
Proposed SCSI Device Locks

Version 0.9.3

Drafted by

Matthew T. O'Keefe

Kenneth W. Preslan

Christopher J. Sabol

Steven R. Soltis

Parallel Computer Systems Laboratory

University of Minnesota

Minneapolis, MN 55455

fokeefe,kpreslan,cjs,soltisg@lcse.umn.edu

+1-612-625-6306

September 12, 1998

Contents

1 Introduction 2

2 The Dlock Interface 3
2.1 Dlock CDB . 3
2.2 Dlock Return Data . 4

2.2.1 Return data for all actions except Report Expired 4
2.2.2 Return data for Report Expired . 5

2.3 Mode Page . 7
2.4 Additional Sense Codes and Quali�ers . 7

3 Dlock Behavior 7
3.1 Actions . 7
3.2 Version Numbers and Caching . 9
3.3 Handling Client Failures . 11

3.3.1 Activity/Force Lock Exclusive . 11
3.3.2 Dlock timeouts/Touch Lock/Report Expired 12
3.3.3 World Wide Names . 12

3.4 Shared and Exclusive Locks . 13
3.5 WWNs and GFS . 15
3.6 Dlock Persistence . 15

4 Implementation Details 16
4.1 Out-of-Queue Dlocks . 16
4.2 Event{driven Timeouts . 16
4.3 Active Dlocks . 16
4.4 World Wide Names . 17

5 Future Work { Multiple Actions Per Command 17

6 Acknowledgments 18

1

1 Introduction

Device Locks are mechanisms used in distributed environments to facilitate mutual exclusion
of shared resources. They can further be used to maintain coherence of data that is cached
in several locations. The locks are implemented on the storage devices and accessed with
the SCSI device lock command, Dlock. The Dlock command is independent of all other
SCSI commands, so devices supporting the locks have no awareness of the nature of the
resource that is locked. Each lock requires only a small amount of memory allowing devices
to support thousands of these locks with minimal amounts of memory.

Each Dlock can be acquired in one of two modes, shared or exclusive. A shared lock
allows multiple clients to access the data protected by the lock as long as they don't change
it. This allows multiple readers of a directory or �le at the same time. If a client needs to
change the data, it acquires the lock in exclusive mode. No one else can read or write the
data for the duration that the lock is held.

Dlocks can also timeout after a period of inactivity. If a lock is acquired and it is not
unlocked in a certain amount of time, the lock automatically changes to an unlocked state.
The next initiator that tries to get the lock will succeed and be noti�ed that the previous
holder let the lock expire. The actual length of the timeout can be set in the Dlock Mode
Page. This timeout, together with the Report Expired action (which reports which locks
have timed out), facilitates a \cleaner" program that runs in the background looking for and
�xing the messes left by client failures.

The Touch Lock action can be used to reset the timer on the lock. This allows a client
to hold a lock for longer than one timeout period, but also allows the lock to timeout if the
client fails.

Each device lock has a state �eld, an activity bit, and a version number. After all Dlock
operations, the current values are returned to the initiator where the values are saved for
measurement of lock activity. Activity measurements are useful in the event of failures, for
load balancing shared resources, and for maintaining data coherence.

Device locks support six primary actions: Lock Shared, Lock Exclusive, Unlock, Unlock
Increment, Force Lock Exclusive, and Touch Lock. The actions use test-and-set and clear
operations to modify the lock state. The version number is incremented according to the
actions and activity bit. The Force Lock action takes a version number as an input to be
compared with the current value to determine if the lock should be taken away from its
current holder and set in the Locked Exclusive state under ownership of the new initiator.

Device locks support four secondary actions: No Action, Activity On, Activity O�, and
Report Expired. These actions do not modify the lock state. The No Action action may be
used to read the state, activity, version number, and other information about the lock. The
Activity On and Activity O� actions set and clear the activity bit, respectively. The Report
Expired action returns a bitmap that tells the initiator which locks have expired.

