

Working Draft T10
Project 1467D

Revision 4
May 9, 2003

Information technology —
Serial Bus Protocol 3 (SBP-3)

This is a draft proposed American National Standard under development by T10, a Technical Committee of
the InterNational Committee for Information Technology Standardization (INCITS). As such, this is not a
completed standard and has not been approved. The Technical Committee may modify this document as a
result of comments received during public review and its approval as a standard.

Permission is granted to members of INCITS, its technical committees and their associated task groups to
reproduce this document for the purposes of INCITS standardization activities without further permission,
provided this notice is included. All other rights are reserved. Any commercial or for-profit replication or
republication is prohibited.

T10 Technical Editor: Peter Johansson
Congruent Software, Inc.
98 Colorado Avenue
Berkeley, CA 94707
USA

(510) 527-3926
(510) 527-3856 FAX

PJohansson@ACM.org

Reference numbers
ISO/IEC xxxxx-xxx:200x

ANSI INCITS xxx-200x

Printed May 9, 2003

Points of contact

T10 Chair: John B. Lohmeyer
LSI Logic, Inc.
4420 Arrows West Drive
Colorado Springs, CO 80907-3444
USA

(719) 533-7560
(719) 533-7036 FAX
Lohmeyer@T10.org

T10 Vice-Chair: George O. Penokie
IBM/Tivoli
3605 Highway 52 North, MS 2C6
Rochester, MN 55901
USA

(507) 253-5208
(507) 253-2880 FAX
GOP@US.IBM.com

T10 URLs: ftp://ftp.t10.org
http://www.t10.org

T10 Reflector: T10@T10.org
Majordomo@T10.org (to subscribe)

IEEE 1394 Reflector: STDS-1394@IEEE.org
ListServ@IEEE.org (to subscribe)

Document distribution: INCITS Online Store
Techstreet
1327 Jones Drive
Ann Arbor, MI 48105

http://www.techstreet.com/ncits.html

(800) 699-9277
(734) 302-7811 FAX

Global Engineering
15 Inverness Way East
Englewood, CO 80112-5704
USA

http://global.ihs.com/

(800) 854-7179
(303) 792-2181
(303) 792-2192 FAX

INCITS Secretariat: INCITS Secretariat
1250 I Street NW, Suite 200
Washington, DC 20005
USA

(202) 737-8888
(202) 638-4922 FAX

ANSI®
INCITS xxx-200x

American National Standard
for Information Systems –

Serial Bus Protocol 3 (SBP-3)

Secretariat

Information Technology Industry Council

Not yet approved

American National Standards Institute, Inc.

Abstract

This standard specifies a protocol for the transport of commands, data and status between devices
connected by Serial Bus, a memory-mapped split-transaction bus defined by IEEE Std 1394-1995, Standard
for a High Performance Serial Bus as amended by IEEE Std 1394a-2000 and IEEE Std 1394b-2002.

American
National
Standard

Approval of an American National Standard requires verification by ANSI that the
requirements for due process, consensus and other criteria for approval have been met
by the standards developer.

Consensus is established when, in the judgment of the ANSI Board of Standards
Review, substantial agreement has been reached by directly and materially affected
interests. Substantial agreement means much more than a simple majority, but not
necessarily unanimity. Consensus requires that all views and objections be considered
and that effort be made towards their resolution.

The use of American National Standards is completely voluntary; their existence does
not in any respect preclude anyone, whether he has approved the standards or not, from
manufacturing, marketing, purchasing, or using products, processes, or procedures not
conforming to the standards.

The American National Standards Institute does not develop standards and will in no
circumstances give interpretation on any American National Standard. Moreover, no
person shall have the right or authority to issue an interpretation of an American National
Standard in the name of the American National Standards Institute. Requests for
interpretations should be addressed to the secretariat or sponsor whose name appears
on the title page of this standard.

CAUTION NOTICE: This American National Standard may be revised or withdrawn at
any time. The procedures of the American National Standards Institute require that
action be taken periodically to reaffirm, revise, or withdraw this standard. Purchasers of
American National Standards may receive current information on all standards by calling
or writing the American National Standards Institute.

CAUTION NOTICE: The developers of this standard have requested that holders of
patents that may be required for the implementation of this standard, disclose such
patents to the publisher. However, neither the developers nor the publisher has
undertaken a patent search in order to identify which, if any, patents may apply to this
standard.

As of the date of publication of this standard, following calls for the identification of
patents that may be required for the implementation of the standard, notice of one or
more claims has been received. By publication of this standard, no position is taken
with respect to the validity of this claim or of any rights in connection therewith. The
patent holders have, however, filed a statement of willingness to grant a license under
these rights on reasonable and nondiscriminatory terms and conditions to applicants
desiring to obtain such a license. Details may be obtained from the publisher.

No further patent search is conducted by the developer or the publisher in respect to any
standard it processes. No representation is made or implied that licenses are not
required to avoid infringement in the use of this standard.

Published by

American National Standards Institute
1430 Broadway, New York, NY 10018

Copyright © 2003 by American National Standards Institute
All rights reserved.

Printed in the United States of America

T10/1467D Revision 4

i

Contents
Page

Foreword ...vii

Revision history .. ix

1 Scope and purpose...1
1.1 Scope..1
1.2 Purpose...1

2 Normative references...3
2.1 Reference scope...3
2.2 Approved references ..3
2.3 References under development...3

3 Definitions and notation ...5
3.1 Definitions ..5

3.1.1 Conformance..5
3.1.2 Glossary..5
3.1.3 Abbreviations..8

3.2 Notation...9
3.2.1 Numeric values...9
3.2.2 Bit, byte and quadlet ordering ..9
3.2.3 Register specifications .. 10
3.2.4 State machines .. 12

4 Model (informative).. 13
4.1 Model overview ... 13
4.2 Unit architecture ... 13
4.3 Logical units... 13
4.4 Requests and responses ... 13
4.5 Data buffers.. 14
4.6 Target agents ... 16
4.7 Ordered and unordered execution... 17
4.8 Bridge-awareness ... 18
4.9 Streams... 19

5 Data structures... 23
5.1 Data structure types and components .. 23
5.2 Operation request blocks (ORBs)... 24

5.2.1 Generic ORB ... 24
5.2.2 Dummy ORB ... 25
5.2.3 Command block ORBs ... 26
5.2.4 Management ORBs .. 30

5.3 Page tables.. 40
5.3.1 Overview.. 40
5.3.2 Unrestricted page tables ... 41
5.3.3 Normalized page tables... 41
5.3.4 Node selectors ... 42

5.4 Status block... 43
5.4.1 Status block formats... 43
5.4.2 Request status... 45

T10/1467D Revision 4

ii

5.4.3 Unsolicited device status... 48
5.4.4 Interim request status ... 48

6 Control and status registers ... 49
6.1 Control and status registers overview .. 49
6.2 Core registers... 49
6.3 Serial Bus-dependent registers .. 50
6.4 BUSY_TIMEOUT register .. 50
6.5 MANAGEMENT_AGENT register ... 52
6.6 Command block registers .. 53

6.6.1 Command block registers summary ... 53
6.6.2 AGENT_STATE register... 53
6.6.3 AGENT_RESET register.. 54
6.6.4 ORB_POINTER register .. 55
6.6.5 DOORBELL register ... 56
6.6.6 UNSOLICITED_STATUS_ENABLE register 56
6.6.7 HEARTBEAT_MONITOR register ... 57
6.6.8 FAST_START register ... 57

7 Configuration ROM.. 61
7.1 Configuration ROM hierarchy ... 61
7.2 Power reset initialization.. 62
7.3 Bus information block.. 62
7.4 Root directory... 64

7.4.1 Root directory (general)... 64
7.4.2 Vendor_ID entry.. 64
7.4.3 Node_Capabilities entry .. 64
7.4.4 Keyword_Leaf entry .. 65
7.4.5 Instance_Directory entry ... 65
7.4.6 Unit_Directory entry .. 66

7.5 Instance directory ... 66
7.6 Unit directory.. 66
7.7 Logical unit directory ... 67
7.8 Directory entries ... 67

7.8.1 Directory entries summary .. 67
7.8.2 Specifier_ID entry ... 68
7.8.3 Version entry.. 68
7.8.4 Revision entry .. 68
7.8.5 Command_Set_Spec_ID entry ... 69
7.8.6 Command_Set entry ... 69
7.8.7 Command_Set_Revision entry ... 69
7.8.8 Firmware_Revision entry ... 70
7.8.9 Management_Agent entry ... 70
7.8.10 Unit_Characteristics entry ... 71
7.8.11 Reconnect_Timeout entry .. 71
7.8.12 Fast_Start entry.. 72
7.8.13 Plug_Control_Register entry .. 72
7.8.14 Logical_Unit_Directory entry .. 73
7.8.15 Logical_Unit_Number entry .. 73
7.8.16 Unit_Unique_ID entry .. 74

7.9 Unit unique ID leaf... 74

8 Access .. 77
8.1 Access overview ... 77

T10/1467D Revision 4

iii

8.2 Access protocols.. 77
8.3 Access requests... 78

8.3.1 Login... 78
8.3.2 Create task set .. 79

8.4 Node handles ... 80
8.4.1 Node handles (general) ... 80
8.4.2 Node handle allocation.. 80
8.4.3 Node handle release... 81
8.4.4 Node handle update after bus reset .. 81
8.4.5 Node handle validation after net update... 81

8.5 Heartbeat ... 82
8.6 Reconnection ... 82
8.7 Logout ... 83

9 Command execution ... 85
9.1 Command execution overview .. 85
9.2 Requests and request lists .. 85

9.2.1 Requests and request lists (general) .. 85
9.2.2 Fetch agent initialization (informative) ... 85
9.2.3 Dynamic appends to request lists (informative).................................. 86
9.2.4 Fetch agent use by the BIOS (informative) .. 87
9.2.5 Use of the FAST_START register (informative) 87
9.2.6 Fetch agent parse of ORB and page tables (informative)..................... 88

9.3 Fetch agent state machine .. 89
9.4 Asynchronous data transfer ... 93
9.5 Isochronous data transfer .. 93
9.6 Interim and completion status .. 94
9.7 Unsolicited status ... 95

10 Task management... 97
10.1 Task management overview.. 97
10.2 Task sets ... 97
10.3 Basic task management model .. 97
10.4 Error conditions .. 98
10.5 Task management requests ... 98

10.5.1 Abort task .. 98
10.5.2 Abort task set... 100
10.5.3 Logical unit reset .. 100
10.5.4 Target reset .. 101

10.6 Task management event matrix .. 101

11 Isochronous operations .. 105
11.1 Isochronous operations overview ... 105
11.2 Talker operations ... 105
11.3 Listener operations .. 107
11.4 Implementation recommendations (informative) 108

Tables

Table 1 – Data transfer speeds.. 28
Table 2 – Management request functions ... 31
Table 3 – Maximum payload for isochronous subactions 106
Table H-1 – SAM-2 Service responses ... 139

T10/1467D Revision 4

iv

Figures

Figure 1 – Bit ordering within a byte ..9
Figure 2 – Byte ordering within a quadlet ...9
Figure 3 – Quadlet ordering within an octlet.. 10
Figure 4 – CSR specification example ... 10
Figure 5 – State machine example .. 12
Figure 6 – Linked list of ORBs .. 14
Figure 7 – Directly addressed data buffer ... 15
Figure 8 – Indirectly addressed data buffer (via page table) 16
Figure 9 – Components of an isochronous stream (direct-access logical unit) 20
Figure 10 – Address pointer.. 23
Figure 11 – ORB pointer... 24
Figure 12 – ORB family tree ... 24
Figure 13 – ORB format ... 25
Figure 14 – Dummy ORB ... 26
Figure 15 – Command block ORB (single buffer descriptor) 27
Figure 16 – Command block ORB (dual buffer descriptor).................................. 29
Figure 17 – Management ORB.. 30
Figure 18 – Login ORB... 32
Figure 19 – Login response .. 33
Figure 20 – Query logins ORB .. 34
Figure 21 – Query logins response format .. 35
Figure 22 – Create task set ORB .. 36
Figure 23 – Create task set response.. 36
Figure 24 – Reconnect ORB ... 37
Figure 25 – Node handle ORB .. 38
Figure 26 – Node handle response.. 39
Figure 27 – Logout ORB... 39
Figure 28 – Task management ORB .. 40
Figure 29 – Page table element (unrestricted page table) 41
Figure 30 – Page table element (when page_size equals four) 42
Figure 31 – Node selector .. 43
Figure 32 – Basic status block format ... 43
Figure 33 – Extended status block format .. 44
Figure 34 – TRANSPORT FAILURE format for sbp_status 46
Figure 35 – BUSY_TIMEOUT format.. 51
Figure 36 – MANAGEMENT_AGENT format .. 52
Figure 37 – AGENT_STATE format .. 54
Figure 38 – AGENT_RESET format ... 54
Figure 39 – ORB_POINTER format.. 55
Figure 40 – DOORBELL format ... 56
Figure 41 – UNSOLICITED_STATUS_ENABLE format 56
Figure 42 – HEARTBEAT_MONITOR format ... 57
Figure 43 – FAST_START format... 58
Figure 44 – Configuration ROM hierarchy ... 61
Figure 45 – Bus information block format ... 62
Figure 46 – Bus information block capabilities field... 63
Figure 47 – Vendor_ID entry format ... 64
Figure 48 – Node_Capabilities entry format .. 65
Figure 49 – Keyword_Leaf entry format .. 65
Figure 50 – Instance_Directory entry format ... 65
Figure 51 – Unit_Directory entry format.. 66
Figure 52 – Specifier_ID entry format ... 68

T10/1467D Revision 4

v

Figure 53 – Version entry format ... 68
Figure 54 – Revision entry format .. 68
Figure 55 – Command_Set_Spec_ID entry format ... 69
Figure 56 – Command_Set entry format... 69
Figure 57 – Command_Set_Revision entry format ... 69
Figure 58 – Firmware_Revision entry format ... 70
Figure 59 – Management_Agent entry format ... 70
Figure 60 – Unit_Characteristics entry format ... 71
Figure 61 – Reconnect_Timeout entry format ... 71
Figure 62 – Fast_Start entry format ... 72
Figure 63 – Plug_Control_Register entry format .. 72
Figure 64 – Logical_Unit_Directory entry format.. 73
Figure 65 – Logical_Unit_Number entry format ... 73
Figure 66 – Unit_Unique_ID entry format .. 74
Figure 67 – Unit unique ID leaf format .. 74
Figure 68 – Fetch agent initialization with a dummy ORB 86
Figure 69 – Fetch agent state machine.. 90
Figure B-1 – SCSI command block ORB ..111
Figure B-2 – SCSI control byte ..111
Figure B-3 – Status block for fixed format SCSI sense data..............................112
Figure B-4 – Status block for descriptor format SCSI sense data.......................112
Figure C-1 – Set password ORB ..119
Figure D-1 – AV/C command sequence ORB ... 122
Figure D-2 – Status block format AV/C command sequence 123
Figure D-3 – AV/C unit directory .. 123
Figure E-1 – CYCLE MARK format.. 125
Figure E-2 – Format for recorded isochronous data... 126
Figure E-3 – NULL packet format .. 127
Figure F-1 – Bus information block, root and instance directories 129
Figure F-2 – Basic unit directory ... 131
Figure F-3 – SCSI configuration ROM.. 132
Figure I-1 – Common isochronous packet (CIP) format 145
Figure I-2 – Two-quadlet CIP header format .. 145
Figure I-3 – Source packet header format... 146
Figure I-4 – Synchronization time (syt) format... 147

T10/1467D Revision 4

vi

Annexes

Annex A (normative) Minimum Serial Bus node capabilities 109

Annex B (normative) SCSI command and status encapsulation111

Annex C (normative) Security extensions...117

Annex D (normative) AV/C Encapsulation.. 121

Annex E (normative) Isochronous data interchange format 125

Annex F (informative) Sample configuration ROM .. 129

Annex G (informative) Serial Bus transaction error recovery 135

Annex H (informative) SCSI Architecture Model conformance.......................... 137

Annex I (informative) Common isochronous packet (CIP) format 145

Annex J (informative) Bibliography .. 149

T10/1467D Revision 4

vii

Foreword (This foreword is not part of American National Standard INCITS xxx-200x)

This standard defines a transport protocol within the domain of Serial Bus,
IEEE 1394, that is designed to permit efficient, peer-to-peer operation of input
output devices (disks, tapes, printers, etc.) by upper layer protocols such as
operating systems or embedded applications. Vendors that wish to implement
devices that connect to Serial Bus may follow the requirements of this and other
normatively referenced standards to manufacture an SBP-3 compliant device.

There are ten annexes in this standard. Annexes A, B, C, D and E are normative
and part of this standard. Annexes F through J, inclusive, are informative and are
not considered part of this standard.

Requests for interpretation, suggestions for improvement and addenda, or defect
reports are welcome. They should be sent to the INCITS Secretariat, Information
Technology Industry Council, 1250 I Street NW, Suite 200, Washington, DC 20005-
3922.

This standard was processed and approved for submittal to ANSI by InterNational
Committee for Information Technology Standardization (INCITS). Committee
approval of this standard does not necessarily imply that all committee members
voted for approval. At the time it approved this standard, INCITS had the following
members:

Karen Higginbottom, Chair
Russ Richards, Vice-Chair
Jennifer Garner, Secretary

Organization Represented Name of Representative
Apple Computer, Inc...David Michael
Hewlett-Packard Company...Karen Higginbottom
Hitachi America, Ltd. ..John Neumann
IBM Corporation ...Ronald F. Silletti
Institute for Certification of Computer Professionals...................Kenneth M. Zemrowski
Microsoft Corporation ..Mike Ksar
National Institute of Standards & TechnologyMichael Hogan
Open Strategies, Inc. ...John Neumann
Oracle Corporation...Donald R. Deutsch
Panasonic Technologies, Inc...Terence Nelson
SHARE Inc. ..Dave Thewlis
Sony Electronics, Inc. ..Ed Barrett
Sun Microsystems, Inc. ...John Hill
Unisys Corporation ...Arnold F. Winkler
US Department of Defense/DISA ..Russ Richards
Xerox Corporation ..Kathleen O'Reilly

T10/1467D Revision 4

viii

Technical Committee T10 on Lower Level Interfaces, which developed and reviewed
this standard, had the following members:

John B. Lohmeyer, Chair
George Penokie, Vice-chair
Ralph O. Weber, Secretary

P. Aloisi
C. Binford
T. Bradshaw
J. Breher
C. Brill
R. Cummings
Z. Daggett
C. DeSanti
R. Elliott
P. Entzel
M. Evans
B. Forbes
W. Galloway
E. Gardner
R. Griswold
R. Haagens
N. Hastad
E. Hill
G. Houlder
T. Hui
P. Johansson

S. Jones
T. Kasebayashi
E. Lew
K. Marks
W. McFerrin
K. Moe
C. Monia
D. Moore
J. Neer
T. Nelson
R. Nixon
M. O’Dell
E. Oetting
D. Peterson
D. Piper
B. Raudebaugh
R. Roberts
G. Robinson
C. Simpson
D. Wagner
M. Wingard

The T10 SBP-3 working group had the following participants:

Peter Johansson, Chair
Eric Anderson, Secretary

A. Green
R. Botchek
T. Bradshaw
D. Colegrove
B. Fairman
F. Farhoomand
L. Farrell
L. Flake
J. Fuller
P. Grunwald
K. Hasan
R. Haydt
D. Hunter
W. Jones

D. Knudson
R. Lash
R. Lawson
F. Nordby
N. Obr
S. Powers
C. Rice
R. Roberts
W. Russell
S. Smyers
M. Teener
T. Thaler
S. Ueda
D. Wooten

T10/1467D Revision 4

ix

Revision history

Revision 1 (January 5, 2001)

First release of working draft. Isochronous material from SBP-2 Revision 3c, March
21, 1998, has been incorporated. Although the material received careful review by
the SBP-2 working group, its inclusion in this draft is intended as a starting point
and should not be considered prejudicial to new proposals.

Minor editorial corrections have been made throughout, in particular references to
standards and draft standards have been revised to accurately reflect the current
state of affairs.

Editorial changes have been made in the section on configuration ROM so that its
terminology matches that of the revised CSR Architecture, draft standard IEEE
P1212.

Revision 1a (February 20, 2001)

Added "fast start" facilities and methods described in 01-057r1.

Clarified mandatory vs. optional target implementation requirements for task
management functions.

Emphasized that a status block is to be stored at the initiator's status_FIFO once,
and once only, for the corresponding ORB.

Added the BROADCAST_CHANNEL register to the table of CSRs required if a
target implements optional isochronous support. IEEE Std 1394a-2000 established
this additional requirement for isochronous resource manager capable nodes.

Updated Annex F to use current terminology from SAM-2.

Created a bibliography for references of interest that are not necessarily normative
inclusions within the standard.

Miscellaneous editorial clarifications and minor corrections have been made
throughout.

Revision 1b (April 23, 2001)

The material in 01-070r0 concerning “bridge-aware” targets and node handles was
incorporated into the draft.

Usage of the page table entries in the FAST_START register was clarified.

Instance directories and keyword leaves were added to the illustration of typical
configuration ROM data structures.

A target may interpret a write to a fetch agent FAST_START register as if the first
eight bytes of the data payload had been written to the ORB_POINTER register.

T10/1467D Revision 4

x

This does not result in the same increase in efficiency, but may be useful if full “fast
start” functionality is not supported for all of a target’s fetch agents.

An initiator is required to report completion status to its application clients in the
same order it is received at the status_FIFO.

Error recovery procedures applicable to the ORB_POINTER register are also valid
for the new FAST_START register.

Revision 1c (May 31, 2001)

Created a new normal command block ORB that includes two data descriptors.
This permits the use of two data buffers, each with a data transfer direction
independent of the other.

The GET NODE HANDLE management function was extended to permit the
release of a previously allocated node handle. As a consequence, the name was
changed to NODE HANDLE.

The usage of instance directories was clarified and an instance directory was
added to the configuration ROM examples in Annex F.

Revision 1d (August 10, 2001)

The password field in the login ORB is no longer overloaded with an EUI-64 value.
As a consequence, the aware field was reduced in size to a bit.

Page tables and the data buffers they describe are not required to reside in the
same node. Target support for this capability is optional and described by the
Unit_Characteristics configuration ROM entry.

The clauses that describe configuration ROM entries in the unit and logical unit
directories were reorganized to clarify which entries are mandatory or optional in
these directories. This rendered most of B.3 redundant and the affected text has
been deleted.

The Revision entry has been added and the value of Specifier_ID changed to
01 048316 (the same value used by SBP-2). This makes SBP-3 targets available for
discovery by enumeration software written for SBP-2.

The Firmware_Revision entry is permitted in logical unit directories as well as the
parent unit directory. Its value is not inherited.

Text that defines the cycle mark index was removed.

Revision 1e (October 1, 2001)

The FAST_START facility has been changed to include a previous_ORB pointer, as
ratified by the working group in Cupertino, CA. The modification makes it simpler
for multiprocessor initiators to use fast start.

T10/1467D Revision 4

xi

Revision 1f (February 5, 2002)

Interim status, which may be stored no more than once for a particular ORB, was
invented to support the transport of AV/C by SBP-3. The redefinition the src value
previously assigned to isochronous error reports caused their deletion from the
draft.

The configuration ROM section was revised to include new features from
IEEE Std 1212-2001: instance directories and keyword leaves.

An editorial revision was made to Annex C in the hope of reducing reader confusion
about password matching.

Former Annex H, AV/C Encapsulation, was revised and promoted from informative
to normative, in accordance with 01-287r0. The new designation is Annex D.

Revision 1g (March 26, 2002)

Draft standards IEEE P1212 and IEEE P1394b were recently approved by IEEE
RevCom as IEEE Std 1212-2001 and IEEE Std 1394b-2002, respectively. The
references in SBP-3 have been revised accordingly.

Police the usage of “target fetch agent” vs. “logical unit fetch agent” throughout the
draft.

Emphasize that targets shall not assume that the two least significant bits of a
48-bit Serial Bus address pointer are zero—even though they are reserved and that
is the case at present.

Clarify the meaning of page_size in cases where no page table is referenced by the
ORB.

Change the node handle management ORB to add an allocate bit.

Improve the definition of the mgt_ORB_timeout field in the Unit_Characteristics
entry so as to clearly differentiate initiator and target usage.

In Annex D, explain in more detail how AV/C interim and final response frames may
share the same buffer.

In Annex E, correct the value shown for the Version entry in configuration ROM and
add the Revision entry to the examples.

In Annex F and elsewhere, differentiate between local bus split time-out and remote
time-out.

Revision 2 (March 26, 2002)

Subsequent to a vote by the T10 plenary to stabilize portions of SBP-2, this
revision has been prepared; it is essentially identical to Revision 1g but without the
change bars.

The sections stabilized by the plenary cover the FAST_START facility. The
stabilized sections are enumerated below:

T10/1467D Revision 4

xii

For readers unfamiliar with T10 process, stabilization is a significant milestone in
the development of a standard. Once a document or portions thereof are stabilized
they are not to be modified unless either a) there is a demonstrable flaw in the draft
standard or b) the changes are agreed to by a two-thirds vote of the T10 plenary in
which at least half of the membership votes.

Revision 2a (June 5, 2002)

Minor technical clarifications discussed and recorded in the minutes of the May 29
– 30 working group meeting at Timberline Lodge.

The login ORB is revised to include an update bit; this permits parameters of a
login to be changed without a logout followed by a login. The feature may be useful
during the control hand-off between BIOS and operating system during boot.

The text in 02-069r2, bridge-aware target operations, has been included in the draft
as directed by the working group.

Revision 2b (July 25, 2002)

In accordance with a motion approved by the working group at the Colorado Springs
meeting, the changes proposed in 01-287r1 have been incorporated in this revision
of the draft. Minor changes to the proposal endorsed by the working group, e.g.,
the alteration of CREATE STREAM to CREATE TASK SET, are reflected in the
draft. Although 01-287r1 instructed the editor to delete former Annex H, “Common
isochronous packet (CIP) format”, it has been retained pending further discussions
on isochronous facilities.

The use of type error response to reject Serial Bus request subactions addressed
to fetch agent CSRs from nodes other than the logged-in initiator has been clarified.
Note that during a reconnect hold period, the source ID of the initiator is temporarily
unknown and its request subactions will also be rejected.

After a discussion of possible failures in the analysis of self-ID packets, the
working group agreed that correlation between EUI-64 and physical ID obtained
from such an analysis should be considered provisional. The target is required to
confirm the EUI-64 by reading the node's bus information block in configuration
ROM.

Bridge-aware logins for which the initiator is connected to the same bus as the
target are not affected by net update.

The login procedure described in C.2 has been expanded so that it more closely
follows the analogous login procedure in 8.2.1.

Clause Description

5.2.3 Node selectors

6.4.6 FAST_START register

7.7.11 Fast_Start entry

9.1.5 Fetch agent state machine

T10/1467D Revision 4

xiii

Revision 2c (January 10, 2003)

Minor editorial clarifications and corrections have been made throughout the draft.

References to incorrect terminology (e.g., kilobyte, 1000 bytes, which has been
superceded by kibibyte, 1024 bytes) have been deleted.

The draft has been reviewed for correct usage of “logical unit” vs. target.

The circumstances in which a status block is stored after ORB completion have
been clarified.

The clauses on bridge-awareness have been revised to reflect changes in IEEE
P1394.1.

The description of the command block ORB fields affected by the isochronous bit
has been corrected.

Task set IDs shall be unique within the context of the target, not simply within the
context of the associated login.

The definition of the BUSY_TIMEOUT register specifies different initial values than
IEEE 1394 and the register is not modifiable by write requests. Target single- and
dual-phase behavior is specified and the same behavior is recommended for
initiators.

Reconnect hold periods are timed separately for different fetch agents.

A FAST_START entry has been added to the configuration ROM examples.

Revision 2d (February 27, 2003)

Minor editorial clarifications and corrections have been made throughout the draft.

An extended status block format has been defined; it permits a maximum of 512
status bytes to be returned by target logical units. The login ORB has been
modified to permit the initiator to enable the extended status block format. The
configuration ROM Logical_Unit_Number entry has been modified so that a logical
unit may advertise its extended status block capabilities.

Logical units that implement command sets that utilize both single and dual buffer
descriptor command ORBs shall not reject these ORBs with an sbp_status of
request type not supported. Instead, they shall be able to parse both ORB formats
and deliver the command to the device, which shall then indicate its success or
failure by command set-dependent means.

Rules that specify the order and presence of page table data when a dual buffer
descriptor command block ORB references two page tables have been added to
description of the FAST_START register.

The description of the ORB_size field in the Unit_Characteristics entry has been
clarified; it applies to the largest ORB fetched by any of the target's logical units.
The ORB_size field does not apply to management ORBs, who size is fixed at 32
bytes.

T10/1467D Revision 4

xiv

Added configuration ROM Plug_Control_Register entry as specified by
T10/03-009r1.

An informative clause has been added to section 9 that describes how target fetch
agents should parse ORBs and page tables, whether read from the initiator's
system memory or written to the target's FAST_START register.

The distinction between interim and completion status has been clarified in 9.4.

Revision 2e (March 12, 2003)

Minor editorial clarifications and corrections have been made throughout the draft.

Added informative and normative descriptions of isochronous operations, as
specified by T10/03-090r1.

The methods by which a logical unit may reject a command transported within a
dual buffer descriptor command ORB are clarified. If the logical unit’s command set
specifies such commands, even if optional, the logical unit shall not use an
sbp_status of one, request type not supported, to reject the command.

Revision 3 (March 12, 2003)

This revision has been prepared for ballot by T10 to approve or disapprove its
forwarding to INCITS for further standards processing; it is essentially identical to
Revision 2e but without the change bars.

Revision 3a (April 24, 2003)

This revision incorporates changes proposed by T10/03-166r1 in resolution of
comments received during ballot on SBP-3 Revision 3.

Revision 3b (May 7, 2003)

After working group discussion in Nashua, clarifications were made to the
algorithms for logical unit reset and target reset.

Revision 4 (May 9, 2003)

This revision has been prepared for forwarding to INCITS for further standards
processing; it is essentially identical to Revision 3b but without the change bars.

AMERICAN NATIONAL STANDARD T10/1467D Revision 4

1

American National Standard for Information Systems –

Serial Bus Protocol 3 (SBP-3)

1 Scope and purpose

1.1 Scope

This standard defines a protocol for the transport of commands and data over High Performance Serial Bus,
as specified by IEEE Std 1394-1995 [B9] as amended by IEEE Std 1394a-2000 [B10] and
IEEE Std 1394b-2002 [B11] (collectively IEEE 1394). The transport protocol, Serial Bus Protocol 3 (SBP-3),
requires implementations to conform to the aforementioned standards as well as to IEEE Std 1212-2001,
Control and Status Register (CSR) Architecture for microcomputer buses [B6], and permits the exchange of
commands, data and status between initiators and targets connected to Serial Bus.

This standard is an evolutionary extension of ANSI NCITS 325-1998, Serial Bus Protocol 2 (SBP-2) [B2],
which revises and extends its protocols to take advantage of implementation experience gained subsequent
to the development of SBP-2, the continued evolution of High Performance Serial Bus, IEEE 1394, as well
as other IEEE Serial Bus standards in development.

1.2 Purpose

A T10 study group convened in Huntington Beach, CA on September 15, 2000 identified a number of areas
for which enhancements or extensions to ANSI NCITS 325-1998, Serial Bus Protocol 2, were desired by the
industry (see the scope below for details). The consensus of the study group was that a standard
compatible with ANSI NCITS 325-1998 should be developed to meet these needs. This document, SBP-3, is
the resultant standard.

The significant differences between SBP-2 and this standard are the result of revisions and extensions
outlined below:

– methods to reduce a target's start-up latency from an idle condition;

– explicit description of the methods used to encapsulate 16-byte or larger command descriptor blocks
(CDBs) within SBP-3;

– extensions necessary for initiators and targets to successfully interoperate across one or more Serial
Bus bridges as specified by draft standard IEEE P1394.1 [B7];

– isochronous facilities and methods, with particular attention to data interchange formats that permit
the use of removable media;

– definition of a new ORB type to permit bi-directional data transfer in the context of a single task;

– revisions necessary to utilize new Serial Bus features specified by IEEE Std 1394a-2000 and
IEEE Std 1394b-2002; and

– clarifications and corrigenda applicable to ANSI NCITS 325-1998.

T10/1467D Revision 4

2

Although SBP-3 has been designed for Serial Bus as currently specified by IEEE 1394, the Technical
Committee anticipates that it will be appropriate for use with future extensions to Serial Bus as they are
standardized.

T10/1467D Revision 4

3

2 Normative references

2.1 Reference scope

The standards named in this section contain provisions which, through reference in this text, constitute
provisions of this American National Standard. At the time of publication, the editions indicated were valid. All
standards are subject to revision; parties to agreements based on this American National Standard are
encouraged to investigate the possibility of applying the most recent editions of the standards indicated
below.

Copies of the following documents can be obtained from ANSI:

Approved ANSI standards;

Approved and draft regional and international standards (ISO, IEC, CEN/CENELEC and ITUT); and

Approved and draft foreign standards (including BIS, JIS and DIN).

For further information, contact the ANSI Customer Service Department by telephone at (212) 642-4900, by
FAX at (212) 302-1286 or via the world wide web at http://www.ansi.org.

Additional contact information for document availability is provided below as needed.

2.2 Approved references

The following approved ANSI, international and regional standards (ISO, IEC, CEN/CENELEC and ITUT) may
be obtained from the international and regional organizations that control them.

IEC 61883-1 (1998-02), Consumer audio/video equipment—Digital interface—Part 1: General

IEEE Std 1212-2001, Standard for a Control and Status Registers (CSR) Architecture for microcomputer
buses

IEEE Std 1394-1995, Standard for a High Performance Serial Bus

IEEE Std 1394a-2000, Standard for a High Performance Serial Bus—Amendment 1

IEEE Std 1394b-2002, Standard for a High Performance Serial Bus—Amendment 2

INCITS 351-2001, SCSI Primary Commands 2 (SPC-2)

INCITS 366-2003, SCSI Architecture Model 2 (SAM-2)

ISO/IEC 9899:1999, Programming Languages—C

Throughout this document, the term “IEEE 1394" shall be understood to refer to IEEE Std 1394-1995 as
amended by IEEE Std 1394a-2000 and IEEE Std 1394b-2002.

2.3 References under development

At the time of publication, the following referenced standard was still under development.

T10/1467D Revision 4

4

IEEE P1394.1, Draft Standard for High Performance Serial Bus Bridges

T10/1467D Revision 4

5

3 Definitions and notation

3.1 Definitions

3.1.1 Conformance

Several keywords are used to differentiate levels of requirements and optionality, as follows:

3.1.1.1 expected: A keyword used to describe the behavior of the hardware or software in the design
models assumed by this standard. Other hardware and software design models may also be implemented.

3.1.1.2 ignored: A keyword that describes bits, bytes, quadlets, octlets or fields whose values are not
checked by the recipient.

3.1.1.3 may: A keyword that indicates flexibility of choice with no implied preference.

3.1.1.4 reserved: A keyword used to describe objects (bits, bytes, quadlets, octlets and fields) or the code
values assigned to these objects in cases where either the object or the code value is set aside for future
standardization. Usage and interpretation may be specified by future extensions to this or other standards. A
reserved object shall be zeroed or, upon development of a future standard, set to a value specified by such a
standard. The recipient of a reserved object shall ignore its value. The recipient of an object defined by this
standard as other than reserved shall inspect its value and reject reserved code values.

3.1.1.5 shall: A keyword that indicates a mandatory requirement. Designers are required to implement all
such mandatory requirements to assure interoperability with other products conforming to this standard.

3.1.1.6 should: A keyword that denotes flexibility of choice with a strongly preferred alternative. Equivalent
to the phrase “is recommended.”

3.1.2 Glossary

The following terms are used in this standard:

3.1.2.1 byte: Eight bits of data.

3.1.2.2 command block: Space reserved within an operation request block to describe a command
intended for a logical unit that controls device functions or the transfer of data to or from device medium. The
format and meaning of command blocks are outside of the scope of SBP-3 and are command set- or device-
dependent.

3.1.2.3 device server: A component of a logical unit responsible to execute tasks initiated by command
blocks that specify data transfer or other device operations.

3.1.2.4 global node ID: A 16-bit address that may be used as the destination_ID in an asynchronous
primary packet so long as the packet passes through at least one bridge portal en route to its destination.
The value of the most significant 10 bits, the bus ID, ranges between zero and 3FE16, inclusive. Within a net,
a bus ID in this range uniquely identifies a single bus. The least significant six bits of a global node ID, the
virtual ID, uniquely identify a node on a particular bus.

3.1.2.5 initiator: A node that originates device service or management requests and signals these requests
to a target for processing.

T10/1467D Revision 4

6

3.1.2.6 isochronous channel: A relationship, identified by a channel number, between a node that is the
talker and zero or more nodes that are listeners. One isochronous subaction, identified by the channel
number, may be sent by the talker during each isochronous period. Channel numbers are allocated
cooperatively through isochronous resource management facilities.

3.1.2.7 isochronous period: An operating mode of Serial Bus that occurs, on average, every 125 µs. During
an isochronous period, the bus is available to isochronous talkers only. Cooperative allocation of
isochronous bandwidth guarantees a bounded worst-case latency for isochronous data.

3.1.2.8 local node ID: A 16-bit address usable as the destination_ID in an asynchronous primary packet so
long as both the sender and the recipient(s) are on the same bus. The local node ID is the concatenation of
3FF16 and the node’s local ID.

3.1.2.9 logical unit: The part of the unit architecture that is an instance of a device model, e.g., disk,
CD-ROM or printer. Targets implement one or more logical units; the device type of the logical units may
differ.

3.1.2.10 login: The process by which an initiator obtains access to a logical unit fetch agent. The fetch
agent and its control and status registers provide a mechanism for the initiator to signal operation request
blocks to the logical unit.

3.1.2.11 login ID: A value assigned by the target during a login or create task set process. The login ID
establishes a relationship between an initiator and a task set. A login ID is used to identify subsequent
requests from an initiator; in some cases the login ID is not present in the operation request block and its
value is implicit.

3.1.2.12 listener: A node that receives an isochronous subaction from a channel. There may be zero, one,
or more listeners for any given channel.

3.1.2.13 node: An addressable device attached to Serial Bus.

3.1.2.14 node ID: The 16-bit node identifier defined by IEEE 1394 that is composed of a bus ID portion and
a physical ID portion. The physical ID is uniquely assigned as a consequence of Serial Bus initialization.

