a value of (log2 data_length) - 1.

A.1 Target capabilities

A target shall be capable of responding to block read or write requests with a data_length equal to eight
bytes if the destination_offset specifies either the MANAGEMENT_AGENT or the ORB_POINTER
register.

The target shall be capable of initiating block write requests with a data_length of at least eight bytes.
Consequently, the dreq bit in the STATE_CLEAR and STATE_SET registers shall be implemented.

The target shall report this capability by setting the drq bit in the Node_Capabilities entry in configuration
ROM to one.

NOTE – The value of STATE_CLEAR.dreq shall be unaffected by a Serial Bus reset. The target may
automatically set dreq to zero (request initiation enabled) upon a power reset or a command reset.

The target shall report this capability by setting the value of the max_rec field in the bus information block
in configuration ROM to a value of two.

T10/1155D Revision 2c

95

Annex B
(informative)

Sample configuration ROM

Configuration ROM is located at a base address of FFFF F000 040016 within a node’s initial memory
space. The requirements for general format configuration ROM for targets are specified in section 7. This
annex contains an illustration of a typical configuration ROM for a simple target.

Figure B.1 – Sample configuration ROM

command_set

chip_ID_lo

unit_sw_version (01 048316)

01 0A08163A16

5416 csr_offset (00 400016)

3133 393416 (ASCII “1394”)

node_options (00FF 200016)

chip_ID_lo

node_vendor_ID

module_vendor_ID

node_capabilities (00 83C016)

2

4

unit_spec_ID (00 609E16)

0316

chip_ID_hi

4

0C16

8D16

D116

1216

1316

node_vendor_ID chip_ID_hi

001416

7 Unit directory CRC (calculated)

2 Leaf CRC (calculated)

4 Root directory CRC (calculated)

ROM CRC (calculated)
most significant

least significant

00 0000161416

command_set_spec_ID3816

3916

T10/1155D Revision 2c

96

The ROM CRC in the first quadlet is calculated on the twenty quadlets of ROM information that follow.

B.1 Root directory

The node_options field represents a collection of bits and fields specified in 7.1. The value shown,
00FF 200016, represents basic characteristics of a device that is not isochronous capable. This value is
composed of a cyc_clk_acc field with a value of FF16 and a max_rec value of two. The max_rec field
encodes a maximum payload of eight bytes in block write requests addressed to the target.

The Node_Capabilities entry in the root directory, with key_type and key_value fields of 0C16, has a value
where the spt, 64, fix, lst and drq bits are all one. This is a minimum requirement for targets.

The Node_Unique_ID entry in the root directory, with key_type and key_value fields of 8D16, has an
indirect_offset value of two that points to the node unique ID leaf.

The Unit_Directory entry in the root directory, with key_type and key_value fields of D116, has an
indirect_offset value of four that points to the unit directory.

B.2 Unit directory

The Command_Set_Spec_ID and Command_Set entries, with key_type and key_value fields of 3816 and
3916, respectively, are expected to define the command set used by the target.

The Management_Agent entry in the unit directory, with key_type and key_value fields of 5416, has a
csr_offset value of 00 400016 that indicates that the management agent CSR has a base address of
FFFF F001 000016 within the node’s initial memory space.

The Logical_Unit_Characteristics entry in the unit directory, with key_type and key_value fields of 3A16,
has an immediate value of 01 0A0816. This indicates a target that implements the basic task management
model, may reorder tasks without restriction and does not support isochronous operations. In addition, the
target is expected to complete a login within five seconds and fetches 32-byte ORB’s.

The Logical_Unit_Number entry in the unit directory, with key_type and key_value fields of 1416, has an
immediate value of zero that indicates a direct-access device with a logical unit number of zero.

T10/1155D Revision 2c

97

Annex C
(informative)

Status block for sense data

This annex specifies a status block intended to be useful to command sets that define sense data,
supplemental information available after an error or premature command termination. Command sets in
widespread use today, notably ATAPI and SCSI, may benefit from a common definition of the status block.
Accordingly, this annex, although informative within the scope of SBP-2, may be referenced, normatively,
by other command set standard(s). The applicable command set standard(s) are determined by the
values of Command_Set_Spec_ID and Command_Set in the unit directory in configuration ROM

Upon completion of a command, if the notify bit in the ORB is one or if there is error status to report, the
target shall signal the initiator by storing all or part of the status block shown below at the status_FIFO
address provided by the initiator as part of the login or create stream request.

