
Page 1 of 9

T10/99-119r56

Title: Proposal for an Informative Annex for SPI-3, “Protection for the Asynchronous Information
Phases (COMMAND, MESSAGE, and STATUS)”

To: T10 Technical committee
From: Mark Evans and Bruce Leshay

Quantum Corporation
500 McCarthy Boulevard
Milpitas, CA USA 95035
Phone: 408-894-4019
Fax: 408-952-3620
Email: mark.evans@quantum.com

bruce.leshay@quantum.com
Date: 28 May21 June 1999

With the advent of CRC on the DT data phases, customers have requested similar types of protection on
non-data information phases (COMMAND, MESSAGE, and STATUS) in those cases where the
information could become corrupted (e.g., by hot plugging events). The solution in this proposal resolves
this issue.

The following recommended changes from the SPI-3 working group meeting May 4th in Manchester are
included in this revision [Revision 5]: Figure x1 (Protection code generation) has been updated from
previous versions of this proposal to correctly reflect the algorithm. Additional explanatory text has been
added to x.1 (Code description). “Prototypes” have been added to the C code example. The C code
example was moved to x5.1. The Verilog example from the reflector was added in x5.2. Examples of
protection code calculations were added in x5.3. Modifications to x2 were made to allow the details of
enabling and disabling the feature to be vendor specific, including examples. Revision 6 contains only a
few editorial clarifications from Revision 5. These are identified by revision marks in the text.

Annex x
(Informative)

Improved Error Detection for the Asynchronous Information Phases
(COMMAND, MESSAGE, and STATUS)

This annex describes an enhanced error detection method for the COMMAND, MESSAGE, and STATUS
asynchronous information transfer phases. In systems not implementing this scheme, these phases only
transfer information on the lower eight data bits of a SCSI bus with only normal parity protection on those
transfers. Therefore, additional check information can be transferred on the upper eight data bits in order
to improve error detection capabilities. Since the upper eight data bits of the bus are used for this
scheme, this error detection method is only available on wide SCSI devices that are on wide SCSI busses.

x1 Protection Code

The following are the covered signals to be encoded and details of the protection code to be used on the
asynchronous information phases.

T10/99-119r56 Protection for Asynchronous Information Phases

Page 2 of 9

x1.1 Covered signals

Table x1 defines the signals to be covered by the protection code and their bit locations in the 21-bit code
word. When a device receives an information byte, it also latches the state of the other SCSI signals and
values noted in the table.

Table x1
Code Word Bit Location SCSI Signal Meaning

0 DB(0) Data bit 0 of the information byte
1 DB(1) Data bit 1 of the information byte
2 DB(2) Data bit 2 of the information byte
3 DB(3) Data bit 3 of the information byte
4 DB(4) Data bit 4 of the information byte
5 DB(5) Data bit 5 of the information byte
6 DB(6) Data bit 6 of the information byte
7 DB(7) Data bit 7 of the information byte
8 DB(8) Reserved (see note 1)
9 DB(9) Reserved (see note 1)
10 RSVD Reserved (see note 2)
11 RSVD Reserved (see note 2)
12 RSVD Reserved (see note 2)
13 Seq ID 0 Sequence ID bit 0
14 Seq ID 1 Sequence ID bit 1
15 DB(10) Redundant bit 0 of the code word
16 DB(11) Redundant bit 1 of the code word
17 DB(12) Redundant bit 2 of the code word
18 DB(13) Redundant bit 3 of the code word
19 DB(14) Redundant bit 4 of the code word
20 DB(15) Redundant bit 5 of the code word

Note 1: DB(8) and DB(9) are reserved for future use. These signals are negated by the
transmitting device and are ignored by the receiving device. Both the transmitter and
receiver encode these signals in the protection code.
Note 2: For calculation purposes these signals are zero. However, these virtual signals
could be used for other functions in a future standard.

The Sequence IDs are virtual signals that are encoded in the protection code but not transferred on the
SCSI bus. A sequence of consecutive information transfers during a MESSAGE, COMMAND, or
STATUS phase is a run. The Sequence ID increments during a run. A new run begins on every phase
change or on each MESSAGE OUT retry.

