T10 99-278r0

A Proposal for Access Controls

(aka SAN Boxes)

SAN Promise and Problem

- Promise: pool Storage Devices on SAN for ease of management
- Problem: SCSI not suited for "big shared bus"
 - data integrity and privacy at risk
 - Reservations are inadequate

Why Not Reservations?

- All hosts are peers so
 - Reserve/Release can be preempted by resets
 - Persistent Reservations can be preempted
- Only one reservation owner (initiator)
 - for ACs, need AC manager independent of owner (can't claim access autonomously)

AC Manager Application Client = PAM, Partition Access Manager

Design Goals

- Access Controls by LU or ELEMENT within LU (same scope as reservations)
 - only authorized hosts can access restricted targets
 - targets can be configured as unrestricted (default state)
- Support ALL device types (not just storage)
 - controllers, disks, tape drives, etc.
 - allow limited resource devices to participate
- Minimize performance impact (minimal access checking per IO)
- Distribute "workload" across targets/hosts/PAM

Access Controls

- Maintained at the target; determine which initiator/hosts can access device
 - facilitates "reservation groups"
 - restricted cmds same as reservations
- Managed by PAM via Password authenticated CDBs
- Hosts identified in AC by either
 - private AccessID (new in proposal)
 - Transport Identifiers (like FC NodeName)

Why Two Naming Schemes?

- Why new AccessID:
 - host based not initiator/HBA based -- correct granularity for access controls
 - Transport Independent
 - Ease of management
 - no discovery of HBA WWNs required
 - -HBA change/move/remove actions simplified
 - Foundation for more secure versions of protocol

Why Two Naming Schemes? (continued)

- Why Transport-specific identifiers:
 - already used in Reservations and Extended Copy
 - some controllers already use these for similar functions
 - does not require additional host behavior (Send AccessID)
 - PROXY requires some identifier different from AccessID (details to come)

Highlights

- Two new CDBs (with service actions):
 - ACCESS CONTROL IN
 - ACCESS CONTROL OUT
- "SIGNED" service actions:
 - contain a self-validating password
 - come from Application Client (PAM)
- Unsigned service actions for generic hosts/initiators
- (Mostly) Transport Independent

Highlights (continued)

- Two "Identification" service actions (OUT)
 - Set/Change Password (SIGNED PASSWORD REGISTER)
 - Host Send ID (ACCESS ID REGISTER)
- Two "Grant/Revoke Access" service actions (OUT)
 SIGNED AUTHORIZATIONS (for PAM)
 PROXY AUTHORIZATIONS (for generic hosts)
- Two "Query" service actions (IN)
 - SIGNED REPORT AUTHORIZATIONS (get all info about ACs)
 - REPORT AUTHORIZATIONS (get those relevant to specific host)

CDBs with Passwords

- New to SCSI?
- Validate the Application Client (PAM)
- Initiator independent
- Passwords are private at the device server
 cannot be queried!
- Available for additional service actions:
 - e.g., RAID controller LU configuration
 - ► VS service actions available

PAM to Device Server Protocol

- Server accept all commands until PAM configures it
- PAM initializes password at the server
- Configuration cmds to server include PAM's password
- Server can be reset with special reset password (on box)

Operating Protocol

Step 1. PAM assigns AccessID to host - once

Step 2. PAM sends access grant for AccessID to server - once

Step 3. Host identifies itself to server (server maps AccessID to address) - on SAN reconfig

Step 4+. Access request (server infers AC rights from address) - per request

Passwords (in detail)

- 8 bytes long, to fit within 16 byte CDB
- Two types
 - Current Registered Password
 - initially unset
 - set/changed by service action from PAM
 - can be unset (to default state)
 - Permanent HW password
 - requires physical access to device to discover
 - used for recovery if PAM "looses" current
 PW

Access Controls (more details)

- Device server should be able to maintain at least one such entry for each LU at device
 - guarantees at least one host can have exclusive access
- Should be kept non-volatile (not required)
- Some cmds not subject to access controls
 - In general, if not reservation controlled, then not access controlled
 - some access control service actions subject to access controls
- New ASC/ASCQ to report access conflict