
Page 1 of 6

T10/99-119r4

Title: Proposal for an Informative Annex for SPI-3, “Protect ion for the Asynchronous
Informat ion Ph ases (COMMAND, MESSAGE, and STATUS)”

To: T10 Technical committee
From: Mark Evans and Bruce Leshay

Quantum Corporation
500 McCarthy B oulevard
Milpitas, CA USA 95035
Phone: 408-894-4019
Fax: 408-952-3620
Email: mark.evans@quantum.com

bruce.leshay@quantum.com
Date: 23 April 1999

With the advent of CRC on the DT data phases, customers have requested similar types of protection on
non-data information phases (COMMAND, MESSAGE, and STATUS) in those cases where the
information may become corrupted (e.g., by hot plugging events). The solution in this proposal resolves
this issue.

The following takes the original proposal and puts it in the form of an informative annex based on the
recommendation of the SPI-3 working group meeting the week of April 5th in Monterey.

Annex x
(Informative)

Protection for the Asynchronous Information Phases
(COMMAND, MESSAGE, and STATUS)

This annex describes a protection method that provides improved error detection for asynchronous
information phases (COMMAND, MESSAGE, and STATUS) by transferring redundant information on the
upper eight data bits on the wide bus. During these phases asynchronous information is sent along the
8-bit (narrow) bus with parity as normal. This protection method is only available for wide SCSI devices.

x1 Protection Code

The following are the items to be encoded and details of the protection code to be used on the
asynchronous information phases.

x1.1 Covered s ignals

Table x1 defines the signals to be covered by the protection code and their bit locations in the 21-bit
code word. When a device receives the information byte, it also latches the state of the other SCSI
signals and values noted in the table.

T10/99-119r4 Protect ion for Asynchronous Info rmat ion Ph ases

Page 2 of 6

Table x1
Codeword Bit Location SCSI Signal Meaning

0 DB(0) Data bit 0 of the information byte
1 DB(1) Data bit 1 of the information byte
2 DB(2) Data bit 2 of the information byte
3 DB(3) Data bit 3 of the information byte
4 DB(4) Data bit 4 of the information byte
5 DB(5) Data bit 5 of the information byte
6 DB(6) Data bit 6 of the information byte
7 DB(7) Data bit 7 of the information byte
8 DB(8) Reserved (see note 1)
9 DB(9) Reserved (see note 1)
10 RSVD Reserved (see note 2)
11 RSVD Reserved (see note 2)
12 RSVD Reserved (see note 2)
13 Seq ID 0 Sequence ID bit 0
14 Seq ID 1 Sequence ID bit 1
15 DB(10) Redundant bit 0 of the code word
16 DB(11) Redundant bit 1 of the code word
17 DB(12) Redundant bit 2 of the code word
18 DB(13) Redundant bit 3 of the code word
19 DB(14) Redundant bit 4 of the code word
20 DB(15) Redundant bit 5 of the code word

Note 1: DB(8) and DB(9) should be included in the calculation as read from the bus, so
they can be used in the future. These signals are reserved and should be negated.
Note 2: For calculation purposes these signals are zero. However, these signals may
be used for other functions in a future standard.

The Sequence ID is a “virtual” signal that is carried in the encoding, but not actually sent on the bus. The
Sequence ID increments during a “run”. A “run” is a sequence of transfers during a MESSAGE IN,
MESSAGE OUT, COMMAND, or STATUS phase. A new run begins with every phase change and every
time that ATN is negated.

For each new run, the Sequence ID is set to zero for the first word transferred, one for the second word
transferred, two for the third word transferred, and three for the fourth word transferred. The Sequence
ID then cycles back to zero for the fifth word transferred, and so forth until the run is complete. At the
beginning of the next run, the Sequence ID starts at zero again.

The Sequence ID provides protection for errors that occur when a data transfer is missed or double
clocked. If a BCH code error is detected or if a sequence ID value is missing during a run, then the
transfer is invalid. Recovery from these protection errors is the same as parity error recovery (see x4).

x1.2 Code Description

The protection code is a cyclic binary BCH code.