The version numbers are incremented after successful Unlock Increment, Force Lock Ex-
clusive, and Activity O� actions. The version numbers are also incremented after successful
Unlock actions provided the activity bit is set. The size of the version number is 32 bits. The
initiators must be aware that the version number periodically rolls-over from its maximum
value to zero. The minimum roll-over time can be determined by timing the access of each
lock. If the current time di�ers from the last access time by some amount less than the

2

Byte,Bit 7 6 5 4 3 2 1 0

0 Operation Code (A0h)
1 Reserved Action
2 (MSB)
3 Lock Number
4
5 (LSB)
6 (Bit 23)
7 Input Version Number
8 (LSB)
9
10

Allocation Length

11 Control Byte

Table 1: Dlock CDB

known roll-over time, then the clock is guaranteed not to have rolled. The client can use
these version numbers to implement cache coherency schemes.

2 The Dlock Interface

The Dlock interface is de�ned by three main parts, the CDB, the return data, and the mode
page.

2.1 Dlock CDB

The Dlock CDB is show in Table 1. The �elds of interest are:

Operation Code The SCSI Operation code for Dlock. This is currently A0h, but will very
likely change in the future.

Action This describes the action being requested. The possible values of this �eld are shown
in Table 2.

Lock Number This is the number of the lock to be operated on.

Input Version Number One of the actions, Force Lock Exclusive, only completes suc-
cessfully if the three least signi�cant bytes of the lock's version number is equal to this
�eld.

Allocation Length The number of bytes that the initiator has allocated for data returned
from the command.

3

Code Action Description

0h Nop No Operation, just return lock state
1h Lock Shared Acquire shared lock
2h Lock Exclusive Acquire exclusive lock
3h Force Lock Exclusive Acquire exclusive lock,

reseting lock if necessary
4h Touch Lock Reset timer on lock
5h Unlock Release lock
6h Unlock Increment Release lock and

increment version number
7h Activity On Turn on Activity Monitor
8h Activity O� Turn o� Activity Monitor
9h Report Expired Report which locks have expired
Ah{Fh Reserved Reserved

Table 2: Dlock Actions

2.2 Dlock Return Data

The format of the data returned by the Dlock command depends on what action was issued.

2.2.1 Return data for all actions except Report Expired

The target will return information about the state of the lock operated on by the CDB.
The information returned represents the state of the lock after the current command was
completed. The exception to this is the Expired Field. The Expired Field indicates the state
of the lock before the command, if the action was Lock Shared, Lock Exclusive, or Force
Lock Exclusive. The format of the data is shown in Table 3.

Return Data Length The length in bytes of the returned data.

Result This bit is 1 if the action succeeded, 0 if the action failed.

Activity This bit is 1 if activity monitoring is on, 0 if it is o�.

Expired This �eld indicates whether or not the machine that last held this lock released it
cleanly or let it time out. The values of this �eld are shown in Table 4

State The values of the State of the lock are shown in Table 5.

Version Number This is the version number of the lock.

Number of Holders This is the number of clients currently holding this lock.

World Wide Names This is a list of the World Wide Names of all the initiators currently
holding this Dlock. Of course, World Wide Names only exist in Fibre Channel. For

4

Byte,Bit 7 6 5 4 3 2 1 0

0
1

Return Data Length

2 Result Act Reserved Expired State
3 (MSB)
4 Version Number
5
6 (LSB)
7 Number of Holders
8{15 World Wide Name
16{23 World Wide Name
24{31 ...

Table 3: Reply Data Format for all actions except Report Expired

Code Description

0h Not Expired
1h Expired from Locked Shared
2h Expired from Locked Exclusive
3h Reserved

Table 4: Values of the Expired �eld

parallel SCSI, an identi�er unique to the SCSI bus would be returned. The initiator's
SCSI id, for example.

2.2.2 Return data for Report Expired

The data returned from the Report Expired action is returned is shown in Table 6. Each bit
in the bitmap is a one if the associated lock has expired.

Code Description

0h Unlocked
1h Locked Shared
2h Locked Exclusive
3h Reserved

Table 5: Values of the State �eld

5

Byte,Bit 7 6 5 4 3 2 1 0

0
1

Return Data Length

2 L 7 L 6 L 5 L 4 L 3 L 2 L 1 L 0
3 L 15 L 14 Bitmap of expired locks L 9 L 8
4 L 23 L 22 L 21 L 20 L 19 L 18 L 17 L 16
5 ...