For each new run, the Sequence ID is set to zero for the first word transferred, set to one for the second
word transferred, set to two for the third word transferred, and set to three for the fourth word transferred.
The Sequence ID then cycles back to being set to zero for the fifth word transferred, and so forth until the
run is complete. At the beginning of the next run, the Sequence ID is set to zero again.

The Sequence ID provides detection of errors that occur when an information transfer is missed or double
clocked. A Sequence ID error causes a protection code error. If a protection code error is detected, then
the information transfer is invalid. The method for recovery from these errors is the same as the method
for parity error recovery (see x4).

x1.2 Code Description

The protection code is a cyclic binary BCH code.

Code Maximum data bits allowed Number of redundant bits Minimum distance of the code

Protection for Asynchronous Information Phases T10/99-119r56

Page 3 of 9

(21,15,4) 15 6 4

The BCH protection code is a cyclic code with a generator polynomial of x6 + x5 + x2 + 1.

The canonical form of the code generator is shown in Figure x1. This is a serial implementation: the
register is initialized to zero, then the data is fed in one bit at a time, codeword bit 14 (as defined above)
first, followed by codeword bits 13, 12, 11, and so on until bit 0. As each data bit is input, the shift register
is clocked. When all 15 bits have been clocked into the generator, the check bits are available in the
registers, check bit 0 (codeword bit 15) on the right in the diagram and check bit 5 (codeword bit 20) on
the left. The + signs represent an XOR operation.

Figure x1 – Protection code generator

Using this representation as a baseline, it is possible to construct logic to generate the six check bits from
an input data stream of n-bit width, including all 15 bits simultaneously, which is the expected
implementation, wherein:

Redundant bit 0 is the XOR of code word bits 0, 1, 2, 3, 5, 6, 7, 10, 11, and 13.
Redundant bit 1 is the XOR of code word bits 1, 2, 3, 4, 6, 7, 8, 11, 12, and 14.
Redundant bit 2 is the XOR of code word bits 0, 1, 4, 6, 8, 9, 10, 11, and 12.
Redundant bit 3 is the XOR of code word bits 1, 2, 5, 7, 9, 10, 11, 12, and 13.
Redundant bit 4 is the XOR of code word bits 2, 3, 6, 8, 10, 11, 12, 13, and 14.
Redundant bit 5 is the XOR of code word bits 0, 1, 2, 4, 5, 6, 9, 10, 12, and 14.

See x.5 for coding examples and examples of protection coding output.

x1.3 Error Detection Properties

This protection code was selected to have adequate detection properties for asynchronous information
transfer phases, given that these transfers are inherently less prone to errors and that these transfers
have short code words (approximately 20 bits as compared to thousands of bits during a DT data phase).
The BCH protection code Hamming distance is a minimum of four, the same as achieved by the data
CRC for transfers of less than eight kilobytes. The protection code will detect all errors of three bits or
fewer, all errors of an odd number of bits, and 98.4% of all possible errors.

+++
Data In
(Bits 14

Down to 0)

T10/99-119r56 Protection for Asynchronous Information Phases

Page 4 of 9

x2 Protection Code Usage

Protection code checking is enabled or disabled on an I_T nexus basis. All COMMAND, MESSAGE, and
STATUS phase information is checked for an I_T nexus while checking is enabled. Protection code
checking is disabled after a power cycle, after a hard reset, after a TARGET RESET message, and after a
change in the transceiver mode (e.g., LVD mode to MSE mode). Protection code checking is always
disabled for information unit transfers.

x2.1 Protection Code Transmission

SCSI devices supporting this protection code transmit the protection code check data during all
COMMAND, MESSAGE, and STATUS phases. The protection code byte is transferred on the upper eight
bits of a wide bus simultaneously with the information data byte on the lower eight bits of the bus using the
same clock for the transfer. Thus the transfer of the information byte and the protection code byte is
performed exactly like a normal wide transfer. The check data is transmitted even if detection is not
enabled.

x2.2 Enabling Protection Code Checking

A SCSI device enables protection code checking for an I_T nexus when it detects that valid protection
code data is being transmitted on the upper byte of the SCSI bus. The frequency that a SCSI device will
try to enable protection code checking and the number of valid protection code bytes required is vendor
specific. The following are some possible times when a SCSI device could try to enable protection code
checking:

1. During the first COMMAND, MESSAGE, or STATUS phase after a power cycle, after
a hard reset, after a TARGET RESET message, or after a change in the transceiver
mode.

