Parallel SCSI Extended Addressing Proposal
X3T10/99-249R0
September 14, 1999

Charles Monia
Why increase addressability?

◆ In a random I/O, transaction-intensive environment there is headroom to spare
 ◆ TPC-type workloads (2K random reads, RW Ratio =2:1) use ~ 1% of the bus bandwidth per HDA

◆ Increases in HDA transactions per second have lagged behind growth in other areas.
 – I/Os per second CAGR for random workloads ~ 14%.
 – Compared to CAGRs for:
 – Parallel SCSI Bandwidth: ~ 50%
 – Areal density:~ 60%
 – HDA peak data rate: CAGR ~ 25%
LUN Bridge Solution

◆ Cost and Complexity
 ◆ Bridge must emulate multi-lun target and initiator

◆ Performance
 ◆ Device access requires at least two full arb cycles plus internal bridge delays

◆ Other Issues
 ◆ How to handle multi-host configurations
 – Tagged queuing
 – Reserve/release, Persistent reserve, etc
 ◆ How to handle select/reselect collisions
Extended Addressing Proposal

- Define extended arbitration cycle
 - Exchanges some latent bus bandwidth for increased transaction capacity.

- Preserves some compatibility with legacy devices.
 - Restriction: Legacy devices can’t use QaS

- Assumptions:
 - Design center is LVD SCSI Wide
 - Use of bus extenders allows more physical devices to be attached
 - Fairly inexpensive
 - Device load can be distributed across several segments.
Overview

• Extended device address
 ◆ 16-bit format, two bits per device
 ◆ Extended Group ID (GID) in bits 7 -- 0
 ◆ Group IDs 15 -- 8 reserved for legacy devices
 – Legacy device addresses have no MID component.
 ◆ Group member ID (MID) in bits 15 -- 8
 ◆ Addressability is 64 extended devices.

• GID/MID combination is unique for each device.

• Device automatically operates in extended mode if extended address is assigned
Extended Arbitration

- Two round elimination
 - First round -- Group and legacy device arbitration
 - Identical to legacy arbitration cycle
 - Devices in the highest priority group advance to next round
 - Legacy devices that lose drop out
 - Legacy device that wins bypasses second round, proceeds directly to selection phase
 - Second round -- Group member arbitration
 - Device with highest priority MID wins
 - Estimated additional arbitration overhead for the second cycle
 - Added Arbitration time: +1.2 us
 - % Increased Arb overhead = (3600+1200)/3600 = 33%
 - QaS: +1 us
 - % Increased QaS overhead = (2000 + 1000)/2000 = 50%
Extended Selection

• No change in timing

• Approach:
 ◆ Snoop arbitration phase to build selection mask
 ◆ Snooping is already used for fairness
 ◆ Selection Mask = ID of ARB Winner | Device ID

• Discriminating between legacy and extended selection
 ◆ Three or four bits asserted during extended selection
 ◆ Only two data bits asserted during legacy selection
Starvation Avoidance

◆ Each extended device implements two “fairness” registers
 ◆ Group
 ◆ Group member

◆ Mask registers with one bit set for each arbitrating group or group member ID whose priority is less than the device.

◆ On each arbitration cycle
 ◆ Each device updates its group fairness register
 ◆ Each device updates its group member fairness register from the winning group MIDs
Starvation Avoidance (cont.)

◆ A device may arbitrate when both its Group and Group Member fairness registers are 0.

◆ Legacy device fairness
 ◆ Group I/Ds in the range 8 -- 15 are reserved for legacy devices.
 ◆ Legacy devices update their fairness registers with the group I/Ds of lower priority contending devices.
 ◆ Extended devices will defer to legacy devices.
 ◆ Legacy devices will defer to lower priority legacy devices.
Performance

◆ Scenario
 ◆ Transfer Parameters
 – Ultra-320
 – Random Reads (no cache hits)
 – Packetized, QAS
 – Disconnect/Reconnect every 16KB
 ◆ Drive Parameters (Year 2003 SWAG)
 – Drive Transfer Rate: 70MB/sec
 – Average seek time: 2.3ms
 – Average rotational delay: 1.35ms
Estimated HDA Capacity

Random I/O Bus Capacity
Ultra-320

Max Number of Drives

Transfer Size (kb)

Legacy Packetized
Extended Packetized

Charles Monia
X3T10/99-249R0
September 14, 1999 - 11
Estimated Effect on Bus Capacity

Change in Packetized Bus Capacity

Ratio of Extended to Legacy

Transfer Size (KB)
Conclusions:

◆ When to use extended addressing:
 ◆ In configurations with a high HDA count
 – Fewer adapters required compared to legacy SCSI
 ◆ When HDAs are connected to a heavily cached host or raid box
 – Residual drive traffic misses the HDA cache, so the hit ratio is low.
 ◆ Transaction rate is HDA-limited.

◆ When to use legacy addressing
 ◆ Raid boxes attached to the host via a front-side SCSI bus
 – There is a large percentage of cache hits
 – Device count on the bus is less important than response time
 ◆ Device count is low
 – e.g., Desktop, entry-level servers
Work to be done

• Specify how to implement with SCA-type connector
• Assess impact on bus extenders
• Add bus configuration rules
• Analyze electrical effects on bus
 ◆ e.g., Wired-or effects on SELECT line.
• Add fairness details to the proposal
Extended Addressing Timing Diagrams
Arbitration Timing

- **Bus Free + Bus Settle** (1200 ns)
- **End first arbitration cycle**
- **Arbitration Delay** (2400 ns)
- **End second arbitration cycle**
- **Legacy and low GIDs clear the bus**
- **MIDs asserted by each device in the winning group**

MIDs asserted by each device in the winning group
QAS Timing

- BSY: Asserted by target
- C/D: Signals negated
- I/O, MSG: Signals negated
- Data: Signals released
- SEL: Asserted by selected device
- QAS Start: End first arbitration cycle
- QAS Release: End second arbitration cycle
- Delay (1000 ns): QAS Arbitration delay
- Delay + 2x bus settle delay: QAS Release delay
- Bus settle delay (400 ns): Bus settle delay
- Device Selection: Delay (200 ns)

1000 ns delay + 2x bus settle delay

End first arbitration cycle

End second arbitration cycle