Table 6: Reply Data Format for Report Expired

Byte,Bit 7 6 5 4 3 2 1 0

0 PS Page Code (29h)
1 Page Length
2 Maximum number of clients able to share a lock
3 Reserved
4 (MSB)
5 Number of locks on the device
6
7 (LSB)
8 (MSB)
9 Lock Timeout Interval
10 (Seconds)
11 (LSB)

Table 7: Mode Page Data

6

Description ASC ASCQ C/D BPV BP FP

Invalid action 24h 00h 1 1 3 1
Lock number out of range 24h 00h 1 0 0 2
All Dlocks cleared D0h 00h

Table 8: Additional Sense Codes and Quali�ers

2.3 Mode Page

The mode page returns information about lock parameters.

Number of locks on the device Returns the number of Dlocks on the device.

Maximum number of clients able to share a lock This is the number of clients that
can simultaneously hold a lock in the Locked Shared state.

Lock Timeout Interval The number of milliseconds after which an untouched lock will
timeout. If this value is zero, locks never time out.

2.4 Additional Sense Codes and Quali�ers

The Additional Sense Codes and Additional Sense Code Quali�ers for Dlock are shown in
Table 8. The �rst two error conditions, Invalid Action and Lock number out of range, can
use the \Invalid Field in CDB" ASC/ASCQ. The third error condition, All Dlocks cleared
has a new ASC/ASCQ pair: D0h, 00h.

3 Dlock Behavior

There are a number of details of the Dlock speci�cation that aren't obvious from the interface.

3.1 Actions

A more detailed description of the actions can be seen in Table 9. Important things to notice
are:

� If a lock has expired from a Locked Exclusive state, a Lock Shared request should
produce a Locked Exclusive state. This allows the client acquiring the lock to do
whatever cleanup is necessary without exposing other clients to data in an inconsistent
state.

� If a client holds a lock as Locked Exclusive, it should be able to issue a Lock Shared
command on the same lock and the lock will be converted to the Locked Shared state.

7

State
Action Unlocked Locked Shared Locked Exclusive

Nop Return.result 1 Return.result 1 Return.result 1
Lock Shared Return.result 1 if Lock[N].holders < MaxHolders if Lock[N].wwn[0] = wwn

if Lock[N].expired = ExpiredExclusive Return.result 1 Return.result 1
Lock[N].state LockedExclusive Lock[N].holders++ Lock[N].state LockedShared

else Add WWN to the list Reset expire time

Lock[N].state LockedShared Reset expire time else
Lock[N].holders 1 else Return.result 0
Add WWN to the list Return.result 0
Reset expire time

Lock Exclusive Return.result 1 if (Lock[N].holders = 1 and Return.result 0
Lock[N].state LockedExclusive Lock[N].wwn[0] = wwn)
Lock[N].holders 1 Return.result 1
Add WWN to the list Lock[N].state LockedExclusive
Reset expire time Reset expire time

else
Return.result 0

Force Lock Exclusive Return.result 1 if Lock[N].version = version
Lock[N].state LockedExclusive Return.result 1
Lock[N].holders 1 Lock[N].state LockedExclusive
Add WWN to the list Lock[N].holders 1
Reset expire time Lock[N].version++

Clear list, then Add WWN

Reset expire time

else
Return.result 0

Touch Lock Return.result 0 if WWN is in the list

Return.result 1
if Lock Number is 0xFFFFFFFF

Reset expire time on all locks held by this initiator

else
Reset expire time

else
Return.result 0

Unlock Return.result 0 if WWN is in the list

Return.result 1
Lock[N].holders��
Remove WWN from the list

if Lock[N].activity = 1
Lock[N].version++

if Lock[N].holders = 0
Lock[N].state Unlocked

else
Return.result 0

Unlock Increment Return.result 0 if WWN is in the list

Return.result 1
Lock[N].holders��
Remove WWN from the list

Lock[N].version++
if Lock[N].holders = 0
Lock[N].state Unlocked

else
Return.result 0

Activity On Return.result 1
Lock[N].activity 1

Activity O� Return.result 1
Lock[N].activity 0
Lock[N].version++

All Actions Return.activity Lock[N].activity
Return.expired Lock[N].expired
Return.state Lock[N].state
Return.version Lock[N].version
Return.wwn[] Lock[N].wwn[]

Table 9: Device Lock Actions

8

� If a client holds a lock as Locked Shared and it is the only client holding the lock at
the time, it should be able to issue a Lock Exclusive command on the same lock and
the lock will be converted to the Locked Exclusive state. If the lock is shared by other
initiators, the Exclusive Pending bit (see Section 3.4) is set.