3.1.2.15 node space: The total Serial Bus address space available to each node. Addresses within node
space are 48 bits and are based at zero. Node space includes memory space, private space, register space
and units space. See either IEEE Std 1212-2001 or IEEE 1394 for more information on address spaces.

3.1.2.16 octlet: Eight bytes, or 64 bits, of data.

3.1.2.17 operation request block: A data structure fetched from system memory by a target in order to
execute the command encapsulated within it.

3.1.2.18 quadlet: Four bytes, or 32 bits, of data.

3.1.2.19 receive: When any form of this verb is used in the context of Serial Bus primary packets, it
indicates that the packet is made available to the transaction or application layers, i.e., layers above the link
layer. Neither a packet repeated by the PHY nor a packet examined by the link is "received" by the node
unless the preceding is also true.

3.1.2.20 register: A term used to describe quadlet aligned addresses that may be read or written by Serial
Bus transactions. In the context of this standard, the use of the term register does not imply a specific
hardware implementation. For example, in the case of split transactions that permit sufficient time between
the request and response subactions, the behavior of the register may be emulated by a processor.

T10/1467D Revision 4

7

3.1.2.21 register space: A 2048 byte portion of node space with a base address of FFFF F000 000016. Core
registers defined by IEEE Std 1212-2001 are located within register space as are Serial Bus-dependent
registers defined by IEEE 1394.

3.1.2.22 request subaction: A packet transmitted by a node (the requester) that communicates a
transaction code and optional data to another node (the responder) or nodes.

3.1.2.23 response subaction: A packet transmitted by a node (the responder) that communicates a
response code and optional data to another node (the requester). A response subaction may consist of
either an acknowledge packet or a response packet.

3.1.2.24 split transaction: A transaction that consists of a request subaction followed by a separate
response subaction. Subactions are considered separate if ownership of the bus is relinquished between the
two.

3.1.2.25 status block: A data structure which may be written to system memory by a target when an
operation request block has been completed.

3.1.2.26 store: When any form of this verb is used in the context of data transferred by the target to the
system memory of either an initiator or other device, it indicates both the use of Serial Bus write request
subactions, quadlet or block, to place the data in system memory and the corresponding response
subactions that complete the writes.

3.1.2.27 system memory: The portions of any node’s memory that are directly addressable by a Serial Bus
address and which accepts, at a minimum, quadlet read and write access. Computers are the most
common example of nodes that might make system memory addressable from Serial Bus, but any node,
including those usually thought of as peripheral devices, may have system memory.

3.1.2.28 talker: A node that transmits an isochronous packet for a channel during an isochronous period.
There shall be no more than one talker for any given channel.

3.1.2.29 target: A unit that receives device service or management requests from an initiator. In the case of
device service requests, the commands are directed to one of the target’s logical units to be executed.
Management requests are serviced by the target. A CSR Architecture unit is synonymous with a target.

3.1.2.30 task: A task is an organizing concept that represents the work to be done by a logical unit to carry
out a command encapsulated by an operation request block. In order to perform a task, a logical unit
maintains context information for the task, which includes (but is not limited to) the command, parameters
such as data transfer addresses and lengths, completion status and ordering relationships to other tasks. A
task has a lifetime, which commences when the task is entered into the logical unit’s task set, proceeds
through a period of execution by the logical unit and finishes either when completion status is stored at the
initiator or when completion may be deduced from other information. While a task is active, it makes use of
logical unit, target and initiator resources.

3.1.2.31 task set: A group of tasks available for execution by a logical unit of a target. This standard
specifies some dependencies between individual tasks within the task set but there may be others not
specified by this standard.

3.1.2.32 task set ID: A synonym for login ID when the login ID has been returned by the target in response
to a create task set request.

3.1.2.33 transaction: A Serial Bus request subaction and the corresponding response subaction. The
request subaction transmits a transaction code (such as quadlet read, block write or lock); some request
subactions include data as well as transaction codes. The response subaction is null for transactions with

T10/1467D Revision 4

8

broadcast destination addresses or broadcast transaction codes; otherwise it returns completion status and
possibly data.

3.1.2.34 unit: A component of a Serial Bus node that provides processing, memory, I/O or some other
functionality. Once the node is initialized, the unit provides a CSR interface that is typically accessed by
device driver software at an initiator. A node may have multiple units, which normally operate independently
of each other. Within this standard, a unit is equivalent to a target.

3.1.2.35 unit architecture: The specification of the interface to and the services provided by a unit
implemented within a Serial Bus node. This standard is a unit architecture for SBP-3 targets.

3.1.2.36 unit attention: A state that a logical unit maintains while it has unsolicited status information to
report to one or more logged-in initiators. A unit attention condition shall be created as described elsewhere
in this standard or in the applicable command set- and device-dependent documents. A unit attention
condition shall persist for a logged-in initiator until a) unsolicited status that reports the unit attention
condition is successfully stored at the initiator or b) the initiator’s login becomes invalid or is released.
Logical units may queue unit attention conditions; after the first unit attention condition is cleared, another
unit attention condition may exist.

3.1.2.37 units space: A portion of node space with a base address of FFFF F000 080016. This places units
space adjacent to and above register space. The CSRs and other facilities defined by unit architectures are
expected to lie within this space.

3.1.2.38 working set: The part of a task set that has been fetched from the initiator by the target and is
available to the target in its local storage.

3.1.3 Abbreviations

The following are abbreviations that are used in this standard:

CIP Common isochronous packet format

CSR Control and status register

CRC Cyclical redundancy checksum

EUI-64 Extended Unique Identifier, 64-bits

iMPR input master plug register

iPCR input plug control register

LBA Logical block address

LUN Logical unit number

oMPR output master plug register

oPCR output plug control register

ORB Operation request block

SAM-2 SCSI Architecture Model 2 [B14]

SBP-3 Serial Bus Protocol 3 (this standard itself)

SPC-2 SCSI Primary Commands 2 [B12]

T10/1467D Revision 4

9

3.2 Notation

3.2.1 Numeric values

Decimal and hexadecimal are used within this standard. By editorial convention, decimal numbers are most
frequently used to represent quantities or counts. Addresses are uniformly represented by hexadecimal
numbers. Hexadecimal numbers are also used when the value represented has an underlying structure that
is more apparent in a hexadecimal format than in a decimal format.

Decimal numbers are represented by Arabic numerals without subscripts or by their English names.
Hexadecimal numbers are represented by digits from the character set 0 – 9 and A – F followed by the
subscript 16. When the subscript is unnecessary to disambiguate the base of the number it may be
omitted. For the sake of legibility hexadecimal numbers are separated into groups of four digits separated by
spaces.

As an example, 42 and 2A16 both represent the same numeric value.

3.2.2 Bit, byte and quadlet ordering

SBP-3 is defined to use the facilities of Serial Bus, IEEE 1394, and therefore uses the ordering conventions
of Serial Bus in the representation of data structures. In order to promote interoperability with memory buses
that may have different ordering conventions, this standard defines the order and significance of bits within
bytes, bytes within quadlets and quadlets within octlets in terms of their relative position and not their
physically addressed position.

Within a byte, the most significant bit, msb, is that which is transmitted first and the least significant bit,
lsb, is that which is transmitted last on Serial Bus, as illustrated below. The significance of the interior bits
uniformly decreases in progression from msb to lsb.

Figure 1 – Bit ordering within a byte

Within a quadlet, the most significant byte is that which is transmitted first and the least significant byte is
that which is transmitted last on Serial Bus, as shown below.

Figure 2 – Byte ordering within a quadlet

Within an octlet, which is frequently used to contain 64-bit Serial Bus addresses, the most significant
quadlet is that which is transmitted first and the least significant quadlet is that which is transmitted last on
Serial Bus, as the figure below indicates.

lsb msb
most significant least significant

interior bits (decreasing significance left to right)

next to
least significant byte

second
most significant byte

most significant least significant

most significant byte least significant byte

T10/1467D Revision 4

10

Figure 3 – Quadlet ordering within an octlet

When block transfers take place that are not quadlet aligned or not an integral number of quadlets, no
assumptions can be made about the ordering (significance within a quadlet) of bytes at the unaligned
beginning or fractional quadlet end of such a block transfer, unless an application has knowledge (outside of
the scope of this standard) of the ordering conventions of the other bus.

3.2.3 Register specifications

This standard defines the format and function of control and status registers, CSRs. Some of these registers
are read-only, some are both readable and writable and some generate special side effects subsequent to a
write.

In order to define CSRs, their bit fields, their initial values and the effects of read, write or other transactions,
the format illustrated by Figure 4 is used.

Figure 4 – CSR specification example

The register definition contains the names of register fields. The names are intended to be descriptive, but
the fields are defined in the text; their function should not be inferred solely from their names. However, the
following field names have defined meanings.

most significant quadlet

least significant quadlet

definition

initial values

read values

write effects

most significant

most significant

least significant

least significant

not why r sig vendor-dependent bus-dependent unit-dependent

0 0 0 1 zeros 31 F316

u u 0 w last update last write last write

e i i s ignored stored stored

T10/1467D Revision 4

11

CSRs shall assume initial values upon the restoration of power (a power reset) or upon a write to the node’s
RESET_START register (a command reset). If the power reset values differ from the command reset values,
they are separately and explicitly defined. Initial values for register fields may be described as numeric
constants or with one of the terms defined for the register definition. Values for register fields subsequent to
a reset may be described in the same terms or as defined below.

In addition to numeric values for constant fields, the read values returned in response to a quadlet read
transaction may be specified by the terms below.

The effects of data written to the register are specified by the terms below.

1 For clarity, read values for a field in a register that accepts lock transactions may be described as last successful

lock rather than last write. However, the abbreviation in both cases remains w. Similar liberties may be taken with
the use of conditionally stored in place of stored when the action occurs as the result of a lock transaction, but the
corresponding one-letter abbreviation, s, is also unchanged.

Name Abbreviation Definition

bus-dependent The meaning of the field is defined by the bus standard, in this case
IEEE 1394

reserved r The field is reserved for future standardization (see 3.1.1)

unit-dependent The meaning of the field shall be defined by the organization
responsible for the unit architecture

vendor-dependent The meaning of the field shall be defined by the node’s vendor

Name Abbreviation Definition

unchanged x The field retains whatever value it had just prior to the power reset,
bus reset or command reset.

Name Abbreviation Definition

last write w The value of the field shall be either the initial value or, if a write or
lock transaction addressed to the register has successfully
completed, the value most recently stored in the field.1

last update u The value of the field shall be that most recently updated by the
node hardware or software. An updated field value may be the result
of a write effect to the same register address, a different register
address or some other change of condition within the node.

Name Abbreviation Definition

effect e The value of the data written to the field may have an effect on the
node’s state, but the effect might not be immediately visible by a
read of the same register. The effect may be visible in another
register or might not be visible at all.

ignored i The value of the data written to the field shall be ignored; it shall
have no effect on the node’s state.

stored s The value of the data written to the field shall be immediately visible
by a read of the same register; it may also have other effects on the
node’s state.

T10/1467D Revision 4

12

Reserved fields within a register shall be explicitly described with respect to initial values, read values and
write effects. Initial values and read values shall be zero while write effects shall be ignored. CSRs that are
not implemented, either because they are optional or they fall within a reserved address space, shall abide
by these same conventions if a successful completion response is returned for a read, write or lock request.

3.2.4 State machines

All state machines in this standard are defined in the style illustrated by Figure 5. The conditions and
actions of the state machine transitions are formally defined by C code, as specified by ISO/IEC 9899:1990
[B15].

Figure 5 – State machine example

The state machines in this standard make three assumptions:

– Time elapses only within a discrete state;

– State transitions are conceptually instantaneous; the only actions taken during the transition are the
setting of flags or variables and the sending of signals; and

– Each time a state is entered (or reentered from itself), the actions of that state are performed.

Multiple transitions may connect two states. In this case, the transitions are uniquely labeled by appending
a character to the transition label, e.g., S0:S1a and S0:S1b.

Condition for transition from S1 back to
itself S1:S1

Action taken on this transition

S1: State one
Actions started on entry to S1

S0: State zero
Actions started on entry to S0

Action taken on this transition

Condition for transition from S1 to S0
S1:S0

Action taken on this transition

Condition for transition from S0 to S1
S0:S1

transition label

state label

NOTE – S1 actions are
restarted following this

T10/1467D Revision 4

13

4 Model (informative)

4.1 Model overview

This clause is informative and describes typical components and operation of the SBP-3 model. It is
intended to enhance the usefulness of the other, normative parts of this standard. In addition to the
information in this clause, users of this standard should also be familiar with the CSR Architecture and
Serial Bus standards.

Serial Bus Protocol 3 (SBP-3) is a transport protocol defined for IEEE 1394, High Performance Serial Bus. It
defines facilities for requests (commands) originated by Serial Bus devices (initiators) to be communicated
to other Serial Bus devices (targets) as well as the facilities required for the transfer of data or status
associated with the commands. An SBP-3 device may assume the roles of initiator or target, either
simultaneously or in succession. Commands and status may be transferred between the initiator and the
target; data moves between the target and another device, which may be either the initiator or some other
device.

4.2 Unit architecture

In CSR Architecture and Serial Bus terminology, targets implemented to this standard are units. A Serial
Bus node that implements one or more targets has a configuration ROM unit directory for each that
identifies the presence and capabilities of the target.

Each unit directory in configuration ROM permits initiators to detect the presence of a target during Serial
Bus configuration, whether part of system initialization or subsequent to a Serial Bus reset. The node’s
64-bit identifier, EUI-64, in combination with identifying characteristics of the unit directories themselves
permits detected targets to be uniquely recognized despite changes in physical IDs that may occur as the
result of Serial Bus resets.

4.3 Logical units

A logical unit is part of the unit architecture and is an instance of a device model, e.g., disk, CD-ROM or
printer. A logical unit consists of one or more device servers responsible to execute control or data transfer
commands, one or more task sets that hold commands available for execution by the device servers and a
logical unit number that is unique within the domain of the target.

Targets implement at least one logical unit, addressable as logical unit number (LUN) zero. Additional logical
units may be implemented, addressable by their logical unit numbers. The logical units may implement
different device models; for example, a single unit architecture might contain both a CD-ROM logical unit
and an associated medium-changer logical unit. The logical units are visible to the initiator, either as
described by configuration ROM or as discoverable by command set-dependent requests directed to the
target.

NOTE – The structure of configuration ROM entries in the unit and logical unit directories permits
considerable latitude to implementers in the description of targets. For example, a device which implements
multiple functions or instances of a function may be described either by multiple unit directories, each with a
single logical unit, or by one unit directory that includes multiple logical units—or any combination in between.
Consult section 7, “Configuration ROM,” for details.

4.4 Requests and responses

Target actions, such as a disk read that transfers data from device medium to system memory, are specified
by means of requests created by the initiator and signaled to the target. The request is contained within a

T10/1467D Revision 4

14

data structure called an operation request block (ORB). The eventual completion status of a request is
usually indicated by means of a status block stored by the target at an address provided by the initiator.

This standard defines several different formats for request blocks, whose principal uses are:

– to acquire or release target resources or to manage task sets (management requests—which include
login requests); or

– to transport commands (command block requests).

Login and other management requests are directed to agents that can service only a single request at a
time; there is no way to group these requests into a linked list. The ORBs for command block requests
provide a field that contains the address of another ORB or a null pointer. This permits these requests to be
in a linked list, as illustrated below.

Figure 6 – Linked list of ORBs

Requests in a linked list are serviced by a fetch agent, which reads the requests from initiator memory when
the initiator signals the availability of requests. The target may read ahead in the linked list; consequently
the device server may reorder the execution of requests to improve performance.

When a request is completed successfully, the target usually stores a status block but if the request
completes in error a status block is always stored.

4.5 Data buffers

The ORBs described in the preceding clause contain the device command and, for those commands which
transfer data, the address of the data buffer for the command. The data buffer may be a single, contiguous
buffer that is addressed directly by the ORB or it may be a collection of possibly disjoint segments that are
addressed indirectly through a page table. The figures below illustrate both cases.

As an example, consider a command intended to transfer image data to a printer. If we assume that the
image data is 308816 bytes long, that the buffer starts at an address of 23 617416 and that page boundaries

 0000 0000 8000 000016 0000 0000 8000 002016

ORB A1

0000 0000 8000 004016

ORB A2

8000 xxxx xxxx xxxx16

ORB A3

T10/1467D Revision 4

15

in the underlying system memory occur at 4096 byte intervals, the relationship between the ORB and the
data buffer is as shown by Figure 7.

Figure 7 – Directly addressed data buffer

In the preceding example, two fields in the ORB specify the 64-bit address of the data buffer and its length,
in bytes. The data buffer is shown with a node ID of FFC016, which is node zero on the local bus. The printer
uses block read transactions to fetch data from the buffer before printing; the maximum size of the data
payload for each request is controlled by a field in the ORB. The dotted lines within the data buffer indicate
page boundaries. Although the data buffer is contiguous, the printer is not permitted to cross a page
boundary in any one block read request.

When the data buffer consists of disjoint segments, it is necessary to indirectly address the data buffer
through a page table, as shown in Figure 8. This figure could be an illustration of data read from a disk into
various pages of an initiator’s file system cache. In the example, assume that 296016 bytes of data are to be
read from disk.

 ORB

308816

FFC0 0000 0023 617416

0023 900016

0023 800016

0023 700016

Data buffer

T10/1467D Revision 4

16

Figure 8 – Indirectly addressed data buffer (via page table)

The fields in the ORB that directly addressed a data buffer in the first example now point to a page table.
Note that the ORB field that contains the data length when direct addressing is employed instead contains
the number of elements in the page table—in this case, four. Each of the four page table elements points to
the start of a segment of the data buffer. Each page table element also contains the length of the segment.
The first segment ends on a page boundary, all other segments start on page boundaries (the middle
segments also end on page boundaries) and the last segment may end on any boundary. In this example,
the segment lengths are 056416, 100016, 100016 and 03FC16, respectively.

When a page table is used, both the page table and the data buffer it describes usually reside in the same
node. The node ID of the page table, FFC016, is not repeated in the page table elements. The space that
would have otherwise been occupied by the node ID instead is used to contain the length of each segment.

Another variant of page table format is permitted, called an unrestricted page table (or a scatter/gather list).
In an unrestricted page table, data buffer segments may start on any boundary and may have arbitrary
lengths: there is no underlying page size.

4.6 Target agents

A target agent is a facility that receives signals from the initiator that indicate the availability of requests.
There are two types of target agent, one that can execute a single request at a time and the other that can
manage queues (linked lists) of requests, as illustrated by Figure 6. In the first case, the initiator signals the
request to the agent by means of a Serial Bus block write request with the address of the request. In the
other case, the initiator appends new requests to an active list, then rings a doorbell which causes the
target agent to fetch the requests from system memory as target resources permit their execution.

Target agents that manage linked lists of requests utilize context maintained at both the initiator and target
to fetch requests from memory. Once fetched, the request is locally available to the target for execution. The
context consists of three elements:

 ORB

4

FFC0 0000 0023 304816
Page table

0000 00CE AA9C16

0000 00CE C00016

0000 00CE D00016

0000 00CE F00016

00CE B00016

00CE C00016

00CE D00016

00CE E00016

00CE F00016

Data buffer
len

len

len

len

T10/1467D Revision 4

17

– a linked list of ORBs at the initiator;

– a current ORB address at the target; and

– a doorbell at the target.

This standard defines procedures for both the initiator and the target that permits the addition of new
requests to a linked list of ORBs while the target is actively fetching or executing previously queued
requests. The procedures avoid the possibility of race conditions between the producer (initiator) and
consumer (target) of the ORBs.

There are two types of target agents:

– management; and

– command block.

Management agents accept a variety of requests, such as login, create task set, task management,
reconnect and logout. Before making other requests, an initiator first completes a login via the management
agent. During the lifetime of a login, task management requests are directed to either the primary task set
(created by the login) or to separately created secondary task sets associated with the login. Ultimately,
management agents accept logout requests; these indicate the initiator‘s intent to release target resources
previously acquired by a login or create task set request. Management agents service a single request at a
time and do not support linked lists.

A successful login or create task set request returns the address of a command block agent that services
requests which are organized in linked lists. Individual linked lists are managed by separate command block
agents.

4.7 Ordered and unordered execution

Targets may implement either an ordered or unordered model of task execution. The ordered model is
usually appropriate for devices where the context of a command affects its execution, i.e., the outcome of
one command affects the subsequent command. A common example of a device with such command
dependencies is a tape drive. The unordered model is usually appropriate for direct-access devices for which
no positional or other context information is inherited from one command to the next.

The ordered model specifies both that tasks are executed in order and that completion status is returned in
the same order. A consequence of ordering is that completion status for one task implicitly indicates
successful completion status for all tasks that preceded it in the ordered list.

The unordered model permits the target to reorder active tasks without restriction. The actual execution
sequence of tasks from any task set may bear no relationship to the order in which they were fetched.
Unrestricted reordering leaves the responsibility for the assurance of data integrity with the initiator. If the
integrity of data on the device medium could be compromised by unrestricted reordering involving a set of
active tasks, {T0, T1, T2, … TN} and a new task T´, the initiator shall wait until {T0, T1, T2, … TN} have
completed before appending T´ to an active request list.

NOTE – In multitasking operating system environments, independent execution threads may generate tasks
that have ordering constraints within each thread but not with respect to other threads. If this is the case, an
initiator may manage the constraints of each thread yet still keep the target substantially busy. This avoids the
undesirable latencies that occur if the target is allowed to become idle before new ORBs are signaled.

T10/1467D Revision 4

18

4.8 Bridge-awareness

Targets designed to operate with initiators or data buffers on remote buses (i.e., not the local bus but buses
accessible via one or more intervening bridges) are described as “bridge-aware”. In general terms, this
means that their designs embody an understanding of the requirements of draft standard IEEE P1394.1.
More specifically, the salient features of bridge-aware targets are:

– The ability to distinguish between local node IDs, whose scope is restricted to the local bus, and
global node IDs that reference a remote node (or indirectly reference a local node). The most
significant ten bits of a node ID differentiate local and global node IDs;

– Separate split transaction time-out values for requests addressed to local nodes and those addressed
to remote nodes. The remote time-out value is significantly longer than the local bus split time-out;

– The ability to generate commands addressed to remote bridges. These commands are identified both
by the data payload of the packet and its destination CSR; their intended recipient (or recipients) are
identified by the packet’s destination address and the value of the snarf field in the packet header of
block write requests;

– Comprehension of new response packet header fields, such as proxy_ID and ext_rcode, and new
response codes;

– Implementation of the MESSAGE_REQUEST, MESSAGE_RESPONSE and QUARANTINE registers;

– Particular behaviors in response to bus reset, notably self-quarantine of remote subactions and the
possible invalidation of any global node IDs cached by the device;

– Recognition of commands originated by bridge portals and intended for bridge-aware nodes.

Most of the requirements above are best understood by reference to draft standard IEEE P1394.1 itself.
However, there are other changes in Serial Bus Protocol necessitated by some of these new behaviors. In
particular, a) initiators and targets require a stable method to identify nodes that contain data buffers and b)
initiators and targets may no longer use bus reset as a mutual synchronization point since they do not
observe bus reset on the other's bus.

The obvious candidate for stable reference to a node is its 64-bit unique ID, EUI-64. Unfortunately, legacy
SBP-2 data structures are restricted to a 16-bit field to identify a node. The solution is to differentiate
between two types of information that may be contained within the 16-bit field. One type is the local node ID
documented by SBP-2. The second is a node handle, an arbitrary value assigned by the target to represent
a particular EUI-64. Because draft standard IEEE P1394.1 restricts the most significant ten bits of a local
node ID to all ones, this standard is free to define a node handle to be any 16-bit value whose most
significant ten bits are other than all ones.

NOTE – Although a node handle and a global node ID are similar in that their most significant ten bits are not
all ones, they are not the same thing. A global node ID, when used in the destination_ID field of a Serial Bus
request subaction, causes the subaction to be routed by bridges to the intended recipient. A node handle
should never be used in destination_ID; its value might coincidentally be equal to a valid global node ID—but
one that corresponds to a different EUI-64 than the target had previously associated with the node handle.

Before an initiator may use a node handle to refer to a particular node, it asks the target for a node handle
that corresponds to the node's EUI-64. Once the target has returned a node handle to the initiator, the node
handle may be used in any address pointer to reference the node identified by the EUI-64.

When a target encounters a node handle in any address pointer field, it decodes the reference into a global
node ID which may be used to address the desired node. The target is responsible to maintain a valid
correlation between a node handle and its associated EUI-64 and global node ID. Device discovery methods
(as described by draft standard IEEE P1394.1) are used to discover (or rediscover) the global node ID that

T10/1467D Revision 4

19

matches the EUI-64 associated with the node handle. If the desired node is no longer connected to the net,
the target terminates affected tasks.

The other protocol change necessitated by bridges concerns bus reset. In general, bus resets in a network
of interconnected buses are a local event not propagated by bridges.2 If a bus reset occurs on the target's
bus and the initiator is on a remote bus, the event will pass unobserved by the initiator. As a consequence, a
protocol behavior useful in legacy SBP-2 becomes detrimental when bridges are present: a bridge-aware
target cannot afford to abort its task sets in response to bus reset. The remote initiator is unable to detect
such an event; even if the target attempts to notify the initiator, it is uncertain whether work at the target can
make forward progress in the face of subsequent bus resets.

The use of node handles is essential to surmount the bus reset problem. When a target operating in bridge-
aware mode observes a bus reset, it does not abort its task sets. Instead it revalidates the global node IDs
in use and insures that they continue to correspond to nodes originally specified by EUI-64. The initiator
need not know about this action by the target, since the initiator continues to use stable node handles to
identify nodes.

NOTE – Although this new protocol feature was designed as a response to bridges, it may be very useful in
the context of the local bus. A node handle may refer to a local node; a target operating in bridge-aware mode
is capable of determining the corresponding local node ID after bus reset. Without task set aborts forced by
bus reset, target operations may be significantly more efficient.

4.9 Streams

Streams are objects that are based upon the isochronous capabilities of Serial Bus. A stream consists of all
of the target and logical unit functions and resources that are necessary to transfer isochronous data from
one or more Serial Bus channels to the device’s medium (the target is a listener) or to transfer data
isochronously from the device’s medium to one or more Serial Bus channels (the target is a talker). The
direction, listener or talker, of any stream is independent of any other stream. Within each stream all of the
data flows in the same direction.

Streams require Serial Bus resources as well as target resources. These include the aggregate bandwidth
necessary for the stream, the channel numbers utilized by the stream and the isochronous connections that
characterize the stream. An application (usually, but not necessarily, co-located with the initiator) allocates
all necessary resources before activating a logical unit isochronous stream.

A stream of isochronous data appears on Serial Bus as a subaction with a transaction code (tcode) of A16
during an isochronous period. This in turn is represented by an ordered byte stream of data on the device
medium. The presentation of this data is controlled by command block ORBs that request data transfer to or
from the medium.

Figure 9 illustrates the relationship between the different stream components during playback (the logical
unit is assumed to have direct-access capabilities).

2 Net topology changes anywhere within the net eventually cause a bus reset to occur on each bus within the net,

but these bus resets are not synchronized with each other and do not carry any useful information except
notification that net topology has changed.

T10/1467D Revision 4

20

Figure 9 – Components of an isochronous stream (direct-access logical unit)

The figure shows that the order of presentation of bytes in a stream is determined by the order of command
block ORBs—but that this order is independent of the location of the data on device medium. In this
example, the size of the isochronous packet transmitted each cycle is determined by information previously
recorded on the medium. The example shows a stream with only one channel (one packet per isochronous
period) and a fixed packet size, but streams may consist of more than one channel and the packet size
may be different each isochronous period.

Streams differ fundamentally from asynchronous data transfers. First, streams do not require any address
context for the transfer of data to or from system memory: a channel number and the time-ordered location
of the data within the stream identify the data. Second, the stream’s flow of isochronous data may be
controlled and synchronized to time or other time-dependent events.

In order to fully exploit these differences, a logical unit's command set should be cognizant of Serial Bus
isochronous behavior. Such a command set may enable a logical unit to perform frame-precise
synchronization or to manage multi-channel streams, to give just two examples. However, it is possible to
adapt existing command sets (ones designed without awareness of Serial Bus isochronous facilities) to use
isochronous data transfer methods.

In order to leverage existing command sets, simplifying assumptions are required. The devices are limited to
single-channel streams, either input or output but not both the same time. The essential information that
characterizes data flow on a single isochronous channel is a) bandwidth, b) channel number and c)
transmission speed. IEC 61883-1 [B5] defines plug control registers (PCRs) that provide this information.
Output plug control registers (oPCRs) specify speed, channel number and maximum data payload per
isochronous subaction (bandwidth) while input control registers (iPCRs) specify only channel number. The
plug control registers also enable connection management and a simple on or off scheme to control the flow
of isochronous data.

The information available in a plug control register is combined with data transfer length information in a
command block ORB when the isochronous bit in the ORB is set to one; this causes the logical unit to use
isochronous subactions to transfer data to or from the device medium in accordance with the parameters in
the plug control register.

Device medium (LBA —>)

Serial Bus (time —>)

125 µs

Command block ORBs

LBA

length

LBA

length

LBA

length

… …

T10/1467D Revision 4

21

One example of a simple, single data stream device that might benefit from isochronous data transfer would
be an isochronous DVD player. Contemporary DVD players use a multi-media command set (MMC [B4]
[B13]) that assumes a transport protocol that provides confirmed, asynchronous data transfer. This is
workable when the rendering device (typically a computer) and the DVD player are the only devices that
share the transport medium: ample bandwidth is available. But if the DVD player is an SBP device and is in
competition with many other devices for Serial Bus bandwidth, the best-effort nature of asynchronous data
transfer on Serial Bus might result in late delivery of data to the rendering device. A practical solution is to
leverage the existing command set, unchanged, and use the isochronous facilities of SBP-3 to implement
an isochronous DVD player. If isochronous bandwidth is reserved in advance, the rendering device should
receive all of the data transmitted by the DVD player in time for display.

The steps an initiator (which is also co-located with the rendering application) would take to control an
isochronous DVD player are as follows:

a) Read the DVD player's plug control registers to determine the maximum speed and maximum data
payload supported by the DVD player and attempt to allocate the required bandwidth;

b) If the bandwidth allocation is successful, attempt to allocate a channel number. If this fails, release
the previously allocated bandwidth and try again later;

c) Otherwise, program the DVD player's output plug control register (oPCR) with the speed, channel
number and maximum data payload information and at the same time establish a point-to-point
connection in accordance with the procedures specified by IEC 61883-1;

d) Program Serial Bus adapter hardware (co-located with the initiator) to receive isochronous data on
the specified channel;

e) Signal command block ORBs to the DVD player to request that it transmit data from its device
medium as a sequence of isochronous subactions;

f) When complete, program the DVD player’s oPCR to relinquish the point-to-point connection in
accordance with the procedures specified by IEC 61883-1 and then release the previously allocated
bandwidth and channel number.

An initiator would utilize a similar procedure to control isochronous data transfer for logical unit that is a
listener, for example an isochronous scanner.

T10/1467D Revision 4

23

5 Data structures

5.1 Data structure types and components

There are three classes of data structures defined by this standard:

– operation request blocks (ORBs);

– page tables;

– status blocks.

These data structures are allocated and initialized by an initiator in system memory at Serial Bus nodes.
ORBs and status blocks shall be allocated at the initiator’s node. Unless the logical unit supports node
selectors (see 5.3.4), page tables shall be allocated at the same node as the data buffer to which they refer.

All data structures defined by this standard shall be aligned on quadlet boundaries. These alignment
requirements permit 64-bit address pointers that reference these data structures to conform to the format
specified below.

Figure 10 – Address pointer

The node_ID field shall identify the Serial Bus node for which the address pointer is valid, as defined by
IEEE 1394 or this standard. In many cases, additional constraints on the location of data structures render
the information in node_ID redundant. In these cases, node_ID is considered a reserved field or is explicitly
redefined for other uses. Except when node_ID is redefined or reserved, it shall contain either a local node
ID, as specified by IEEE 1394, or a node handle supplied by a target, as specified by this standard.

The offset_hi and the offset_lo fields shall together specify the most significant 46 bits of the Serial Bus
offset and shall be combined with two low-order bits of zero to derive the 48-bit Serial Bus offset. Although
the two least significant bits of a 48-bit address pointer are reserved (and therefore zeroed by the initiator),
the target shall not assume that they are zero.

The size of a data structure addressed by a pointer that conforms to Figure 10 is either explicitly specified
by an associated length field or implicitly known from context. Whichever the case, a target shall not initiate
any Serial Bus request subactions (read, write or lock) that reference system memory outside of the range
determined by an address pointer and length supplied by an initiator.

ORBs shall be allocated at the initiator’s node. Some types of ORBs contain an address pointer which
permits them to be organized as a linked list. Since the node ID is known for all ORBs in such a list, the
address pointer format is redefined to reuse the node_ID field. An address pointer that references an ORB
shall conform to the format below.

offset_lo

offset_hi

r

most significant

least significant

node_ID

T10/1467D Revision 4

24

Figure 11 – ORB pointer

The null bit (abbreviated as n in the figure above) indicates a null pointer when it is one. In this case the
target shall ignore the offset_hi and the offset_lo fields.

5.2 Operation request blocks (ORBs)

5.2.1 Generic ORB

All initiator requests for target actions are expressed within ORBs, which may either be fetched by the
target via Serial Bus read transactions or directly signaled to the target by Serial Bus write transactions.
ORB formats vary according to use and may be viewed in hierarchical relationship to each other, as
illustrated below.

Figure 12 – ORB family tree

The formats of the ORBs are described in the clauses that follow. This clause specifies fields that are
common to all ORBs, illustrated in the figure below.

offset_lo

offset_hi

r

most significant

least significant

reserved n

Dummy ORB
Command block

ORBs
Management

ORBs

Task
management

ORBs
Access ORBs

ORB formats

T10/1467D Revision 4

25

Figure 13 – ORB format

The notify bit (abbreviated as n in the figure above) advises the target whether or not completion notification
is required. When notify is zero, the target may elect to suppress completion notification except when there
is an error, in which case the value of notify is ignored and a status block shall be stored. If notify is one, the
target shall always store a status block in initiator memory. When the target stores a status block, it shall
store it at the status_FIFO address specified in the ORB or, if not specified in the ORB, at the address
supplied in the login or create task set request.

The rq_fmt field specifies ORB format, as defined by the table below.

The format of an ORB is uniquely determined by a combination of rq_fmt, the command set implemented by
the target and the target agent to which the ORB is signaled. This standard specifies those parts of the
ORB that are invariant across target command sets and device types.

5.2.2 Dummy ORB

Dummy ORBs may be used as placeholders within linked lists of requests. An example is the use of a
dummy ORB in the initialization of a logical unit fetch agent (see 9.2.2). The initiator shall allocate system
memory large enough to contain the ORB size specified by the logical unit. The format of a dummy ORB is
illustrated below.

Value ORB format

0 Format specified by this standard

1 Format specified by this standard

2 Vendor-dependent

3 Dummy (NOP) request format

rq_fmt-dependent

rq_fmt-dependent

n

most significant

least significant

rq_fmt rq_fmt-dependent

T10/1467D Revision 4

26

Figure 14 – Dummy ORB

The next_ORB field shall contain a null pointer or the address of an ORB and shall conform to the address
pointer format illustrated by Figure 11.

The notify bit is as previously defined for all ORB formats.

The rq_fmt field is as previously defined for all ORB formats and shall be three.

An rq_fmt value of three is also used to indicate an ABORT TASK request to a target. See 10.5.1 for details
of ORB processing by the target and for permissible completion status values.

5.2.3 Command block ORBs

Command block ORBs are used to encapsulate data transfer or device control commands for transport to
the target. A target’s command set and device type determine the length of these ORBs, which shall be
fixed for a particular command set and device type. A target reports this size in its configuration ROM (see
7.8.10).

NOTE – Although device designers may select arbitrary ORB lengths, system considerations may favor some
ORB sizes over others, e.g., 32 bytes. An ORB size of 32 bytes limits the command set-dependent information
in a command block ORB to twelve bytes. This is adequate for many command descriptor blocks defined in
command sets such as SCSI, but device designers should not hesitate to utilize larger ORBs if 16-byte or
larger commands are required. Operating systems designers should take care not to preclude the use of
arbitrarily large ORBs.

Command block ORBs may have either one or two buffer descriptors. The format of a command block ORB
with a single buffer descriptor is illustrated by the figure below.

ignored

next_ORB

ignored

ignored

most significant

least significant

rq_fmt
(3)

n

T10/1467D Revision 4

27

Figure 15 – Command block ORB (single buffer descriptor)

The next_ORB field shall contain a null pointer or the address of a dummy ORB or a command block ORB
and shall conform to the address pointer format illustrated by Figure 11.

The value of the data_descriptor field is valid only when the isochronous bit is zero and data_size is
nonzero, in which case it shall contain either the address of the data buffer or the address of a page table
that describes the memory segments that make up the data buffer, dependent upon the value of
page_table_present bit. The format of the data_descriptor field, when it directly addresses a data buffer,
shall be a 64-bit Serial Bus address or, when it addresses a page table, shall be as specified by Figure 10.
When data_descriptor specifies the address of a page table, the format of the page table shall conform to
that described in 5.3.

The notify bit and rq_fmt field are as previously defined for all ORB formats. The rq_fmt field shall be zero for
an ORB which contains a single buffer descriptor.

The value of the isochronous bit (abbreviated as i in the figure above) is valid only when data_size is
nonzero, in which case this it specifies the transfer method used for data associated with the ORB. When
this bit is zero, Serial Bus read or write transactions shall be used to move data to or from the buffer
described by the data_descriptor, spd, max_payload, page_table_present, page_size and data size fields.
Otherwise, when isochronous is one, data transfer shall be effected by Serial Bus isochronous streams, i.e.,
packets with a transaction code of A16.

NOTE – Command set-dependent methods may be used to specify isochronous data transfer even if the
isochronous bit is zero. See Annex D for an example.

The value of the direction bit (abbreviated as d in the figure above) is valid only when data_size is nonzero, in
which case it specifies direction of data transfer. The meaning of the direction bit shall be interpreted in
conjunction with the isochronous bit. If both the isochronous and the direction bits are zero, the target shall
use Serial Bus read transactions to fetch data from system memory. When the isochronous bit is zero and
the direction bit is one, the target shall use Serial Bus write transactions to store data in system memory.
Otherwise, when the isochronous bit is one, a direction bit of zero specifies that the target shall receive
isochronous data while a direction bit of one specifies that it shall transmit isochronous data.