2. Any time that removal and insertion of a SCSI device is possible, i.e. after a UNIT
ATTENTION condition.

3. During the MESSAGE phases during of a negotiation.

x2.3 Disabling Protection Code Checking

The removal and insertion of a SCSI device could require that protection code checking be disabled for a
previously enabled I_T nexus. A SCSI device disables protection code checking when it detects that no
protection code data is being transmitted on the upper byte. The determination that no protection code
data is being transmitted is vendor specific. The following are some possible ways that a SCSI device
could determine that no protection code data is being transmitted:

1. The DB(15-8) and DB(P1) signals are continuously deasserted while there is good
parity on DB(7-0) and DB(P_CRCA).

2. The protection code has a consistent error while there is good parity on DB(7-0) and
DB(P_CRCA).

x3 Parity

NWhen protection code checking is enabled normal wide parity is used during a protected transfer of
COMMAND, MESSAGE, or STATUS information. DB(P_CRCA) contains the parity for DB(7-0), and
DB(P1) contains the parity for DB(15-8).

Protection for Asynchronous Information Phases T10/99-119r56

Page 5 of 9

x4 Error handling

Protection code errors are handled exactly like parity errors during COMMAND, MESSAGE, or STATUS
phases as defined in the relevant subclauses on exception condition handling in clause 11.1.

x5 Examples

x5.1 C code example

The following is an example of a program written in the C programming language that would generate the
check bits for the protection scheme described in this annex.

/* C-code implementation of (21,15,4) cyclic code calculated in parallel. */
/* Input a 15-bit word, output six check bits. */
/* The implementation splits the 15-bit word into an 8-bit and 7-bit word. */
/* Each word is input to its own lookup table, producing two 6-bit results */
/* The two 6-bit results are then XOR'd together to create the final six */
/* check bits. */

/* The correspondence between the input data and SCSI bus is: */
/* data[0] : SCSI DB[0] */
/* data[1] : SCSI DB[1] */
/* data[2] : SCSI DB[2] */
/* data[3] : SCSI DB[3] */
/* data[4] : SCSI DB[4] */
/* data[5] : SCSI DB[5] */
/* data[6] : SCSI DB[6] */
/* data[7] : SCSI DB[7] */
/* data[8] : SCSI DB[8] */
/* data[9] : SCSI DB[9] */
/* data[10] : 0 (Reserved) */
/* data[11] : 0 (Reserved) */
/* data[12] : 0 (Reserved) */
/* data[13] : Sequence ID 0 */
/* data[14] : Sequence ID 1 */

#include <stdio.h>
unsigned short gen_poly = 0145U;
unsigned short degree_term = 0100U;
unsigned short table_lower[256];
unsigned short table_upper[128];

unsigned short encode(unsigned short data);
void making_tables(void);

void main(void) {
 unsigned short data = 1U;

 making_tables();

 /* to exit the loop, enter 0. Data of 0 produces result of 0 */

 while(data) {
 /* read in an input data value */
 printf("Enter an fifteen-bit data in <hex> format:\n");
 scanf("%hx",&data);
 data &= 0x7fffU; /** making sure that there are 15 bits in data **/

T10/99-119r56 Protection for Asynchronous Information Phases

Page 6 of 9

 printf("data = <hex>%04x, parallel-encoded edc = <hex>%02x\n",
 data, encode(data));
 }
}

/* creates the lookup tables used to generate the check bits */
/* Look up table for low 8 bits of input data, 256 entries x 6 bits */
/* Look up table for high 7 bits of data, 128 entries x 6 bits */
void making_tables(void) {
 unsigned int k;
 unsigned int power_of_two, one;