� A client may hold multiple instances of the same lock, if it is in a Locked Shared state.
This is a valid (if somewhat useless) condition.

� If a Force Lock Exclusive is issued, the lock is held, and the low three bytes of the
input version number is correct, the FLE's return data should indicate that the lock
expired. Example { If a lock is held by one client in a Lock Shared state and another
client issues a Force Lock Exclusive, the Expired �eld in the return data should be
\Expired from Lock Shared". This allows a client to know if recovery is required. If a
Force Lock Exclusive is issued on an unlocked lock, the Expired �eld should be \Not
Expired".

� If a Touch Lock action with a lock number of all F's is issued, the target resets the
timer on all the locks currently held by that initiator.

3.2 Version Numbers and Caching

The main reason to have version numbers associated with each lock is to provide a means of
determining the consistency of a client's local data cache. Before accessing (either reading
or writing) any data, the appropriate device lock is acquired. When �nished the lock is
released. An Unlock is used when the data has not been modi�ed during the operation.
Otherwise an Unlock Increment must be used to signify that the data was modi�ed.

This data can be cached in a system's memory, though its consistency is unknown until
the next successful Lock action. The consistency of cached data is determined based on
the version number of the lock. The data is consistent if the version number returned by
the Lock operation is the same as what was returned from the initiator's previous Unlock
or Unlock Increment action. Otherwise, the data must be reread. Modi�ed data can be
cached while the Dlock is held, but must be written though to the device before the Dlock is
released. This criteria assumes that roll-over of the version number has not occurred. Given
roll-over, the cache must be treated as inconsistent.

Table 10 shows example accesses from two machines, A and B. Each event is ordered
based on the time given in the left most column. The Action column represents a device
lock command sent to the device assuming all commands access the same lock. The State
�eld gives the lock state (U=Unlocked, S=Locked Shared, and E=Locked Exclusive) and
the version number value. The activity monitor bit is always 0. Version numbers of x
represent values that are assumed to have rolled. The state �eld is updated by the return
of each command and does not change when the other machine performs a command. The
Consistent �eld states whether or not the cached data is consistent. Finally, the Lock �eld
gives the current state of the device lock.

The �rst two Locks from each machine are not consistent, because the version number has
been assumed to have rolled-over. The Lock at time 7 guarantees that the data is consistent,
since the new version number is equal to the old version number. An Unlock Increment is

9

Machine A Machine B
Action State Consistent

Lock
Action State Consistent

0 U,x U,0 U,x
1 Lock Shared S,0 No S,0 U,x
2 No Modify S,0 S,0 U,x
3 Unlock U,0 U,0 U,x
4 U,0 S,0 Lock Shared S,0 No
5 U,0 S,0 No Modify S,0
6 U,0 U,0 Unlock U,0
7 U,0 E,0 Lock Exclusive E,0 Yes
8 U,0 E,0 Modify E,0
9 U,0 U,1 Unlock Incr U,1
10 Lock Shared S,1 No S,1 U,1
11 Modify S,1 S,1 U,1
12 Unlock Incr U,2 U,2 U,1
13 U,2 S,2 Lock Shared S,2 No
14 U,2 S,2 No Modify S,2
15 U,2 U,2 Unlock U,2
16 Lock Exclusive E,2 Yes E,2 U,2
17 No Modify E,2 E,2 U,2
18 Unlock U,2 U,2 U,2

Table 10: Device Lock Example

10

used at time 9 to signify that data was modi�ed. The Lock at time 10 makes no guarantee
that the data is consistent, since in this case the version numbers di�er. The next Lock again
assumes the cache to be inconsistent on the basis that the version numbers di�er. The �nal
Lock shows the data is consistent, since the version number has not changed since time 12.

