RISE TIME COMPARISONS

CONFIGUATIONS

• LONG CABLE 9 METERS WITH LOADS
• SHORT CABLE 1.25 METERS WITH LOADS
• RISE TIME USED WERE ~1 NS AND ~3-4 NS WITH PSEUDO-RANDOM PATTERN.

SUMMARY

• FOR LONG CABLE DUE TO LOSS IN CABLE NOT MUCH DIFFERENCE.
• FOR SHORT CABLES RISE TIME EFFECTS ON EYE OPENING ARE VERY EVIDENT.
RISE TIME COMPARISONS

CONFIGURATIONS

• LONG CABLE 9 METERS WITH LOADS
• SHORT CABLE 1.25 METERS WITH LOADS
• RISE TIME USED WERE ~1 NS AND ~3-4 NS WITH PSEUDO-RANDOM PATTERN.

SUMMARY

• FOR LONG CABLE DUE TO LOSS IN CABLE NOT MUCH DIFFERENCE.
• FOR SHORT CABLES RISE TIME EFFECTS ON EYE OPENING ARE VERY EVIDENT.
32 AWG twist/flat cable

"Eye diagram for 9 m long pair with fast edges ~ 1 ns"
- looking at L4 -

Tariq/Vince - T10 Meeting
32 AWG twist/flat cable

"Eye diagram for 9 m long pair with slow edges ~ 4 ns"
- looking at L4 -

10/12/99 Tariq/Vince - T10 Meeting
32 AWG twist/flat cable

“Eye diagram for 1.25 m long pair with fast edges ~ 1 ns ”
- looking at L1 -
32 AWG twist/flat cable

“Eye diagram for 1.25 m long pair with slow edges ~ 4 ns ”
- looking at L1 -
"Eye diagram for 1.25 m long pair with fast edges ~ 1 ns"

- looking at L3 -
32 AWG twist/flat cable

“Eye diagram for 1.25 m long pair with slow edges ~ 4 ns ”

- looking at L3 -
32 AWG twist/flat cable

“Eye diagram for 1.25 m long pair with fast edges ~ 1 ns”
- looking at end -
32 AWG twist/flat cable

"Eye diagram for 1.25 m long pair with slow edges ~ 4 ns"
- looking at end -