The value of the spd field is valid only when the isochronous bit is zero and data_size is nonzero, in which
case it specifies the speed that the target shall use for data transfer transactions addressed to the data
buffer or page table, as encoded by Table 1.

next_ORB

data_descriptor

command_block

n

most significant

least significant

rq_fmt
(0)

i data_size d spd max_payload page_size p

T10/1467D Revision 4

28

Table 1 – Data transfer speeds

The value of the max_payload field is valid only when the isochronous bit is zero and data_size is nonzero,
in which case the maximum data transfer length is specified as 2 max_payload + 2 bytes, which is the largest data
transfer length that may be requested by the target in a single Serial Bus read or write transaction
addressed to the data buffer. The max_payload field shall specify a length less than or equal to the
maximum asynchronous data payload specified by IEEE 1394 for the data transfer rate indicated by spd.

The value of the page_table_present bit (abbreviated as p in the figure above) is valid only when the
isochronous bit is zero and data_size is nonzero, in which case it shall be zero if data_descriptor directly
addresses the data buffer, else one when data_descriptor addresses a page table.

The value of the page_size field is valid only when the isochronous bit is zero and data_size is nonzero, in
which case it shall specify the underlying page size of the data buffer memory (see 9.4 for an explanation of
target responsibilities with respect to page boundaries). A page_size value of zero indicates that the
underlying page size is not specified. Otherwise the page size is 2 page_size + 8 bytes. The page size applies to
the data buffer whether or not a page table is present. When a page table is used to describe the data buffer,
the page_size field also specifies the page table format. A page_size value of zero indicates an unrestricted
page table (also known as a scatter/gather list) while a nonzero page_size indicates a normalized page
table.

If the isochronous bit is zero and page_table_present is zero, the data_size field shall contain the size, in
bytes, of the system memory addressed by the data_descriptor field. When the isochronous bit is zero and
page_table_present is one, data_size shall contain the number of elements in the page table addressed by
data_descriptor. Otherwise, the isochronous bit is one and data_size shall specify the maximum count, in
bytes, of isochronous data to be transferred.

The command_block field contains information not specified by this standard.

When rq_fmt equals one, the ORB contains two buffer descriptors, as illustrated by Figure 16.

Value Speed

0 S100

1 S200

2 S400

3 S800

4 S1600

5 S3200

6 – 7 Reserved for future standardization

T10/1467D Revision 4

29

Figure 16 – Command block ORB (dual buffer descriptor)

Each buffer associated with an ORB is described by a set of bits and fields: data_descriptor, isochronous,
direction, spd, max_payload, page_table_present, page_size and data_size. A command block ORB whose
rq_fmt is zero describes a single buffer or isochronous stream (referred to as buffer[0]) via the fields
specified by Figure 15. When rq_fmt is one, the ORB includes two sets of these fields, capable of
describing buffer[0] and buffer[1]. The fields that describe buffer[0] are in the same location as in a single
buffer descriptor command block ORB; the additional fields (shown shaded in Figure 16) describe buffer[1].
The meaning of the individual buffer descriptor fields remains the same whether the field pertains to buffer[0]
or buffer[1].

All of a buffer’s characteristics are independent of the other buffer. Buffers need not reside in the same node
nor be subject to the same speed or maximum payload characteristics. One buffer may be described by a
page table and the other not. The matrix below illustrates how it is possible in all except two cases to
determine buffer use from the information contained in the ORB. The two cases that require additional
information (shown shaded in gray) occur when two buffers are described and the direction bit for both has
the same value.

data_size

n rq_fmt
(1)

i data_size d spd max_payload page_size p

next_ORB

data_descriptor

command_block

most significant

reserved d spd max_payload page_size p

data_descriptor

least significant

i

T10/1467D Revision 4

30

5.2.4 Management ORBs

5.2.4.1 Generic management ORB

Management ORBs are 32-byte data structures that encapsulate several types of management request:

– access requests (which include login and logout requests); and

– task management requests.

Unlike the command block ORBs (which are implicitly associated with a particular task set by virtue of the
fetch agent to which they are addressed), management ORBs explicitly declare either the logical unit or the
task set for which they are intended.

Management ORBs have the general format illustrated below. Note that since they lack a next_ORB field,
they cannot be linked together to form a list.

Figure 17 – Management ORB

 data_size[1]

 zero nonzero

 direction[1]
 0 1

ze
ro

 No buffers buffer[1] outbound buffer[1] inbound

0 buffer[0] outbound
Both buffers outbound;
Consult command set

for details

buffer[0] outbound
buffer[1] inbound

d
at

a_
si

ze
[0

]

no
nz

er
o

di
re

ct
io

n[
0]

1 buffer[0] inbound
buffer[0] inbound
buffer[1] outbound

Both buffers inbound;
Consult command set

for details

rq_fmt
(0)

reserved

function-dependent

status_FIFO

function function-dependent

most significant

least significant

function-dependent

n
(1)

T10/1467D Revision 4

31

The notify bit and rq_fmt field are as previously defined for all ORB formats. The rq_fmt field shall be zero
and the notify bit shall be one.

The function field specifies the management function requested, as defined by Table 2. Target support for
some management functions is mandatory. When a target receives a management request that specifies an
optional, not supported function, it shall respond with an sbp_status of function rejected.

Table 2 – Management request functions

The status_FIFO field shall contain an address allocated for the return of status information generated by
the management request. The status_FIFO field shall conform to the format for address pointers specified
by Figure 10 and shall address the same node as the initiator; consequently the node_ID field of this
address pointer is reserved.

NOTE – The status_FIFO address explicitly specified within a management ORB may differ from the status
FIFO address implicitly associated with command block requests. The address for command block requests
is established by a LOGIN or CREATE TASK SET request and is not altered by other management requests.

5.2.4.2 Login ORB

Before any requests that address logical unit fetch agent CSRs or require a login_ID can be made of a
target, the initiator shall first complete a login procedure that uses the ORB format shown below.

Value Mandatory Management function

0 Yes LOGIN

1 Yes QUERY LOGINS

2 CREATE TASK SET

3 Yes RECONNECT

4 SET PASSWORD (see Annex C)

5 NODE HANDLE

6 Reserved for future standardization

7 Yes LOGOUT

8 – A16 Reserved for future standardization

B16 ABORT TASK

C16 Yes ABORT TASK SET

D16 Reserved for future standardization

E16 Yes LOGICAL UNIT RESET

F16 Yes TARGET RESET

T10/1467D Revision 4

32

Figure 18 – Login ORB

The password and password_length fields may contain optional information used to validate the login
request. If password_length is zero, the password field may contain immediate data. When password_length
is nonzero, the password field shall conform to the format for address pointers specified by Figure 10 and
shall contain the address of a buffer in the same node as the initiator; consequently the node_ID field of this
address pointer is reserved. The buffer shall be accessible to a Serial Bus block read request with a data
transfer length less than or equal to password_length. The format and usage of password data, whether
immediate or indirectly addressed, are specified by Annex C.

The login_response and login_response_length fields specify the address and size of a buffer allocated for
the return of the login response. The login_response field shall conform to the format for address pointers
specified by Figure 10 and shall address the same node as the initiator; consequently the node_ID field of
this address pointer is reserved. The buffer shall be accessible to a Serial Bus block write request with a
data transfer length less than or equal to login_response_length. If the aware bit is zero, the initiator shall
set login_response_length to a value of at least 12, otherwise to at least 16; the target may ignore this field
if it stores no more than 12 bytes of login response data.

The notify bit and the rq_fmt field are as previously defined for management ORB formats.

The exclusive bit (abbreviated as x in the figure above) shall specify target behavior with respect to
concurrent login to a logical unit. When exclusive is zero, the target, subject to its own implementation
capabilities, may permit more than one initiator to login to a logical unit. If exclusive is one the target shall
permit only one login to a logical unit at a time; see 8.3 for a description of target behavior.

The aware bit (abbreviated as a in the figure above) permits the initiator to request bridge-aware behavior (as
specified by 8.4 and 10.6) from the target for operations associated with this login. When the aware bit is
zero, target behavior with respect to bus reset and node IDs shall be compatible with SBP-2. Otherwise, the
target is requested to behave in a bridge-aware manner as specified by this standard and draft standard
IEEE P1394.1.

The extended_status bit (abbreviated as xs in the figure above) shall specify the status block format
accepted by the initiator for this login. When extended_status is zero, only the basic status block format
may be stored at the status_FIFO. Otherwise, either the basic or extended status formats may be stored
(see 5.4 for details).

xsu r a

password

login_response

status_FIFO

lun

most significant

least significant

function
(0)

login_response_length password_length

n rq_fmt
(0)

x reconnect

T10/1467D Revision 4

33

The reconnect field shall specify the desired reconnect time-out as 2 reconnect seconds. The default reconnect
time-out, when reconnect is zero, is one second. The target might not be able to support the requested
value; see reconnect_hold in the login response data below.

The update bit (abbreviated as u in the figure above), when zero, specifies that the initiator is not logged in to
the logical unit identified by lun. Otherwise, an existing login is to be updated with the information in the
login request.

When the update bit is zero, the lun field specifies the logical unit number (LUN) to which the request is
addressed. Otherwise, the lun field shall contain a login ID value obtained as the result of a successful login.

The status_FIFO field is as previously defined for management ORB formats and shall contain an address
allocated for the return of status for the LOGIN request, status for all subsequent requests signaled to the
command_block_agent allocated for this login and any unsolicited status generated by the logical unit.

If the login fails the contents of the response buffer are unspecified. Otherwise, upon successful completion
of a login, the target shall store a minimum of 12 bytes of login response data and may store up to the entire
16 bytes illustrated below; the amount of data stored shall be an integral number of quadlets. Truncated
login response data shall be interpreted as if the omitted fields had been stored as zeros.

Figure 19 – Login response

The length field shall contain the length, in bytes, of the login response data.

The initiator shall use the login_ID value returned by the target to identify all subsequent requests directed to
the target’s management agent that pertain to this login.

The command_block_agent field specifies the base address of the agent’s CSRs, which are defined in 6.6.
This field shall conform to the format for address pointers specified by Figure 10.

When the aware bit in the login request is zero, the contents of the node_handle field are unspecified.
Otherwise the node handle field shall contain a node handle that the initiator shall use as the most
significant 16 bits of any address pointer (whose node_ID field is not reserved) that references initiator
memory in any ORB which is signaled to the target in the context of this login.

The reconnect_hold field shall specify the time, in seconds less one, that the target will hold resources for a
previously logged-in initiator subsequent to a bus reset or net update. The value of reconnect_hold shall not
be greater than 2 reconnect -1, where reconnect is obtained from the login request. If an initiator fails to complete
a successful reconnect request within reconnect_hold + 1 seconds after a bus reset or net update, the
target will perform a logout and release all resources held by that initiator (see 8.3).

login_ID length

most significant

least significant

command_block_agent

reconnect_hold node_handle r

T10/1467D Revision 4

34

5.2.4.3 Query logins ORB

An initiator may determine the EUI-64 and node ID, local or global, of all currently logged-in initiators by
means of a query logins request, whose format is illustrated below.

Figure 20 – Query logins ORB

The query_response and query_response_length fields specify the address and size of a buffer for the return
of the query results. The query_response field shall conform to the format for address pointers specified by
Figure 10 and shall address the same node as the initiator; consequently the node_ID field of this address
pointer is reserved. The buffer shall be accessible to a Serial Bus block write request with a data transfer
length less than or equal to query_response_length.

The notify bit, rq_fmt and status_FIFO fields are as previously defined for management ORB formats.

The lun field specifies the logical unit number (LUN) to which the request is addressed.

The query response data returned shall have the following format.

reserved query_response_length

reserved

query_response

status_FIFO

lun

most significant

least significant

function
(1)

n rq_fmt
(0)

reserved

T10/1467D Revision 4

35

Figure 21 – Query logins response format

The length field shall contain the length, in bytes, of the query response data. The value of the length field
shall be equal to 4 + 12 * n, where n is the number of logged-in initiators. If query_response_length in the
query logins request is too small for the transfer of all the query response data, the length field shall not be
adjusted to reflect the truncation.

The max_logins field shall contain the maximum concurrent logins that may be accepted by the logical unit.

The remainder of the query response is a variable-length array of 12-byte entries, one for each logged-in
initiator, each of which contains a node_ID, login_ID and initiator_EUI_64 field.

The node_ID field of an entry shall contain the node ID of a logged-in initiator. If a Serial Bus reset or net
update (the former in the case of local node IDs and the latter in the case of global node IDs) has occurred
since the login was established and the initiator has not reconnected the login, the node_ID field shall have
a value of FFFF16.

NOTE – A node_ID value of FFFF16 may be observed only in the reconnect interval that exists for
reconnect_hold + 1 seconds after a Serial Bus reset or net update because after this time the target performs
an automatic logout for any initiator that has not reconnected.

If the node_ID field has a value of FFFF16, the login_ID field shall contain the time remaining, in seconds
less one, until the initiator is automatically logged-out by the target. Otherwise, the login_ID field of an entry
shall contain the login ID provided to the initiator as a result of its successful login.

The initiator_EUI_64 field of an entry shall contain the EUI-64 obtained by the target from the initiator’s
configuration ROM at the time the login was validated.

5.2.4.4 Create task set ORB

An initiator already logged-in to a target logical unit may request the creation of an additional task set (other
than the primary task set associated with the login) by means of an ORB with the format shown below.

login_ID[0] node_ID[0]

length max_logins

least significant

most significant

initiator_EUI_64[n - 1]

initiator_EUI_64[0]

…

login_ID[n - 1] node_ID[n - 1]

T10/1467D Revision 4

36

Figure 22 – Create task set ORB

The create_task_set_response and create_task_set_response_length fields specify the address and size of
a buffer allocated for the return of the create task set response. The create_task_set_response field shall
conform to the format for address pointers specified by Figure 10. The buffer shall be in the same node as
the initiator and shall be accessible to a Serial Bus block write transaction with a data transfer length less
than or equal to create_task_set_response_length. The initiator shall set create_task_set_response_length
to a value of at least 12; the target may ignore this field.

The notify bit and the rq_fmt field are as previously defined for management ORB formats.

The login_ID field shall contain a login ID value obtained as the result of a successful login.

The status_FIFO field is as previously defined for management ORB formats and shall contain an address
allocated for the return of status for the CREATE TASK SET request, status for all subsequent requests
signaled to the command_block_agent allocated for this task set.

If the create task set request fails the contents of the response buffer are unspecified. Otherwise, upon
successful completion of a create task set request, the response is returned in the format illustrated below.

Figure 23 – Create task set response

The length field shall contain the length, in bytes, of the create task set response data and shall be equal to
12.

The task_set_ID identifies a task set for which target resources have been allocated. The value of
task_set_ID shall differ from the login_ID with which it is associated and shall be unique within the context

task_set_ID length (12)

most significant

least significant

create_task_set_response

status_FIFO

login_ID

most significant

least significant

function
(2)

create_task_set_response_length reserved

n

reserved

rq_fmt
(0)

reserved

command_block_agent

T10/1467D Revision 4

37

of the target. The initiator shall use this value to identify all subsequent requests directed to the target’s
management agent that pertain to this task set.

The command_block_agent field specifies the base address of the agent’s CSRs, which are defined in 6.6.
This field shall conform to the format for address pointers specified by Figure 10.

5.2.4.5 Reconnect ORB

After a Serial Bus reset or net update an initiator shall reestablish access for a previously valid login before it
signals new requests to the target for that login. This is accomplished by means of a reconnect request,
with the format shown below.

Figure 24 – Reconnect ORB

The notify bit and the rq_fmt field are as previously defined for management ORB formats.

The login_ID field shall contain a login ID value obtained as the result of a successful login. The target shall
verify that the EUI-64 of the initiator requesting the login reestablishment matches the EUI-64 previously
saved by the target for the login_ID.

The status_FIFO field is as previously defined for management ORB formats and shall contain an address
allocated for the return of status for the RECONNECT request, only. The contents of this field shall not
update the status FIFO address established by the successful login that returned login_ID.

Upon successful reestablishment of the login, the initiator may signal requests to the target agent at the
same CSR addresses returned in the original login response data. The initiator shall also use the login_ID
value to identify all requests directed to the target’s management agent that pertain to the reestablished
login.

Any secondary task sets associated with the same login_ID value specified in the reconnect ORB are once
again available for use. The task set IDs of the secondary task sets remain the same.

reserved

status_FIFO

login_ID

most significant

least significant

function
(3)

reserved

n rq_fmt
(0)

reserved

T10/1467D Revision 4

38

5.2.4.6 Node handle ORB

When an initiator establishes a login in bridge-aware mode, it shall obtain node handles to use in all address
pointers signaled to the target for the duration of the login. A node handle for a particular node, identified by
its EUI-64, may be obtained by a node handle request that uses the ORB format shown below.

Figure 25 – Node handle ORB

The notify bit and the rq_fmt field are as previously defined for management ORB formats.

The value of the allocate bit (abbreviated as a in the figure above) determines the operation to be performed.
If the allocate bit is one, the target is requested to provide (or update) a node handle that corresponds to the
EUI-64 supplied and return it in the buffer specified by node_handle_response. Otherwise, the target is
requested to release a particular node handle or all node handles (except the initiator’s own node handle)
associated with the login identified by login_ID.

When the allocate bit is one, the eui_64 field shall contain the unique identifier of the node for which the
node handle is requested and shall not be equal to the initiator's EUI-64. Otherwise, when the allocate bit is
zero the value of eui_64 is unspecified.

When the allocate bit is one, the node_handle_response field shall specify the address of a quadlet buffer
allocated for the return of the node handle. The node_handle_response field shall conform to the format for
address pointers specified by Figure 11 and shall address the same node as the initiator; consequently the
node_ID field of this address pointer is reserved. The buffer shall be accessible to a Serial Bus quadlet write
request. Otherwise, when the allocate bit is zero the value of node_handle_response is unspecified.

The login_ID field shall contain a login ID value obtained as the result of a successful login.

When the allocate bit is one, global_node_ID shall contain a global node ID that identifies the node whose
EUI-64 matches that specified by the eui_64 field.

The node_handle field is meaningful only if the allocate bit is zero. When node_handle equals FFFF16, the
target is requested to release all node handles associated with the login identified by login_ID (except the
initiator’s own node handle). For other nonzero values of node_handle, the target is requested to release the
node handle specified.

reserved

eui_64

node_handle_response

status_FIFO

login_ID

most significant

least significant

function
(5)

node_handle

n rq_fmt
(0)

global_node_ID

a

T10/1467D Revision 4

39

The status_FIFO field is as previously defined for management ORB formats and shall contain an address
allocated for the return of status for the NODE HANDLE request, only. The contents of this field shall not
update the status FIFO address established by the successful login that returned login_ID.

If the node handle request fails, the contents of the node_handle_response buffer are unspecified.
Otherwise, upon successful completion of a request to provide a node handle, the target shall store the
quadlet illustrated below.

Figure 26 – Node handle response

The node_handle field shall contain a node handle whose value is assigned by the target. The most
significant ten bits of the node handle shall not be all ones. The initiator may use node_handle in place of a
local node ID in any address pointer signaled to the target in the context of the login identified by login_ID.
For the duration of the login, the node identified by node_handle shall be the one specified by the eui_64
field in the node handle request.

5.2.4.7 Logout ORB

In order to relinquish its access privileges for a logical unit or a secondary task set, an initiator shall perform
a logout with the ORB format shown below.

Figure 27 – Logout ORB

The notify bit, rq_fmt and status_FIFO fields are as previously defined for management ORB formats.

The login_ID field shall contain a login ID value obtained as the result of a successful login or create task set
request.

5.2.4.8 Task management ORB

The task management ORB is used to control task sets. This ORB shall have the format defined below.

login_ID

reserved

status_FIFO

most significant

least significant

function
(7)

reserved

n rq_fmt
(0)

reserved

node_handle reserved
most significant least significant

T10/1467D Revision 4

40

Figure 28 – Task management ORB

The ORB_offset_hi and ORB_offset_lo fields together form the ORB_offset field, which identifies the task to
which the management function applies. ORB_offset is derived by taking the least significant 48 bits of the
Serial Bus address of the ORB and discarding the least significant two bits. The ORB_offset field is ignored
unless the function field is ABORT TASK. All tasks are uniquely identified by the Serial Bus address of the
ORB that initiated the task.

The notify bit, rq_fmt and status_FIFO fields are as previously defined for management ORB formats.

The function field shall contain a value of ABORT TASK, ABORT TASK SET, LOGICAL UNIT RESET or
TARGET RESET, as defined by Table 2.

The login_ID shall be set to the value returned in login response data or to the value of task_set_ID returned
in create task set response data. In either case, login_ID identifies the task set or sets to which the task
management request is directed. In the case of TARGET RESET, which does not pertain to any one task
set, login_ID shall be set to a value obtained as the result of any successful login completed by the initiator.

5.3 Page tables

5.3.1 Overview

The data buffer specified by a command block ORB is described by the data_descriptor,
page_table_present, page_size and data_size fields. The data buffer is a logically contiguous area in
system memory. As previously described, when page_table_present is zero, the data buffer is also
contiguous within Serial Bus address space and no more than 65,535 bytes in length. In this case,
data_descriptor contains the 64-bit address of the data buffer and data_size specifies its length, in bytes.

When the data buffer cannot be directly addressed (either because it is discontiguous or too large), it is
necessary to describe it via a page table. A page table is a variable-length array of elements, each of which
describes a segment that is contiguous within Serial Bus address space. Page table elements are eight
bytes long and shall be octlet aligned within system memory.

The presence of a page table is indicated by the value of page_table_present in the ORB. When
page_table_present is one, the data_descriptor field in the ORB shall contain the address of the page table
and the data_size field shall contain the number of elements in the page table.

ORB_offset_lo

ORB_offset_hi

r

reserved

reserved

status_FIFO

login_ID

most significant

least significant

function

reserved

n rq_fmt
(0)

reserved

T10/1467D Revision 4

41

Page tables may have one of two formats: an unrestricted page table or a normalized page table. The page
table format is determined by page_size. When page_size is zero there are no underlying page boundaries
to restrict the size or alignment of data buffer segments; this is the unrestricted format. Otherwise the size
and alignment of data buffer segments is determined by the nonzero page_size; this is the normalized
format.

The spd and max_payload fields of the ORB shall describe data transfer capabilities for the page table and
may also pertain to the data buffer. The data buffer may be entirely co-located in the same node as the page
table, it may be entirely within a different node or it may be distributed among two or more nodes—one of
which may be the node that contains the page table. Portions of the data buffer not in the node that contains
the page table shall be described by node selector entries (see 5.3.4) embedded within the page table.
Whether the data buffer is contained within a single node or distributed, system memory addressed by a
target request subaction that accesses the data buffer shall be entirely contained within a data buffer
segment described by a single page table element.

5.3.2 Unrestricted page tables

An unrestricted page table shall be contiguous within Serial Bus address space and shall be accessible to
block read requests with a data_length less than or equal to the smaller of data_size * 8 bytes or 2 max_rec+1
bytes. The format of elements in an unrestricted page table is shown by Figure 29.

Figure 29 – Page table element (unrestricted page table)

The segment_length field shall contain the length, in bytes, of the portion of the data buffer (segment)
described by the page table element. The value of segment_length shall be nonzero.

NOTE – A zero value in the same position as the segment_length field differentiates a node selector from a
page table entry (see 5.3.4).

The segment_base_hi and segment_base_lo fields together shall specify the base address of the segment
within the node’s 48-bit system memory address range.

The 64-bit system memory address used to address the data is formed by the concatenation of the 16-bit
node_ID field from the previous node selector or, if there is no previous node selector in the page table, the
node_ID field from the data_descriptor field in the ORB, segment_base_hi and segment_base_lo.

5.3.3 Normalized page tables

A normalized page table shall be contiguous within Serial Bus address space and shall be accessible to
Serial Bus block read requests with a data_length less than or equal to the smallest of data_size * 8 bytes,
2 max_rec+1 bytes or 2 page_size + 8 bytes if the data requested does not cross Serial Bus address boundaries that
occur every 2 page_size + 8 bytes relative to zero.

segment_length segment_base_hi

segment_base_lo

most significant

least significant

T10/1467D Revision 4

42

Figure 30 – Page table element (when page_size equals four)

NOTE – In the figure above, the field widths of segment_base_lo and segment_offset, 20 and 12 bits,
respectively, are chosen only for the purposes of illustration. The field widths of segment_base_lo and
segment_offset vary according to page_size. The field width, in bits, of segment_offset shall be
page_size + 8. In the example shown above, the page size is assumed to be 4096 bytes.

The segment_length field shall contain the length, in bytes, of the portion of the data buffer (segment)
described by the page table element. The value of segment_length shall be nonzero and less than or equal
to 2 page_size + 8.

NOTE – A zero value in the same position as the segment_length field differentiates a node selector from a
page table entry (see 5.3.4).

The segment_base_hi and segment_base_lo fields together shall specify the base address of the segment
within the node’s 48-bit system memory address range.

The segment_offset field shall contain the starting address for data transfer within the segment.

The 64-bit system memory address used to address the data is formed by the concatenation of the 16-bit
node_ID field from the previous node selector or, if there is no previous node selector in the page table, the
node_ID field from the data_descriptor field in the ORB, segment_base_hi, segment_base_lo and
segment_offset.

In all page table elements, the sum of segment_length and segment_offset shall be less than or equal to
2 page_size + 8.

In addition to the preceding requirements, the values of segment_length and segment_offset are constrained
by their position within the page table. These additional restrictions are summarized below.

5.3.4 Node selectors

A node selector is an 8-byte entry in a page table that identifies the node referenced by subsequent page
table entries. A node selector applies to all subsequent page table entries until another node selector or the
end of the page table is encountered. Node selectors permit a data buffer to be located in a different node
than the page table; they also permit a data buffer to be distributed among more than one node. The format
of a node selector is shown by Figure 31.

Total page table elements Element
Position 1 2 n (where n >= 3)

First No additional restrictions segment_length = 2 page_size + 8 - segment_offset

Middle — segment_offset = 0
segment_length = 2 page_size + 8

Last — segment_offset = 0

segment_length segment_base_hi

segment_base_lo segment_offset

most significant

least significant

T10/1467D Revision 4

43

Figure 31 – Node selector

The most significant 16 bits of a node selector shall be zero.

The node_ID field shall identify the Serial Bus node to which subsequent page table entries pertain; it shall
contain either a local node ID, as specified by IEEE 1394, or a node handle supplied by a target, as
specified by this standard.

The spd and max_payload fields specify the speed and maximum data payload that shall be used by the
target in request subactions addressed to the node identified by node_ID. The encoding of these fields is the
same as the identically named fields in the command block ORB (see 5.2.3).

Target support for node selectors is optional and is indicated by the Unit_Characteristics entry in
configuration ROM (see 7.8.10).

5.4 Status block

5.4.1 Status block formats

A target may store status at an initiator status_FIFO address when a request completes (successfully or in
error) or because of an unsolicited event (device status change or interim status for an ORB). The
status_FIFO address is obtained either explicitly from the ORB to which the status pertains or implicitly
from the fetch agent context. Whenever the target has status to report and is enabled to do so, it shall store
either a basic status block, in the format specified by Figure 32, or an extended status block, in the format
specified by Figure 33.

Figure 32 – Basic status block format

When the basic status format is used, the target shall store a minimum of eight bytes of status information
and may store up to the entire 32 bytes defined above; the amount of data stored shall be an integral

src ORB_offset_hi

command set-dependent

most significant

least significant

sbp_status

ORB_offset_lo

resp

r

len d

0 node_ID

reserved

most significant

least significant

reserved spd max_payload

T10/1467D Revision 4

44

number of quadlets. A truncated basic status block shall be interpreted as if the omitted fields had been
stored as zeros. The target shall use a single Serial Bus block write transaction to store the status block at
the status_FIFO address.

Figure 33 – Extended status block format

When the extended status format is used, the target shall store a minimum of 40 bytes of status information
and may store up to 512 bytes; the amount of data stored shall be an integral number of quadlets. The
target shall use a single Serial Bus block write transaction to store the status block at the status_FIFO
address.

The src field indicates the origin of the status block, as specified by the table below.

When src is zero or one, the status is final; a target shall store final status no more than once for the
corresponding ORB. When src is two, the status is unsolicited; interlock between the initiator and target is
managed independently (see 5.4.3). Otherwise, when src is three, the status pertains to a particular ORB
but is interim; a target shall store interim status no more than once for the corresponding ORB.

The resp field shall contain a response status defined in the table below.

Value Description

0 The status block pertains to the ORB identified by ORB_offset_hi and ORB_offset_lo;
at the time the ORB was most recently fetched by the target the next_ORB field did not
contain a null pointer.

1 The status block pertains to the ORB identified by ORB_offset_hi and ORB_offset_lo;
either the next_ORB field is absent or at the time the ORB was most recently fetched
by the target the next_ORB field was null.

2 The status block is unsolicited and contains device status information; the contents of
the ORB_offset_hi and ORB_offset_lo fields shall be ignored.

3 The status block contains interim request status that pertains to the ORB identified by
ORB_offset_hi and ORB_offset_lo. No information is provided as to the value of the
next_ORB field at the time the ORB was most recently fetched by the target.

ORB_offset_lo

src ORB_offset_hi sbp_status resp len d

command set-dependent

most significant

least significant

r

reserved additional_len

T10/1467D Revision 4

45

The dead bit (abbreviated as d in the figure above) shall indicate whether or not the logical unit fetch agent
entered the dead state upon storing the status block. When dead is zero, the reported status has not
affected the state of the fetch agent. If the dead bit is set to one, the fetch agent entered the dead state as a
consequence of the error condition reported by the status block.

The len field shall specify the status block format, basic or extended, and, in the case of the basic status
block, the quantity of valid status block information stored at the status_FIFO address. A len value of zero
indicates the extended status block format; consult the additional_len field to determine the size of the
status block. Otherwise, the size of the basic status block is encoded as len + 1 quadlets.

The sbp_status field provides additional information that qualifies the response status in resp. The meanings
assigned to sbp_status vary according to the value of src and resp and are described below.

When src is zero, one or three, the ORB_offset_hi and ORB_offset_lo fields together uniquely identify the
ORB to which the status block pertains. Otherwise, if src is two, the ORB_offset_hi and ORB_offset_lo
fields are ignored.

For the basic status block format, the remainder of the status block after the first two quadlets, up to an
overall maximum of 32 bytes, is command set-dependent.

When the extended status block format is used, the additional_len field shall specify the number of quadlets
of command set-dependent information that follow. The value of additional_len shall be between seven and
125, inclusive. The maximum size of an extended status block is 512 bytes.

5.4.2 Request status

Upon completion of a request, if the notify bit in the ORB is one or if there is exception status to report, the
target shall store a status block in either of the formats shown in Figure 32 and Figure 33. For management
ORBs (which explicitly provide the status_FIFO address as part of the ORB), the target shall store the
status block at the address specified. Otherwise (for command block ORBs) the target shall store the
status block at the status_FIFO determined by the fetch agent to which the ORB was signaled. In the case
of command block ORBs the initiator provides the status_FIFO address as part of the login or create task
set request.

When resp is equal to zero, REQUEST COMPLETE, the possible values for sbp_status are specified by the
table below. Any value not enumerated is reserved for future standardization.

Value Name Description

0 REQUEST COMPLETE The request completed without transport protocol error
(Either sbp_status or command set-dependent status
information may indicate the success or failure of the
request)

1 TRANSPORT FAILURE The target detected a nonrecoverable transport failure that
prevented the completion of the request

2 ILLEGAL REQUEST There is an unsupported field or bit value within the first 20
bytes of a single buffer descriptor ORB or within the first 32
bytes of a dual buffer descriptor ORB

3 VENDOR DEPENDENT The meaning of sbp_status shall be specified by the
vendor

T10/1467D Revision 4

46

If a logical unit implements a command set that utilizes both single and dual buffer descriptor command
ORBs, its fetch agent shall be able to parse both ORB formats in order to deliver the command_block to the
device server. The device server shall accept or reject the command and return a status block with command
set-dependent status information that indicates success or failure. In other words, the logical unit fetch
agent shall not reject an otherwise well-formed ORB whose rq_fmt value is zero or one by returning an
sbp_status of one, request type not supported.

If a Serial Bus error occurs in the transport (resp is equal to one, TRANSPORT FAILURE), the sbp_status
field either shall have a value of FF16, unspecified error, or else the field shall be redefined as illustrated
below. This format provides for the return of additional information about the transport failure.

Figure 34 – TRANSPORT FAILURE format for sbp_status

The object field shall specify which component of an SBP-3 request, the ORB, the data buffer or the page
table, was referenced by the target when the error occurred. The value of object shall be as defined by the
following table.

Value Description

0 No additional information to report

1 Request type not supported

2 Speed not supported

3 Page size not supported

4 Access denied

5 Logical unit not supported

6 Maximum payload too small

7 Reserved for future standardization

8 Resources unavailable

9 Function rejected

10 Login ID invalid

11 Dummy ORB completed

12 Request aborted

13 Unknown EUI-64

14 Node handle invalid

FF16 Unspecified error

serial_bus_error object

most significant least significant

reserved

T10/1467D Revision 4

47

The serial_bus_error field shall contain the error response for the failed request, as encoded by the table
below.

In the cases of conflict error and data error, these are errors that the target may retry up to an
implementation-dependent limit before reporting TRANSPORT FAILURE.

No additional information is provided in sbp_status when resp equals two, ILLEGAL REQUEST. In this case,
sbp_status shall be set to FF16. An SBP-3 response code of ILLEGAL REQUEST shall not be used to
indicate unsupported fields or bit values in the command set-dependent portion of the ORB. This response
code shall be used only to indicate an error in the first 20 bytes of a single buffer descriptor ORB or the first
32 bytes of a dual buffer descriptor ORB.

The ORB_offset_hi and ORB_offset_lo fields together form an ORB_offset field that uniquely identifies the
ORB to which the status block pertains. The target shall form ORB_offset from the least significant 48 bits
of the Serial Bus address used to fetch the ORB; the least significant two bits shall be discarded.

Value Referenced object

0 Operation request block (ORB)

1 Data buffer

2 Page table

3 Unable to specify

Value Serial Bus error Comment

0 Missing acknowledge

1 Reserved; not to be used

2 Time-out error An ack_pending was received for the request but no response
subaction was completed within the time-out limit

3 Reserved; not to be used

4 – 6 Busy retry limit exceeded The value reflects the last acknowledge, ack_busy_X,
ack_busy_A or ack_busy_B

7 – A16 Reserved for future
standardization

B16 Tardy retry limit exceeded An ack_tardy was received for the request and the vendor-
dependent retry limit (which may be based upon either time or
number of occurrences) for tardy responses has been exceeded

C16 Conflict error A resource conflict was detected by the addressed node

D16 Data error The data field failed the CRC check or the observed length of the
payload did not match the data_length field

E16 Type error A field in the request was set to an unsupported value or an invalid
transaction was attempted (e.g., a write to a read-only address)

F16 Address error The destination_offset field specified an inaccessible address in
the addressed node

T10/1467D Revision 4

48

5.4.3 Unsolicited device status

When a change in device status occurs that affects a logical unit, the target may store a status block in
either of the formats shown in Figure 32 and Figure 33 at the status_FIFO address provided by the initiator
as part of a login request (see 5.2.4.2). If a target stores unsolicited status for any initiator logged-in to a
logical unit it shall attempt to store status for all initiators logged-in to the same logical unit.

The src field shall be one to indicate unsolicited device status.

The resp field shall have a value of REQUEST COMPLETE or VENDOR DEPENDENT.

The dead bit and the len field are as previously defined for the status block.

If resp is equal to REQUEST COMPLETE, sbp_status shall be zero. Otherwise the content and meaning of
sbp_status shall be specified by the vendor.

The contents of the ORB_offset_hi and ORB_offset_lo fields are unspecified and shall be ignored by the
initiator.

5.4.4 Interim request status

Prior to the completion of a request, the target may store a status block in either of the formats shown in
Figure 32 and Figure 33 at the status_FIFO determined by the fetch agent to which the ORB was signaled;
the initiator provides the status_FIFO address as part of the login or create task set request.

The src field shall have a value of three to indicate interim request status.

The resp field shall have a value of REQUEST COMPLETE or VENDOR DEPENDENT.

The dead bit and the len field are as previously defined for the status block.

If resp is equal to REQUEST COMPLETE, sbp_status shall be zero. Otherwise the content and meaning of
sbp_status shall be specified by the vendor.

The ORB_offset_hi and ORB_offset_lo fields together form an ORB_offset field that uniquely identifies the
ORB to which the status block pertains. The target shall form ORB_offset from the least significant 48 bits
of the Serial Bus address used to fetch the ORB; the least significant two bits shall be discarded.

T10/1467D Revision 4

49

6 Control and status registers

6.1 Control and status registers overview

The control and status registers (CSRs) implemented by a target shall conform to the requirements defined
by this standard and its normative references. The CSRs are arranged in three principal categories:

– core registers specified by IEEE Std 1212-2001;

– bus-dependent registers specified by IEEE 1394; and

– unit architecture registers specified by this standard.

Unless otherwise specified, all registers shall support quadlet read and quadlet write transactions. The
registers defined in 6.4 through 6.6 shall ignore broadcast write requests. Under certain circumstances,
these registers may also ignore other subactions, in which case ack_complete (or ack_pending
subsequently followed by resp_complete) should be returned—even though the request subaction has had
no effect on the state of the register or target.

6.2 Core registers

The CSR Architecture standardizes the locations and functions of core registers. The addresses of these
registers are specified in terms of offsets, in bytes, within register space, where the base address of register
space is FFFF F000 000016 relative to node space. IEEE 1394 should be consulted for detailed descriptions
of these core registers; the table below summarizes which core registers are mandatory for targets.

The CSR Architecture and IEEE 1394 define the effects of a write to the RESET_START register. In addition
to those requirements, a write to RESET_START should cause all of a node’s SBP-3 units to reset in the
same fashion as a power reset.

NOTE – Because of the potential for malicious interference in target operations by an unauthorized node, it is
recommended that a write to RESET_START have no effect upon a target unless either a) there are no
logged-in initiators or b) the source_ID of the write matches the node ID of one of the currently logged-in
initiators.

Bridge-awareness is optional for targets. If a target is bridge-aware, it shall implement additional core
registers, as summarized by the table below.

Offset Register name Description

0 STATE_CLEAR State and control information

4 STATE_SET Sets STATE_CLEAR bits

8 NODE_IDS Contains the 16-bit node_ID value used to
address the node

0C16 RESET_START Resets the node’s state

1816 – 1C16 SPLIT_TIMEOUT Time limit for local bus split transactions

Offset Register name Description

8016 – BC16 MESSAGE_REQUEST

C016 – FC16 MESSAGE_RESPONSE

Well-known addresses for the exchange of
messages between nodes

T10/1467D Revision 4

50

6.3 Serial Bus-dependent registers

The CSR Architecture reserves a portion of register space for bus-dependent uses. Serial Bus defines
registers within this address space, whose addresses are specified in terms of offsets, in bytes, within
register space, where the base address of register space is FFFF F000 000016 relative to node space.
IEEE 1394 should be consulted for detailed descriptions of these core registers; the table below
summarizes which Serial Bus-dependent registers are mandatory for targets.