Code Maximum data bits allowed Number of redundant bits Minimum distance of the code
(21,15,4) 15 6 4

The BCH protection code is a cyclic code with a generator polynomial of x6 + x5 + x2 + 1. The canonical
form of the code generator is shown in Figure x1. This is a serial implementation: the register is
initialized to zero, then the data is fed in one bit at a time, codeword bit 14 (as defined above) first,
followed by codeword bit 13, 12, 11,… and so on until bit 0. As each data bit is input, the shift register is
clocked. When all 15 bits have been clocked in, the check bits are available in the registers, check bit 0

Protection for Asynchronous Info rmat ion Ph ases T10

Page 3 of 6

(codeword bit 15) on the right in the diagram, and check bit 5 (codeword bit 20) on the left. The + signs
represent an XOR operation.

Figure x1 – Protection code gen erator

Using this representation as a baseline, it is possible to construct logic to generate the six check bits from
an input data stream of n-bit width, including all 15 bits simultaneously, which would be the expected
implementation.

x1.3 Error Detection Properties

The protection code was selected to have adequate detection properties for asynchronous information
transfer phases, given that these transfers are inherently less prone to errors and these transfers have
short code words (approximately 20 bits as compared to thousands of bits during a DT data phase). The
BCH protection code Hamming distance is a minimum of four, the same as achieved by the data CRC
for transfers of less than eight kilobytes. The protection code will detect all errors of 3 bits or fewer, all
errors of an odd number of bits, and 98.4% of all possible errors.

x1.4 C code example

The following is an example of a program written in the C programming language that would generate
the check bits for the protection scheme described in this annex.

/* C-code implementation of (21,15,4) cyclic code calculated in parallel. */
/* Input a 15 bit word, output 6 check bits. */
/* The implementation splits the 15 bit word into an 8 bit and 7 bit word. */
/* Each word is input to its own lookup table, producing two 6-bit results */
/* The two six bit results are then XOR'd together to create the final 6 */
/* check bits. */

/* The correspondence between the input data and SCSI bus is: */
/* data[0] : SCSI DB[0] */
/* data[1] : SCSI DB[1] */
/* data[2] : SCSI DB[2] */
/* data[3] : SCSI DB[3] */
/* data[4] : SCSI DB[4] */
/* data[5] : SCSI DB[5] */
/* data[6] : SCSI DB[6] */
/* data[7] : SCSI DB[7] */
/* data[8] : SCSI DB[8] */
/* data[9] : SCSI DB[9] */
/* data[10] : 0 (Reserved) */
/* data[11] : 0 (Reserved) */
/* data[12] : 0 (Reserved) */
/* data[13] : Sequence ID 0 */
/* data[14] : Sequence ID 1 */

++ +
Data In
(Bits 14

Down to 0)

T10/99-119r4 Protect ion for Asynchronous Info rmat ion Ph ases

Page 4 of 6

#include <stdio.h>
unsigned short gen_poly = 0145;
unsigned short degree_term = 0100;
unsigned short table_lower[256];
unsigned short table_upper[128];

int main()
{

 unsigned short data,edc_single,edc_parallel;
 unsigned short serial_encode();
 unsigned short parellel_encode();

 short making_tables();

 making_tables();

 while(1)
 {
 /* read in an input data value */
 printf("Enter an fifteen-bit data in <hex> format:\n");
 scanf("%hx",&data);
 data &= 0x7fff; /** making sure that there are 15 bits in data **/
 edc_parallel = parellel_encode(data);
 printf(" data = <hex>%04x, parallel-encoded edc = <hex>%02x\n",data,
 edc_parallel);
 /* to exit the loop, enter 0. Data of 0 produces result of 0 */
 if(data==0) break;
 }

}

/* creates the lookup tables used to generate the check bits */
/* Look up table for low 8 bits of input data, 256 entries x 6 bits */
/* Look up table for high 7 bits of data, 128 entries x 6 bits */
short making_tables()
{short k;
 short power_of_two,one;