Figure C.2 – Status block format

When a command completes with no exception status to report, only the first two quadlets of the status
block shall be stored at the status_FIFO address; the len field shall be one. Otherwise, both command
completion status and sense data shall be stored in a status block that conforms to the format illustrated
above.

NOTE – SBP-2 permits the return of a status block between two and eight quadlets in length. When a truncated
status block is stored, the omitted quadlets shall be interpreted as if zero values were stored.

The src, resp, len, sbp_status, ORB_offset_hi and ORB_offset_lo fields, as well as the unsolicited,
end_of_list and dead bit (abbreviated as u, e and d, respectively, in the figure above), are as previously
described in 5.3.

The sfmt field shall specify the format of the status block and shall additionally indicate whether the error
condition associated with sense_key is current or deferred. The table below defines permissible values for
sfmt.

information

most significant

least significant

ORB_offset_lo

ORB_offset_hisrc resp

sense_key

command_block-dependent

fru sense_key-dependent

vendor-dependent

r

iemv sense_qualifiersense_code

d sbp_statuslen

sfmt status

T10/1155D Revision 2c

98

The status field shall specify command status information as defined by the command set standard(s).
The table below is for informative purposes only and summarizes the status values used by the ATAPI and
SCSI command sets.

The valid bit (abbreviated as v in the figure above) shall specify the content of the information field. When
the valid bit is zero, the contents of the information field are not specified. When the sfmt field has a value
of zero or one and the valid bit is one, the contents of the information field shall be as defined by
command set standard(s).

The meanings of the mark, eom and illegal_length_indicator bits (abbreviated as m, e and i, respectively,
in the figure above) are device-type dependent within the command set standard(s).

The sense_key field shall specify command completion information defined by the command set
standard(s). The table below is for informative purposes only and summarizes the sense_key values used
by the ATAPI and SCSI command sets.

Value Description

0 Current error; status block format defined by this annex

1 Deferred error; status block format defined by this annex

2 Reserved for future standardization

3 Status block format vendor-dependent

Value Description

0 GOOD

2 CHECK CONDITION

4 CONDITION MET

8 BUSY

1016 Not supported by SBP-2 devices

1416 Not supported by SBP-2 devices

1816 RESERVATION CONFLICT

2216 COMMAND TERMINATED

2816 Not supported by SBP-2 devices

3016 Not supported by SBP-2 devices

All other values Reserved for future standardization

T10/1155D Revision 2c

99

The sense_code field shall contain a sense code and the sense_qualifier field shall contain a sense code
qualifier, as defined by the command set standard(s).

The contents of the information field are unspecified if either the valid bit is zero or the sfmt field has a
value of three. For sfmt values of one or two, the contents of the information field are device-type or
command dependent and, if the valid bit is one, are defined within the appropriate standard for the
command. Characteristic uses of the information field are for:

– the unsigned logical block address associated with sense_key and the command; or

– the least significant 32-bits of the unsigned logical block address associated with sense_key and the
command; or

– the residue of the requested data transfer length minus the actual data transfer length, in either
bytes or blocks as determined by the command. Negative values are indicated in two’s complement
notation.

The contents of the command_block-dependent field are device-type or command dependent and are
defined within the appropriate standard for the command.

Nonzero values in the fru field may be used to identify a device-dependent, field replaceable mechanism
or unit that has failed. A value of zero in this field shall indicate that no specific mechanism or unit has
been identified to have failed or that the data is unavailable. When fru is nonzero, the format of the
information is not specified by this standard.

The contents of the sense_key-dependent are defined by the command set standard(s) when sfmt has a
value of zero or one.

Value Description

0 NO SENSE

1 RECOVERED ERROR

2 NOT READY

3 MEDIUM ERROR

4 HARDWARE ERROR

5 ILLEGAL REQUEST

6 UNIT ATTENTION

7 DATA PROTECTION

8 BLANK CHECK

9 Vendor-dependent

A16 Not supported by SBP-2 devices

B16 ABORTED COMMAND

C16 Not supported by SBP-2 devices

D16 VOLUME OVERFLOW

E16 MISCOMPARE

F16 Reserved for future standardization