Isochronous capabilities are optional for targets. If a target supports isochronous operations, it shall be
cycle master capable and isochronous resource manager capable as well as isochronous capable. These
capabilities require that additional Serial Bus-dependent registers shall be implemented, as summarized by
the table below.

Bridge-awareness is optional for targets. If a target is bridge-aware, it shall implement additional Serial Bus-
dependent registers, as summarized by the table below.

6.4 BUSY_TIMEOUT register

The BUSY_TIMEOUT register makes visible transaction layer variables that control target retry behavior for
busied subactions. For targets compliant with this standard, the register has different initial values than
specified by IEEE 1394 and does not change them in response to write requests. The format of the register
is illustrated by Figure 35.

Responses from the BUSY_TIMEOUT register to write requests are not the same as responses from a read-
only register. Read-only registers reject write requests with a response of type error; in the absence of busy
conditions or other errors, write requests to the BUSY_TIMEOUT register shall receive a successful
completion response but the write values shall be ignored.

Offset Register name Description

21016 BUSY_TIMEOUT Controls transaction layer retry protocols

Offset Register name Description

20016 CYCLE_TIME 24.576 MHz clock required for isochronous operation

20416 BUS_TIME System time in seconds

21C16 BUS_MANAGER_ID Contains the node_ID of the bus manager, if one is
present

22016 BANDWIDTH_AVAILABLE Well-known location for Serial Bus isochronous
bandwidth allocation

22416 – 22816 CHANNELS_AVAILABLE Well-known location for Serial Bus channel allocation

23416 BROADCAST_CHANNEL Channel number for asynchronous stream
broadcast.

Offset Register name Description

21416 QUARANTINE Permits bridge-aware nodes to manage their
quarantine periods (see draft standard IEEE
P1394.1)

T10/1467D Revision 4

51

Figure 35 – BUSY_TIMEOUT format

The second_limit and cycle_limit fields specify the request subaction retry behavior utilized by the
transaction layer when dual-phase retry protocol is used. A zero value in these fields indicates dual-phase
retry protocol is not supported. Together, the second_limit and cycle_limit fields define a time limit for
request subaction retry attempts. The format of these fields and the units used are identical to the
second_count and cycle_count fields in the CYCLE_TIME register. When dual-phase retry protocol is active
for a request subaction initiated by the target, the target shall not retransmit the subaction after this time
limit has elapsed. Time counts from the receipt of the first busy acknowledgement for the request subaction.
Although the read value of the cycle_limit field is vendor-dependent, it shall be either zero or 800.

The retry_limit field specifies the request subaction retry behavior utilized by the transaction layer when
single-phase retry protocol is used. The target shall retransmit the request subaction retry_limit times until
either no acknowledgment is observed or the receipt of a terminal acknowledgment (any acknowledgment,
including ack_pending, other than ack_busy_X , ack_busy_A or ack_busy_B).

Although the BUSY_TIMEOUT register exposes transaction layer variables that control target retry behavior,
it does not constitute a complete specification of retry behavior. Targets compliant with this standard shall
behave as follows:

– A target should implement dual-phase retry protocol for inbound subactions;

– A target should always attempt to use dual-phase retry protocol for outbound subactions; the retry
code, rt, of the oldest subaction addressed to a particular destination_ID should be set to retry_1. See
IEEE Std 1394a-2000 for more information on the “oldest” subaction;

– A target shall retry response subactions until either no acknowledgment is observed, a terminal
acknowledgment is received or the time limit specified by the target’s SPLIT_TIMEOUT register is
exhausted. Time counts from the transmission of ack_pending for the request subaction that causes
the response subaction;

– When single-phase retry protocol is in use, a target shall retry request subactions until either no
acknowledgment is observed, a terminal acknowledgment is received or 15 retransmissions have been
attempted. When dual-phase retry protocol is in use, a target shall retry request subactions until
either no acknowledgment is observed, a terminal acknowledgment is received or 100 ms have
elapsed since the first busy acknowledgement was received; and

– When single-phase retry protocol is in use, a target shall attempt no more than one retransmission of
a busied subaction in the interval between the end of an isochronous period and the following cycle
synchronization event. In the case of response subactions, this requirement is in addition to the IEEE

second_limi
t retry_limit reserved cycle_limit reserved

15 zero vendor-dependent zero

ignored

definition

read values

write effects

most significant least significant

T10/1467D Revision 4

52

Std 1394a-2000 provision that retransmission of a busied response subaction shall not be attempted
until the subsequent fairness interval.

Initiators compliant with this standard should implement the retry behavior described above.

6.5 MANAGEMENT_AGENT register

The MANAGEMENT_AGENT register permits the initiator to signal the address of a management ORB to
the target. This register shall support 8-byte block read and block write requests whose destination_offset is
equal to the address of the MANAGEMENT_AGENT register and shall reject quadlet write requests and all
other block read and block write requests. The format of this register is illustrated below.

Figure 36 – MANAGEMENT_AGENT format

The ORB_offset_hi and ORB_offset_lo fields together form an ORB_offset field from which a Serial Bus
address is derived when the management ORB is fetched. The Serial Bus address shall be formed from the
concatenation of the 16-bit node ID of the initiator (available to the target as the source_ID field of the block
write request that updated the register), the ORB_offset field and two least significant bits of zero.

An initiator may signal a request by means of an 8-byte block write transaction that specifies the address of
the request. If the management agent is busy with another request, the block write shall be rejected with a
response of resp_conflict_error. If the write transaction is successful, the management agent shall fetch the
request specified by ORB_offset and execute it. Unsuccessful write transactions shall not affect the
execution of any requests in progress.

Because IEEE 1394 reserves a portion of units space for bus-dependent use, the MANAGEMENT_AGENT
register shall be located at address FFFF F001 000016 or above within the node’s 48-bit address range. The

ORB_offset_lo r

reserved ORB_offset_hi

zeros

definition

bus reset, command reset and initial values

read values

write effects

most significant

least significant

last write zeros

zeros last write

stored i

ignored stored

T10/1467D Revision 4

53

address of the management agent is specified by the csr_offset field in the Management_Agent entry in
configuration ROM (see 7.8.9).

6.6 Command block registers

6.6.1 Command block registers summary

Unlike the management agent, which services a single request at a time, the command block agents
manage linked lists from which they fetch requests. For this reason they are referred to as fetch agents.
Each fetch agent has a set of control and status registers that lie within the target’s units space; the fetch
agent CSRs shall be located at or above address FFFF F001 000016 within the node’s 48-bit address range.

Although the location of each fetch agent’s CSRs is not fixed, the relative relationship of the registers is
fixed with respect to each other, as defined by the table below. Implementation of the
HEARTBEAT_MONITOR register is optional, but required if the logical unit is bridge-aware. Implementation
of the FAST_START register is optional.

The base address of a fetch agent’s CSRs is obtained from the command_block_agent field in the response
returned by the target as part of a successful login or create task set request. The HEARTBEAT_MONITOR
register shall not exist in the set of fetch agent CSRs created in response to a create task set request.

A target shall ignore or reject Serial Bus request subactions addressed to any of a fetch agent’s CSRs
unless the source_ID matches the node ID of the initiator associated with the login (the preferred action is to
reject such subactions with a response of type error). See 9.2.6 for more information.

6.6.2 AGENT_STATE register

The AGENT_STATE register is a read-only register that provides information about the current condition of
the fetch agent. The definition is given by Figure 37.

Relative
offset

Name

Description

0016 AGENT_STATE Reports fetch agent state

0416 AGENT_RESET Resets fetch agent

0816 ORB_POINTER Address of most recently fetched ORB

1016 DOORBELL Signals fetch agent to refetch an address pointer

1416 UNSOLICITED_STATUS_ENABLE Acknowledges the initiator’s receipt of unsolicited
status

1816 HEARTBEAT_MONITOR Maintains bridge-aware login during target idle periods

1C16 – 3C16 Reserved for future standardization

vendor-
dependent FAST_START

Signals a reset or suspended fetch agent to start a
task; equivalent to a write to the DOORBELL register if
the fetch agent is active

T10/1467D Revision 4

54

Figure 37 – AGENT_STATE format

The st field shall contain the current operational state of the fetch agent, as encoded by the values in the
table below.

6.6.3 AGENT_RESET register

The AGENT_RESET register permits an initiator to reset the operational state of a logical unit fetch agent.
The definition of this write-only register is given by Figure 38.

Figure 38 – AGENT_RESET format

Value Fetch agent state

0 RESET

1 ACTIVE

2 SUSPENDED

3 DEAD

zeros

reserved

definition

bus reset, command reset and initial values

read values

write effects

most significant least significant

reserved

definition
most significant least significant

effect

write effects

st

read values

zeros

undefined

u

ignored

T10/1467D Revision 4

55

A quadlet write of any value to this register shall cause all the fetch agent’s CSRs to be reset to their initial
values, after which the fetch agent shall enter the reset state.

6.6.4 ORB_POINTER register

The ORB_POINTER register contains the address of an ORB in system memory. This register shall support
8-byte block read and block write requests whose destination_offset is equal to the address of the
ORB_POINTER register and shall reject quadlet write requests and all other block read and block write
requests. The definition is given by Figure 39.

Figure 39 – ORB_POINTER format

The ORB_offset_hi and ORB_offset_lo fields together form an ORB_offset field. The Serial Bus address
used to fetch the referenced ORB shall be formed from the concatenation of the 16-bit node ID of the initiator
(available to the target as a result of a login or reconnect), the ORB_offset field and two least significant bits
of zero.

The effects of a write transaction to the ORB_POINTER register are dependent upon the value of st in the
AGENT_STATE register. If the target fetch agent is in the DEAD state, writes to the ORB_POINTER register
shall be ignored. If the fetch agent is in the RESET or SUSPENDED state, a write to this register shall
cause the ORB_offset to be stored and the agent to enter the ACTIVE state. If the fetch agent is in the
ACTIVE state, a write to the ORB_POINTER register may cause unpredictable target behavior.

zeros

reserved

definition

command reset and initial values

ORB_offset_lo

ORB_offset_hi
most significant

least significant

r

effect ignored

effect

write effects

i

last update zeros

last update

read values

zeros

bus reset values

unchanged

T10/1467D Revision 4

56

6.6.5 DOORBELL register

The DOORBELL register provides a means by which the initiator signals the target that a linked list of
requests has been updated. The definition of this write-only register is given by Figure 40.

Figure 40 – DOORBELL format

A quadlet write of any value to this register shall cause the fetch agent’s doorbell variable to be set to one.

6.6.6 UNSOLICITED_STATUS_ENABLE register

The UNSOLICITED_STATUS_ENABLE register provides a means by which the initiator may grant the logical
unit permission to store an unsolicited status block. The definition of this write-only register is given by
Figure 41.

Figure 41 – UNSOLICITED_STATUS_ENABLE format

A quadlet write of any value to this register shall cause the fetch agent’s unsolicited status enabled variable
to be set to one. A successful login or create task set request shall zero the unsolicited status enabled
variable. As described in 9.7, any time a logical unit stores an unsolicited status block it shall zero the
unsolicited status enabled variable for the associated task set. Before the logical unit may store a
subsequent unsolicited status block for the same task set, it is necessary for the initiator to write to the
UNSOLICITED_STATUS_ENABLE register.

reserved

reserved

definition

definition

most significant

most significant

least significant

least significant

effect

effect

write effects

write effects

read values

read values

undefined

undefined

T10/1467D Revision 4

57

6.6.7 HEARTBEAT_MONITOR register

The HEARTBEAT_MONITOR register provides a means by which the initiator signals the logical unit to
maintain the bridge-aware login associated with the register even if the logical unit is idle (i.e., its task set is
empty). The definition of this write-only register is given by Figure 42.

Figure 42 – HEARTBEAT_MONITOR format

Unless the login associated with this register is awaiting reconnection (see 8.6), a quadlet write of any value
to this register shall cause the heartbeat_timeout variable in the login descriptor associated with the register
to be set to the reconnect_hold time obtained from the same login descriptor (see 8.2). Otherwise, the
target shall reject the request with a type error response.

6.6.8 FAST_START register

The FAST_START register permits an initiator to signal a new task to an idle fetch agent by means of a
single block write request addressed to the register. This write-only register shall support block write
requests whose destination_offset is equal to the address of the FAST_START register and whose
data_length is a multiple of four and less than or equal to the vendor-dependent size of the register (see
7.8.12) but shall reject all other requests. The format of this register is illustrated below.

undefined

reserved

definition
most significant least significant

effect

write effects

read values

T10/1467D Revision 4

58

Figure 43 – FAST_START format

The previous_ORB field shall conform to the ORB pointer format illustrated by Figure 11 and shall either be a
null pointer or reference an ORB in initiator memory whose next_ORB field is equal to the this_ORB field in
the block write request addressed to the FAST_START register. When previous_ORB is not a null pointer,
the ORB’s Serial Bus address shall be formed from the concatenation of the 16-bit node ID of the initiator
(available to the target as a result of login or reconnect) and the least significant 48 bits of the previous_ORB
field.

The this_ORB field shall conform to the ORB pointer format illustrated by Figure 11 and shall contain the
address of an ORB in initiator memory whose contents are identical to the ORB field in the block write
request addressed to the FAST_START register. The ORB’s Serial Bus address shall be formed from the
concatenation of the 16-bit node ID of the initiator (available to the target as a result of a login or reconnect)
and the least significant 48 bits of the this_ORB field.

The ORB field shall contain an ORB whose format conforms to those specified by 5.2. An initiator shall not
address a block write request to the FAST_START register whose data_length, in bytes, is less than sixteen
plus the size of the ORB field.3 The target shall reject a block write request addressed to the FAST_START
register if its data_length, in bytes, is less than sixteen plus the size of the ORB field.

The page_tables field, if present, shall immediately follow the ORB field. If the format of the ORB field
includes nonzero page_table_present bits, the page_tables field may contain zero or more page table

3 The size of the ORBs used by a target is fixed by the Unit_Characteristics configuration ROM entry.

previous_ORB

definition

this_ORB

most significant

read values

least significant

ORB

 page_tables

effect

undefined

write effects

T10/1467D Revision 4

59

entries. The target shall derive the number of immediately available page table entries from the data_length
of the block write request addressed to the FAST_START. The number of page table entries is limited by the
maximum size of the FAST_START register. The page_tables field may be a subset of the page tables
specified by the ORB referenced by this_ORB, but no partial page table entries shall be present (see 5.3).
The order and content of the entries shall be determined as follows:

– If page_table_present[0] is nonzero, the order and content of the first n page table entries in the
page_tables field shall be identical to those contained within page_table[0], where n is the smaller of
the number of entries in page_table[0] or the total number of entries in the page_tables field;

– If page_table_present[0] is zero and page_table_present[1] is nonzero, the order and content of the
first n page table entries in the page_tables field shall be identical to those contained within
page_table[1], where n is the smaller of the number of entries in page_table[1] or the total number of
entries in the page_tables field; or

– If both page_table_present[0] and page_table_present[1] are nonzero, the page_tables field shall not
contain any entries from page_table[1] unless page_table[0] is present in its entirety in the
page_tables field. In this case, the order and content of the first page table entries in the page_tables
field shall be identical to those contained within page_table[0] and may be followed by n entries whose
order and content shall be identical to those contained within page_table[1], where n is the smaller of
the number of entries in page_table[1] or the total number of entries in the page_tables field less the
number of entries in page_table[0];

The effects of a write transaction to the FAST_START register are dependent upon the value of its
previous_ORB field and the value of st in the associated AGENT_STATE register. If the fetch agent is in the
DEAD state, writes to the FAST_START register shall be ignored. If the fetch agent is in the ACTIVE state, a
write to the FAST_START register shall be interpreted as if it were a quadlet write request addressed to the
fetch agent’s DOORBELL register (the data payload shall be ignored). Otherwise, when the fetch agent is in
the RESET or SUSPENDED state, the value of the previous_ORB field determines the effect of a write to
this register. If previous_ORB contains a null pointer, this_ORB shall be stored in the associated
ORB_POINTER register, the ORB and page_tables fields shall be stored in the target's working set and the
agent shall enter the ACTIVE state. When previous_ORB is not null, the target shall perform these actions if
and only if previous_ORB is equal to the fetch agent’s ORB_POINTER register. See 9.2.6 for a precise
definition of fetch agent state transitions that involve the FAST_START register.

T10/1467D Revision 4

61

7 Configuration ROM

7.1 Configuration ROM hierarchy

All nodes that implement SBP-3 targets shall implement general format configuration ROM in accordance
with IEEE Std 1212-2001, IEEE 1394 and this standard. General format configuration ROM is a self-
descriptive structure as illustrated below. The bus information block and root directory are at fixed locations;
all other directories and leaves are addressed by entries in their parent directory.

Figure 44 – Configuration ROM hierarchy

The figure above shows the potential of the general ROM format to accommodate a diversity of directory and
leaf entries in a tree structure. In practice a target need implement only a portion of the entries shown above.

Two of the data structures illustrated, instance directories and keyword leaves, are first defined by
IEEE Std 1212-2001. Instance directories provide high-level information about particular instantiations of
functions while unit directories identify the software interface (i.e., device driver) used to access each
separately controllable function. The instance directories are intended to present “thumbnails” of the devices
by means of subsidiary keyword leaves—descriptions, such as “DISK” or “PRINTER” that have cognitive
resonance for the human user. The unit directories are complementary to the instance directories; there may
be more than one unit directory for a particular device instance, each of which specifies a different software
interface for the same device.

Unit
directory

Unit
directory

Instance
directory

Dependent
leaf

Dependent
directory

Unit
directory

Instance
directory

Keyword
leaf

Unit
directory

Dependent
leaf

Dependent
directory

Keyword
leaf

Bus information
block

Root directory

Master
keyword leaf

SBP-2 devices

Dependent
leaf

Dependent
directory

T10/1467D Revision 4

62

NOTE – One example of a device that supports more than one unit architecture is a disk capable of both AV/C
operations and SBP-3. See Annex F for examples of configuration ROM.

SBP-2 unit directories are always direct offspring of the root directory; they may be accessible via instance
directories but are not required to be (as shown in the shaded area). Devices manufactured since the
development of SBP-3 should not use this earlier style; each unit directory should be the child of an
instance directory. Even when this is the case, configuration ROM compliant with this revised standard may
address unit directories directly from the root (in addition to accessibility from intermediate instance
directories), but this style is discouraged except as necessary to accommodate legacy device discovery
software.

7.2 Power reset initialization

During the initialization process that follows a power reset a target might not be able to respond to Serial
Bus request subactions addressed to parts of configuration ROM. When the target has insufficient
information to make more than the first quadlet of configuration ROM accessible, it shall return a data value
of zero in the response to any read request addressed to FFFF F000 040016 or acknowledge the request
subaction with ack_tardy, as specified by IEEE 1394. Until the initialization process completes, responses
to requests addressed to other parts of configuration ROM are unspecified.

Targets shall complete initialization within five seconds of a power reset. Once power reset initialization
completes, the target shall make all mandatory configuration ROM entries available. The target should not
initiate a Serial Bus reset solely as a consequence of the completion of power reset initialization.

Optional configuration ROM information, such as textual descriptor leaves that identify the target vendor and
model, might not be available when power reset initialization completes. The target may add this information
to configuration ROM as it becomes available and may initiate a Serial Bus reset to alert other nodes to the
changed configuration ROM. The target should initiate a Serial Bus reset if there is no expectation that other
nodes would otherwise become aware of changed configuration ROM. Prior to the bus reset, the generation
field in the bus information block should be changed; see IEEE Std 1394a-2000 for details.

7.3 Bus information block

All targets shall implement a bus information block at a base address of FFFF F000 040416. For
convenience of reference, the format of the bus information block defined by IEEE 1394 and draft standard
IEEE P1394.1 is reproduced below. The current version of the referenced standards and supplements shall
be consulted for the most recent information.

Figure 45 – Bus information block format

The first quadlet contains the string “1394” in ASCII characters.

The capabilities field is a collection of bits, illustrated by Figure 46.

chip_ID_hi

chip_ID_lo

node_vendor_ID

3116 (“1”) 3316 (“3”) 3916 (“9”) 3416 (“4”)

r cyc_clk_acc max_rec capabilities

most significant

least significant

mxr generation b link_spd

T10/1467D Revision 4

63

Figure 46 – Bus information block capabilities field

The irmc bit shall be one if the node is isochronous resource manager-capable; otherwise, this bit shall be
zero.

The cmc bit shall be one if the node is cycle master-capable; otherwise, this bit shall be zero.

The isc bit shall be one if the node supports isochronous operations; otherwise, this bit shall be zero.

The bmc bit shall be one if the node is bus manager-capable; otherwise, this bit shall be zero.

The pmc bit shall be one if the node is power manager-capable; otherwise, this bit shall be zero. A node that
reports a value of one for pmc shall also set bmc to one.

The adjustable bit shall be one of the node's cycle offset is adjustable, as specified by draft standard IEEE
P1394.1; otherwise, this bit shall be zero.

The cyc_clk_acc field specifies the node’s cycle master clock accuracy in parts per million. If the cmc bit is
one, the value in this field shall be between zero and 100. If the cmc bit is zero, this field shall be all ones.

The max_rec field defines the maximum data payload size that the target supports. The data payload size
applies to block write requests addressed to the target, asynchronous stream packets received by the
target and block read responses transmitted by the target. The maximum data payload is equal to 2 max_rec + 1
bytes. The max_rec field does not place any limits on the maximum payload size of block write requests or
block read responses that the target may transmit or receive, respectively. If max_ROM is nonzero, max_rec
shall be greater than or equal to 2 max_ROM + 1 + 1.

The max_ROM field (abbreviated as mxr in the figure above) shall specify the size and alignment of read
requests supported by configuration ROM, whether within the address range FFFF F000 040016 through
FFFF F000 07FF16 inclusive or another portion of the target’s address space, as specified by IEEE Std
1394a-2000.

The generation field indicates changes in configuration ROM; see IEEE Std 1394a-2000 for details.

The bridge_aware bit (abbreviated as b in the figure above), shall be one if the target complies with the
requirements of draft standard IEEE P1394.1 for a bridge-aware device; otherwise, this bit shall be zero.

The lnk_spd field shall report the maximum speed capability of the target's link layer, encoded as specified
by Table 1.

The node_vendor_ID field shall be uniquely assigned by the IEEE RAC, as specified by
IEEE Std 1212-2001. Unique identifiers for a company or organization may be obtained from:

Institute of Electrical and Electronic Engineers, Inc.
Registration Authority Committee
445 Hoes Lane
Piscataway, NJ 08855-1331

irmc isc pmc reserved

most significant

least significant

cmc bmc adjustable

T10/1467D Revision 4

64

Application for a unique identifier (also known as a company_ID) may also be made via the Internet at
http://standards.ieee.org/regauth/oui/forms/.

The chip_ID_hi and chip_ID_lo fields are concatenated to form a 40-bit chip ID value. The vendor or
organization specified by node_vendor_ID shall administer the chip ID values. When appended to the
node_vendor_ID value, these shall form a unique 64-bit value called the EUI-64 (Extended Unique Identifier,
64 bits). The EUI-64 is also referred to as the node unique ID. Because physical IDs on Serial Bus may
change after a bus reset, this unique identifier is the only reliable method of node identification.

7.4 Root directory

7.4.1 Root directory (general)

Configuration ROM for targets shall contain a root directory. The root directory immediately follows the bus
information block and has a base address of FFFF F000 041416. The root directory shall contain one each of
Vendor_ID, Node_Capabilities and Keyword_Leaf entries.

The root directory should contain an Instance_Directory entry that specifies the location of an instance
directory in the format specified by this standard.

The root directory may also contain Unit_Directory entries that specify the location of unit directories whose
format is specified by this standard.

7.4.2 Vendor_ID entry

The Vendor_ID entry is an immediate entry in the root directory that provides the company ID of the vendor
that manufactured the module. Figure 47 shows the format of this entry.

Figure 47 – Vendor_ID entry format

0316 is the concatenation of key_type and key_value for the Vendor_ID entry.

The IEEE RAC uniquely assigns the vendor_ID to each module vendor, as specified by IEEE Std 1212-2001.
There is no requirement that the values of vendor_ID and node_vendor_ID be equal.

NOTE – A recommended convention to provide vendor identification in displayable form is to immediately
follow the Vendor_ID entry with a textual descriptor leaf entry. This associates an ASCII string with the module
vendor. See IEEE Std 1212-2001 for the specification of textual descriptor leaves; examples are given in Annex
F.

7.4.3 Node_Capabilities entry

The Node_Capabilities entry is an immediate entry in the root directory that describes node capabilities.
Figure 48 shows the format of this entry.

vendor_ID

most significant least significant

0316

T10/1467D Revision 4

65

Figure 48 – Node_Capabilities entry format

0C16 is the concatenation of key_type and key_value for the Node_Capabilities entry.

The node_capabilities field contains subfields, specified by IEEE 1394. Targets shall implement the
SPLIT_TIMEOUT register, the 64-bit fixed addressing scheme, the STATE_CLEAR. lost bit and the
STATE_CLEAR.dreq bit and indicate this by setting the spt, 64, fix, lst and drq bits to one. If no other
node_capabilities bits are one this results in a value of 00 83C016.

7.4.4 Keyword_Leaf entry

The Keyword_Leaf entry is a directory entry in the root directory or an instance directory that describes the
location of a keyword leaf within configuration ROM. Figure 49 shows the format of this entry.

Figure 49 – Keyword_Leaf entry format

9916 is the concatenation of key_type and key_value for the Keyword_Leaf entry.

The indirect_offset field specifies the number of quadlets from the address of the Keyword_Leaf entry to the
address of the keyword leaf within configuration ROM.

Configuration ROM for targets shall contain a Keyword_Leaf entry in the root directory that describes the
location of the master keyword leaf, which shall contain the union of all keywords present in all the keyword
leaves in the target’s configuration ROM. The master keyword leaf shall contain the keyword “SBP” and may
contain other keywords.

NOTE – A device that implements only one keyword leaf may reuse the leaf as the master keyword leaf by
referencing it from both the root directory and an instance directory.

7.4.5 Instance_Directory entry

The Instance_Directory entry is a directory entry in the root directory or an instance directory that describes
the location of an instance directory within configuration ROM. Figure 50 shows the format of this entry.

Figure 50 – Instance_Directory entry format

D816 is the concatenation of key_type and key_value for the Instance_Directory entry.

The indirect_offset field specifies the number of quadlets from the address of the Instance_Directory entry to
the address of the instance directory within configuration ROM.

node_capabilities
most significant least significant

0C16

indirect_offset
most significant least significant

9916

indirect_offset
most significant least significant

D816

T10/1467D Revision 4

66

7.4.6 Unit_Directory entry

The Unit_Directory entry is a directory entry in the root directory or an instance directory that describes the
location of a unit directory within configuration ROM. There may be more than one unit directory; each unit
directory shall be located by a separate Unit_Directory entry. Figure 51 shows the format of this entry.

Figure 51 – Unit_Directory entry format

D116 is the concatenation of key_type and key_value for the Unit_Directory entry.

The indirect_offset field specifies the number of quadlets from the address of the Unit_Directory entry to the
address of the unit directory within configuration ROM.

NOTE – IEEE Std 1212-2001 recommends that a unit directory be referenced from an instance directory and
not be directly dependent from the root directory. The presence of a Unit_Directory entry in the root directory is
strongly discouraged unless essential for compatibility with legacy (i.e., SBP-2) initiators. Even in cases
where a Unit_Directory entry is placed in the root, the unit directory should be accessible via an instance
directory.

7.5 Instance directory

Configuration ROM for targets should contain at least one instance directory, in the format specified by
IEEE Std 1212-2001, which contains a Unit_Directory entry that specifies the location of a unit directory in
the format specified by this standard. Such an instance directory shall contain a Keyword_Leaf entry that
specifies the location of a keyword leaf that contains at least the keyword “SBP”.

NOTE – Instance directories are described in more detail in IEEE Std 1212-2001 but may be summarized as
follows. An instance directory characterizes the functions of a particular device instantiation (a physical
instance) within a node. A single physical instance of a device function, e.g., a printer, may be controllable by
different software protocols, which are represented by one or more unit directories dependent from the
instance directory. Instance directories may also provide a hierarchical structure that relates different
functional components of a device. For example, a DVD-ROM changer and player controllable as a single unit
might also be controlled separately as a changer unit and a player unit. The control method chosen might
depend on the software capabilities of the initiator; the flexibility of configuration ROM instance directories
permits initiators to discover the appropriate units. The DVD-ROM would be described by an instance
directory that referenced a dependent unit directory for the combined changer and player functions—but the
same instance directory would reference two dependent instance directories, one for the changer and the
other for the player. These dependent instance directories would reference the unit directories for the
separate functions.

7.6 Unit directory

Configuration ROM for targets shall contain at least one unit directory in the format specified by this
standard. The unit directory shall contain Specifier_ID and Version entries, as specified by
IEEE Std 1212-2001, and Management_Agent and Unit_Characteristics entries, as specified by this
standard.

Targets shall implement at least one logical unit: logical unit zero. Additional logical units may be
implemented. A logical unit is described by entries in the unit directory or by entries in a logical unit
directory dependent upon the unit directory or by entries taken in combination from both places. The

indirect_offset

most significant least significant

D116

T10/1467D Revision 4

67

properties of logical units are established by Command_Set_Spec_ID, Command_Set,
Command_Set_Revision and Fast_Start entries; an instance of a specific logical unit is established by a
Logical_Unit_Number entry.

7.7 Logical unit directory

The logical unit directory provides one of two methods by which a logical unit implemented by the target
may be described (the other is a Logical_Unit_Number entry in the unit directory, described in 7.8.15).

A logical unit directory shall contain exactly one Logical_Unit_Number entry. It may contain additional
entries permitted by 7.8. Some of these entries may be inherited from the parent unit directory but if an
entry is present in both directories the entry in the logical unit directory shall take precedence.

7.8 Directory entries

7.8.1 Directory entries summary

This standard defines configuration ROM entries that may appear in a unit directory or logical unit directories
dependent upon the unit directory or both, as specified by the table below.

For entries that may appear in a logical unit directory, the rightmost column in the table specifies whether or
not the value of the entry is implicitly inherited from the parent unit directory if it is not present in the logical
unit directory. In addition to the directory entries described above, unit directories and any of their dependent
directories may contain entries permitted by IEEE Std 1212-2001.

4 These entries shall not be omitted altogether but shall be present in one of the combinations described below

the table.
5 A target shall have at least one Logical_Unit_Number entry, whether in a unit directory or a logical unit directory.

Directory entry Unit directory Logical unit directory Inherited

Specifier_ID Required Prohibited

Version Required Prohibited

Revision Optional Prohibited

Command_Set_Spec_ID Optional 4 Optional 4 Yes

Command_Set Optional 4 Optional 4 Yes

Command_Set_Revision Optional Optional Yes

Firmware_Revision Optional Optional No

Management_Agent Required Prohibited

Unit_Characteristics Required Prohibited

Reconnect_Timeout Optional Prohibited

Fast_Start Optional Optional Yes

Plug_Control_Register Optional Optional Yes

Logical_Unit_Directory Optional Prohibited

Logical_Unit_Number Optional 5 Required

Unit_Unique_ID Optional Prohibited

T10/1467D Revision 4

68

The command set of each of a target’s logical units shall be identified by either explicit or inherited values of
Command_Set_Spec_ID and Command_Set entries. If the unit directory contains one or more
Logical_Unit_Number entries, both entries shall be present in the unit directory. If the unit directory contains
one or more Logical_Unit_Directory entries, the logical units defined in each directory may inherit their
command set from the Command_Set_Spec_ID and Command_Set entries in the parent unit directory or
these entries may be present in the logical unit directory. If either of these entries is omitted from a logical
unit directory, it shall be present in the parent unit directory.

7.8.2 Specifier_ID entry

The Specifier_ID entry is an immediate entry in the unit directory that specifies the organization responsible
for the architectural definition of the target. Figure 52 shows the format of this entry.

Figure 52 – Specifier_ID entry format

1216 is the concatenation of key_type and key_value for the Specifier_ID entry.

00 609E16 is the company ID obtained by INCITS from the IEEE RAC. The value indicates that the INCITS
Secretariat and its Technical Committee T10 are responsible for the maintenance of this standard.

7.8.3 Version entry

The Version entry is an immediate entry in the unit directory that, in combination with the company ID
obtained from the Specifier_ID entry, specifies the software interface of the target. Figure 53 shows the
format of this entry.

Figure 53 – Version entry format

1316 is the concatenation of key_type and key_value for the Version entry.

01 048316 indicates that the target conforms to ANSI NCITS 325-1998, Serial Bus Protocol 2 (SBP-2) and
may additionally conform to this standard.

7.8.4 Revision entry

The Revision entry is an immediate entry in the unit directory that, in combination with the company ID
obtained from the Specifier_ID entry and the version obtained from the Version entry, specifies the software
interface of the target. Figure 54 shows the format of this entry.

Figure 54 – Revision entry format

00 609E16
most significant least significant

1216

01 048316
most significant least significant

1316

revision
most significant least significant

2116

T10/1467D Revision 4

69

2116 is the concatenation of key_type and key_value for the Revision entry.

The revision field shall be zero or one. A value of zero indicates conformance with ANSI NCITS 325-1998
while a value of one indicates conformance with this standard. If the Revision entry is omitted from the unit
directory, the value of revision is implicitly zero.

7.8.5 Command_Set_Spec_ID entry

The Command_Set_Spec_ID entry is an immediate entry that, when present in either the unit directory or a
dependent logical unit directory, specifies the organization responsible for the command set definition for the
logical units. Figure 55 shows the format of this entry.

Figure 55 – Command_Set_Spec_ID entry format

3816 is the concatenation of key_type and key_value for the Command_Set_Spec_ID entry.

The command_set_spec_ID is an organizationally unique identifier obtained from the IEEE RAC. The
organization to which this 24-bit identifier has been granted is responsible for the definition of the command
set implemented by the target.

7.8.6 Command_Set entry

The Command_Set entry is an immediate entry that, when present in either the unit directory or a
dependent logical unit directory, in combination with the command_set_spec_ID specifies the command set
implemented by the logical unit. Figure 56 shows the format of this entry.

Figure 56 – Command_Set entry format

3916 is the concatenation of key_type and key_value for the Command_Set entry.

The value of command_set shall be specified by the owner of command_set_spec_ID.

7.8.7 Command_Set_Revision entry

The Command_Set_Revision entry is an immediate entry that, when present in either the unit directory or a
dependent logical unit directory, specifies the revision level of the command set implemented by the logical
unit. Figure 57 shows the format of this entry.

Figure 57 – Command_Set_Revision entry format

command_set_spec_ID
most significant least significant

3816

command_set

command_set_revision

most significant

most significant

least significant

least significant

3916

3B16

T10/1467D Revision 4

70

3B16 is the concatenation of key_type and key_value for the Command_Set_Revision entry.

The value of command_set_revision shall be specified by the owner of command_set_spec_ID.

7.8.8 Firmware_Revision entry

The Firmware_Revision entry is an immediate entry that, when present in the unit directory or a logical unit
directory, specifies the firmware revision level implemented by the target or logical unit, respectively. Figure
58 shows the format of this entry.

Figure 58 – Firmware_Revision entry format

3C16 is the concatenation of key_type and key_value for the Firmware_Revision entry.

The value of firmware_revision shall be specified by the organization granted the 24-bit identifier obtained
from the Vendor_ID entry in the unit directory or, if there is no such entry, from the Vendor_ID entry in the
root directory.

NOTE – It is meaningful for different vendor IDs to be specified in the root directory and the unit directory. In the
case of a product that incorporates devices native to another transport (e.g., parallel SCSI), the vendor ID in
the unit directory might identify the original equipment manufacturer of the interface chip and firmware that
adapts SBP to the other transport, while the vendor ID in the root directory might identify the product integrator.

7.8.9 Management_Agent entry

The Management_Agent entry is an immediate entry in the unit directory that specifies the base address of
the target’s MANAGEMENT_AGENT register. Figure 59 shows the format of this entry.

Figure 59 – Management_Agent entry format

5416 is the concatenation of key_type and key_value for the Management_Agent entry.

The csr_offset field shall contain the offset, in quadlets, from the base address of register space,
FFFF F000 000016, to the base address of the MANAGEMENT_AGENT register for the target. All target
CSRs shall be located at or above address FFFF F001 000016; therefore the value of csr_offset shall not be
less than 400016.

NOTE – If a device implements additional control and status registers that are dependent upon the device
class, it is recommended that these registers be placed at one of two locations within the device’s address
space. If the additional registers pertain to a logical unit, the recommended locations are at offset 4016 and
above following the base address of the logical unit’s command block agent registers. Additional registers
that are associated with the device, and not a particular logical unit, may be located immediately after the
MANAGEMENT_AGENT register. If this convention is followed, there is no necessity for additional
configuration ROM entries to describe the location of device-dependent registers.

csr_offset

most significant least significant

5416

firmware_revision
most significant least significant

3C16

T10/1467D Revision 4

71

7.8.10 Unit_Characteristics entry

The Unit_Characteristics entry is an immediate entry in the unit directory which specifies characteristics of
the target implementation. Figure 60 shows the format of this entry.

Figure 60 – Unit_Characteristics entry format

3A16 is the concatenation of key_type and key_value for the Unit_Characteristics entry.

When the distributed_data bit (abbreviated as d in the figure above) is one, the target supports node
selectors within page tables (see 5.3.4). This permits the initiator to distribute the data buffer among one or
more nodes independent of each other or the node that contains the page table. Otherwise, when
distributed_data is zero, there is no target support for node selectors and the page table and data buffer
shall be located within the same node.

The mgt_ORB_timeout field shall specify, in units of 500 milliseconds, the maximum time permitted for a
target to store a status block in response to a management ORB. After this time, a target shall not store a
status block for the management ORB and an initiator shall indicate that the management ORB has timed
out. For the initiator, the time-out commences when either an ack_complete or resp_complete subaction is
received in response to the block write of the management ORB address to the MANAGEMENT_AGENT
register. The target starts the time-out period when the ack_complete or resp_complete subaction is
transmitted.

NOTE – An initiator that attempts retry of an expired management ORB should either a) wait at least a split
time-out period after the management ORB time-out or b) signal the management ORB from a different
address in system memory.