 /** making table for the lower order 8 bits of data ***/
 for(k = 0U; k < 256U; k++)
 table_lower[k] = 0U;

 table_lower[1] = gen_poly ^ degree_term;
 power_of_two = 1U;

 for(k = 1U; k < 8U; k++) {
 table_lower[power_of_two << 1] = table_lower[power_of_two] << 1;
 power_of_two <<= 1;

 if(table_lower[power_of_two] & degree_term)
 table_lower[power_of_two] ^= gen_poly;
 }

 for(k = 0U; k < 256U; k++) {
 if(table_lower[k])
 continue;

 for(one = 128U; one; one >>=1) {
 if(one & k)
 table_lower[k] ^= table_lower[one];
 }
 }

 /* Can uncomment this loop to print out the table values */
 /* for(k = 0U; k < 256U; k++) {
 printf("k = %03d, data = %04x\n", k, table_lower[k]);
 } */

 /** making table for the upper order 7 bits of data ****/
 for(k = 0U; k < 128U; k++)
 table_upper[k] = 0U;

 table_upper[1] = table_lower[128] << 1;

 if(table_upper[1] & degree_term)
 table_upper[1] ^= gen_poly;

 power_of_two = 1U;

 for(k = 1U; k < 7U; k++) {
 table_upper[power_of_two << 1] = table_upper[power_of_two] << 1;
 power_of_two <<= 1;

 if(table_upper[power_of_two] & degree_term)
 table_upper[power_of_two] ^= gen_poly;
 }

Protection for Asynchronous Information Phases T10/99-119r56

Page 7 of 9

 for(k = 0U; k < 128U; k++) {
 if(table_upper[k])
 continue;

 for(one = 64U; one; one >>= 1) {
 if(one & k)
 table_upper[k] ^= table_upper[one];
 }
 }

 /* Can uncomment this loop to print out the table values */
 /* for(k = 0U; k < 128U; k++) {
 printf("k = %03d, data = %04x\n", k, table_upper[k]);
 } */
}

/* actual encoding is just two lookups and then XOR the results */
/** data contains 15 bits **/
unsigned short encode(unsigned short data) {
 unsigned short edc, lower_index, upper_index;

 lower_index = data & 0xffU; /** lower_index contains 8 bits **/
 upper_index = (data >> 8) & 0x7fU; /** only 7 bits in upper_index **/
 edc = table_lower[lower_index] ^ table_upper[upper_index];

 return(edc);
}

x5.2 Verilog example

The following is an example of a Verilog implementation that would generate the check bits for the
protection scheme described in this annex.

// Verilog Implementation of Protection Code generator
//
// Input: cw - 15-bit Code word
// Returns: check - 6 Check bits
//
function[5:0] check;
input[14:0] cw;
begin
 check[0] = cw[00] ^ cw[01] ^ cw[02] ^ cw[03] ^ cw[05] ^ cw[06] ^ cw[07] ^ cw[10] ^ cw[11] ^ cw[13];
 check[1] = cw[01] ^ cw[02] ^ cw[03] ^ cw[04] ^ cw[06] ^ cw[07] ^ cw[08] ^ cw[11] ^ cw[12] ^ cw[14];
 check[2] = cw[00] ^ cw[01] ^ cw[04] ^ cw[06] ^ cw[08] ^ cw[09] ^ cw[10] ^ cw[11] ^ cw[12];
 check[3] = cw[01] ^ cw[02] ^ cw[05] ^ cw[07] ^ cw[09] ^ cw[10] ^ cw[11] ^ cw[12] ^ cw[13];
 check[4] = cw[02] ^ cw[03] ^ cw[06] ^ cw[08] ^ cw[10] ^ cw[11] ^ cw[12] ^ cw[13] ^ cw[14];
 check[5] = cw[00] ^ cw[01] ^ cw[02] ^ cw[04] ^ cw[05] ^ cw[06] ^ cw[09] ^ cw[10] ^ cw[12] ^ cw[14];
end
endfunction

T10/99-119r56 Protection for Asynchronous Information Phases

Page 8 of 9

x5.3 Protection code examples

x5.3.1 Example of a sequence of an IDENTIFY message with a SIMPLE task attribute message
having a tag field of zero.

