z‘@ﬁtﬂf T10/ 98- 237r0

To: T10 Technical Committee
From Chandru Si ppy, QLogic Corp.
Subj ect : Packeti zed SCSI

The last line on T10/1302D rev. 0 Section 12.1 (Pgs. 127, 128) reads as foll ows:

On a wite, SPI protocol does not allow the target to informthe initiator if the
data was properly received, therefore, the initiator shall assune the data was
properly received and save the data pointers as soon as the last CRC byte is sent.
To retry a wite operation a target shall send a MOD FY DATA PO NTERS nessage then
request that the SPI information unit be sent again.

The underlined bold text (for effect only) should really be renoved from the
speci fication.

My rationale for the removal of an inplicit save data pointers is as follows:
Pl ease refer to section 12.6 on SCSI Pointers. My understanding is outlined bel ow

» There is only set of active pointers that point to the next conmand, data, or
status byte to be transferred.

» The saved pointers always point to the start the block to be transferred.

» In response to save data pointers, the initiator stores the value of the active
data pointer into the saved data pointer for that task.

» The Mdify Data Pointers (el sewhere in the specification) adds a 2s conpl enent
offset to the current active data pointer. It has no effect on the saved
poi nters.

For any given data transfer from the host system nmenory, we have a starting
address (A) and a transfer length (L) for an ending address of A + L. If the
target were to attenpt nodifying the data pointers outside this range between A
and A + L with an invalid offset value, then an error should be flagged. The
specification of course does not explicitly state this anywhere. But it reasonable
to assune that this nust be the case or else target data nmay get corrupted. The
host menory is protected but the attached target nediumis not. In other words, if
the data transfer is just starting then a negative offset is illegal and the
positive offset should be less than A + L.

Now assune that sone data transfer has taken place and that D bytes have been
transferred. Now the current address is at A + D and the remaining transfer |length
is L - D The target may now i ssue a MO FY DATA PO NTERS with a negative offset
not exceeding D and a positive offset less than L - D. Any other value should be
illegal to ensure data integrity at either end.

Foll owi ng the above logic, if a save data pointers was inplicitly done, then the
new starting address is A + D with a transfer length of L - D. The current
pointers are also equal to the sane values assum ng no additional data transfer
has taken place. Since the original values of A and L are not saved anywhere, the
target may not nodify the data pointers outside the new values. In other words,
after transferring D bytes of data, with an inplicit save data pointers one cannot
go back. One can only go forward. If no save data pointers were assuned, then it
woul d be okay subject to the restrictions that have been pointed out.

Page 1 of 2



z‘@ﬁtﬂf T10/ 98- 237r0

For the specification to be correct as stated one would have to save the actual
original values also and then conpare against these values all of the time. This
requires having yet another copy of the original values (rmay be call it
i nternedi ate saved data pointers) besides the saved and active val ues.

Even though the specification does not state how many saved sets exist in the
initiator, | contend that it not reasonable to nmaintain nore than one saved val ue
for a given task. Al this does is add un-needed conmplexity to the initiator side
f/w and the actual hardware that mnmust notify the f/w that CRC has been sent and an
i nplied save data pointers should be perforned by the f/w By sinply striking out
the underlined phrase, all of this just goes away as stated in the paragraph
following the bulleted itens.

However, GCeorge Penokie pointed out the foll ow ng:

In packetized we need to have the pointers nove at the end of each data |IU because
the next LQ IU may not be for the same 10 process. So if they are not saved the
pointer would be lost and the next tine a transfer occurs for the original 10
process the pointers would not be correct.

However, a small problem does seemto exist dependi ng upon the conbination of Save
Data Pointers and Modify Data Pointers used by the targets. In an attenpt to solve
this dilemm, George further suggested the foll ow ng:

There is a solution to the packetized version of this problem that an initiator
can inplement without any changes to the standard. The initiator when doing wites
only need to nonitor the phase lines to see if the data pointer should be saved.
It could go sonmething like this:

Phase is DI DATA QUT -- Initiator sends data and CRC in the data |IU.
At the end of the CRC the initiator holds off saving the data pointers.

If the initiator detects a DI DATA IN phase it saves the data pointers before
the L QIU forns the new nexus -- The target would not do this if there were a
CRC or parity error.

If the initiator detects a Message In phase it |ooks to see what the nessage
is. If it a Modify Data Pointers nessage then it does not save the pointers but
nodi fi es them per the nessage.

If the initiator detects any other phase or nessage (in the case of a Message
in phase) it should save the pointers and do whatever.

There may be even sinpler ways to solve the problemthan the ones briefly outlined
above. All Qogic is looking for is sone clarification and to alert other menbers
that there is a small problem here. So do be careful before saving the data
pointers blindly. It nmay create problens |ater!

Page 2 of 2