The ORB_size field shall specify, in quadlets, the largest read request size used by any of the target’s
logical unit fetch agents to obtain ORBs from initiator memory. The initiator shall allocate, on a quadlet
aligned boundary, at least this much memory for each ORB signaled to the target. The ORB_size field does
not apply to management ORBs (see 5.2.4), whose size is fixed at 32 bytes.

7.8.11 Reconnect_Timeout entry

The Reconnect_Timeout entry is an optional entry in the unit directory that describes the maximum
reconnect timeout supported by the target. Figure 61 shows the format of this entry.

Figure 61 – Reconnect_Timeout entry format

3D16 is the concatenation of key_type and key_value for the Reconnect_Timeout entry.

The max_reconnect_hold field specifies the maximum value of reconnect_hold that the target may return in
login response data (see 5.2.4.2). If this entry is not present in configuration ROM either the target does not
include reconnect_hold in login response data or the value returned is always zero.

reserved mgt_ORB_timeout ORB_size 3A16
most significant least significant

reserved max_reconnect_hold
most significant least significant

3D16

d

T10/1467D Revision 4

72

7.8.12 Fast_Start entry

The Fast_Start entry is an optional entry in either the unit directory or a dependent logical unit directory that,
if present (or inherited), identifies logical unit implementation of the FAST_START register specified by 6.6.8.
Figure 62 shows the format of this entry.

Figure 62 – Fast_Start entry format

3E16 is the concatenation of key_type and key_value for the Fast_Start entry.

The max_payload field shall specify the maximum data_length value that may be used in a block write
request addressed to the FAST_START register. A zero value indicates that the maximum payload is
constrained by the max_rec field in the target's bus information block. Otherwise, a nonzero value
represents the maximum payload size, in quadlets, in which case max_payload shall be less than or equal
to 2 max_rec + 1 / 4.

The FAST_START_offset field shall specify the location of the FAST_START register relative to the base
address of its associated fetch agent’s CSRs, as obtained from the response returned by the target as part
of a successful login or create task set request. The offset shall be specified in quadlets and shall have a
minimum value of sixteen.

7.8.13 Plug_Control_Register entry

The Plug_Control_Register entry is an optional entry in either the unit directory or a dependent logical unit
directory that, if present (or inherited), associates a plug control register with a logical unit. There may be
more than one Plug_Control_Register entry within a unit directory or a logical unit directory. Figure 63 shows
the format of this entry.

Figure 63 – Plug_Control_Register entry format

3216 is the concatenation of key_type and key_value for the Plug_Control_Register entry.

The direction bit (abbreviated as d in the figure above) shall be zero when plug_index refers to an input plug
control register (iPCR) and one when plug_index refers to an output plug control register (oPCR).

The plug_index field shall, in combination with the direction bit, identify a plug control register. The address
of the plug control register, within node space, is obtained from the formula FFFF F000 098016 - (128 *
direction) + (4 * (plug_index +1)). Plug control registers are specified by IEC 61883-1 and draft standard
IEEE P1394.1.

NOTE – When the isochronous bit in a command block ORB (see 5.2.3) is one, if (for the logical unit to which
the ORB is signaled) there is one and only one Plug_Control_Register entry whose direction bit matches the
direction bit in the ORB, that Plug_Control_Register entry identifies the plug control register from which
isochronous stream information is obtained. In the case of an oPCR, this includes channel number, speed
and maximum data payload; an iPCR specifies only the channel number.

most significant least significant

reserved max_payload FAST_START_offset 3E16

d plug_index 3216 reserved
most significant least significant

T10/1467D Revision 4

73

7.8.14 Logical_Unit_Directory entry

The Logical_Unit_Directory entry is an optional directory entry in the unit directory that describes the
location of the logical unit directory within configuration ROM. Figure 64 shows the format of this entry.

Figure 64 – Logical_Unit_Directory entry format

D416 is the concatenation of key_type and key_value for the Logical_Unit_Directory entry.

The indirect_offset field specifies the number of quadlets from the address of the Logical_Unit_Directory
entry to the address of the logical unit directory within configuration ROM.

7.8.15 Logical_Unit_Number entry

The Logical_Unit_Number entry is an immediate entry that, when present in either the unit directory or a
dependent logical unit directory, specifies the characteristics, peripheral device type and logical unit number
of a logical unit implemented by the target. Figure 65 shows the format of this entry.

Figure 65 – Logical_Unit_Number entry format

1416 is the concatenation of key_type and key_value for the Logical_Unit_Number entry.

The extended_status bit (abbreviated as x in the figure above) specifies whether or not the logical unit
supports extended status format (see 5.4). If the extended_status bit is zero, only the basic status format is
supported. Otherwise, the logical unit supports both the basic and extended status formats; the logical unit
shall not store status in the extended format unless enabled by the initiator during login (see 5.2.4.2).

The ordered bit (abbreviated as o in the figure above) specifies the manner in which the logical unit executes
tasks signaled to the primary command block agent. If the logical unit executes and reports completion
status without any ordering constraints, the ordered bit shall be zero. Otherwise, if the logical unit both
executes all tasks in order and reports their completion status in the same order, the ordered bit shall be
one.

The isochronous bit (abbreviated as i in the figure above) specifies whether or not the logical unit supports
isochronous operations. If the isochronous bit is one, the irmc, cmc and isc bits in the bus information block
shall also be one, as described in 7.3.

The device_type field indicates the peripheral device type implemented by the logical unit. This field shall
contain a value specified by the table below.

o

indirect_offset
most significant least significant

D416

most significant least significant

1416 lun device_type x i

T10/1467D Revision 4

74

The lun field shall identify the logical unit to which the information in the Logical_Unit_Number entry applies.
The value of the lun field shall be unique within the scope of the unit directory and all dependent logical unit
directories.

7.8.16 Unit_Unique_ID entry

The Unit_Unique_ID entry is an optional leaf entry in the unit directory that describes the location of the unit
unique ID leaf within configuration ROM. If a vendor implements a device with multiple Serial Bus access
paths, i.e., multiple links to Serial Bus each of which receives a distinct node_ID as the result of Serial Bus
initialization or bus enumeration, the Unit_Unique_ID entry shall be implemented. Figure 66 shows the
format of this entry.

Figure 66 – Unit_Unique_ID entry format

8D16 is the concatenation of key_type and key_value for the Unit_Unique_ID entry.

The indirect_offset field specifies the number of quadlets from the address of the Unit_Unique_ID entry to
the address of the unit unique ID leaf within configuration ROM.

7.9 Unit unique ID leaf

Although the node unique ID (EUI-64) present in the bus information block is sufficient to uniquely identify
nodes attached to Serial Bus, it is insufficient to identify a target when a vendor implements a device with
multiple Serial Bus node connections. In this case initiator software requires information by which a
particular target may be uniquely identified, regardless of the Serial Bus access path used. The figure below
shows the format of the unit unique ID leaf.

Figure 67 – Unit unique ID leaf format

The first quadlet of the unit unique leaf shall contain the number of following quadlets in the leaf and a CRC
calculated for those quadlets, as specified by IEEE Std 1212-2001.

The unit_vendor_ID value shall be uniquely assigned by the IEEE RAC, as specified by
IEEE Std 1212-2001.

Value Peripheral device type

0 – 1E16 The meaning of device_type is command set-dependent

1F16 Unknown device type; command set-dependent means
are necessary to determine the peripheral device type

CRC 2

indirect_offset

most significant

least significant

most significant

unit_vendor_ID

least significant

unit_ID_hi

8D16

unit_ID_lo

T10/1467D Revision 4

75

The unit_ID_hi and unit_ID_lo fields are concatenated to form a 40-bit unit ID value. The vendor specified by
unit_vendor_ID shall administer the unit ID values. When appended to the unit_vendor_ID value, these shall
form a unique 64-bit value referred to as the unit unique ID.

As a consequence of the implementation of multiple Serial Bus nodes for the same unit, there is
configuration ROM accessible for each node. Parts of these configuration ROMs shall differ from each other,
e.g., the node unique ID in the bus information block, but the unit unique ID shall be the same regardless of
which node is used to access the information.

T10/1467D Revision 4

77

8 Access

8.1 Access overview

Before an initiator may signal commands to a logical unit or task management requests to a target, access
privileges shall first be granted by the target. The criteria for the grant of access may include resource
availability or other target requirements. This section specifies the target facilities that support access
control and the methods by which an initiator requests access to a logical unit and eventually relinquishes
access when it is no longer required.

When an initiator establishes bridge-aware access, it may require additional target resources to manage
data transfer operations. This section specifies the methods an initiator uses to obtain or release these
resources.

8.2 Access protocols

Targets shall implement a logical unit reservation protocol which may be used to guarantee single initiator
access to the logical unit and to preserve that initiator’s access rights across a Serial Bus reset. Targets
may optionally implement the extensions to the logical unit reservation protocol specified by Annex C, which
support both passwords and persistent reservations. Neither of these mechanisms preclude additional,
command set-dependent methods that control access to a target’s logical units.

In order to support the logical unit reservation protocol, a target shall implement resources to manage one or
more logins from initiators. These resources are described below and are used in the specification of target
actions in response to login requests signaled by an initiator to the target’s management agent:

– The target implements a set of one or more login_descriptors that are used to hold context for logins.
The context of a login stored in a login_descriptor consists of the lun, the login_owner_ID, the
login_owner_EUI_64, the status_FIFO address, an exclusive variable, a bridge_aware variable, a
heartbeat_timeout variable, the base addresses of the fetch agent CSRs, the login_ID to be used by
the initiator to identify the login, the initiator_node_handle assigned by the target for a bridge-aware
login and the reconnect_hold period guaranteed by the target—these last four are returned to the
initiator in the login response data.

– The login_owner_ID is the 16-bit node ID, either local or global, of the current owner of a login. The
target shall use the login_owner_ID to qualify the source_ID of all write requests addressed to the
login_descriptor fetch agent CSRs. Upon a power reset, the login_owner_ID for all login_descriptors
shall be initialized to all ones. At all other times, the value of bridge_aware determines which events
cause login_owner_ID to be set to all ones. If bridge_aware is false, a Serial Bus reset causes
login_owner_ID to be set to all ones; if bridge_aware is true and login_owner_ID contains a global node
ID, a net update causes login_owner_ID to be set to all ones.

– The login_owner_EUI_64 is the unique 64-bit identifier of the current owner of a login. Upon a power
reset, the login_owner_EUI_64 for all login_descriptors shall be initialized to all ones. After a Serial
Bus reset, for those login_descriptors whose bridge_aware variable is false, the login_owner_EUI_64
persists for reconnect_hold + 1 seconds and shall then be set to all ones unless the login has been
reestablished. After a net update, for those login_descriptors whose bridge_aware variable is true, the
login_owner_EUI_64 persists for reconnect_hold + 1 seconds (measured from the end of quarantine)
and shall then be set to all ones unless the login has been reestablished.

A login_descriptor is free if both its login_owner_ID and login_owner_EUI_64 are all ones. The resources of
this login_descriptor may be allocated to any initiator that successfully completes a login request. If a
login_descriptor's login_owner_ID is all ones but its login_owner_EUI_64 contains a valid EUI-64, the

T10/1467D Revision 4

78

login_descriptor is reserved—the initiator identified by login_owner_EUI_64 may reestablish the login. Active
login_descriptors are those whose login_owner_ID and login_owner_EUI_64 are both valid; the initiator that
owns the login may signal requests to the fetch agent associated with the login_descriptor.

8.3 Access requests

8.3.1 Login

Before an initiator may signal any requests to a target that either require a login_ID or address fetch agent
CSRs, it shall first perform a login. The login request, whose format is specified in 5.2.4.2, shall be signaled
to the target’s MANAGEMENT_AGENT register by means of an 8-byte block write request that specifies the
Serial Bus address of the login request ORB. The address of the management agent shall be obtained from
the target’s configuration ROM.

Unless modified by a subsequent reconnect request, the speed at which the block write request to the
MANAGEMENT_AGENT register is received shall determine the speed used by the target for all subsequent
requests to read the initiator’s configuration ROM, fetch ORBs from initiator memory or store status at the
initiator’s status_FIFO. Command block ORBs separately specify the speed for requests addressed to the
data buffer or page table.

The login ORB shall specify the lun of the logical unit for which the initiator desires access.

The target shall perform the following steps, in the order specified, to validate a login request:

a) All targets that conform to this standard distinguish between local and global node IDs whether or not
they implement bridge-aware capabilities. If the source_ID from the write request used to signal the
login ORB to the target’s MANAGEMENT_AGENT register contains a global node ID but the target
does not implement bridge-aware capabilities, the target shall respond with a type error;

NOTE – Because bridges interdict read requests addressed to global node IDs if they are originated by
nodes that are not bridge-aware, a target that is not bridge-aware is unable to fetch the login ORB and
determine the address of the status_FIFO. Thus, the return of a type error response is the only method
available to notify the initiator that the login failed.

b) In cases where source_ID is local, the aware bit is one in the login ORB and the target does not
implement bridge-aware capabilities, the target shall reject the login request with an sbp_status of
function rejected;

c) If source_ID contains a global node ID and the target implements bridge-aware capabilities, the target
shall examine the aware bit in the login ORB and, if zero, shall reject the login with an sbp_status of
function rejected. When the login specifies a global node ID and the aware bit is one, the target shall
use a TIMEOUT request, as defined by draft standard IEEE P1394.1, to obtain the EUI-64 of the
initiator and its remote timeout information;

d) Otherwise source_ID is local and the target shall read the initiator’s unique ID, EUI-64, from the bus
information block by means of two quadlet read transactions. The source_ID from the write transaction
used to signal the login ORB to the target’s MANAGEMENT_AGENT register shall be used as the
destination_ID in the quadlet read transactions;

e) If the update bit in the login ORB is zero, the target shall determine whether or not the initiator already
owns a login by comparing the EUI-64 just obtained against the login_owner_EUI_64 for all
login_descriptors. If the initiator is currently logged-in to the same logical unit, the login request shall
be rejected with an sbp_status of access denied. Otherwise, when the update bit is one, the target
shall verify that the initiator owns the login identified by login_ID and, if not, shall reject the login
request with an sbp_status of invalid login ID;

T10/1467D Revision 4

79

f) If the exclusive bit is set in the login ORB and there are any active login_descriptors for the logical unit
(other than one whose login_owner_EUI_64 matches the EUI-64 of the initiator requesting the login),
the target shall reject the login request with an sbp_status of access denied;

g) If an active login_descriptor with the exclusive attribute exists for the lun specified in the login ORB
(other than one whose login_owner_EUI_64 matches the EUI-64 of the initiator requesting the login),
the target shall reject the login request with an sbp_status of access denied; else

h) If the update bit in the login ORB is zero, the target shall determine if a free login_descriptor is
available and, if none are available, reject the login request with an sbp_status of resources
unavailable.

If the update bit is zero, once the above conditions have been met and a login_descriptor allocated, the
initiator’s source_ID is stored in login_owner_ID, the initiator’s EUI-64 is stored in login_owner_EUI_64, the
lun and status_FIFO fields from the login ORB are stored in the login_descriptor, the bridge_aware and
exclusive variables in the login_descriptor are set to the values of the aware and exclusive bits, respectively,
from the login ORB and the address of the fetch agent and the reconnect_hold value chosen by the target
are stored in the login_descriptor. If the bridge_aware variable is true, the target allocates a node handle to
the initiator (the process is essentially the same as described by 8.4.2) and stores it in
initiator_node_handle. Lastly the target assigns a unique login_ID to this login and stores it in the
login_descriptor.

When the update bit is one, the login request permits the initiator to change parameters associated with the
login. If the login request meets all of the validation requirements described above, the target shall logout the
initiator (see 8.7) without returning completion status and then shall process the login in accordance with
the requirements of this clause, 8.3.1.

NOTE – The requirement in 6.5 that the target process one management ORB at a time insures that the
target performs these two steps such that no other initiator is afforded an opportunity to login between the
time that target resources have been released and the time the update login request completes.

If the target is able to satisfy the login request, it shall return a login response as specified in 5.2.4.2. When
the update bit in the login ORB is one, the information returned in the login response may differ from that
previously associated with the login.

8.3.2 Create task set

A secondary task set may be created for an initiator only after completion of the login process just
described. The initiator shall supply a login_ID previously obtained as the result of a successful login.

The target shall perform the following to validate a create task set request:

– The target shall validate the login_ID supplied in the create task set ORB by comparing the
destination_ID in the read requests used to fetch the ORB with the source_ID retained when login_ID
was assigned to the initiator. If the node IDs do not match, the login_ID is invalid.

If the login_ID is valid, the target shall determine if a free task_set_descriptor is available and, if none
are available, reject the create task set request with an sbp_status of resources unavailable.

Once the above conditions have been met and a task_set_descriptor allocated, the task_set_descriptor is
associated with the appropriate login_descriptor and the address of the new fetch agent is stored in the
task_set_descriptor. Lastly the target assigns a unique task_set_ID to this task set, stores it in the
task_set_descriptor and returns a create task set response as specified in 5.2.4.4.

T10/1467D Revision 4

80

8.4 Node handles

8.4.1 Node handles (general)

When a bridge-aware login is established, the target returns a node handle in the response data; the initiator
uses the node handle in buffer descriptors in ORBs or page tables that refer to initiator system memory. If
necessary to address a node other than the initiator itself in buffer descriptors, the initiator shall first obtain a
node handle from the target by means of a node handle request. When an initiator no longer requires one or
more node handles, it should release them. All node handles for a login are automatically released upon
logout.

Bridge-aware targets shall support, at a minimum, the allocation of a node handle that occurs upon
successful completion of a login whose aware bit is one. Support for the node handle request is optional;
without it, bridge-aware target operations are possible only if all data buffers are located in the initiator.

The function of an individual node handle ORB is encoded by its allocate bit. When allocate is one, the
target is requested to allocate a node handle; otherwise it is requested to release a particular node handle or
all node handles (except the initiator’s own node handle).

Before processing any node handle request, the target shall verify that the login_descriptor identified by
login_ID in the node handle request is active; if not, the target shall reject the node handle request with an
sbp_status of login ID invalid.

Node handles shall be unique within the context of a login. An initiator shall not use a node handle obtained
for one login in the context of another login, but if necessary shall obtain an additional node handle for the
other login even though the node handle references the same node.

8.4.2 Node handle allocation

The target shall perform the following steps to process a node handle allocation request:

– If the least significant six bits of global_node_ID are all ones, the target shall reject the node handle
request with an sbp_status of unknown EUI-64;

– In cases where a node handle exists within the login for the node identified by eui_64, the target shall
update the global_node_ID in the node_handle_descriptor with the new value provided in the node
handle request, mark the node handle descriptor to indicate that the correlation between eui_64 and
global_node_ID is unverified and then skip the remaining steps described below;

– Otherwise, the target shall determine if the resources to create a node handle are available and, if not,
reject the node handle request with an sbp_status of resources unavailable; else

– Once these verification steps have succeeded, the target shall store the eui_64 and global_node_ID
from the node handle request in the node_handle_descriptor for the allocated node handle. The node
handle descriptor shall also indicate that the correlation between eui_64 and global_node_ID is
unverified.

After the target has associated the global or local node ID and the EUI-64 in the node handle request with a
node handle, the target shall store the assigned node handle in the node_handle_response buffer provided
by the initiator.

Until the node handle is released, the target shall maintain information in a node_handle_descriptor that
includes, at a minimum, the node_handle, the login_ID with which the node handle is associated, the eui_64
of the node, the current global or local node ID for the node and, for global node IDs, the remote time-out for

T10/1467D Revision 4

81

the node. The remote time-out value need not be available when the node handle request completes; the
target may defer determination of remote time-out (see 8.4.5).

8.4.3 Node handle release

When a target fetches a node handle request whose allocate bit is zero, it shall release one or more node
handles associated with the login identified by login_ID. If node_handle equals FFFF16, all node handles
associated with the login (except the initiator’s own node handle) shall be released. If node_handle identifies
the node handle returned by a login response, the target shall reject the node handle request with an
sbp_status of invalid node handle. Otherwise, the node handle identified by node_handle shall be released.

If node_handle does not match any node handle associated with the login identified by login_ID, the target
shall reject the node handle request with an sbp_status of invalid node handle.

8.4.4 Node handle update after bus reset

Upon a Serial Bus reset, all of a target’s active node_handle_descriptors whose node_ID field contains a
local node ID shall be updated with the local node ID currently valid for the associated EUI-64. The target
shall obtain this information from its own analysis of self-ID packets observed subsequent to bus reset and
the previous bus topology map. The bus topology map correlates EUI-64 with physical ID for nodes on the
local bus. Once a correlation between EUI-64 and physical ID is provisionally established by self-ID packet
analysis, the target shall confirm the node’s EUI-64 by means of two quadlet read transactions addressed to
the bus information block. If the expected EUI-64 is not confirmed, the target shall read EUI-64 information
from other local nodes until the desired EUI-64 is discovered or all local nodes have been examined.

If a local node for which a node handle is allocated is disconnected, the node_ID field in its node handle
descriptor shall be set to FFFF16; this causes an error if the node handle is present in a command block
ORB subsequently signaled to the target.

NOTE – The initiator, which is also aware of the disconnection of the local node, should update the target’s
node handle information with a node handle request if the node is subsequently reconnected to the local bus.

8.4.5 Node handle validation after net update

Net update begins when a target’s QUARANTINE.orphan bit changes from zero to one, at which time all of
its active node_handle_descriptors whose node_ID field contains a global node ID shall be marked to
indicate that the correlation between eui_64 and global_node_ID is unverified. So long as this correlation
remains unverified, the node handle is invalid. Before the target executes an ORB that contains or
references (via a page table) an invalid node handle, it shall verify the correlation between the EUI-64 and
global node ID associated with the node handle and obtain the remote time-out value for the bus to which
the node is connected.

Node handles assigned to initiators as a consequence of a bridge-aware login are revalidated as part of the
reconnection process (see 8.6).

Node handles allocated by node handle requests shall be revalidated as follows:

– The target may use one of two methods to verify the correlation of an EUI-64 with a global node ID. If
the target has already determined remote time-out for the bus ID specified by the global node ID, it
may use either a TIMEOUT request addressed to the global node ID or it may use two quadlet read
requests to obtain the node’s EUI-64 from configuration ROM. If the remote time-out is not known for
the bus ID, the target shall use a TIMEOUT request to determine both the EUI-64 and remote time-out;

T10/1467D Revision 4

82

– If there is no successful response to either the TIMEOUT request or attempted read of configuration
ROM or if the EUI-64 obtained does not match the EUI-64 expected, the target shall set the node_ID
field in the node handle descriptor to FFFF16; this causes an error if the node handle is present in a
command block ORB subsequently signaled to the logical unit fetch agent; else

– Otherwise, if the EUI-64 obtained matches that associated with the node handle, the target shall store
the remote time-out value in the node_handle_descriptor and mark the node handle valid.

Although a target may revalidate all its node handles when its QUARANTINE.orphan bit changes from one to
zero, it should elect a “lazy” scheme and defer revalidation until an invalid node handle is encountered in a
command block ORB signaled to a target logical unit. If an ORB signaled to a logical unit fetch agent
contains a node handle whose global node ID in the node_handle_descriptor is equal to FFFF16, the task set
shall be aborted and an sbp_status of unknown EUI-64 shall be reported for the task that caused the abort.

8.5 Heartbeat

A “heartbeat” is a periodic signal from an initiator to a target logical unit; its purpose is to maintain an active,
bridge-aware login for the initiator. Absent such a signal, the target, after a time-out period, commences
actions that eventually logout the initiator and free target resources.

Whenever a task set owned by an initiator identified by a global node ID becomes empty—which is the case
immediately after a successful login or reconnect as well as when a task set is aborted or its work
completes—the target logical unit starts a timer, heartbeat_timeout. The timer is initially set to the
reconnect_hold time reported to the initiator for the login; it counts down to zero. While the task set remains
empty, the timer requires periodic refresh by a signal from the initiator. If the task set is empty, a request
subaction whose source_ID matches the node ID of the initiator associated with the login and which is
addressed to the HEARTBEAT_MONITOR register shall cause the target logical unit to reinitialize the value
of heartbeat_timeout to reconnect_hold seconds.

When an ORB is signaled to a logical unit fetch agent whose associated task set is empty, the
heartbeat_timeout timer shall be stopped. Once the task set again becomes empty, the timer shall be
initialized to reconnect_hold seconds and the heartbeat time-out process shall resume.

If the heartbeat_timeout timer decrements to zero while the logical unit task set is empty, the target shall
commence a reconnect hold period for the login as described in 8.6. Once a target commences a reconnect
hold period, it shall reject, with a response of type error, Serial Bus request subactions addressed to any of
the fetch agent CSRs associated with the login.

8.6 Reconnection

Upon a Serial Bus reset, the target shall abort all task sets for all command block agents created by or
associated with login requests whose aware bit was zero. The target shall also determine whether or not net
update is active; all net update conditions are signaled by bus reset but not all bus resets signal net update.
If net update is not active, task sets created as the result of login requests whose aware bit was one shall
not be aborted. Otherwise, when net update is active, the target shall abort all task sets for all command
block agents.

There is a special case that applies to logins that were created as the result of login requests whose aware
bit was one and for which the initiator is connected to the target’s local bus. This condition may exist
whether or not bridge portals are connected to the local bus. If a local initiator is the owner of a bridge-aware
login and is disconnected from the bus, all its task sets shall be aborted.

For each login whose task set was empty at the expiration of a heartbeat timer or whose task set was
aborted by bus reset, disconnection of a local initiator or net update, the target shall retain, for at least

T10/1467D Revision 4

83

reconnect_hold + 1 seconds subsequent to the trigger event—either a bus reset, disconnection of a local
initiator, net update or expiration of a heartbeat timer—sufficient information to permit an initiator to
reconnect its login (and, implicitly, any associated secondary task sets). After this time, but within
reconnect_hold + 2 seconds, the target shall perform an implicit logout for each expired login ID or task set
ID that has not been successfully reconnected to its original initiator. The reconnect_hold parameter is
communicated from the target to the initiator as part of the login response data. If the trigger event is a bus
reset or disconnection of a local initiator, the time-out commences when the target observes the first
subaction gap subsequent to a bus reset. If a bus reset occurs before the time-out expires, the timer is
zeroed then restarted upon detection of a subaction gap. If the trigger event is net update, the time-out
commences when the target’s QUARANTINE.orphan bit changes from one to zero. If QUARANTINE.orphan
changes from zero to one before the time-out expires, the timer is zeroed then restarted upon the next
transition of QUARANTINE.orphan from one to zero. Otherwise, if the trigger event is the lack of a heartbeat,
the time-out commences upon the heartbeat timer’s expiration. In the last two cases, if a net update
commences before the reconnect_hold period elapses, the timer is zeroed, restarted upon the next
transition of QUARANTINE.orphan from one to zero and thereafter the reconnect hold time-out is managed
as described for a net update trigger event.

After a task set is aborted by bus reset or net update, an initiator shall not signal requests for an otherwise
valid login until it first performs a reconnect. The reconnect request, whose format is specified in 5.2.4.5,
shall be signaled to the target’s MANAGEMENT_AGENT register by means of an 8-byte block write
transaction that specifies the Serial Bus address of the reconnect ORB. The address of the management
agent is that previously obtained by the initiator from the target’s configuration ROM.

The speed at which the block write request to the MANAGEMENT_AGENT register is received shall
determine the speed used by the target for subsequent requests to read the initiator’s configuration ROM,
fetch ORBs from initiator memory or store status at the initiator’s status_FIFO. This replaces the speed
most recently obtained from the prior login or reconnect request.

The target shall perform the following to validate a reconnect request:

– If the source_ID from the write transaction used to signal the login ORB to the target’s
MANAGEMENT_AGENT register contains a global node ID, the target shall use a TIMEOUT request,
as defined by draft standard IEEE P1394.1, to verify the EUI-64 of the reconnecting initiator and to
obtain its remote timeout information;

– Otherwise, the target shall read the initiator’s unique ID, EUI-64, from the bus information block by
means of two quadlet read transactions. The source_ID from the write transaction used to signal the
reconnect ORB to the target’s MANAGEMENT_AGENT register shall be used as the destination_ID in
the quadlet read transactions;

The target shall determine whether or not the login_ID is valid by comparing the just obtained EUI-64
against the login_owner_EUI_64 for the login_descriptor identified by login_ID;

If the login_ID is valid, the target shall update login_owner_ID in the referenced login_descriptor (and in all
task set descriptors associated with the same initiator) with the initiator’s source_ID.

Upon successful completion of a reconnect request, all fetch agents associated with login_ID shall be in the
reset state. No login response data is stored for a reconnect request; the completion status is indicated by
the status block stored at the status_FIFO address.

8.7 Logout

When an initiator no longer requires access to a target’s resources, it shall signal a logout request to the
management agent. The login or task set resources to be released shall be identified by login_ID in the

T10/1467D Revision 4

84

logout ORB. A target shall reject a logout request if login_ID does not match that of any active
login_descriptor or if the source_ID of the write request used to signal the logout ORB to the
MANAGEMENT_AGENT register is not equal to the source_ID of the matching login_descriptor. A logout
whose login_ID was obtained as the result of a login request implicitly causes the release of all node
handles associated with login_ID and the logout of all secondary task sets associated with the login_ID.
Any tasks active at the time of the logout request shall be aborted in the same fashion as if the task set had
been aborted. Upon successful completion of a logout request, all resources allocated to the initiator are
free once again and may be used by the target to satisfy subsequent login or create task set requests.

T10/1467D Revision 4

85

9 Command execution

9.1 Command execution overview

This section describes the procedures used by an initiator to request command execution by a target logical
unit. As described in the model, requests are specified by data structures in system memory that are
subsequently fetched by the logical unit. While a logical unit executes a request, it is responsible for any
data transfer associated with the request. Once a request completes, successfully or in error, a status block
may be stored in system memory by the logical unit. The data structures are defined in section 5; the
initiator procedures for the use of these request and status blocks are described in the clauses that follow

9.2 Requests and request lists

9.2.1 Requests and request lists (general)

Management requests (which include login and logout requests) are signaled to the target agent by means
of a Serial Bus block write request that specifies the address of the management ORB. The management
agent becomes busy while executing a request and refuses subsequent Serial Bus requests with
ack_conflict_error or resp_conflict_error until the current transaction is completed. The management agent
does not require any initialization procedures.

The target’s logical unit command block agents are called fetch agents since they manage linked lists of
requests in system memory and are responsible to fetch the ORBs. For command block ORBs, the initiator
produces requests and the logical unit consumes them. These processes are asynchronous and
independent of each other. Logical unit efficiency is improved if the logical unit can be kept occupied with an
ample working set of requests. To this end, the initiator is permitted to arrange ORBs in linked lists and to
dynamically append new requests to the lists while the logical unit remains active.

Each command block ORB contains an address pointer, next_ORB, which shall either be a null pointer or
point to another ORB. A linked list of ORBs, previously illustrated by Figure 6, implicitly orders the ORBs—
the fact that the ORBs are in order permits the logical unit to execute them in order (or not) according to its
device-dependent characteristics.

The logical unit is responsible to fetch ORBs from system memory, as described in detail in 9.3. The
remainder of this clause describes what the initiator does to:

– initialize a logical unit fetch agent;

– dynamically append new requests to an active list and notify a fetch agent of the new requests;

– notify a fetch agent of a single new request; and

– use the FAST_START register to notify an idle fetch agent of a single new requests.

Within this clause there is also a description of how the logical unit parses an ORB and its associated page
tables.

9.2.2 Fetch agent initialization (informative)

After successful completion of a login procedure and the return of the base address of the fetch agent
CSRs, the initiator may initialize the fetch agent as follows:

a) The initiator allocates space for a dummy ORB and initializes it per the format described in 5.2.2.
Although only the next_ORB field, notify bit and the rq_fmt field are significant within a dummy ORB,

T10/1467D Revision 4

86

the initiator allocates at least the minimum ORB size specified by the target’s configuration ROM. The
initiator sets the next_ORB field to the null pointer value;

b) The initiator resets the fetch agent by a quadlet write to the fetch agent’s AGENT_RESET register;

c) The initiator writes the address of the dummy ORB to the fetch agent’s ORB_POINTER register by
means of an 8-byte block write request. In the example in Figure 68, this is the value
0000 0000 8004 00C016. This causes the fetch agent to enter the ACTIVE state.

The figure below illustrates the result of these actions:

Figure 68 – Fetch agent initialization with a dummy ORB

When the fetch agent enters the active state as a result of the write to the ORB_POINTER register, it uses
the value to fetch the dummy ORB (as target resources permit). The dummy ORB, by definition, completes
immediately and the fetch agent stores a status block for the request. However, the null pointer in the
next_ORB field of the dummy ORB causes the fetch agent to enter the suspended state. The
ORB_POINTER register still points to the dummy ORB and the initiator may subsequently append
additional requests, as described in 9.2.3.

NOTE – Initialization does not require that the first command block signaled to a fetch agent be a dummy
ORB nor that the list contain only one ORB. A linked list with more than one command may be used both to
initialize the fetch engine and to execute the commands.

9.2.3 Dynamic appends to request lists (informative)

Once a logical unit fetch agent has been initialized and made active as described above, it is possible for
the initiator to append new requests to the linked list while the fetch agent remains active. Assume that the
initiator intends to add three new requests previously illustrated by Figure 6.

An initiator may append new requests to an active request list as follows:

a) The initiator constructs a linked list of ORBs in system memory, as illustrated in the example. The
next_ORB field of the last ORB contains a null pointer. The next_ORB fields of all other ORBs contain
a valid pointer to a subsequent ORB;

b) The initiator updates the next_ORB field of what had been the last ORB, in this example the dummy
ORB in Figure 68, with the address of the first request in the new request list, in this example
0000 0000 8000 000016; and

c) Lastly, the initiator transmits a quadlet write request, with any data value, to the fetch agent’s
DOORBELL register.

The final step informs the fetch agent that address pointers in the request list have been updated by the
initiator. If the fetch agent had not encountered a null pointer, the activation of the doorbell is redundant.
However, if the fetch agent is already suspended at the time next_ORB is updated, the activation of the
doorbell is essential to reactivate the fetch agent. In this latter case, it is necessary for the fetch agent to

 8000 xxxx xxxx xxxx16

Dummy ORB

0000 0000 8004 00C016

ORB_POINTER register

T10/1467D Revision 4

87

refetch all or part of the ORB referenced by the ORB_POINTER register from system memory in order to
ascertain if a previously null pointer contains a valid address of an ORB.

9.2.4 Fetch agent use by the BIOS (informative)

The BIOS, or any similar initiator application that executes in a single-threaded environment, has little need
of the logical unit fetch agent’s capabilities to manage multiple outstanding requests. The BIOS may use a
simpler procedure than that described in 9.2.3 to signal requests to the logical unit. Subsequent to
initialization of the fetch agent by means of a write to the AGENT_RESET register, the BIOS may signal one
request at a time to the logical unit as follows:

a) The BIOS allocates space for the request in an ORB and initializes it according to the ORB format.
The next_ORB field contains a null pointer;

b) The BIOS signals the request to the fetch agent by writing the address of the ORB to the
ORB_POINTER register in an 8-byte block write transaction. This causes the fetch agent to enter the
ACTIVE state and to execute the request; and

c) Subsequent to the return of a status block to the status_FIFO address specified when the login was
performed, the BIOS may signal additional requests by repeating this procedure.

The performance improvements yielded by the above procedure (which are accomplished by the elimination
of a read transaction to fetch an ORB pointer) are minor; the principal benefit to the BIOS is code
simplification.

9.2.5 Use of the FAST_START register (informative)

An initiator may signal new tasks to the fetch agent by a block write request addressed to the fetch agent's
FAST_START register (see 6.6.8). The block write request contains pointers both to the ORB to be
commenced and to the previous ORB (i.e., the ORB whose next_ORB field references the ORB to be
commenced), a copy of the ORB itself and, optionally, page table data associated with the ORB. Significant
overhead reductions may result from the use of the FAST_START register, since the logical unit need not
fetch either the address of the ORB or the ORB itself. In cases where the block write request contains the
entire page table, the logical unit need not fetch the page table; even if the entire page table is not written to
the FAST_START register (it may be too large), the logical unit may significantly reduce startup latency by
fetching the remaining page table entries concurrently with task execution.

Although an initiator may achieve optimal performance improvement by writing to the FAST_START register
when the fetch agent is in either the RESET or SUSPENDED state, the register may also be used when the
fetch agent is active. In this case, the fetch agent ignores the data payload of the block write request and
behaves as if a quadlet write had been addressed to the fetch agent’s DOORBELL register. There are
several ways by which an initiator may securely know that a fetch agent is in the RESET or SUSPENDED
state. If the initiator has not written to either of the fetch agent’s ORB_POINTER or FAST_START registers
since the most recently completed login or reconnect operation or the most recent write to the fetch agent’s
AGENT_RESET register, the fetch agent is in the RESET state. Similarly, if the initiator has not written to
either of the fetch agent's ORB_POINTER or FAST_START registers since the logical unit last stored a
status block with a src field equal to one (see 5.4.2), the fetch agent is in the SUSPENDED state.

NOTE – An initiator may use the above methods to deduce fetch agent state whether or not the logical unit
implements the FAST_START register. If the register is not supported, startup latency for an idle fetch agent
may be reduced by writing the address of an ORB directly to the ORB_POINTER register instead of a write to
the DOORBELL register.

There are two variants to the use of the FAST_START register, one suitable for single-threaded initiators and
the other suitable for multi-threaded (possibly multiprocessor) initiators. If the initiator implementation

T10/1467D Revision 4

88

guarantees that no more than one block write request to the FAST_START register is attempted while the
fetch agent is idle, it may set the previous_ORB field to a null pointer; this causes the idle fetch agent to
unconditionally update the ORB_POINTER register with the value of this_ORB. Multi-threaded initiators
might not be able to satisfy this constraint for ordered writes to the FAST_START register, in which case the
method outlined below may be used:

a) Construct the ORB (with a null next_ORB field) and associated data structures in system memory.
The address of the ORB is designated this_ORB;

b) In an effectively atomic operation (i.e., one protected within a critical section), obtain the current tail
pointer to the linked list of active ORBs, save it as previous_ORB and replace the tail pointer with
this_ORB;

c) Store this_ORB in the next_ORB field of the ORB referenced by previous_ORB;

d) Initiate a block write request to the fetch agent’s FAST_START register; its data payload should
include previous_ORB, this_ORB, a copy of the ORB and, optionally, page table information.

The presence of a non-null previous_ORB field permits the fetch agent to ignore FAST_START write
requests that arrive out of order.