Information Byte
Contents

Codeword
bits (7:0)
[DB(7:0)]

Codeword
bits (9:8)
[DB(9:8)]

Codeword
bits (14:13)

[Seq ID(1:0)]

Calculated
redundant
bits (5:0)

Output on
DB(15:8)

IDENTIFY message 10000000 00 00 001011 00101100
SIMPLE message 00100000 00 01 110000 11000000
TAG = 0 00000000 00 10 110010 11001000

x5.3.2 Example of a sequence of a CDB for a READ(6) command with a Logical Block Address of
1A BC DEh, and a Transfer Length of 55h.

Information Byte
Contents

Codeword
bits (7:0)
[DB(7:0)]

Codeword
bits (9:8)
[DB(9:8)]

Codeword
bits (14:13)

[Seq ID(1:0)]

Calculated
redundant
bits (5:0)

Output on
DB(15:8)

OPERATION CODE 08h
(READ(6))

00001000 00 00 010011 01001100

LBA(20:16) 00011010 00 01 000011 00001100
LBA(15:8) 10111100 00 10 011110 01111000
LBA(7:0) 11011110 00 11 110110 11011000
TRANSFER LENGTH 01010101 00 00 001111 00111100
CONTROL 00000000 00 01 011001 01100100

x5.3.3 Example of a “shifting ones” sequence.

The following is not a SCSI sequence, but demonstrates the calculation results and theoretical output for
twelve different codewords each containing all zeroes except for a single one in a different bit in each
word.

Information Byte
Contents

Codeword
bits (7:0)
[DB(7:0)]

Codeword
bits (9:8)
[DB(9:8)]

Codeword
bits (14:13)

[Seq ID(1:0)]

Calculated
redundant
bits (5:0)

Theoretical
Output on
DB(15:8)

00000001 00 00 100101 10010100
00000010 00 00 101111 10111100
00000100 00 00 111011 11101100
00001000 00 00 010011 01001100
00010000 00 00 100110 10011000
00100000 00 00 101001 10100100
01000000 00 00 110111 11011100
10000000 00 00 001011 00101100
00000000 01 00 010110 01011001
00000000 10 00 101100 10110010
00000000 00 01 011001 01100100

Not applicable for
this example

00000000 00 10 110010 11001000

Protection for Asynchronous Information Phases T10/99-119r56

Page 9 of 9

x5.3.4 Example of a “shifting zeroes” sequence.

The following is not a SCSI sequence, but demonstrates the calculation results and theoretical output for
twelve different codewords each containing all ones except for a single zero in a different bit in each word.

Information Byte
Contents

Codeword
bits (7:0)
[DB(7:0)]

Codeword
bits (9:8)
[DB(9:8)]

Codeword
bits (14:13)

[Seq ID(1:0)]

Calculated
redundant
bits (5:0)

Theoretical
Output on
DB(15:8)

11111110 11 11 100101 10010111
11111101 11 11 101111 10111111
11111011 11 11 111011 11101111
11110111 11 11 010011 01001111
11101111 11 11 100110 10011011
11011111 11 11 101001 10100111
10111111 11 11 110111 11011111
01111111 11 11 001011 00101111
11111111 10 11 010110 01011010
11111111 01 11 101100 10110001
11111111 11 10 011001 01100111

Not applicable for
this example

11111111 11 01 110110 11011011

	Protection Code
	Covered signals
	Code Description
	Error Detection Properties

	Protection Code Usage
	Protection Code Transmission
	Enabling Protection Code Checking
	Disabling Protection Code Checking

	Parity
	Error handling
	Examples
	C code example
	Verilog example
	Protection code examples
	Example of a sequence of an IDENTIFY message with a SIMPLE task attribute message having a tag field of zero.
	Example of a sequence of a CDB for a READ(6) command with a Logical Block Address of 1A BC DEh, and a Transfer Length of 55h.
	Example of a “shifting ones” sequence.
	Example of a “shifting zeroes” sequence.