In general, Locked Shared actions will not be followed by Unlock Increment actions.
Lock Shared implies a read of the data, without a modify, so there is no need to invalidate
the caches of the other machines. There is no reason to prohibit a Locked Shared/Unlock
Increment pair, though. Similarly, Locked Exclusive can be followed by either Unlock or
Unlock Increment.

3.3 Handling Client Failures

Much of the work that has been put into the Dlock speci�cation deals with recovering from
initiator failures. Without these failure detection schemes, an initiator that fails could leave
Dlocks in locked states inde�nitely. This would be bad.

The general Dlock philosophy has always been to try to avoid having to make clients
aware of each other. This means that clients should be able to detect the failures of other
clients solely by interacting with the Dlock device. There are currently two methods of doing
this, Activity and Dlock Timeouts.

There is also a method of detecting failures when the clients talk to each other directly.
Since Dlock commands return a list of the World Wide Names of the hosts holding a lock, it
is possible to implement failure detection at a higher level. The ability of these three failure
detection schemes o�ers a great deal of exibility to systems that use Dlock.

3.3.1 Activity/Force Lock Exclusive

An initiator attempting to acquire a lock that is owned by a failed initiator can identify
that the lock has not been accessed by checking the activity of the lock's version number.
A changing version number indicates that the lock is actively being used. A unchanging
version number is a symptom of a failed client. The number will also not change if a the
lock is continually being acquired and released with an Unlock command.

If no lock activity is observed, the initiator turns on the activity monitoring by the
Activity On actions. The version number now is incremented for both Unlock and Unlock
Increment operations. If the version number shows activity, the initiator turns o� the activity
monitoring and attempts to acquire the lock knowing it is not held by a failed initiator. If
the version number remains unchanged, the initiator performs a Force Lock Exclusive on the
lock.

The Force Lock Exclusive action ensures that the lock will only be reset by the initiator
that can identify the value of the current version number. This solves the the case where
two separate initiators simultaneously attempt to reset the same lock. The �rst initiator
forces the lock, which increments the version number. The second initiator's Force action is
ignored.

Only the three least signi�cant bytes are passed in to the device in the Force Lock
Exclusive action. This is su�cient because a Force Lock Exclusive action is always preceded
by attempts at acquiring the lock using a lock action. The return data from these attempts

11

provides the initiator with the current version number. The initiator then uses that value
in the Force Lock Exclusive. The only way the version number can change between these
two actions is if it is incremented by another initiator's Force Lock Exclusive or Unlock
Increment. The low three bytes of the version number are su�cient to determine this.

When an initiator eventually succeeds with the Force Lock Exclusive, it is told what state
the lock was in. It can then perform recovery on the lock's data. Recovery from a Locked
Shared state may be very di�erent from recovery from a Locked Exclusive state.

3.3.2 Dlock timeouts/Touch Lock/Report Expired

The new method of detecting failed clients employs Dlock timeouts. Clients don't have to
keep track of which other clients have failed because the Dlock device does it for them. If a
initiator ever leaves a Dlock locked for more than a timeout period, the Dlock device assumes
the client has failed and unlocks the lock.

When the lock times out, the device sets a expired ag on the lock. The ag contains
information on whether the lock was held in shared or exclusive state. When a new client
tries to acquire the lock, it succeeds because the lock was reset. It can then examine the
expired ag and perform the appropriate recovery operation.

An initiator can prevent a Dlock from timing out by using the Touch Lock action. This
action resets the timer on the lock. A client who acquires a lock and performs a touch lock
action on it periodically to prevent timeout can hold that lock inde�nitely.

The Dlock mode page contains a �eld for setting the Dlock timeout interval. This value
can be set to zero, which disables Dlock timeout. This allows even greater exibility.

The Report Expired action returns a bitmap of all the locks. If a bit is one, the cor-
responding Dlock has expired. This mechanism allows a dedicated program that runs in
the background on the initiator to check for expired locks and recover them. The program
doesn't have to go linearly though the locks, acquiring and unlocking them. One Report
Expired action allows the program to get a list of all the expired locks.

A \cleaner" program like this is desirable because it can limit the maximum amount of
time a �le system can be in an inconsistent state after a client failure. If the program does
a Report Expired once a minute, the cleaner will know about an expired lock in less than a
minute. Without the cleaner, a client failure on a infrequently used lock could go undetected
for a long time.