Either a single ORB or a linked list of ORBs may be signaled in a single block write request to the
FAST_START register, dependent upon the value of the next_ORB field in the ORB contained within the
block write.6 Once a successful completion response is received for the block write request, the initiator
may append to the linked list of ORBs by the methods described in 9.2.3.

9.2.6 Fetch agent parse of ORB and page tables (informative)

Once a fetch agent has obtained an ORB from an initiator, whether read from the initiator's system memory
or written to the logical unit's FAST_START register, it is necessary to parse the ORB into its header
quadlets (specified by this standard) and its command_block (specified by the logical unit's command set)
and also to decode whatever page tables (none, one or two) are associated with the ORB.

The number of header quadlets are determined by the rq_fmt field, as specified by the table below:

The size of the command_block field is determined by the Command_Set_Spec_ID, Command_Set and
Command_Set_Revision entries for the logical unit served by the fetch agent.

If the ORB was read from initiator system memory, the buffer descriptor fields (specified in 5.2.3) determine
the size and location of any page tables associated with the ORB. Otherwise the ORB was written to the
FAST_START register and page table data, if any, immediately follows the ORB in the data payload written
to the register. The buffer descriptor fields in the ORB determine whether a page table describes buffer[0],

6 When more than one ORB is signaled by a write to the FAST_START register, the algorithm described for multi -

threaded operations is modified to update the linked list tail pointer with the address of the final ORB in the list to
be appended rather than with the value of this_ORB.

Value ORB format Header quadlets

0 Command block (single buffer
descriptor)

5

1 Command block (dual buffer descriptor) 8

2 Vendor-dependent

3 Dummy (NOP) 5

T10/1467D Revision 4

89

buffer[1] or both, but the rules below determine how to parse page table data included in the data written to
the FAST_START register:

– If buffer[0] is described by a page table, the buffer[0] page table immediately follows the ORB, up to a
maximum of data_size[0] bytes; the page table may be omitted or truncated.

– If buffer[0] is not described by a page table but buffer[1] is described by a page table, the buffer[1]
page table immediately follows the ORB, up to a maximum of data_size[1] bytes; the page table may
be omitted or truncated.

– If both buffer[0] and buffer[1] are described by page tables, page table data for buffer[1] may be in the
FAST_START data only if the entire page table for buffer[0] immediately follows the ORB. In this case,
the buffer[1] page table immediately follows the buffer[0] page table, up to a maximum of data_size[1]
bytes; the page table for buffer[1] may be omitted or truncated.

9.3 Fetch agent state machine

The operations of a logical unit fetch agent are specified by the figure below. The state of a fetch agent is
visible in the context displayed by the AGENT_STATE and ORB_POINTER registers described in 6.6. The
state machine diagram and accompanying text explicitly specify the conditions for transition from one state
to another and the actions taken within states.

The target shall qualify all writes to fetch agent CSRs by the source_ID of their currently logged-in initiator. A
write to a fetch agent CSR by any other Serial Bus node shall be rejected by the target by one of the
following methods:

– an acknowledgment of ack_type_error;

– an acknowledgment of ack_complete (although the write is ignored); or

– an acknowledgment of ack_pending. When the target subsequently responds, the response code
shall be resp_type_error.

The recommended logical unit action is to indicate a type error, either by an acknowledgment of
ack_type_error or an acknowledgment of ack_pending followed by resp_type_error. A target that reports a
nonzero value in its configuration ROM Revision entry shall indicate a type error.

During a reconnect hold period for a particular set of fetch agent CSRs, the source_ID of the previously
logged-in initiator is unknown; a write to those fetch agent CSRs by any node shall be rejected as specified
above.

T10/1467D Revision 4

90

Figure 69 – Fetch agent state machine

Transition Any:F0a. A power reset shall cause the fetch agent to enter the RESET state from any other
state. The AGENT_STATE and ORB_POINTER registers (that control and make visible the operations of the
fetch agent) shall be reset to zeros.

Transition Any:F0b. A quadlet write request by the initiator to the AGENT_RESET register shall cause the
fetch agent to enter state F0 from any other state. The fetch agent shall zero the AGENT_STATE and
ORB_POINTER registers before the transition to state F0. Transaction labels for outstanding request
subactions shall not be reused until either the corresponding response subaction completes or a split time-
out (local or remote, as appropriate), expires; in the first case, the response data shall be discarded.

F2: Wait for ORB fetch

F3: Verify next_ORB
AGENT_STATE.st = ACTIVE

next_ORB is null
F3:F4

F0: Reset
AGENT_STATE.st = RESET

TR_DATA.indication(WRITE, AGENT_RESET)

AGENT_STATE = zeros
ORB_POINTER = zeros

TR_DATA.response(COMPLETE)

Any:F0b

F1:F2
Target resources available

Clear doorbell variable to zero
TR_DATA.request(READ, ORB_POINTER)

TR_DATA.response(COMPLETE)

TR_DATA.indication(WRITE, ORB_POINTER)
F0:F1

F1: Active
AGENT_STATE.st = ACTIVE

Target resources available
doorbell variable equal to one

Clear doorbell variable to zero
TR_DATA.request(READ, ORB_POINTER)

F4:F2

F4: Wait for doorbell
AGENT_STATE.st = SUSPENDED

F5: Dead
AGENT_STATE.st = DEAD

Fatal error
Any:F5

next_ORB is valid

ORB_POINTER = next_ORB
F3:F1

TR_DATA.confirmation(COMPLETE)

Set next_ORB to response data
Signal ORB to device server

F2:F3

Clear doorbell variable to zero
TR_DATA.response(COMPLETE)

TR_DATA.indication(WRITE, ORB_POINTER)
F4:F1

AGENT_STATE = zeros
ORB_POINTER = zeros

Power reset or logout
Any:F0a

TR_DATA.indication(WRITE, FAST_START)
&& (previous_ORB null)

TR_DATA.confirmation(COMPLETE)
Set ORB_POINTER and next_ORB from request data

Signal ORB to device server

F0:F3

TR_DATA.indication(WRITE, FAST_START)
&& ((previous_ORB null) || (previous_ORB == ORB_POINTER))

TR_DATA.confirmation(COMPLETE)
Set ORB_POINTER and next_ORB from request data

Signal ORB to device server

F4:F3

T10/1467D Revision 4

91

State F0: Reset. Upon entry to this state, the st field in the AGENT_STATE register shall be set to RESET.
The fetch agent is inactive and available to be initialized by an initiator.

Transition F0:F1. An 8-byte block write of a valid ORB_offset to the ORB_POINTER register shall update
the register and cause the fetch agent to enter state F1. The target shall confirm the block write request with
a response subaction of COMPLETE.

Transition F0:F3. A block write to the FAST_START register may affect the state of the fetch agent. If the
previous_ORB field does not contain a null pointer, the fetch agent state shall not change and the target
shall confirm the block write request with a response subaction of COMPLETE. Otherwise the fetch agent
shall update the ORB_POINTER register with the value of this_ORB, shall update the next_ORB variable
with the contents of the next_ORB field from the ORB contained within the block write request and shall
cause the fetch agent to enter state F3. The fetch agent shall also make the ORB and any page table data
available to the device server for execution. Once these actions are complete, the target shall confirm the
block write request with a response subaction of COMPLETE.

NOTE – If the previous_ORB field contains a null pointer, a target may interpret a block write addressed to its
FAST_START register as if the this_ORB field had been written to its ORB_POINTER register. Although it is
less efficient to elect transition F0:F1, it is functionally equivalent to transition F0:F3.

NOTE – When the fetch agent is in the RESET state, it is not necessary to write to the DOORBELL register
upon either transition F0:F1 or F0:F3.

State F1: Active. Upon entry to state F1, the st field in the AGENT_STATE register shall be set to ACTIVE.
In this state, the fetch agent may use the address information in the ORB_POINTER register to fetch ORBs
from the initiator as resources permit.

Transition F1:F2. The availability of target resources is an implementation-dependent decision. Typically,
the resources might be space in device memory to hold an image of the ORB while the command is
scheduled for execution and subsequently completed. In any case, the fetch agent clears the doorbell
variable to zero and then issues a block read request to obtain the ORB from system memory.

State F2: Wait for ORB fetch. The fetch agent is suspended and awaiting a read response for a block read
directed to the address contained in the ORB_POINTER register.

Transition F2:F3. Subsequent to a block read request, issued as described above, the fetch agent may
accept a block read response that contains either the next_ORB data or an entire ORB intended for
execution by the device server. If a read response is received whose source_ID, destination_ID and tl fields
match the destination_ID, source_ID and tl fields, respectively, of the read request, the fetch agent shall
copy the next_ORB field from the response data to the next_ORB variable before making the transition to
state F3. When the response data contains an entire ORB not yet in the device server’s working set, the
fetch agent shall make the ORB available to the device server for execution.

State F3: Verify next_ORB. Upon entry to state F3, the st field in the AGENT_STATE register shall be set
to ACTIVE.7 The next_ORB variable contains information about a subsequent ORB that may be linked in
order after the one just fetched. As described in 5.2, the next_ORB pointer encodes the address of the next
ORB. The actions of this state determine whether or not the next_ORB pointer is null.

Transition F3:F1. If the next_ORB variable does not indicate a null pointer the fetch agent shall update the
ORB_POINTER register with the value of next_ORB.

7 Although this action is redundant in the case of transition F2:F3, it is necessary for transitions F0:F3 and F4:F3.

T10/1467D Revision 4

92

Transition F3:F4. The fetch agent shall enter a suspended state, F4, if next_ORB contains a null pointer. A
null pointer is defined in 5.2 and exists if the most significant bit of the variable is one.

State F4: Wait for doorbell. Upon entry to state F4, the st field in the AGENT_STATE register shall be set
to SUSPENDED. The fetch agent is suspended; the ORB_POINTER register contains the address of the
ORB whose next_ORB field was null at the time state F4 was entered.

Transition F4:F1. If an indication of a write to the ORB_POINTER register is received, the fetch agent shall
clear the doorbell variable to zero and confirm the write transaction with a response subaction of
COMPLETE. After the confirmation, the fetch agent shall enter state F1.

Transition F4:F2. Whenever the doorbell variable is equal to one, the fetch agent shall clear the doorbell
variable to zero, issue a read request to obtain a fresh copy of the next_ORB field from the ORB whose
address is contained in the ORB_POINTER register and then enter state F2. The doorbell variable is set to
one as the result of a quadlet write request of any value to the DOORBELL register, whether the write
request is received in this or any other state.

The fetch agent may issue either an 8-byte block read request (to fetch just the next_ORB field) or it may
reread the entire ORB. The initiator shall insure that system memory occupied by the ORB remains
accessible, as described in 9.5.

Transition F4:F3. A block write to the FAST_START register may affect the state of the fetch agent. If the
previous_ORB field does not contain a null pointer and is not equal to the ORB_POINTER register, the fetch
agent state shall not change and the target shall confirm the block write request with a response subaction
of COMPLETE. Otherwise the fetch agent shall update the ORB_POINTER register with the value of
this_ORB, shall update the next_ORB variable with the contents of the next_ORB field from the ORB
contained within the block write request and shall cause the fetch agent to enter state F3. The fetch agent
shall also make the ORB and any page table data available to the device server for execution. Once these
actions are complete, the target shall confirm the block write request with a response subaction of
COMPLETE.

NOTE – If the previous_ORB field either contains a null pointer or is equal to the ORB_POINTER register, a
target may interpret a block write addressed to its FAST_START register as if the this_ORB field had been
written to its ORB_POINTER register. Although it is less efficient to elect transition F4:F1, it is functionally
equivalent to transition F4:F3.

Transition Any:F5. Upon the detection of any fatal error, the fetch agent shall enter state F5. Examples of
fatal errors include, but are not limited to:

– the failure of the addressed node to acknowledge a read request;

– the failure of the addressed node to respond to a read request (local or remote split time-out);

– a busy condition at the addressed node that persists beyond the target’s busy retry limit;

– a data CRC error in a response subaction.

Some of these errors may be recoverable if retried by the target.

The fetch agent may also be instructed to enter the dead state as a result of an error in command execution
detected by the device server.

State F5: Dead. The dead state preserves fetch agent information in the AGENT_STATE and
ORB_POINTER registers. Writes to any fetch agent register except AGENT_RESET shall have no effect
while in state F5.

T10/1467D Revision 4

93

9.4 Asynchronous data transfer

The asynchronous transfer of data associated with a command is the responsibility of the target. When an
ORB specifies one or more data buffers (i.e., data_size is nonzero) and the isochronous bit is zero, the
target shall use Serial Bus read transactions to fetch data from system memory and Serial Bus write
transactions to store data in system memory.

The total transfer length may be larger than the maximum data payload that can be accommodated in a
single transaction. The target is responsible to manage the size and number of read or write transactions to
transfer all the requested data. The target may choose any appropriate size for these data transfer
transactions, subject to constraints specified by the ORB.

The target shall observe alignment requirements specified by the page_size field. A page_size value of zero
indicates that there are no alignment requirements. Nonzero page_size values specify that the target shall
observe alignment boundaries that occur every 2 page_size + 8 bytes in the data buffer or optional page table; no
single Serial Bus block read or block write transaction shall cross such a boundary8.

The target shall issue data transfer requests with a speed equal to that specified by the controlling spd field,
whether in the ORB or in a node selector in an associated page table. The target shall not issue block read
or write requests with a data payload length greater than that specified by the controlling max_payload field,
whether in the ORB or in a node selector in an associated page table.

Within the above speed, size and alignment constraints, the target is free to issue the data transfer requests
in any order and to retry failed data transfer requests according to vendor-dependent algorithms.

9.5 Isochronous data transfer

The isochronous transfer of data associated with a command block ORB is only partly the responsibility of
the logical unit. Depending upon the logical unit's role, either talker or listener, successful data transfer also
depends upon the other endpoint; either the listeners’ correct receipt or the talker's correct transmission of
isochronous subactions are essential. When an ORB specifies a data stream (i.e., data_size is nonzero)
and the isochronous bit is one, the target shall transmit or receive Serial Bus isochronous subactions
according to whether the direction bit in the ORB is one or zero, respectively.

If the logical unit is a talker, it shall transmit the data specified by the command in a sequence of
isochronous subactions, zero or one per isochronous period; the data shall be transmitted on Serial Bus in
the identical order it was obtained from the device medium or other source. The total transfer length may be
larger than the maximum data payload that can be accommodated in a single isochronous subaction. The
logical unit shall limit the size of each isochronous subaction to less than or equal to the maximum
permitted; this information may be obtained either from the logical unit's output plug control register (oPCR;
see 11.2) or by command set-dependent means. The channel number and the speed at which the
isochronous subaction is to be transmitted shall be obtained from the same source as the maximum data
payload.

If the logical unit is a listener, it shall receive the data specified by the command from a sequence of
isochronous subactions, zero or one per isochronous period; the data shall be stored on the device medium
or other destination in the identical order it was received from Serial Bus. The channel number from which to
receive the information may be identified either by the logical unit's iPCR (see 11.3) or by command set-
dependent means. The logical unit shall allocate buffers, each one of which shall be sufficiently large to
receive the maximum data payload that may arrive in any isochronous period. Unless the maximum data
payload is determined by command set-dependent means, the logical unit shall allocate buffers whose size

8 Page boundaries exist relative to offset zero in system memory, not relative to the starting offset of the data buffer

or page table itself.

T10/1467D Revision 4

94

is equal to the maximum isochronous subaction size permitted by IEEE 1394 for the data rate capability
specified in the target's input master plug register (iMPR).

Because isochronous subactions are unacknowledged, some kinds of data transfer errors are undetectable
by the logical unit. Absent a higher-level protocol, a talker cannot determine if a transmitted isochronous
subaction is correctly received by the intended listeners nor can a listener determine, in all circumstances, if
it has failed to receive isochronous subactions transmitted by the talker. Certain data transfer errors can be
detected; these include the following:

– Failure to observe a cycle start subaction. Either the talker or the listener may detect this condition.
Recovery strategies are implementation-dependent but might include a) ignoring the missed cycle
start or b) terminating the task and aborting the task set.

– Data underrun at the talker. A malformed isochronous subaction results, because the talker is unable
to obtain data from the device medium or other source in time for transmission on Serial Bus.
Recovery strategies are implementation-dependent but might include a) terminating the task and
aborting the task set, b) padding the remainder of the isochronous subaction with constant fill data
and generating a valid CRC or c) truncating the isochronous subaction or generating an invalid CRC or
both. If a) is neither appropriate nor optimal, the choice between b) and c) is strongly dependent on the
data format and the effect of its receipt on the listeners.

– Data overrun at the listener. A loss of data occurs, because the listener resources are busy and the
listener is unable to correctly receive all of the data from the isochronous subaction. Recovery
strategies are implementation-dependent but might include a) terminating the task and aborting the
task set, b) if the isochronous subaction's header was correctly receive and the data_length of the
payload is known, filling some or all of the isochronous subaction with data or c) discarding the entire
isochronous subaction. If a) is neither appropriate nor optimal, the choice between b) and c) is
strongly dependent on the data format.

– Data length or CRC error detected by the listener. As in the case of data overrun, a loss of data occurs
because the listener is unable to correctly receive all of the data from the isochronous subaction. The
same recovery strategies are applicable and the same considerations about data format apply.

Logical units that implement command sets designed with knowledge of Serial Bus isochronous behavior
should mandate specific recovery strategies for each of the error cases above. Logical units that implement
command sets designed without such knowledge should consider the recommendations made in 11.4.

9.6 Interim and completion status

Prior to the completion of an ORB, the target may store an interim status block, but no more than once for a
particular ORB. Upon completion of the ORB, the target shall examine the notify bit in the ORB to determine
whether or not to store a completion status block. If notify is zero, the target may store a status block. But if
the ORB completed with an error condition or if notify is one, the target shall store a status block. The target
shall store no more than one completion status block for a particular ORB. The address for the status block
is specified by status_FIFO, supplied by the initiator as part of the login or create task set request. The
status block, previously described in 5.4, contains sufficient information to indicate successful command
completion or, in the case of a faulted command, to permit the initiator to select the appropriate error
handling strategy.

In all cases, the status FIFO allocated by the initiator shall be accessible to a single Serial Bus block write
transaction with any data_length that is a multiple of four and less than or equal to either 32 bytes (if the
initiator has not enabled the logical unit to use extended status) or 512 bytes (if extended status is
enabled). The target shall store the status block by means of a single block write and shall not attempt any
retries if either:

T10/1467D Revision 4

95

a) no acknowledge packet is received immediately after the write request; or

b) subsequent to the receipt of an ack_pending immediately after the write request, no corresponding
response packet is received within the local or remote split time-out limit, as appropriate.

Other errors, including the link layer busy conditions, ack_data_error, resp_conflict_error and
resp_data_error, may be retried up to a vendor-dependent limit. If no retry is attempted or if the retry limit is
exhausted without success, the fetch agent shall enter the DEAD state.

The return of completion status indicates to the initiator that the task commenced by the ORB is no longer
part of the task set. The status block also specifies whether or not the system memory allocated to the
ORB may be released. If the src field has a value of zero, the initiator may reuse or deallocate the system
memory occupied by an ORB. When src has a value of one, the system memory shall not be reused or
deallocated until the target stores completion status for some subsequent ORB in the linked list.

NOTE – For targets that support the ordered model of task execution, the return of completion status for an
ORB implicitly indicates that all preceding ORBs in the linked list have completed successfully, are no longer
part of the task set and that the initiator may reuse or deallocate their system memory.

An initiator shall report completion status in the same order as the status blocks are written to its
status_FIFO. This is an obvious requirement in cases where the target implements the ordered model of
task execution, but it may also be necessary in the case of unordered execution if a higher-level protocol
based upon SBP-3 (for example, draft standard IEEE P1394.3 [B8]) has additional ordering requirements.

9.7 Unsolicited status

In addition to status associated with a particular ORB, described in the preceding section, a logical unit may
store unsolicited status at the address specified by status_FIFO. A status block that contains unsolicited
status shall be identified by setting the src field to a value of two (see 5.4.3).

A logical unit may store unsolicited status at any time that its unsolicited status enabled variable is one.
Upon successful completion of the Serial Bus block write transaction used to store the status block, the
logical unit shall zero its unsolicited status enabled variable. The initiator may set the logical unit’s
unsolicited status enabled variable to one by writing any data value to the corresponding
UNSOLICITED_STATUS_ENABLE register.

NOTE – One use for unsolicited status is to report progress of lengthy operations such as a disk format or
tape rewind. Device implementers that use unsolicited status for this purpose should pick an appropriate
interval for the reports. Frequent unsolicited status transfers reduce available Serial Bus bandwidth and may
increase processing overhead at the initiator without any perceivable benefits.

The action taken by a logical unit when unsolicited status is generated but cannot be stored because the
unsolicited status enable variable is zero depends upon the nature of the status. If the status is for a unit
attention condition, the logical unit shall retain the information with the intent to store it as soon as the
unsolicited status enable variable is set to one. The unit attention condition shall persist until the
corresponding status block is stored at the initiator’s status_FIFO. The definition of unit attention conditions
is beyond the scope of SBP-3 and is usually the province of the command-set standard for the logical unit.
Other status information, that does not constitute a unit attention, may be discarded by the logical unit,
queued for future delivery or replace an existing, pending status of the same type. Which of these behaviors
is appropriate is determined by the command set standard.

T10/1467D Revision 4

97

10 Task management

10.1 Task management overview

The preceding section describes the procedures used by the initiator to signal the target that tasks are to be
executed and the procedures by which the target performs data transfer or device control for the tasks and
ultimately signals their completion back to the initiator. Section 9 gives no consideration to the larger
perspective of how these tasks interact with each other and how the initiator may manage the tasks.

This section defines how individual tasks are collected together as task sets and how both tasks and task
sets may be managed by the initiator.

10.2 Task sets

A task set is a collection of tasks, each of which has an associated command in an ORB, that is available
to the logical unit for execution. The interactions among these tasks and the ordering relationships, if any,
are governed by the task management model implemented by the logical unit.

A task enters the task set when it is linked into an active request list. The extent of a task set includes all
the uncompleted ORBs linked into a request list in system memory, not solely the ORBs already fetched by
the logical unit (the working set).

Historically, there has been one task set associated with each logical unit of a device. Although this one-to-
one association between the primary task set (the task set created by a login request) and a logical unit is
retained, the concept is extended by SBP-3 to permit multiple task sets per initiator per logical unit. There
may be zero or more secondary task sets associated with a logical unit. Each secondary task set is
separate and distinct from the primary task set and from other secondary task sets: there are no
interactions between tasks that belong to different task sets.

10.3 Basic task management model

Logical units shall support, at a minimum, a basic task management model. Logical units may implement
other task management models if each model supports all of the features of the basic model. Within the
basic model, the following rules apply:

– All tasks within a task set share the same execution characteristics: either they are all reorderable or
else they are all ordered;

– The reorderable or ordered execution characteristics of a task set are implicit in the logical unit
implementation and are not subject to control by the initiator;

– For secondary task sets, the logical unit shall execute all tasks in order and report their completion
status in the same order. For primary task sets, configuration ROM shall specify whether the logical
unit may reorder task execution or not;

– All tasks within a task set are uniquely identified by the Serial Bus address of the ORB that initiated
the task. This address shall be unique for the life of the task;

– The abort task, abort task set and target reset task management functions, described later in this
section, shall be implemented;

An element of choice in the implementation of a task set under the basic model is whether or not the logical
unit may reorder task execution. An unordered model is usually appropriate for direct-access devices for
which no positional or other context information is inherited from one command to the next. An ordered

T10/1467D Revision 4

98

model may be more appropriate for devices, such as sequential storage, where the outcome of one
command affects the next. The same ordering considerations apply to secondary task sets, within which
the data is time-ordered by its very nature.

The unordered model is characterized by unrestricted reordering of the active tasks. The logical unit may
reorder the actual execution sequence of any tasks in a task set in any manner, including the concurrent
execution of multiple tasks.9 Unrestricted reordering places the responsibility for the assurance of data
integrity on the initiator. If the integrity of data on the device medium could be compromised by unrestricted
reordering involving a set of active tasks, {T0, T1, T2, … TN} and a new task T´, the initiator shall wait until {T0,
T1, T2, … TN} have completed before appending T´ to an active request list.

The ordered model requires both that tasks shall be executed in order and that completion status shall be
returned in order. Because Serial Bus transactions may complete out of order, the target shall single-thread
the return of completion status. Once the target has transmitted a Serial Bus block write request to store
completion status in system memory, it shall not attempt to store completion status for any other task in
the task set until ack_complete or resp_complete is received.

10.4 Error conditions

Upon an error condition or fault detected during the execution of any task within a task set, the entire task
set shall be cleared as follows:

a) The target shall halt the operation of the fetch agent associated with the task set by making a
transition to the DEAD state;

b) For all recently completed tasks, the target shall wait until the completion status of each command
has been successfully stored in system memory or until the implementation-dependent retry
algorithms have been exhausted in the attempt to store completion status; and

c) Finally, the target shall return error completion status for the faulted task. The dead bit shall be one in
the status block.

The return of error status for a faulted task is an indication to the initiator that the task set has been cleared
and that any remaining active tasks in the request list have been aborted.

10.5 Task management requests

10.5.1 Abort task

Abort task is a task management function that permits an initiator to abort a specified task without
otherwise affecting the task set or its fetch agent. A modification to the rq_fmt field of the ORB to be aborted
is the basic method; in addition, targets may also recognize task management ORBs to abort tasks. All
targets shall support abort task.

Because the task to be aborted might not have been fetched by the target when the initiator wishes to abort
the task, the following procedure shall be used to abort the task:

a) The rq_fmt field shall be set to a value of three in the ORB for the task to be aborted. This field and the
next_ORB field are the only two portions of an ORB that may be modified by the initiator once the
ORB is linked into an active request list;

9 Other transport protocols based upon SBP may require that targets be capable of concurrent execution of some

number of tasks. Draft standard IEEE P1394.3 is an example.

T10/1467D Revision 4

99

b) The initiator may construct a management ORB in system memory for the abort task function. The
initiator shall set the appropriate values in the rq_fmt, login_ID and ORB_offset fields of the ORB, as
described in 5.2.4.8. The function field shall be set to ABORT TASK; ORB_offset shall contain the
Serial Bus address of the ORB for the task to be aborted. The initiator then signals the abort task
management ORB to the management agent.

Mandatory support for abort task requires the target to recognize an rq_fmt value of three in an ORB and
take the actions described below.

– If the ORB to be aborted has already been fetched by the target, the task may be completed by the
target without recognition of the abort task request; otherwise

– When the ORB is first fetched, the target shall recognize the rq_fmt field value of three and shall not
execute the command. That target shall store completion status for the aborted ORB; the request
status shall be REQUEST COMPLETE and the sbp_status field shall indicate dummy ORB
completed.

A second method to abort tasks may be available by means of task management ORBs with a function of
ABORT TASK. If the login_ID specified in the ORB was returned in login response data, target support for
this method of abort task is optional. Otherwise the login_ID was returned in a create_task_set_response
(in which case it is a task_set_ID) and the target shall support this method to abort tasks, as specified
below. Targets that implement this method shall store a completion status of REQUEST COMPLETE for the
abort task request in the status buffer specified by the ORB.

If the task to be aborted, identified by ORB_offset, is not recognized by the target as part of its working set,
one of two conditions may exist: either the ORB has not been fetched or completion status has already
been stored. In either case the target is not required to take any immediate action. In the first case, when
the ORB is ultimately fetched, the rq_fmt field has a value of three and the target shall not execute the
command. The target shall store completion status for the aborted ORB; the request status shall be
REQUEST COMPLETE and the sbp_status field shall indicate dummy ORB completed. In the second
case, no action whatsoever need be taken by the target.

If the task to be aborted is recognized by the target as part of its working set, the target should attempt to
abort the task according to the steps below. Note that timing conditions may exist that prevent targets from
aborting the specified task. In particular, if the target has already issued a write request to store completion
status for the task to be aborted, the target shall take no other action in response to the abort task request
Otherwise, if the target undertakes to abort the task it shall perform the following actions in response to a
task management ORB with the ABORT TASK function:

a) The target should not issue additional data transfer requests for the task;

b) The target shall wait for response subactions to pending data transfer requests;

c) Only if none of the target medium, data buffer or status FIFO have been modified as the result of partial
execution of the task, the target shall store completion status of REQUEST COMPLETE with an
sbp_status field that indicates dummy ORB completed;

d) Otherwise, if task execution has commenced and any one of the target medium, data buffer or status
FIFO has been modified, then the target shall store completion status of REQUEST COMPLETE with
an sbp_status field that indicates request aborted.

Regardless of which abort task methods are supported by the target, the initiator shall not reuse the system
memory occupied by the ORB, data buffer or page table of the task to be aborted until completion status is
returned for that ORB.

T10/1467D Revision 4

100

10.5.2 Abort task set

Abort task set is a task management function that permits an initiator to abort all of its tasks within a task
set. All targets shall support abort task set.

To abort a task set, the initiator shall construct a management ORB in system memory for the abort task
set function. The initiator shall set the appropriate values in the rq_fmt and login_ID fields of the ORB, as
described in 5.2.4.8. The function field shall be set to ABORT TASK SET.

The initiator shall signal the abort task set ORB to the management agent.

Upon receipt of an abort task set request, the target shall perform the following actions:

a) The target shall halt the operation of the fetch agent associated with the login_ID by making a
transition to the DEAD state;

b) The target shall not issue data transfer requests for any task in the task set whose login_ID is equal to
that specified in the abort task set request;

c) The target shall wait for response subactions to pending data transfer requests for any task in the task
set whose login_ID is equal to that specified in the abort task set request;

d) For all tasks for which command execution is complete and whose login_ID is equal to that specified
in the abort task set request, the target shall wait until the completion status of each command has
been successfully stored in system memory or until implementation-dependent retry algorithms have
been exhausted in the attempt to store completion status; and

e) When all of the above events have completed, the target shall store completion status for the abort
task set request in the status buffer provided. The completion status shall indicate REQUEST
COMPLETE.

The initiator shall not reuse the system memory occupied by any of the ORBs, data buffers or page tables
of the tasks to be aborted until completion status is returned for the abort task set request.

10.5.3 Logical unit reset

Logical unit reset is a task management function that causes a logical unit to perform the actions described
below and to create unit attention conditions for all initiators logged-in to the logical unit. Support for logical
unit reset is a target option.

To reset a logical unit, the initiator shall construct a management ORB in system memory for the logical unit
reset function. The initiator shall set the appropriate values in the rq_fmt and login_ID fields of the ORB, as
described in 5.2.4.8. The function field shall be set to LOGICAL UNIT RESET.

The initiator shall signal the logical unit reset ORB to the management agent.

Upon receipt of a logical unit reset request, the logical unit shall perform the following actions:

a) The target shall halt the operation of all of the logical unit’s fetch agents by making transitions to the
DEAD state;

b) The target shall not issue data transfer requests for any task in any of the logical unit’s task sets;

c) The target shall wait for response subactions to pending data transfer requests for any task in any of
the logical unit’s task sets;

T10/1467D Revision 4

101

d) For all of the logical unit’s tasks for which command execution is complete, the target shall wait until
the completion status of each command has been successfully stored in system memory or until
implementation-dependent retry algorithms have been exhausted in the attempt to store completion
status;

e) The target shall create (and should attempt to signal via unsolicited status) a unit attention condition
for all initiators logged-in to the logical unit other than the initiator, identified by login_ID, that signaled
the logical unit reset request; and

f) When all of the above events have completed, the target shall store completion status for the logical
unit reset request in the status buffer provided. The completion status shall indicate REQUEST
COMPLETE.

The initiator shall not reuse the system memory occupied by any of the affected ORBs, data buffers or page
tables of the tasks until completion status is returned for the target reset request.

10.5.4 Target reset

Target reset is a task management function that causes a target to perform the actions described below and
to create unit attention conditions for all logged-in initiators. All targets shall support target reset.

To reset a target, the initiator shall construct a management ORB in system memory for the target reset
function. The initiator shall set the appropriate values in the rq_fmt and login_ID fields of the ORB, as
described in 5.2.4.8. The function field shall be set to TARGET RESET.

The initiator shall signal the target reset ORB to the management agent.

Upon receipt of a target reset request, the target shall perform the following actions:

a) The target shall halt the operation of all fetch agents for all logical units by making transitions to the
DEAD state;

b) The target shall not issue data transfer requests for any task in any task set;

c) The target shall wait for response subactions to pending data transfer requests for any task in any
task set;

d) For all tasks for which command execution is complete, the target shall wait until the completion
status of each command has been successfully stored in system memory or until implementation-
dependent retry algorithms have been exhausted in the attempt to store completion status;

e) The target shall create (and should attempt to signal via unsolicited status) a unit attention condition
for all logged-in initiators other than the initiator, identified by login_ID, that signaled the target reset
request; and

f) When all of the above events have completed, the target shall store completion status for the target
reset request in the status buffer provided. The completion status shall indicate REQUEST
COMPLETE.

The initiator shall not reuse the system memory occupied by any of the affected ORBs, data buffers or page
tables of the tasks until completion status is returned for the target reset request.

10.6 Task management event matrix

Common events that affect the state of logical unit fetch agents and their associated task sets are
summarized below. Refer to the governing clauses in sections 8 and 9 as well as this section for detailed
information.

T10/1467D Revision 4

102

When an event affects more than one task set, all of the associated fetch agents enter the state indicated
by the table. With respect to events supported by the target’s management agent, e.g., logout, there is an
assumption of successful completion. In the case of a function rejected response or other indication of
failure, the preceding table does not apply.

Bus resets affect logical unit fetch agents and task sets according to the kind of request (login or create
task set) by which the initiator first acquired access privileges.

Immediately upon detection of a bus reset, all command block fetch agents for logins without the
bridge_aware attribute enter the reset state and their associated task sets are cleared without the return of
completion status. The operations of command block fetch agents for logins with the bridge_aware attribute
and whose initiator is identified by a local node ID are paused until the node IDs for any node handles that
refer to nodes on the local bus are updated to reflect changes in physical ID caused by bus reset; once this
is complete, fetch agent operations resume without clearing the task set.

Immediately upon detection of a net update, all command block fetch agents for logins whose initiator is
identified by a global node ID enter the reset state and their associated task sets are cleared without the
return of completion status.

For reconnect_hold + 1 seconds subsequent to a bus reset, net update or missed heartbeat, targets save
state information for initiators that were logged-in at the time of the event. For bus reset, the timer
commences when the target observes the first subaction gap subsequent to a bus reset; if a bus reset

Event AGENT_STATE.st Task sets

Power reset RESET Clear all task sets

Command reset
(write to RESET_START) RESET Clear all task sets

Bus reset
RESET

(logins that are not
bridge-aware)

Clear all task sets that are not
bridge-aware

Net update
RESET

(logins that are
bridge-aware)

Clear all bridge-aware task sets

Reconnect hold expires — Logout the initiator that has failed
to successfully reconnect

Login — —

Create task set — —

Reconnect — —

Logout RESET Abort initiator’s task set

Fetch agent reset
(write to AGENT_RESET) RESET Abort initiator’s task set

Faulted command
(CHECK CONDITION) DEAD Abort faulted initiator’s task set

ABORT TASK — —

ABORT TASK SET DEAD Abort specified task set

LOGICAL UNIT RESET DEAD Abort all the logical unit’s task sets

TARGET RESET DEAD Clear all task sets

T10/1467D Revision 4

103

occurs before the timer expires, the timer is reset. For net update, the time-out commences when the
target’s QUARANTINE.orphan bit changes from one to zero; if the orphan bit changes from zero to one
before the time-out expires, the timer is zeroed and restarted when the orphan bit is once again zeroed.
Otherwise, for missed heartbeat, the time-out commences upon the heartbeat timer’s expiration; if net
update commences before the reconnect_hold the time-out expires, the timer is zeroed, restarted upon the
next transition of QUARANTINE.orphan from one to zero and thereafter the time-out is managed as
described for net update. If an initiator successfully completes a reconnect request during this period, the
actions described in 8.6 occur. For command block requests, the task set is empty and, once the fetch
agent is initialized, the initiator may signal new ORBs to the fetch agent.

Once reconnect_hold + 1 seconds have elapsed after a bus reset, net update or missed heartbeat, the
target shall automatically perform a logout operation for all login IDs and task set IDs that have not been
reconnected with their initiator. This returns all the affected fetch agents to the reset state and aborts all the
affected task sets.

T10/1467D Revision 4

105

11 Isochronous operations

11.1 Isochronous operations overview

This section describes procedures that may be used by an initiator to request a logical unit to transfer data
associated with a command by isochronous instead of asynchronous methods. Two fundamentally different
methods are available to control logical unit isochronous operations:

– Command set-dependent. This provides the most flexible and fully featured control of isochronous
operations, since the command set is designed with intimate knowledge of Serial Bus isochronous
behavior. Command set-dependent methods are beyond the scope of this standard—although an
example of the transport of one such command set is given in Annex D.

– Transport protocol-dependent. This method leverages existing command sets designed without
knowledge of Serial Bus isochronous behavior. Because such command sets do not specify all the
information necessary to transfer data isochronously, supplemental information available from the
transport protocol or other external source is merged with the data transfer length obtained from each
command. This approach makes simplifying assumptions and is not as flexible as command set-
dependent methods.

The remainder of this section specifies how to use SBP-3 facilities in conjunction with the connection
management methods described in IEC 61883-1 to control isochronous operations of devices whose
command sets are unaware of the isochronous facilities of Serial Bus. The methods are applicable only to
devices that transmit no more than one isochronous output stream and receive no more than one
isochronous input stream at a time. Example devices might include DVD players or printers (talkers) and
scanners (listeners).

Control of isochronous operations involves the following elements:

– the allocation of Serial Bus resources, such as channel numbers and bandwidth (isochronous
resource management);

– the establishment or breaking of connections between the logical unit and the talker or the listeners
(connection management);

– the transfer of isochronous data to or from the logical unit’s medium (command block ORBs); and

– the starting, stopping and synchronization of isochronous data reception or transmission by the target
from or to Serial Bus.

Since there are significant differences between isochronous talkers and listeners, the operational details are
described separately in the clauses that follow.

11.2 Talker operations

An isochronous talker is permitted to transmit zero or one isochronous subactions per isochronous period
on a specified channel; the maximum data payload of the subaction is constrained both by the transmission
speed and by the bandwidth previously allocated for the talker. The maximum data payload permitted at
different transmission speeds is specified by IEEE 1394 and, for convenience of reference, is summarized
by the table below.