 /** making table for the lower order 8 bits of data ***/
 for(k=0; k < 256; k++) table_lower[k] = 0;
 table_lower[1] = gen_poly ^ degree_term;

 power_of_two = 1;
 for(k=1; k < 8; k++)
 {table_lower[power_of_two << 1] = table_lower[power_of_two] << 1;
 power_of_two <<= 1;
 if(table_lower[power_of_two] & degree_term)
 table_lower[power_of_two] ^= gen_poly;
 }
 for(k = 0; k < 256; k++)
 {if(table_lower[k]) continue;
 one = 128;
 while(one)

Protection for Asynchronous Info rmat ion Ph ases T10

Page 5 of 6

 {if(one & k) table_lower[k] ^= table_lower[one];
 one >>= 1;
 }
 }

 /* Can uncomment this loop to print out the table values */
 /* for(k = 0; k < 256; k++)
 { printf("k = %03d, data = %04x\n", k, table_lower[k]);
 } */

 /** making table for the upper order 7 bits of data ****/
 for(k=0; k < 128; k++) table_upper[k] = 0;
 table_upper[1] = table_lower[128] << 1;
 if(table_upper[1] & degree_term) table_upper[1] ^= gen_poly;
 power_of_two = 1;
 for(k=1; k < 7; k++)
 {table_upper[power_of_two << 1] = table_upper[power_of_two] << 1;
 power_of_two <<= 1;
 if(table_upper[power_of_two] & degree_term)
 table_upper[power_of_two] ^= gen_poly;
 }
 for(k = 0; k < 128; k++)
 {if(table_upper[k]) continue;
 one = 64;
 while(one)
 {if(one & k) table_upper[k] ^= table_upper[one];
 one >>= 1;
 }
 }

 /* Can uncomment this loop to print out the table values */
 /* for(k = 0; k < 128; k++)
 { printf("k = %03d, data = %04x\n", k, table_upper[k]);
 } */

 return(1);
 }

/* actual encoding is just two lookups and then XOR the results */
unsigned short parellel_encode(data)
unsigned short data; /** data contains 15 bits **/
{
 short k;
 unsigned short edc,lower_index,upper_index;

 lower_index = data & 0xff; /** lower_index contains 8 bits **/
 upper_index = (data >> 8) & 0x7f; /** only 7 bits in upper_index **/
 edc = table_lower[lower_index] ^ table_upper[upper_index];
 return(edc);

}

x2 Enabling

T10/99-119r4 Protect ion for Asynchronous Info rmat ion Ph ases

Page 6 of 6

1) All SCSI devices supporting the protection code generate and transmit the code during all
COMMAND, MESSAGE, and STATUS phases.

2) If detection of the protection code is enabled, then the SCSI device checks the code when receiving
all COMMAND, MESSAGE, and STATUS information.

3) If the protection code is detected during the first message or command received by a target after a
power on or reset condition, then that target uses protection code detection on that I_T nexus for all
subsequent I/O processes until a subsequent power on or reset condition occurs.

4) If the protection code is detected on the status and command completion message received by the
initiator after a power on or reset condition occurs, the initiator uses protection code detection on that
I_T nexus for subsequent I/O processes until a subsequent power on or reset condition occurs.
(Note: An initiator could check for the protection code on each UNIT ATTENTION condition
generated by a target in order to detect when a target not capable of generating protection code is
“hot swap” replaced by a target that is capable of generating protection code).

5) If an SCSI device receives two consecutive bytes of COMMAND, MESSAGE, or STATUS
information with no parity error across (DB(0) – DB(7), P(0)) but having a protection code error or a
parity error on (DB(8) – DB(15), P(1)), the device should disable protection code checking for that I_T
nexus. Detection of protection code should not be re-enabled for the device until a subsequent
power on or reset condition occurs (or, if implemented by the initiator, a subsequent UNIT
ATTENTION condition occurs).

x3 Parity

During a protected transfer of COMMAND, MESSAGE, or STATUS information P(0) contains parity for
the low order byte (DB(0) through DB(7)) as normal. P(1) contains parity for the high order byte of the
transfer (DB(8) through DB(15)).

x4 Error handling

Protection code errors shall be handled exactly like parity errors during COMMAND, MESSAGE, or
STATUS phases as defined in the relevant subclauses on exception condition handling in clause 11.1.