T10/1467D Revision 4

106

Table 3 – Maximum payload for isochronous subactions

Since the logical unit’s command set has no means to specify channel, speed or maximum data payload,
the logical unit shall obtain this information from the output plug control register (oPCR) identified by the
configuration ROM Plug_Control_Register entry (whose direction bit is one) associated with the logical unit.
If there is more than one such entry with a direction bit equal to one, unpredictable behavior beyond the
scope of this standard may result. The initiator programs the channel and speed information in the oPCR but
the maximum data payload is implementation-dependent and provided by the logical unit. Whenever the
logical unit is ready to accept data transfer commands, the online bit in the oPCR shall be one and the
payload field shall report the logical unit's maximum data payload per isochronous subaction, in quadlets.
The size reported by the payload field shall not exceed the maximum data payload permitted for the speed
reported by the data_rate_capability field in the target's output master plug register (oMPR).

NOTE – A payload value of zero encodes a size of 1024 quadlets, per IEC 61883-1.

Before an initiator signals data transfer commands to a logical unit within ORBs whose isochronous bit is
one, it shall allocate the necessary isochronous resources and program the logical unit's oPCR as specified
below:

a) The initiator shall read the target's oMPR to determine the fastest transmission speed supported
and shall read the logical unit's oPCR to determine the maximum data payload;

b) The initiator shall select a transmission speed10 less than or equal to the fastest speed supported
by the target and shall adjust the maximum data payload to the smaller of the value obtained from
the logical unit's oPCR and the maximum permitted at the selected transmission speed. The
initiator shall attempt to obtain the necessary bandwidth for the data payload from the isochronous
resource manager's BANDWIDTH_AVAILABLE register. If the bandwidth is unavailable, the initiator
shall not signal any command block ORBs to the logical unit with an isochronous bit equal to one;

c) Otherwise, the initiator shall attempt to allocate a channel from the isochronous resource manager's
CHANNELS_AVAILABLE register. If no channel is available, the initiator shall release the bandwidth
previously obtained and shall not signal any command block ORBs to the logical unit with an
isochronous bit equal to one;

d) Once both bandwidth and channel have been allocated, the initiator shall program the logical unit's
oPCR with channel number and speed and shall increment the point-to-point connection count in
accordance with the procedures specified by IEC 61883-1. If the speed selected by the initiator
limits the maximum data payload to a value smaller than that reported by the logical unit in the

10 The choice of transmission speed is influenced both by Serial Bus topology between the target (talker) and one

or more listeners and by the speed capabilities of the listeners.

Speed

Maximum
data payload

(bytes)

S100 1024

S200 2048

S400 4096

S800 8192

S1600 16384

S3200 32768

T10/1467D Revision 4

107

oPCR payload field, the logical unit shall update the payload field with the maximum data payload
permitted for the selected speed.

After the oPCR has been programmed with channel number and speed and the point-to-point connection
count is nonzero, the logical unit is ready to accept command block ORBs whose isochronous bit is one.
Because the data shall be transmitted isochronously, the ORB shall not specify the address of a buffer but
shall specify a total data_size for the data to be transmitted by the command; the direction bit in the ORB
shall be one (see 5.2.3). The logical unit shall transmit the requested data on Serial Bus as specified by 9.5.
When all of the requested data, up to the limit of data_size, has been transmitted, the logical unit shall store
completion status for the ORB at the initiator's status_FIFO.

When the initiator has concluded isochronous operations with the logical unit (either because logout is
imminent or in anticipation of substantial logical unit idle time), the initiator shall follow the procedures
specified by IEC 61883-1 to program the logical unit's oPCR and decrement the point-to-point connection
count. The initiator shall also release the isochronous resources, bandwidth and channel number, previously
allocated.

11.3 Listener operations

An isochronous listener expects to receive zero or one isochronous subactions per isochronous period on a
specified channel; the maximum data payload of the subaction is constrained by the reception speed as
specified by IEEE 1394 and summarized in Table 3.

Since the logical unit’s command set has no means to specify channel number, the logical unit shall obtain
this information from the input plug control register (iPCR) identified by the configuration ROM
Plug_Control_Register entry (whose direction bit is zero) associated with the logical unit. If there is more
than one such entry with a direction bit equal to zero, unpredictable behavior beyond the scope of this
standard may result. The initiator programs the channel number information in the iPCR. Whenever the
logical unit is ready to accept data transfer commands, the online bit in the iPCR shall be one.

Before an initiator signals data transfer commands to a logical unit within ORBs whose isochronous bit is
one, it shall either allocate the necessary isochronous resources or determine that they have been allocated
and program the logical unit's iPCR as specified below:

a) The initiator shall read the target's input master plug register (iMPR) to determine the fastest
reception speed supported and shall examine Serial Bus topology between the talker and the target
(listener) to determine the fastest speed isochronous subactions may be transmitted from the talker
to the target;

b) If the initiator controls the talker, it shall configure it to transmit isochronous subactions no faster
than the speed determined in the preceding step. Otherwise, the initiator shall determine the speed
at which the talker is transmitting or will transmit isochronous subactions; if it is greater than speed
determined in the preceding step, the initiator shall not signal any command block ORBs to the
logical unit with an isochronous bit equal to one;

c) If the initiator does not control the talker it shall skip this step. Otherwise, it shall determine the
maximum data payload for the talker's isochronous subactions and shall attempt to obtain the
necessary bandwidth for the data payload from the isochronous resource manager's
BANDWIDTH_AVAILABLE register. If the bandwidth is unavailable, the initiator shall not signal any
command block ORBs to the logical unit with an isochronous bit equal to one;

d) If the initiator does not control the talker it shall skip this step. Otherwise, it shall attempt to allocate
a channel from the isochronous resource manager's CHANNELS_AVAILABLE register. If no channel
is available, the initiator shall release the bandwidth previously obtained and shall not signal any
command block ORBs to the logical unit with an isochronous bit equal to one;

T10/1467D Revision 4

108

e) Otherwise, the initiator shall attempt to allocate a channel from the isochronous resource manager's
CHANNELS_AVAILABLE register. If no channel is available, the initiator shall release previously
obtained bandwidth, if any, and shall not signal any command block ORBs to the logical unit with
an isochronous bit equal to one;

f) Once both bandwidth and channel have been allocated (whether by the initiator or another device),
the initiator shall program the logical unit's iPCR with channel number and shall increment the point-
to-point connection count in accordance with the procedures specified by IEC 61883-1.

After the iPCR has been programmed with channel number and the point-to-point connection count is
nonzero, the logical unit is ready to accept command block ORBs whose isochronous bit is one. Because
the data shall be received isochronously, the ORB shall not specify the address of a buffer but shall specify
a total data_size for the data to be received by the command; the direction bit in the ORB shall be zero (see
5.2.3). The logical unit shall receive the requested data from Serial Bus as specified by 9.5. When all of the
requested data, up to the limit of data_size, has been received, the logical unit shall store completion status
for the ORB at the initiator's status_FIFO.

When the initiator has concluded isochronous operations with the logical unit (either because logout is
imminent or in anticipation of substantial logical unit idle time), the initiator shall follow the procedures
specified by IEC 61883-1 to program the logical unit's iPCR and decrement the point-to-point connection
count. If the initiator previously allocated isochronous resources, bandwidth and channel number, it shall
release them.

11.4 Implementation recommendations (informative)

The following suggestions are intended as useful guidance for implementers. They might not be the most
appropriate choices for all command sets. For example, a device whose command set is cognizant of data
streaming requirements may find it preferable to ignore certain isochronous errors rather than abort tasks
and task sets.

– The online bits in the logical unit's plug control registers should be zero when no initiator is logged in;

– An initiator should perform an exclusive login before programming a logical unit's plug control registers;

– Logical units should ignore missed cycle start indications. Talkers may transmit the data during the
next isochronous period; listeners that implement "loose isochronous" reception (as permitted by
IEEE Std 1394a-2000) are likely to receive any isochronous subaction intended for them even if they
fail to observe the cycle start subaction;

– A talker that detects data underrun during transmission or a listener that detects data overrun during
reception of an isochronous subaction should abort the task and the task set to which it belongs;

– An initiator receiving data from a talking logical unit should, once completion status has been stored at
the initiator's status_FIFO, verify that the quantity of data received is equal to the quantity expected. If
there is a mismatch, the initiator should abort the task set and reissue the command;

– An initiator transmitting data to a listening logical unit should time the completion of the command in
order to detect isochronous data transfer errors. This is because the listening logical unit cannot
determine when all data has been transferred except when the ORB data_size field is reached or
exceeded. An exception to this recommendation exists when the data format used by the logical unit's
command set is self-descriptive and the logical unit is capable of parsing the received data to
autonomously determine when data transfer is complete.

The preceding recommendations have been made from the point of view that when the logical unit is the
talker, the initiator is the listener and vice versa—but this is not a requirement. The initiator may be neither
talker nor listener and, if the logical unit is a listener, is not necessarily be in control of the talker.

T10/1467D Revision 4

109

Annex A
(normative)

Minimum Serial Bus node capabilities

In addition to the minimum capabilities defined by IEEE 1394, this annex specifies other capabilities that an
initiator or a target shall support in order to implement SBP-3.

Once a node that implements one or more initiators or targets completes its power reset initialization
sequence, it shall acknowledge, and subsequently respond to, Serial Bus transaction request subactions
within the time limits specified by IEEE 1394. A Serial Bus reset shall not alter a node's responsiveness to
request subactions.

A.1 Initiator capabilities

With the exception of configuration ROM and control and status registers, an initiator shall be capable of
responding to block read or write requests with a data_length less than or equal to 32 bytes.

An initiator shall also be capable of responding to block read requests with a data_length less than or equal
to 4 * ORB_size, where ORB_size is obtained from the Unit_Characteristics entry in the target's
configuration ROM.

For the largest value of max_payload specified in any command block ORB signaled to the target, the
initiator shall be capable of responding to block read and write requests with a data_length less than or
equal to 2 max_payload + 2 bytes.

The initiator shall report the largest of these possible data_length values by setting the value of the max_rec
field in the bus information block in its configuration ROM to a value equal to or greater than (log2
data_length) - 1.

A.2 Target capabilities

A target shall be capable of responding to block read or write requests with a data_length equal to eight
bytes if the destination_offset specifies either the MANAGEMENT_AGENT or the ORB_POINTER register.

A target shall be capable of initiating write requests and shall report this by setting the drq bit in the
Node_Capabilities entry in configuration ROM to one. Consequently, the target shall implement the dreq bit
in the STATE_CLEAR and STATE_SET registers. The value of STATE_CLEAR.dreq shall be unaffected by a
Serial Bus reset. The target may automatically set dreq to zero (request initiation enabled) upon a power
reset or a command reset.

A target shall be capable of initiating block write requests with a data_length of at least eight bytes and shall
report this by setting the value of the max_rec field in the bus information block in configuration ROM to a
value greater than or equal to two.

While initializing after a power reset, a target shall respond to quadlet read requests addressed to
FFFF F000 040016 with either a response data value of zero or acknowledge the request subaction with
ack_tardy, as specified by IEEE Std 1394a-2000. This indicates that the remainder of configuration ROM, as
well as other target CSRs, are not accessible.

T10/1467D Revision 4

110

A.3 Target security

As mandated by IEEE 1394, a target shall abide by the following restrictions:

– If a target's unique ID, EUI-64, is read from the configuration ROM bus information block by quadlet
read requests, the value returned shall be the EUI-64 assigned by the manufacturer;

– The target shall not originate a request or response subaction with a source_ID field that is not equal
to either a) the most significant 16 bits of the target’s NODE_IDS register or b) the concatenation of
3FF16 and the physical ID assigned to the target’s PHY during the self-identify process; and

– The target shall not receive a request or response subaction that specifies destination_ID unless that
field is equal to either a) the concatenation of the most significant 10 bits of the target’s NODE_IDS
register and either the physical ID assigned to the target’s PHY during the self-identify process or
3F16, or b) the concatenation of 3FF16 and either the physical ID assigned to the target’s PHY during
the self-identify process or 3F16.

T10/1467D Revision 4

111

Annex B
(normative)

SCSI command and status encapsulation

SBP-3 defines a protocol that permits initiators to control the operation of devices (disks, tapes, printers,
etc.), but it does not specify the command sets used by the devices—only the mechanisms by which
commands, data and status are transported. This annex specifies how SBP-3 may be used for devices that
use the SCSI command sets. This encompasses encapsulation of SCSI command descriptor blocks
(CDBs), a standard format for SCSI status and sense data and the necessary configuration ROM entries.

B.1 SCSI command descriptor block

SBP-3 provides for the transport of 6-, 10-, 12- and 16-byte SCSI CDBs within single buffer descriptor or dual
buffer descriptor command block ORBs (a single buffer descriptor ORB is illustrated by Figure B-1). There is
no fundamental limit on the size of a command block, although many targets implement a 32-byte ORB
(illustrated by the shaded area). When CDBs encapsulated within an ORB do not occupy all of the
command-dependent portion of the ORB, the least significant (unused) bytes of the ORB shall be zero.

Figure B-1 – SCSI command block ORB

Parts of the control byte (the last byte of a SCSI command descriptor block) are constrained to values
illustrated by Figure B-2.

Figure B-2 – SCSI control byte

The naca, or normal ACA, bit shall be zero; SBP-3 does not support SAM-2 auto contingent allegiance.

cdb[15]

next_ORB

data_descriptor

n

most significant

least significant

rq_fmt
(0)

r data_size d spd max_payload page_size p

naca (0) obsolete link (0) vendor-dependent

cdb[4]

reserved

cdb[5] cdb[6] cdb[7]

cdb[0]

most significant

cdb[1]

least significant

cdb[2] cdb[3]

cdb[8] cdb[9] cdb[10] cdb[11]

cdb[12] cdb[13] cdb[14]

T10/1467D Revision 4

112

The link bit shall be zero; SBP-3 does not support linked commands.

B.2 SCSI status and sense data

Upon completion of a command, if the notify bit in the ORB is one or if there is exception status to report,
the target shall signal the initiator by storing a status block in either of the formats shown by Figure B-3 and
Figure B-4 at the status_FIFO address provided by the initiator as part of the login request.

Figure B-3 – Status block for fixed format SCSI sense data

Figure B-4 – Status block for descriptor format SCSI sense data

When a command completes with GOOD status, only the first two quadlets of the status block shall be
stored at the status_FIFO address; the len field shall be one. Otherwise, both SCSI status and sense data
shall be stored in a status block that conforms to one of the formats illustrated above.

The src, resp, len, sbp_status, ORB_offset_hi, ORB_offset_lo and additional_len (present only in an
extended status block) fields, as well as the dead bit (abbreviated as d in the figure above), are as previously
described in 5.4.

additional_sense_data

vendor-dependent

information

most significant

least significant

ORB_offset_lo

ORB_offset_hi src resp

sense_key

CDB-dependent

fru sense_key-dependent

r

i e m v ascq asc

d sbp_status len

sfmt status

most significant

least significant

ORB_offset_lo

ORB_offset_hi src resp

sense_key

sense_data_descriptors

r

reserved de ascq asc

d sbp_status len (0)

sfmt status

additional_len reserved

T10/1467D Revision 4

113

When len is nonzero, SBP-3 permits the return of a status block between two and eight quadlets in length. If
status block smaller than eight quadlets is stored, the omitted quadlets shall be interpreted as if zero values
were stored. Otherwise, when len is zero, the size of the extended status block is described by
additional_len (see Figure B-4).

The sfmt field shall specify the format of the status block and shall additionally indicate whether the error
condition associated with sense_key is current or deferred. The table below defines permissible values for
sfmt.

The status field shall contain SCSI status information as defined by SAM-2, with the exceptions noted in the
table below.

The valid bit (abbreviated as v in Figure B-3) shall specify the content of the information field. When the valid
bit is zero, the contents of the information field are not specified. When the sfmt field has a value of zero or
one and the valid bit is one, the contents of the information field shall be as defined by SPC-2 or the relevant
command set standard.

The meanings of the mark , eom and illegal_length_indicator bits (abbreviated as m, e and i, respectively, in
Figure B-3) are defined by SPC-2 or the relevant the command set standard. These bits correspond to the
filemark, EOM and ILI bits defined by SPC-2 for sense data.

When the deferred_error bit (abbreviated as de in Figure B-4) is one, the sense data describes a deferred
error. Otherwise the sense data describes a current error.

Value Description

0 Current error; fixed format status block defined by this standard

1 Deferred error; fixed format status block defined by this standard

2
Descriptor format status block defined by this standard

3 Vendor-dependent status block format

Value Description

0 GOOD

2 CHECK CONDITION

4 CONDITION MET

8 BUSY

1016 Not supported by SBP-3

1416 Not supported by SBP-3

1816 RESERVATION CONFLICT

2216 Obsolete

2816 Not supported by SBP-3

3016 Not supported by SBP-3

All other values Reserved for future standardization

T10/1467D Revision 4

114

The sense_key, asc and ascq fields shall contain command completion information defined by SPC-2 or the
relevant the command set standard. These fields correspond to the sense key, additional sense code and
additional sense code qualifier fields defined by SPC-2 for sense data.

The contents of the information field are unspecified if either the valid bit is zero or the sfmt field has a value
of three. For sfmt values of one or two, the contents of the information field are device-type or command
dependent and, if the valid bit is one, are defined within SPC-2 or the appropriate standard for the command.
Characteristic uses of the information field are for:

– the unsigned logical block address associated with sense_key and the command; or

– the least significant 32-bits of the unsigned logical block address associated with sense_key and the
command; or

– the residue of the requested data transfer length minus the actual data transfer length, in either bytes
or blocks as determined by the command. Negative values are indicated in two’s complement
notation.

The contents of the CDB-dependent field (which corresponds to the SPC-2 sense data command-specific
information field) are device-type or command dependent and are defined within SPC-2 or the appropriate
standard for the command.

The fru field corresponds to the field replaceable unit code field defined by SPC-2 for sense data.

When sfmt has a value of zero or one, the contents of the sense_key-dependent field (which corresponds to
the SPC-2 sense data sense key-specific field) are defined by SPC-2 or the relevant command set standard.
In this case the most significant bit of the sense_key-dependent field is the SKSV bit defined by SPC-2.
When sfmt is equal to three, the contents of sense_key-dependent are unspecified.

The additional_sense_data field, when present, shall contain additional sense bytes defined by SPC-2 or the
relevant command set standard. The presence of additional_sense_data requires an extended status block;
the quantity of additional_sense_data may be derived from additional_len.

NOTE – When SCSI sense data is contained within an extended status block, the sense data is offset by one
quadlet because of the presence of the additional_len field. This is not shown in Figure B-3, but an example
is given by Figure B-4.

The sense_data_descriptors field, when present, shall contain one or more sense data descriptors as
defined by SPC-3 [B16] for descriptor format sense data.

B.3 Configuration ROM

SCSI targets shall implement configuration ROM in accordance with section 7 and this annex. At least one
logical unit, logical unit zero, shall be implemented; additional logical units may be implemented. A logical
unit is described by entries in a unit directory or by entries in a logical unit directory dependent upon the unit
directory or by entries taken in combination from both places.

B.3.1 Command_Set_Spec_ID entry

The Command_Set_Spec_ID entry is an immediate entry in either a unit or logical unit directory that
specifies the organization responsible for the command set definition for the target. The format of this entry
is specified by 7.8.5.

T10/1467D Revision 4

115

SCSI targets shall have a command_set_spec_ID value of 00 609E16, which indicates that INCITS is
responsible for the command set definition.

B.3.2 Command_Set entry

The Command_Set entry is an immediate entry in either a unit or logical unit directory that, in combination
with the command_set_spec_ID, specifies the command set implemented by the target. The format of this
entry is specified by 7.8.6.

SCSI targets shall have a command_set value of 01 04D816, which indicates that the target's command set
is specified by SCSI Primary Commands 2 (SPC-2) and related command set standards—as determined by
the target’s peripheral device types. In addition, this command_set value specifies that the target conforms
to all requirements of this annex.

B.3.3 Logical_Unit_Number entry

The Logical_Unit_Number entry is an immediate entry in either a unit or logical unit directory that specifies
the peripheral device type and logical unit number of a logical unit implemented by the SCSI target. The
format of this entry is specified by 7.8.15.

The device_type field indicates the peripheral device type implemented by the logical unit. This field shall
contain a value specified by the table below.

Value Peripheral device type

0 – 1E16 The value of device_type shall have the same meaning as
the peripheral device type field returned in INQUIRY data
as specified by SPC-2

1F16 Unknown device type

T10/1467D Revision 4

117

Annex C
(normative)

Security extensions

SBP-3 specifies an access protocol, in section 8, that by itself makes no provisions for security. This annex
defines extensions to SBP-3 that may be implemented by targets to provide some measure of security.
Targets that implement these security extensions shall conform to all provisions of this annex.

Conformance to this annex does not preclude additional, command set-dependent security facilities.

C.1 Passwords

A target shall implement two passwords:

– The master password, which shall be unchangeable and equal to the target serial number. The target
serial number should be in a humanly readable form affixed to the target. The master password shall
not be readable via the target's Serial Bus interface except by a logged-in initiator; and

– The current password, which shall accommodate 28 bytes of password data and shall be alterable
only by the set password function (see clause C.3).

All password values shall be unchanged by power reset, bus reset or command reset.

The value of the master password shall be obtainable by command set-dependent means.

A target may be manufactured with a current password of all zeros, with the expectation that the user
assign a nonzero current password as part of target initialization. If a target is manufactured with a nonzero
current password, the target shall be shipped with the current password in a humanly readable form.

C.2 Login

The description of the login protocol below reproduces that specified by section 8 and adds validation of
cumulative login attempts and the password field from the login request. The target shall implement an
internal counter, login_attempts, which shall be zeroed upon a power reset or upon a successful login or
logout request. The target shall perform the following, in the order specified, to validate a login request:

a) If the source_ID from the write request used to signal the login ORB to the target’s
MANAGEMENT_AGENT register contains a global node ID but the target does not implement bridge-
aware capabilities, the target shall respond with a type error;

b) If login_attempts is equal to three, the target shall reject the login request with an sbp_status of
access denied and shall not increment login_attempts;

c) In cases where source_ID is local, the aware bit is set in the login ORB and the target does not
implement bridge-aware capabilities, the target shall reject the login request with an sbp_status of
function rejected but login_attempts shall not be incremented;

d) If source_ID contains a global node ID and the target implements bridge-aware capabilities, the target
shall examine the aware bit in the login ORB and, if zero, shall reject the login with an sbp_status of
function rejected but login_attempts shall not be incremented. When the login specifies a global node
ID and the aware bit is one, the target shall use a TIMEOUT request, as defined by draft standard
IEEE P1394.1, to obtain the EUI-64 of the initiator and its remote timeout information;

T10/1467D Revision 4

118

e) Otherwise source_ID is local and the target shall read the initiator’s unique ID, EUI-64, from the bus
information block by means of two quadlet read transactions. The source_ID from the write transaction
used to signal the login ORB to the target’s MANAGEMENT_AGENT register shall be used as the
destination_ID in the quadlet read transactions;

f) If the update bit in the login ORB is zero, the target shall determine whether or not the initiator already
owns a login by comparing the EUI-64 just obtained against the login_owner_EUI_64 for all
login_descriptors. If the initiator is currently logged-in to the same logical unit, the login request shall
be rejected with an sbp_status of access denied but login_attempts shall not be incremented.
Otherwise, when the update bit is one, the target shall verify that the initiator owns the login identified
by login_ID and, if not, shall reject the login request with an sbp_status of invalid login ID but
login_attempts shall not be incremented;

g) The target shall validate the password provided by the login request. If password_length is zero, the
password is eight bytes of immediate data present in the password field. Otherwise password_length
specifies the size of the password addressed by password. If password_length is greater than 28 the
target shall increment login_attempts and reject the login request with an sbp_status of access
denied. When password_length is valid, the password provided is extended to 28 bytes by the addition
of least significant bytes of zeros; the result is compared with the target's passwords. If the password
provided matches neither the target's current nor its master password, the login_attempts count shall
be incremented and the login request shall be rejected with an sbp_status of access denied;

h) If the exclusive bit is set in the login ORB, the target shall reject the login request (with an sbp_status
of access denied) if there are any active login_descriptors for the logical unit (other than one whose
login_owner_EUI_64 matches the EUI-64 of the initiator requesting the login) but shall not increment
login_attempts;

i) If an active login_descriptor with the exclusive attribute exists for the lun specified in the login ORB
(other than one whose login_owner_EUI_64 matches the EUI-64 of the initiator requesting the login),
the target shall reject the login request (with an sbp_status of access denied) but shall not increment
login_attempts; else

j) If the update bit in the login ORB is zero, the target shall determine if a free login_descriptor is
available and, if none are available, reject the login request with an sbp_status of resources
unavailable. Otherwise, the target shall determine whether or not the initiator already owns a login by
comparing the EUI-64 obtained by either a TIMEOUT request or configuration ROM read against
login_owner_EUI_64 for all login_descriptors. If the initiator is not logged-in to the logical unit identified
by lun, the target shall reject the login request with an sbp_status of invalid login ID.

If the update bit is zero, once the above conditions have been met and a login_descriptor allocated, the
initiator’s source_ID is stored in login_owner_ID, the initiator’s EUI-64 is stored in login_owner_EUI_64, the
lun and status_FIFO fields from the login ORB are stored in the login_descriptor, the bridge_aware and
exclusive variables in the login_descriptor are set to the values of the aware and exclusive bits, respectively,
from the login ORB and the address of the fetch agent and the reconnect_hold value chosen by the target
are stored in the login_descriptor. If the bridge_aware variable is true, the target allocates a node handle to
the initiator (the process is essentially the same as described by 8.4.2). Lastly the target assigns a unique
login_ID to this login and stores it in the login_descriptor.

When the update bit is one, the login request permits the initiator to change parameters associated with the
login. If the login request meets all of the validation requirements described above, the target shall logout the
initiator (see 8.7) without returning completion status and then shall process the login in accordance with
the requirements of this clause. The target shall perform these two steps such that no other initiator is
afforded an opportunity to login between the time that target resources have been released and the time the
update login request completes.

T10/1467D Revision 4

119

If the target is able to satisfy the login request, it shall zero login_attempts and return a login response as
specified in 5.2.4.2. When the update bit in the login ORB is one, the information returned in the login
response may differ from that previously associated with the login.

C.3 Set password

In order to change a target's current password, an initiator may use a management ORB with the format
shown below.

Figure C-1 – Set password ORB

The password and password_length fields contain the new value for the current password. If password_length
is zero, the password field contains immediate data. When password_length is nonzero, the password field
shall conform to the format for address pointers specified by Figure 10 and shall contain the address of a
buffer. The maximum value of password_length shall be 28. The buffer shall be in the same node as the
initiator and shall be accessible to a Serial Bus block read request with a data transfer length less than or
equal to password_length.

The notify bit and the rq_fmt and function fields are as previously defined for management ORB formats.

The login_ID field shall contain a login ID value obtained as the result of a successful login.

The status_FIFO field shall contain an address allocated for the return of status for the SET PASSWORD
request, only. The contents of this field shall not update the status FIFO address established by the
successful login that returned login_ID.

If login_ID specifies a valid current login for the initiator that signaled the SET PASSWORD request to the
target's MANAGEMENT_AGENT register, the target shall update the current password to the new value
specified by the set password request. The target shall not return completion status for the request unless
either the request is rejected or the new password has been successfully stored such that it will not be
affected by any subsequent power reset, bus reset or command reset.

reserved

password

reserved

status_FIFO

login_ID

most significant

least significant

function
(4)

reserved password_length

n rq_fmt
(0)

reserved

T10/1467D Revision 4

121

Annex D
(normative)

AV/C Encapsulation

Devices that use the AV/C Digital Interface Command Set use IEC 61883-1 Function Control Protocol (FCP)
for the encapsulation of command and status. This annex specifies how SBP-3 may be utilized as the
transport layer in place of FCP.

AV/C devices are consumer electronic devices such as camcorders, VCRs, stereo tuners and televisions—
this is not an exhaustive list. Their commands, status and operations are standardized by the 1394 Trade
Association Specification for AV/C Digital Interface Command Set General Specification [B1] and related
1394 Trade Association specifications. These devices present or accept most of their data over Serial Bus
isochronous channels; asynchronous requests are used for control information.

D.1 Logical unit, unit and subunit models

SBP-3 describes a hierarchical device structure composed of units with subordinate logical units. AV/C has
a hierarchical structure of units with subordinate subunits.

An AV/C unit is described by configuration ROM entries in a unit directory and is implemented as a single
logical unit. AV/C subunits are not visible as SBP-3 objects; except for task sets that result from create task
set operations, a single task set is maintained for commands for all the subunits of an AV/C unit.

D.2 AV/C command sequence

An AV/C command sequence consists of a command frame delivered to the AV/C device and one or two
response frames returned to the controller. Return of the final response frame is indicated when ORB
completion status is stored at the status_FIFO associated with the login; an interim response may be
signaled by interim status stored at the same status_FIFO. Both command and response frames are
variable-length data structures between four and 512 bytes in length, which shall be described by a
command block ORB with dual buffer descriptors, as illustrated below.

T10/1467D Revision 4

122

Figure D-1 – AV/C command sequence ORB

The next_ORB, rq_fmt, spd, max_payload, and page_size fields and the notify, direction and
page_table_present bits (abbreviated as n, d, and p, respectively, in the figure above) are as specified in
5.2.3.

The first buffer descriptor in the ORB, command_frame, references a buffer that contains an AV/C command
frame in the format specified by IEC 61883-1. The direction bit associated with this buffer descriptor shall be
zero. Page tables are not used for AV/C command frames; the page_table_present bit shall be zero and
command_frame_size shall be less than or equal to 512.

The second buffer descriptor in the ORB, response_frame, references a buffer into which the AV/C device
may store a response frame in the format specified by IEC 61883-1. The direction bit associated with this
buffer descriptor shall be one. Page tables are not used for AV/C response frames; the page_table_present
bit shall be zero and response_frame_size shall be a multiple of eight and less than or equal to 1024.

AV/C commands shall return a final response frame and may return an interim response frame. Both
response frames are stored in the buffer described by the response_frame field. Final response frames shall
be stored at relative offset zero within the buffer. Interim response frames shall be stored at relative offset
response_frame_size / 2 within the same buffer. If response_frame _size / 2 is less than the size of either
the final or interim response frame, the target shall not store an interim response. If no interim response is
stored, the entire buffer may be used for the final response.

NOTE – The maximum response frame size permitted by AV/C is 512 bytes. An initiator that provides a
response frame buffer of 1024 bytes guarantees that there is sufficient space for both an interim and a final
response frame.

Because the entire AV/C command sequence consists of the command and response frames, there is no
command-dependent information in the ORB.

D.3 AV/C status

Upon completion of an AV/C command and after the final response frame has been stored, the target shall
signal the initiator by storing the status block shown by Figure D-2 at the status_FIFO address provided by
the initiator as part of the login request. Prior to the return of a final response, the target may also signal
interim status in the same format to the same status_FIFO.

response_frame_size

n
(1)

rq_fmt
(1)

r command_frame_size d
(0)

spd max_payload page_size
p

(0)

next_ORB

command_frame (pointer)

most significant

reserved d
(1)

spd max_payload page_size
P
(0)

response_frame (pointer)

least significant

T10/1467D Revision 4

123

Figure D-2 – Status block format AV/C command sequence

The src, resp, len, sbp_status , ORB_offset_hi and ORB_offset_lo fields, as well as the dead bit
(abbreviated as d in the figure above), are as previously described in 5.4; the len field shall be one.

AV/C devices use the src field as specified by the table below.

The response_frame_length field shall specify the size of the response frame stored by the AV/C command
in the buffer provided by the command sequence ORB.

NOTE – The offset of the response frame within the buffer is determined by src.

D.4 Configuration ROM

The sample bus information block and root directory for basic targets illustrated in Annex F are equally
applicable to targets that use the AV/C command set and are not repeated below. Figure D-3 shows an
example of a unit directory for an AV/C device.

Figure D-3 – AV/C unit directory

Value Description

0

1
Final response frame

2 Not used by AV/C devices

3 Interim response frame

ORB_offset_hi src resp d sbp_status len (1)

ORB_offset_lo

1416

7 Unit directory CRC (calculated)

Unit type and number (5F 000016)

Unit characteristics (00 0A0816)

most significant

least significant

command_set (01 000116)

version (01 05BB16)

3A16

5416 csr_offset (00 400016)

specifier_ID (00 609E16) 1216

1316

command_set_spec_ID (00 A02D16) 3816

3916

most significant

least significant

r

response_frame_length reserved

T10/1467D Revision 4

124

The Command_Set_Spec_ID and Command_Set_Version entries, with a key field of 3816 and 3916,
respectively, specify that the target uses the AV/C command set defined by the 1394 Trade Association.

The Management_Agent entry in the unit directory, with a key field of 5416, has a csr_offset value of
00 400016 that indicates that the MANAGEMENT_AGENT register has a base address of FFFF F001 000016
within the node’s memory space.

The Unit_Characteristics entry in the unit directory, with a key field of 3A16, has an immediate value of
00 0A0816. This indicates a target is expected to complete a login within five seconds and fetches 32-byte
ORBs.

The Logical_Unit_Number entry in the unit directory, with a key field of 1416, has an immediate value of
5F 000016; this identifies logical unit zero and indicates that AV/C commands are used to query the number
and type of subunits associated with the unit. It also indicates a target that implements the basic task
management model and executes commands in the order queued.

D.5 Operations

Control of an AV/C device implemented with SBP-3 follows the steps described in sections 8 and 9.
Subsequent to a successful login, the controller may create a queue of one or more ORBs that describe
AV/C command frames and signal these to the target. As the commands complete, the response frames
are returned in the buffers provided by the controller. The target stores status to signal the controller that a
response frame has been returned.

T10/1467D Revision 4

125

Annex E
(normative)

Isochronous data interchange format

Isochronous data stored on the medium may be kept in a form similar to the format of isochronous packets
on Serial Bus, but the tcode field present in Serial Bus packets is reused to identify the type of recorded
isochronous data. Three different packet formats may be present in recorded isochronous data, encoded by
tcode as shown below.

The values used to indicate CYCLE MARK and DATA are identical to the tcode values defined for Serial Bus
cycle start packets and isochronous data packets, respectively.

E.1 Cycle marks

Whenever a cycle start packet is observed on Serial Bus for an enabled isochronous stream, a CYCLE
MARK packet shall be recorded on the medium. The CYCLE MARK packet is a single quadlet that stores
the time transported by the cycle start packet, as shown by the figure below.

Figure E-1 – CYCLE MARK format

The second_count and the cycle_count fields shall contain the values of the corresponding fields from the
most recently observed cycle start packet. No more than one CYCLE MARK packet shall be recorded for a
single cycle start packet.

NOTE – The time information in the CYCLE MARK packet is not necessary for a logical unit to recreate an
isochronous stream during playback, but it may be useful to applications that search for known time and cycle
boundary locations in recorded isochronous data.

The tcode field shall be equal to eight.

When a logical unit is a listener and detects a missed isochronous period, it shall synthesize and record a
CYCLE MARK packet on the medium. The second_count and cycle_count values shall be taken from the
target’s free-running cycle timer.

Value Name Description

8 CYCLE MARK Marks the time of a cycle start event

A16 DATA Isochronous data packet

E16 NULL Null (or filler) packet

All other values — Reserved for future standardization

 most significant

cycle_count 0

least significant

second_count tcode (8) F16

T10/1467D Revision 4

126

E.2 Isochronous data packets

The format of an isochronous data packet recorded on the medium is illustrated below. The header and data
CRC fields observed as part of Serial Bus isochronous packets are not recorded on the medium. Recorded
isochronous data packets shall be stored on quadlet boundaries on the medium and shall contain an
integral number of quadlets.

Figure E-2 – Format for recorded isochronous data

The data_length field shall contain the length, in bytes, of the data field for the packet. Zero is a permissible
value for data_length; in this case, the packet shall consist of only the header and shall be a single quadlet
in length.

The tag field shall specify the format of the data field, encoded as indicated by the following table.

The channel field shall identify the channel number for the packet. The channel field recorded on the medium
may have been transformed by a mapping from the channel observed on Serial Bus. Upon playback, the
channel field may be transformed by a similar mapping.

The tcode field shall be equal to A16.

The sy, or synchronization code, field is an application-dependent field, the details of whose use are beyond
the scope of this standard.

NOTE – A synchronization point may be defined as a boundary between video or audio frames, or any other
point in the isochronous stream specified by the application.

The data field shall contain data_length bytes of information and shall be padded with trailing zero bytes, as
necessary, to occupy an integral number of quadlets on the medium.

Dependent upon the value of tag, the logical unit may require additional knowledge of isochronous data
formats. When tag is zero the data payload of the isochronous packet is unformatted and requires no
transformations upon either recording or playback. When tag is one, the format of the data payload shall
conform to the common isochronous packet (CIP) format standardized by IEC 61883-1.

Value Data field format

0 Data format not specified by this standard

1 Common isochronous packet (CIP) format
(as specified by IEC 61883-1)

2 – 3 Reserved for future standardization

tag data_length
most significant

least significant

data

channel tcode (A16) sy

zero pad bytes (if necessary)

…

…

T10/1467D Revision 4

127

E.3 Null packets

When the tcode field has a value of E16, the data that is stored on the medium shall be ignored during
playback. The format of a null packet is shown below.

Figure E-3 – NULL packet format

The data_length field shall contain the length, in bytes, of the data field for the null packet. The number of
quadlets occupied by the data field is (data_length + 3) modulus 4. Zero is a permissible value for
data_length; in this case, the null packet shall consist of only the header and shall be a single quadlet in
length.

The tcode field shall be equal to E16.

The values of quadlets within the data field are unspecified for NULL packets.

NOTE – NULL packets serve no particular purpose for logical units, but they may be useful to some
applications, such as nonlinear editing. Excessive quantities or sizes of NULL packets may cause some
target implementations to experience underflow or other errors in the playback of isochronous data.

…

data_length
most significant

least significant

data

ignored tcode (E16) ignored

…

T10/1467D Revision 4

129

Annex F
(informative)

Sample configuration ROM

Configuration ROM is located at a base address of FFFF F000 040016 within a node’s memory space. The
requirements for general format configuration ROM for targets are specified in section 7. This annex contains
illustrations of typical configuration ROM for a simple targets.

F.1 Basic target

Figure F-1 below shows the bus information block, root directory and instance directory for a basic SBP-3
target. The unit directory, which implements a single logical unit is shown separately in Figure F-2.

Figure F-1 – Bus information block, root and instance directories

The ROM CRC in the first quadlet is calculated on the four quadlets of the bus information block that follow.

 most significant

2 Instance directory CRC (calculated)

Keyword leaf CRC (calculated) 1

vendor_ID 0316

3133 393416 (ASCII “1394”)

node_options (00FF 221216)

chip_ID_lo

node_vendor_ID chip_ID_hi

4 4

4 Root directory CRC (calculated)

ROM CRC (calculated)

least significant

node_capabilities (00 83C016)

Instance directory offset (1)

0C16

1816

0

Unit directory offset (3)

Keyword lead offset (2) 1916

1116

53 425016 (ASCII “SBP”)

Text leaf offset 8116

T10/1467D Revision 4

130

F.1.1 Root directory

The node_options field represents a collection of bits and fields specified in 7.4.3. The value shown,
00FF 221216, represents basic characteristics of a device that is not isochronous capable. This value is
composed of a cyc_clk_acc field with a value of FF16, a max_rec value of two, a max_ROM value of two, a
generation value of one and a link_spd value of two. The max_rec field specifies that the target supports a
maximum payload of eight bytes in block write requests. The max_ROM field specifies that the target
supports a data_length of up to 1024 bytes in block read requests addressed to configuration ROM. The
generation field specifies that the target’s configuration ROM never changes while its link is continuously
active. The link_spd field specifies that the target’s link supports S400 operations.

The Node_Capabilities entry in the root directory, with a key field of 0C16, has a value where the spt, 64, fix,
lst and drq bits are all one. This is a minimum requirement for targets.

The Vendor_ID entry in the root directory, with a key field of 0316, is immediately followed by a textual
descriptor leaf entry, with a key field of 8116, whose indirect_offset value points to a leaf that contains an
ASCII string that identifies the vendor. Although this textual descriptor leaf is not shown, if it were placed
immediately after the fifteen quadlets illustrated the value of indirect_offset would be eight. See F.2.2 for an
example of a vendor identification text leaf.

The Instance_Directory entry in the root directory, with a key field of 1816, has an indirect_offset value of one
that points to the instance directory that immediately follows the root directory.

F.1.2 Instance directory

The Keyword entry in the instance directory, with a key field of 1916, has an indirect_offset value of two that
points to the keyword leaf that immediately follows the instance directory.

The Unit_Directory entry in the instance directory, with a key field of 1116, has an indirect_offset value of
three that points to the unit directory that is assumed to immediately follow the keyword leaf (see F.1.3).

The keyword leaf that immediately follows the instance directory contains a single keyword, “SBP”. In an
actual device, additional keywords such as “DISK” or “PRINTER” probably would be included in the keyword
leaf.

T10/1467D Revision 4

131

F.1.3 Unit directory

Figure F-2 – Basic unit directory

The Specifier_ID, Version and Revision entries, with key fields of 1216, 1316 and 2116, respectively, indicate
that the target conforms to this standard.

The Command_Set_Spec_ID and Command_Set entries, with a key field of 3816 and 3916, respectively, are
expected to define the command set used by the target.

The Management_Agent entry in the unit directory, with a key field of 5416, has a csr_offset value of
00 400016 that indicates that the management agent CSR has a base address of FFFF F001 000016 within
the node’s memory space.

The Unit_Characteristics entry in the unit directory, with a key field of 3A16, has an immediate value of
00 0A0816. This indicates a target that is expected to complete task management requests (including login)
within five seconds and fetches 32-byte ORBs.

The Logical_Unit_Number entry in the unit directory, with a key field of 1416, has an immediate value of zero
that indicates a device that may reorder tasks without restriction, does not support isochronous operations
and has a logical unit number of zero.

Device type and LUN (0)

3A16 Unit characteristics (00 0A0816)

most significant

least significant

command_set_spec_ID

version (01 048316)

csr_offset (00 400016) 5416

3916 command_set

specifier_ID (00 609E16) 1216

1316

7 Unit directory CRC (calculated)

revision (1) 2116

3816

1416

T10/1467D Revision 4

132

F.2 SCSI command set target

The sample bus information block and root directory for basic targets are equally applicable to targets that
use SCSI command sets and are not repeated below. Figure F-3 shows an example of a unit directory and
textual descriptor leaves for a SCSI direct-access device.

Figure F-3 – SCSI configuration ROM

F.2.1 Unit directory

The Specifier_ID, Version and Revision entries, with key fields of 1216, 1316 and 2116, respectively, indicate
that the target conforms to this standard.

Device type and LUN (0) 1416

revision (1) 2116

command_set_spec_ID (00 609E16) 3816

9 Unit directory CRC (calculated)
most significant

least significant

version (01 048316)

specifier_ID (00 609E16) 1216

1316

5151 515116 (ASCII “QQQQ”)

Unit characteristics (00 0A0816)

command_set (01 04D816)

3A16

5416 csr_offset (00 400016)

3916

language_ID (0)

1716 model_ID

8116 Text leaf offset (5)

3 Text leaf CRC (calculated)

spec_type (0) specifier_ID (0)

language_ID (0)

5431 300016 (ASCII “T10”)

3 Text leaf CRC (calculated)

spec_type (0) specifier_ID (0)

0 max_payload (0) FAST_START_offset (16) 3E16

T10/1467D Revision 4

133

The Command_Set_Spec_ID and Command_Set_Version entries, with key fields of 3816 and 3916,
respectively, specify that the target’s logical unit uses one of the SCSI command sets.

The Management_Agent entry in the unit directory, with a key field of 5416, has a csr_offset value of
00 400016 that indicates that the MANAGEMENT_AGENT register has a base address of FFFF F001 000016
within the node’s memory space.

The Unit_Characteristics entry in the unit directory, with a key field of 3A16, has an immediate value of
00 0A0816. This indicates a target that is expected to complete task management requests (including login)
within five seconds and fetches 32-byte ORBs.

The Fast_Start entry in the unit directory, with a key field of 3E16, describes the size and location of the
FAST_START register. The max_payload field value of zero specifies the maximum size of a block write
request addressed to the register as 2 max_rec + 1 bytes, where max_rec is obtained from the target’s
configuration ROM bus information block. The FAST_START_offset field value of 16 specifies the location of
the register as command_block_agent + 4016, where command_block_agent is obtained from a login
response.

The Logical_Unit_Number entry in the unit directory, with a key field of 1416, has an immediate value of zero;
this indicates a direct-access device that may reorder tasks without restriction, does not support
isochronous operations and whose logical unit number is zero.

The Model_ID entry in the unit directory, with a key field of 1716, has an immediate value whose meaning is
specified by the module vendor. Immediately following the Model_ID entry is a textual descriptor leaf entry,
with a key field of 8116, whose indirect_offset value of 5 points to a leaf that contains the ASCII string
"QQQQ".

F.2.2 Textual descriptor leaves

Textual descriptor leaf entries, specified by IEEE Std 1212-2001, permit text strings to be associated with
the immediately preceding configuration ROM entry. In this example, two textual descriptor leaves are
shown to illustrate a product made by the T10 company with a model identification of QQQQ.

The first textual descriptor leaf is associated with the Vendor_ID entry in the root directory (not shown). The
second leaf is associated with the Model_ID entry in the unit directory. The text strings are analogous to the
vendor and product identification fields reported in INQUIRY data.

Because textual descriptor leaves are useful to device discovery and management software (in order to
display meaningful messages for a user), implementers are encouraged to include textual descriptor leaves
for at least the vendor ID and model ID.

T10/1467D Revision 4

135

Annex G
(informative)

Serial Bus transaction error recovery

Inherent in the nature of Serial Bus as a split-transaction bus are transaction errors that can leave the
requester and responder with different or ambiguous information. One instance occurs when an acknowledge
packet transmitted after receipt of a request or response packet is corrupted and not observed by the sender
of the primary packet; the same ambiguity exists after either a local or remote split-transaction time-out.

When an acknowledge packet is missed by the sender of the primary packet, the sender does not know
which of the following applies:

– The primary packet was correctly received by the destination node (and resultant side-effects in that
node may have occurred); or

– The primary packet had a CRC or other error, has not been correctly received by the destination node
and no state changes have occurred.

When a split time-out occurs after a request subaction addressed to a node on the local bus, the sender
knows that the packet was correctly received by the destination node but does not know whether or not
resultant side-effects have taken place. If a remote split time-out occurs, the sender does not know whether
or not the packet was correctly received by the destination and therefore does not know whether resultant
side-effects have taken place.

NOTE – IEEE 1394 contains important information about split time-out errors, the SPLIT_TIMEOUT register
and different error recovery procedures for the requester and responder. Similar information may be found in
draft standard IEEE P1394.1 that pertains to remote time-out for request subactions addressed to a global
node ID.

If an acknowledge is missing after transmission of a response packet, IEEE 1394 prohibits retransmission of
the response packet. Even in the case of a missing acknowledgement following a request packet, it might
not be advisable to retry (because of side effects associated with certain SBP-3 transactions).

A few of the more common error scenarios and the recommended error recover for each are described below.

G.1 MANAGEMENT_AGENT write request

When a management ORB is signaled to a target by means of an 8-byte block write to the target’s
MANAGEMENT_AGENT register and no acknowledgement is received, the initiator does not know whether
or not the ORB will be fetched by the target.

Error recovery is straightforward if the initiator waits a minimum of mgt_ORB_timeout for the return of a
status block before any attempt is made to retry the management ORB. By waiting the specified time the
initiator avoids the possibility of multiple status blocks for the same ORB address.

G.2 ORB_POINTER or FAST_START write request

A consequence of a write to either the ORB_POINTER or FAST_START register when the fetch agent is in
the RESET or SUSPENDED state is that, if successful, the fetch agent enters the ACTIVE state. If no
acknowledgement is received by the initiator after a write to either the ORB_POINTER or FAST_START

T10/1467D Revision 4

136

register when the fetch agent is in either of these states, the initiator should not retry the write. The
recommended method for error recovery is a write to the AGENT_RESET register.

NOTE – An exception to this recommendation exists if no acknowledgment is received after a write to the
FAST_START register whose previous_ORB field is non-null. Because the target fetch agent compares the
previous_ORB field to the ORB_POINTER register, the write may be retried.

G.3 Data buffer, ORB or page table read request

If the target transmits a block read request and receives no acknowledgement, the read request may be
retried immediately but care should be taken to not reuse the same transaction label as the failed request.
For nodes on the local bus, the target should wait a minimum of a SPLIT_TIMEOUT period before the
transaction label is reused in any subsequent request subaction otherwise it should wait a minimum of the
remote time-out period currently in effect for the remote node.

G.4 Status FIFO write request

When the target detects a missing acknowledgement after a write to an initiator’s status FIFO, it should
take no error recovery actions. Any target resources allocated to the ORB should be released by the target.
The initiator is expected to discover the error by means of a higher-level mechanism, such as a command
time-out and to initiate appropriate error recovery. The nature of the error recovery undertaken by the initiator
likely depends whether or not the target processes ORBs and returns their status in order, but in any event
is beyond the scope of this description.

T10/1467D Revision 4

137

Annex H
(informative)

SCSI Architecture Model conformance

This annex provides information useful to systems implementers: it relates the facilities provided by SBP-3
to the terminology used by the SCSI Architecture Model.

H.1 Object definitions

The SCSI Architecture Model defines objects within the SCSI domain. The equivalency of SBP-3 objects is
enumerated below in those cases where the correlation might not be clear and in those cases where SBP-3
restricts the scope of an object.

Initiator port identifier: The login_ID returned by a SCSI target port in response to a successful login
is the initiator port identifier for command block requests.

Logical unit number: SBP-3 restricts the scope of the logical unit number to 216. The lun field in
management ORBs is one doublet. Its format may be either non-hierarchical or hierarchical (see SAM-
2), as indicated by the HISUP bit in INQUIRY data returned by LUN 0.

NOTE – Neither the login_ID nor lun fields are present in SCSI command block ORBs, since the value of both
is implicit in the CSR addresses of the logical unit fetch agent to which the ORBs are signaled.

Tag: The Serial Bus address of an ORB is the tag by which the task is identified. This requires that
SCSI initiator port memory allocated to a request not be released or reused while the task is active
within a task set. The scope of an SBP-3 tag is that of a Serial Bus address, 264, and equal to the
scope defined by SAM-2.

Target port identifier: SCSI target ports are identified by means of a unit unique ID, or EUI-64, found
in the SCSI target port’s unit directory in configuration ROM. When a unit unique ID leaf is not present
in configuration ROM, the value of the unit unique ID is construed to be equal to the node unique ID.
The scope of a target port identifier, 264, is identical to the scope of a target port identifier specified by
SAM-2.

Task set: An SBP-3 task set consists of the linked list of command block ORBs that are managed by
a single fetch agent. There is no provision in SBP-3 for untagged tasks; an SBP-3 task set always
consists of zero or more tagged tasks.

SBP-3 delimits the extent of a task set in a way that is compatible with SAM-2 but that differs from the
definition given in SAM-2 of “…a group of tasks within a logical unit…” (emphasis added). By way of
contrast with SAM-2, an SBP-3 task enters a task set when it is linked into an active request list. The
extent of an SBP-3 task set includes all the uncompleted ORBs linked into a request list in SCSI
initiator port memory, not solely the requests already fetched by the SCSI target port.

Untagged task: SBP-3 does not define untagged tasks.

H.2 Status

SCSI status is reported in the status field, which is part of the status block defined in B.2.

T10/1467D Revision 4

138

H.3 Command delivery services

SAM-2 requires that four protocol services be defined to support the Execute Command remote procedure
call. The SBP-3 facilities used to provide these services are described below.

H.3.1 Send SCSI Command

The formal arguments of the Send SCSI Command service are:

I_T_L_x nexus,
CDB,
[Task Attribute],
[Data-in buffer size],
[Data-out buffer],
[Data-out buffer size],
[Autosense request],
[Command reference number]

The I_T_L_x nexus argument is composed of the address of the ORB and the logical unit for which it is
intended. The logical unit is implicit in the fetch agent to which the ORB is signaled. The request is signaled
to a logical unit fetch agent by the methods specified by section 9.

The CDB argument is encapsulated within an ORB and fetched by the logical unit from SCSI initiator port
memory.

The task attribute argument, either SIMPLE or ORDERED, is implicit in the logical unit implementation. The
Logical_Unit_Number entry in either a unit or logical unit directory indicates which task attribute is
implemented. When the ordered bit in this entry is zero, all tasks have an implicit attribute of SIMPLE.
Otherwise, if ordered is set to one, the task attribute is ORDERED for all tasks.

The data-in buffer size, data-out buffer and data-out buffer size arguments, if present, are specified by the
data_descriptor and data_size fields in the ORB.

The SBP-3 status block provides for the return of autosense data; the SCIS initiator port may be expected to
reformat the information as SCSI sense data before it is presented to the application client.

SBP-3 does not directly support command reference numbers (CRNs), but an application client and logical
unit may use the order inherent in queues of SCSI command block ORBs to reproduce CRN functionality.

H.3.2 SCSI Command Received

The formal arguments of the SCSI Command Received service are:

I_T_L_x nexus,
[Task Attribute],
CDB,
[Autosense request]
[Command reference number]

The I_T_L_x nexus argument is composed of the address of the ORB and the logical unit for which it is
intended. The logical unit is implicit in the fetch agent to which the ORB is signaled. A Serial Bus write

T10/1467D Revision 4

139

indication for the AGENT_RESET register signals the logical unit fetch agent that there may be a new SCSI
command. The details of this indication are specified in section 9.

The task attribute argument is implicit in the logical unit implementation and may be determined by an
examination of the ordered bit in the Logical_Unit_Number entry in configuration ROM.

The CDB argument is encapsulated within the ORB and fetched by the logical unit from SCSI initiator port
memory.

The status_FIFO address, provided by the SCSI initiator port as part of the login procedure, is the address
for the return of autosense data.

SBP-3 does not directly support command reference numbers (CRNs), but an application client and logical
unit may use the order inherent in queues of SCSI command block ORBs to reproduce CRN functionality.

H.3.3 Send Command Complete

The formal arguments of the Send Command Complete service are:

I_T_L_x nexus,
[Sense data],
Status,
Service response

The I_T_L_x nexus argument is derived from the address at which the status information is stored. The ORB
specified the address for the status block, either implicitly by means of a fixed offset from the address of the
ORB or explicitly by means of the status_FIFO field. In either case, the SCSI initiator port ensures that the
address at which status is stored is sufficient to uniquely correlate the status with the I_T_L_x nexus.

SCSI sense data may be returned in the status block upon completion of a SCSI command.

The service response argument is encoded within the status block by resp and sbp_status as summarized
below.

Table H-1 – SAM-2 Service responses

Service response resp sbp_status Description

Task complete 0 0 The task has ended with a completion
status indicated by status

Linked command
complete

— — Not supported by SBP-3

Linked command
complete (with flag)

— — Not supported by SBP-3

Function complete 0 0 Used by task management functions

Service delivery or SCSI
target device failure

1 Various
(as defined by SBP-3)

The command has completed because
of a Serial Bus service failure or a SCSI
target device malfunction

Function rejected 0 9 Used by task management functions

T10/1467D Revision 4

140

H.3.4 Command Complete Received

The formal arguments of the Command Complete Received service are:

I_T_L_x nexus,
[Data-in buffer],
[Sense data],
Status,
Service response

The I_T_L_x nexus argument is derived from the address to which the status information was stored. The
ORB specified the address for the status block, either implicitly by means of a fixed offset from the address
of the ORB or explicitly by means of the status_FIFO field. In either case, the SCSI initiator port ensures
that the address at which status is stored is sufficient to uniquely correlate the status with the I_T_L_x
nexus.

SCSI sense data may be returned in the status block upon completion of a SCSI command.

The service response argument is encoded within the status block by resp, as described by Table H-1.

H.4 Data transfer services

SAM-2 requires that four protocol services be defined to support data transfer necessary for the Execute
Command remote procedure call. The SBP-3 facilities used to provide these services are described below.

H.4.1 Send Data-in

The formal arguments of the Send Data-in service are:

I_T_L_x nexus,
Device server buffer,
Application client buffer offset,
Request byte count

The I_T_L_x nexus argument is the Serial Bus address of the ORB for the active task. It is expected that
logical unit implementations reference a copy of the ORB maintained in the device’s local memory, although
nothing precludes a fetch of the information from the SCSI initiator port memory occupied by the ORB.

The device service buffer argument is vendor-dependent. The data available in the device server buffer is
formed into Serial Bus write transactions as described below.

The application client buffer offset is a value maintained by the device server to correlate medium locations
with locations in the application client buffer. The base of the application client buffer is specified by the
data_descriptor field supplied by the SCSI initiator port.

The request byte count is determined by the device server.

The logical unit uses one or more Serial Bus quadlet or block write requests to store the requested data into
the application client buffer. For the sake of efficiency, it is expected that the logical unit uses the largest
block write requests permitted by the max_payload field in the ORB and transmit these requests at the
speed mandated by the spd field in the ORB.

T10/1467D Revision 4

141

H.4.2 Data-in Delivered

The formal arguments of the Data-in Delivered service are:

I_T_L_x nexus

Upon completion of each of the quadlet or block write requests initiated as a result of Send Data-in, the
logical unit receives Serial Bus write response confirmations. It is the logical unit’s responsibility to correlate
the Serial Bus addresses (for which write responses are received) with the I_T_L_x nexus in order to provide
the Data-in Delivered confirmation.

H.4.3 Receive Data-out

The formal arguments of the Receive Data-out service are:

I_T_L_x nexus,
Application client buffer offset,
Request byte count,
Device server buffer

The I_T_L_x nexus argument is the Serial Bus address of the ORB for the active task. It is expected that
logical unit implementations reference a copy of the ORB maintained in the device’s local memory, although
nothing precludes a fetch of the information from the SCSI initiator port memory occupied by the ORB.

The application client buffer offset is a value maintained by the device server to correlate medium locations
with locations in the application client buffer. The base of the application client buffer is specified by the
data_descriptor field supplied by the SCSI initiator port.

The request byte count is determined by the device server.

The device service buffer argument is vendor-dependent. The data obtained from Serial Bus read response
subactions is moved to the device server buffer as described below.

The logical unit uses one or more Serial Bus quadlet or block read requests to fetch the requested data from
the application client buffer. For the sake of efficiency, it is expected that the logical unit use the largest
block read requests permitted by the max_payload field in the ORB and transmit these requests at the
speed mandated by the spd field in the ORB.

H.4.4 Data-out Received

The formal arguments of the Data-out Received service are:

I_T_L_x nexus

Upon completion of each of the quadlet or block read requests initiated as a result of Receive Data-out, the
logical unit receives Serial Bus read response confirmations and their accompanying data. It is the logical
unit’s responsibility transfer the data to the device server buffer and to correlate the Serial Bus addresses
(for which read response subactions are received) with the I_T_L_x nexus in order to provide the Data-out
Received confirmation.

T10/1467D Revision 4

142

H.5 Contingent allegiance

SBP-3 SCSI target ports implement SAM-2 contingent allegiance and do not support CDBs whose naca bit
in the control byte is one. The contingent allegiance condition exists within a task set when a logical unit
stores a status block for a command where status is set to CHECK CONDITION. Since SBP-3 SCSI target
ports implement autosense via the return of the status block, the contingent allegiance condition is
automatically cleared.

At the time a contingent allegiance condition is created, the logical unit:

a) immediately halts the operations of the fetch agent for the faulted SCSI initiator port;

b) aborts the task set in the same fashion as if an ABORT TASK SET task management function had
been signaled to the SCSI target port;

c) clears the contingent allegiance condition.

Because the fetch agent utilized by the faulted SCSI initiator port has been halted, it is necessary for the
SCSI initiator port to reset and reinitialize the fetch agent before any commands may be signaled to the
logical unit.

H.6 Asynchronous event reporting

SBP-3 does not support asynchronous event reporting as defined by SAM-2.

H.7 Autosense

SBP-3 supports autosense through the return of a status block to the address specified by the login
parameter status_FIFO. The status block is always stored in the event of an exception condition, e.g.,
CHECK CONDITION.

H.8 Hard reset

A write to the RESET_START register (see 6.2) or a task management function of TARGET RESET causes
the SCSI target port to execute a hard reset, as defined by SAM-2.

H.9 Task set type

SBP-3 logical units implement one task set per SCSI initiator port. For logical units that implement the
SCSI control mode page (page code A16), the task set type (TST) field is unchangeable and reports a value
of one.

H.10 Task management functions

SBP-3 SCSI target ports implement the basic task management model, as specified by SAM-2. SBP-3
support for task management functions is described in the table below.

T10/1467D Revision 4

143

SAM-2 additionally requires protocol services to support the task management functions, enumerated below.
In all of the definitions for the task management function protocol services, the following apply:

– The nexus is as specified by SAM-2 and modified by the SBP-3 object definitions;

– The function identifier is one of the task management functions both defined by SAM-2 and supported
by SBP-3; and

– The service response is one of Function complete, Function rejected or Service delivery or SCSI target
port failure. These service responses are encoded by the resp and sbp_status fields in the status
block stored by the SCSI target port upon completion of a request. See Table H-1 for the numeric
values that encode the service responses.

H.10.1 Send Task Management Request

The formal arguments of the Send Task Management Request service are:

Nexus,
Function identifier

Subsequent to the creation of a task management ORB in SCSI initiator port memory, the SCSI initiator port
signals the request to the SCSI target port management agent by the methods described in SBP-3.

H.10.2 Task Management Request Received

The formal arguments of the Task Management Request Received service are:

Nexus,
Function identifier

11 Although support for logical unit reset is optional for SBP-3 targets, it is required of targets that implement one or

more logical units compliant with SAM-2.

Function Support Comments

ABORT TASK Required

ABORT TASK SET Required May also be performed directly through the
AGENT_RESET register

CLEAR ACA Not
supported

SBP-3 supports SAM-2 contingent allegiance

CLEAR TASK SET Not
supported

ABORT TASK SET is equivalent

TARGET RESET Required May also be performed directly through the
RESET_START register

LOGICAL UNIT RESET Optional11 Functions as TARGET RESET but scope is limited
to a single logical unit

WAKEUP Not
supported

T10/1467D Revision 4

144

When a Serial Bus write indication is received for the SCSI target port’s MANAGEMENT_AGENT register,
the SCSI target port may fetch the request from SCSI initiator port memory.

H.10.3 Task Management Function Executed

The formal arguments of the Task Management Function Executed service are:

Nexus,
Service response

The SCSI target port signals the completion of the task management function by storing an 8-byte status
block at the address specified by status_FIFO in the ORB.

H.10.4 Received Task Management Function Executed

The formal arguments of the Received Task Management Function Executed service are:

Nexus,
Service response

When the SCSI initiator port receives a Serial Bus write indication for data addressed to the status_FIFO
address, it may examine the status block to determine the service response from resp.

T10/1467D Revision 4

145

Annex I
(informative)

Common isochronous packet (CIP) format

Data packets recorded in the isochronous data interchange format (described in Annex E) may also conform
to a CIP format that divides the data payload into two parts: the CIP header and the application-dependent
data that follows. Figure I-1 illustrates the organization of the common isochronous packet format.

Figure I-1 – Common isochronous packet (CIP) format

The CIP header is a variable number of quadlets (although only two are shown in the preceding figure). The
most significant bit of each quadlet of the CIP header is called the eoh bit. For an n quadlet CIP header, eoh
is zero for quadlets zero through n - 2, inclusive, and eoh is one for quadlet n - 1. The next most significant
bit of each quadlet is called the form bit. Together, the eoh and form bits specify the format of the CIP
header quadlet. CIP header formats are defined for form values of zero; form values of one are reserved for
future standardization.

The only CIP header format currently defined is a two-quadlet header shown below.

Figure I-2 – Two-quadlet CIP header format

The sid, or source ID, field identifies the node whose plug control registers control the source (talker) for the
isochronous data.

The dbs, or data block size, field contains the size of each of the application-dependent data blocks that
follow the CIP header. A dbs value of zero encodes a size of 256 quadlets; for all other values of dbs the
number of quadlets is the value of dbs itself. Individual data blocks are entirely contained within a single
Serial Bus isochronous packet (which may encapsulate more than one data block).

fn dbs

…

1 data_length
most significant

least significant

channel tcode sy

application data

…

CIP_header

0
most significant

least significant

r dbc sid qpc s

fmt-dependent 2 fmt

T10/1467D Revision 4

146

The fn, or fraction number, field contains the number of data blocks that form a higher level, application-
dependent object—the isochronous source packet. The number of data blocks that form an isochronous
source packet is specified as 2 fn; when there is a one-to-one correspondence between isochronous source
packets and data blocks fn is zero.

The qpc, or quadlet padding count, field contains the number of pad quadlets appended to an isochronous
source packet before it is divided into data blocks. The quadlet padding count is less than the data block
size and has a value that results in equal sizes for the data blocks. If fn is zero, qpc are also zero. When
qpc is nonzero the last data block includes the pad quadlets, which are recorded when the target is a
listener and transmitted when the target is a talker.

The sph, or source packet header, bit (abbreviated as s in Figure I-2) is one if the isochronous source packet
begins with a header quadlet of the format shown below; otherwise, it is zero.

Figure I-3 – Source packet header format

The source packet header contains a time stamp encoded in the same fashion as the least significant 25
bits of the CYCLE TIME register.

The dbc, or data block continuity counter, field contains the sequence number of the isochronous source
packet and the sequence number of the of the data block within the isochronous source packet. The least
significant fn bits of dbc hold the sequence number of the data block while the most significant 8 - fn bits
hold the sequence number of the isochronous source packet itself. The data block continuity counter labels
the first data block that follows the CIP header; the continuity counter of additional data blocks after the first
increases monotonically from the value of dbc.

NOTE – The data block that immediately follows the CIP header is not necessarily the first data block of the
isochronous source packet. The location of the starting data block of an isochronous source packet can be
determined from the values of dbc and fn. Relative to the first data block after the CIP header (counting from
zero), the ordinal of this data block is given by (2 fn - (dbc modulus 2 fn)) modulus 2 fn. If a source packet header
is present (as indicated by the sph bit), it is the first quadlet of this data block.

The fmt field specifies the formats of both the fmt-dependent field within the same quadlet of the CIP header
and the application-dependent data contained within the common isochronous packets. An fmt value of 3F16
indicates that no application-dependent data follows the CIP header and that the dbs, fn, qpc fields, the sph
bit and the dbc field in the CIP header are all ignored. Other values of fmt encode the application-dependent
format of the isochronous data, e.g., DVCR or MPEG. The details of most application-dependent formats are
not relevant to targets and are beyond the scope of this standard. However, the value of fmt specifies the
format of the fmt-dependent field within same quadlet of the CIP header; this field is meaningful to targets
when it contains a time stamp, since the time stamp is transformed during playback. The table below
summarizes the recommended meanings of fmt for targets.

NOTE – IEC 61883-1 does not require that the most significant bit of fmt govern the presence or absence of
time stamps within the CIP header. This standard recommends that future extensions to IEC 61883-1
conform to the table below.

cycle_count reserved

most significant

least significant

cycle_offset

T10/1467D Revision 4

147

When fmt is in the range zero to 1F16, inclusive, the second quadlet of the CIP header has the format
illustrated below.

Figure I-4 – Synchronization time (syt) format

The two fields, cycle_count and cycle_offset, are collectively referred to as the syt, or synchronization time,
field. When syt has a value of FFFF16, no synchronization time information is present. Otherwise, the syt
field represents a time stamp encoded in the same fashion as the least significant 16 bits of the
CYCLE_TIME register. Just as in the case of the CYCLE_TIME register, the value of cycle_offset is
constrained to be in the range zero to 3071 inclusive; Values of syt for which cycle_offset is greater than
3071 are invalid.

Value Description

0 – 1F16 Application data is present; the fmt-dependent
field contains a time stamp defined by syt below

2016 – 3E16 Application data is present; the contents of the
fmt-dependent field are unspecified

3F16 No application data is present

cycle_count fmt-dependent

most significant least significant

cycle_offset 2 fmt

T10/1467D Revision 4

149

Annex J
(informative)

Bibliography

[B1] 1394 Trade Association, AV/C Digital Interface Command Set General Specification 4.1,
December 11, 2001

[B2] ANSI NCITS 325-1998, Serial Bus Protocol 2 (SBP-2)

[B3] ANSI NCITS 330-2000, Reduced Block Commands

[B4] ANSI NCITS 333-2000, SCSI Multimedia Commands 2 (MMC-2)

[B5] IEC 61883-1 (1998-02), Consumer audio/video equipment—Digital interface—Part 1: General

[B6] IEEE Std 1212-2001, Standard for a Control and Status Registers (CSR) Architecture for
microcomputer buses

[B7] IEEE P1394.1, Draft Standard for High Performance Serial Bus Bridges

NOTE – If, at the time the ANSI Editor prepares this standard for publication, draft standard IEEE P1394.1 has
been approved by the IEEE-SA Standards Board, the Editor is requested to change this citation to reference
the approved standard and to change all occurrences of the phrase “draft standard IEEE P1394.1” to “IEEE
Std 1394.1-200X”. Otherwise the citation should reference, by version and date, the most recent draft of IEEE
P1394.1.

[B8] IEEE P1394.3, Draft Standard for a High Performance Serial Bus Peer-to-Peer Data Transport
Protocol (PPDT)

NOTE – If, at the time the ANSI Editor prepares this standard for publication, draft standard IEEE P1394.3 has
been approved by the IEEE-SA Standards Board, the Editor is requested to change this citation to reference
the approved standard and to change all occurrences of the phrase “draft standard IEEE P1394.3” to “IEEE
Std 1394.3-2003”. Otherwise the citation should reference, by version and date, the most recent draft of IEEE
P1394.3.

[B9] IEEE Std 1394-1995, Standard for a High Performance Serial Bus

[B10] IEEE Std 1394a-2000, Standard for a High Performance Serial Bus—Amendment 1

[B11] IEEE Std 1394b-2002, Standard for a High Performance Serial Bus—Amendment 2

[B12] INCITS 351-2001, SCSI Primary Commands 2 (SPC-2)

[B13] INCITS 360-2002, SCSI Multimedia Commands 3 (MMC-3)

[B14] INCITS 366-2003, SCSI Architecture Model 2 (SAM-2)

[B15] ISO/IEC 9899:1990, Programming Languages—C

[B16] T10 Project 1416D, SCSI Primary Commands 3 (SPC-3)

	Contents
	Tables
	Figures
	Annexes
	Foreword
	Revision history
	1 Scope and purpose
	1.1 Scope
	1.2 Purpose

	2 Normative references
	2.1 Reference scope
	2.2 Approved references
	2.3 References under development

	3 Definitions and notation
	3.1 Definitions
	3.1.1 Conformance
	3.1.2 Glossary
	3.1.3 Abbreviations

	3.2 Notation
	3.2.1 Numeric values
	3.2.2 Bit, byte and quadlet ordering
	3.2.3 Register specifications
	3.2.4 State machines

	4 Model (informative)
	4.1 Model overview
	4.2 Unit architecture
	4.3 Logical units
	4.4 Requests and responses
	4.5 Data buffers
	4.6 Target agents
	4.7 Ordered and unordered execution
	4.8 Bridge-awareness
	4.9 Streams

	5 Data structures
	5.1 Data structure types and components
	5.2 Operation request blocks (ORBs)
	5.2.1 Generic ORB
	5.2.2 Dummy ORB
	5.2.3 Command block ORBs
	5.2.4 Management ORBs

	5.3 Page tables
	5.3.1 Overview
	5.3.2 Unrestricted page tables
	5.3.3 Normalized page tables
	5.3.4 Node selectors

	5.4 Status block
	5.4.1 Status block formats
	5.4.2 Request status
	5.4.3 Unsolicited device status
	5.4.4 Interim request status

	6 Control and status registers
	6.1 Control and status registers overview
	6.2 Core registers
	6.3 Serial Bus-dependent registers
	6.4 BUSY_TIMEOUT register
	6.5 MANAGEMENT_AGENT register
	6.6 Command block registers
	6.6.1 Command block registers summary
	6.6.2 AGENT_STATE register
	6.6.3 AGENT_RESET register
	6.6.4 ORB_POINTER register
	6.6.5 DOORBELL register
	6.6.6 UNSOLICITED_STATUS_ENABLE register
	6.6.7 HEARTBEAT_MONITOR register
	6.6.8 FAST_START register

	7 Configuration ROM
	7.1 Configuration ROM hierarchy
	7.2 Power reset initialization
	7.3 Bus information block
	7.4 Root directory
	7.4.1 Root directory (general)
	7.4.2 Vendor_ID entry
	7.4.3 Node_Capabilities entry
	7.4.4 Keyword_Leaf entry
	7.4.5 Instance_Directory entry
	7.4.6 Unit_Directory entry

	7.5 Instance directory
	7.6 Unit directory
	7.7 Logical unit directory
	7.8 Directory entries
	7.8.1 Directory entries summary
	7.8.2 Specifier_ID entry
	7.8.3 Version entry
	7.8.4 Revision entry
	7.8.5 Command_Set_Spec_ID entry
	7.8.6 Command_Set entry
	7.8.7 Command_Set_Revision entry
	7.8.8 Firmware_Revision entry
	7.8.9 Management_Agent entry
	7.8.10 Unit_Characteristics entry
	7.8.11 Reconnect_Timeout entry
	7.8.12 Fast_Start entry
	7.8.13 Plug_Control_Register entry
	7.8.14 Logical_Unit_Directory entry
	7.8.15 Logical_Unit_Number entry
	7.8.16 Unit_Unique_ID entry

	7.9 Unit unique ID leaf

	8 Access
	8.1 Access overview
	8.2 Access protocols
	8.3 Access requests
	8.3.1 Login
	8.3.2 Create task set

	8.4 Node handles
	8.4.1 Node handles (general)
	8.4.2 Node handle allocation
	8.4.3 Node handle release
	8.4.4 Node handle update after bus reset
	8.4.5 Node handle validation after net update

	8.5 Heartbeat
	8.6 Reconnection
	8.7 Logout

	9 Command execution
	9.1 Command execution overview
	9.2 Requests and request lists
	9.2.1 Requests and request lists (general)
	9.2.2 Fetch agent initialization (informative)
	9.2.3 Dynamic appends to request lists (informative)
	9.2.4 Fetch agent use by the BIOS (informative)
	9.2.5 Use of the FAST_START register (informative)
	9.2.6 Fetch agent parse of ORB and page tables (informative)

	9.3 Fetch agent state machine
	9.4 Asynchronous data transfer
	9.5 Isochronous data transfer
	9.6 Interim and completion status
	9.7 Unsolicited status

	10 Task management
	10.1 Task management overview
	10.2 Task sets
	10.3 Basic task management model
	10.4 Error conditions
	10.5 Task management requests
	10.5.1 Abort task
	10.5.2 Abort task set
	10.5.3 Logical unit reset
	10.5.4 Target reset

	10.6 Task management event matrix

	11 Isochronous operations
	11.1 Isochronous operations overview
	11.2 Talker operations
	11.3 Listener operations
	11.4 Implementation recommendations (informative)

	A Minimum Serial Bus node capabilities
	A.1 Initiator capabilities
	A.2 Target capabilities
	A.3 Target security

	B SCSI command and status encapsulation
	B.1 SCSI command descriptor block
	B.2 SCSI status and sense data
	B.3 Configuration ROM
	B.3.1 Command_Set_Spec_ID entry
	B.3.2 Command_Set entry
	B.3.3 Logical_Unit_Number entry

	C Security extensions
	C.1 Passwords
	C.2 Login
	C.3 Set password

	D AV/C Encapsulation
	D.1 Logical unit, unit and subunit models
	D.2 AV/C command sequence
	D.3 AV/C status
	D.4 Configuration ROM
	D.5 Operations

	E Isochronous data interchange format
	E.1 Cycle marks
	E.2 Isochronous data packets
	E.3 Null packets

	F Sample configuration ROM
	F.1 Basic target
	F.1.1 Root directory
	F.1.2 Instance directory
	F.1.3 Unit directory

	F.2 SCSI command set target
	F.2.1 Unit directory
	F.2.2 Textual descriptor leaves

	G Serial Bus transaction error recovery
	G.1 MANAGEMENT_AGENT write request
	G.2 ORB_POINTER or FAST_START write request
	G.3 Data buffer, ORB or page table read request
	G.4 Status FIFO write request

	H SCSI Architecture Model conformance
	H.1 Object definitions
	H.2 Status
	H.3 Command delivery services
	H.3.1 Send SCSI Command
	H.3.2 SCSI Command Received
	H.3.3 Send Command Complete
	H.3.4 Command Complete Received

	H.4 Data transfer services
	H.4.1 Send Data-in
	H.4.2 Data-in Delivered
	H.4.3 Receive Data-out
	H.4.4 Data-out Received

	H.5 Contingent allegiance
	H.6 Asynchronous event reporting
	H.7 Autosense
	H.8 Hard reset
	H.9 Task set type
	H.10 Task management functions
	H.10.1 Send Task Management Request
	H.10.2 Task Management Request Received
	H.10.3 Task Management Function Executed
	H.10.4 Received Task Management Function Executed

	I Common isochronous packet (CIP) format
	J Bibliography