3.3.3 World Wide Names

Dlock commands always return a list of World Wide Names of the initiators holding the
Dlock. This allows an arbitrary failure detection scheme to be implemented. Once a client
has the WWN of the client holding a lock, a non-SCSI protocol can be used. The client can
determine for itself whether or not another client has failed. It can then use the Force Lock
Exclusive action to reset the lock, if necessary.

12

3.4 Shared and Exclusive Locks

As stated before, a Dlock can be acquired in one of two modes, Shared or Exclusive. A
number of clients can hold the same lock at the same time if it's in a shared state. This
allows many di�erent clients to read the same piece of data at the same time. If a client
wants to write, it acquires an Exclusive lock. This allows a multiple readers/single write
scheme to be implemented.

The problem with this scenario is that a progression of readers can cause a writer to
wait inde�nitely. Two or more clients can hold a lock in a shared state forever, even if they
are constantly releasing and re-acquiring the lock. The �rst client gets the lock, the second
client gets the lock, the �rst client releases the lock, the �rst client re-acquires the lock, the
second client releases the lock, and so on. There is no time when the lock is unlocked. The
lock is constantly being locked and unlocked, so it doesn't time out. A client that wants to
get the lock exclusively waits forever.

The solution to this problem is to implement an \exclusive pending" bit. If a lock is held
in the shared state and a Lock Exclusive action comes in, the exclusive pending bit is set.
This means that all Locked Shared actions will fail until the lock switches to an unlocked
state. All the current readers drain o� until the writer gets a chance at the lock.

There is one problematic detail. Imagine that there are a bunch of initiators sharing a
lock. A Lock Exclusive action then comes in and fails, which sets the Exclusive Pending bit.
No new Lock Shared requests succeed and eventually the count reaches zero. In a perfect
world, the client wanting the lock exclusively then gets the lock and all clients go merrily on
their way.

In an imperfect world, another client will try to do a Lock Shared before the client that
wants the exclusive lock can retry. At this point, there are three di�erent strategies that can
be implemented:

1. The Dlock device forgets that a Lock Exclusive is pending and clears the bit. The
Lock Shared succeeds and the client that wants the lock exclusively has to wait for all
of the shared clients to drain o� again.

2. All Lock Shared actions are rejected until a Lock Exclusive succeeds. When a Lock
Exclusive action succeeds the Exclusive Pending bit is cleared. This is bad because
the client trying to do the Lock Exclusive might have failed or changed its mind. It
doesn't get the lock exclusively and all the \Lock Shared" clients have to wait until
some other random client decides it wants the lock exclusively.

3. Allow one Lock Shared action to succeed, but keep the Exclusive Pending bit on.
Clients requesting a shared lock are allowed to get it, but only one client at a time.
This keeps \Lock Shared" clients from starving, but provides the maximum chance
for the \Lock Exclusive" client to complete its work. Once a Lock Exclusive succeeds,
the Exclusive Pending bit is cleared and multiple Locked Shared actions can succeed
again.

This speci�cation proposes that option number three be implemented. This allows the
maximum fairness, with the minimum slowdown in case of a failure. A state transition
diagram for this algorithm is shown in Figure 1.

13

LE EXP

EXP

U

LS, LE

LS

Shared

Pending)

Locked

LE

LS

Pending)

U*

EXP
U

LE*

U
U*

(Exclusive

Shared

Locked

Exclusive

(Exclusive

Locked

Unlocked

(Expired)

Unlocked

Unlocked

Figure 1: A state transition table that takes into account the Exclusive Pending bit. State
transitions are described by these abbreviations: EXP=Lock Expiration, LS=Lock Shared
Action, LE=Lock Exclusive Action, LE*=Lock Exclusive Action from another initiator,
U=Unlock Action, U*=Last Unlock Action on a shared lock

14

Condition Condition handling

Mode Select on Dlock Issue Unit Attention: All Device Locks Cleared for all initiators
Dlock Mode Page All lock values are zeroed
Power Cycle Issue Unit Attention: Power On for all initiators

All lock values are zeroed
SCSI Reset * Issue Unit Attention: Power On for all initiators

All lock values are zeroed
Bus Device Reset * Lock values not a�ected
Task Management ** Lock values not a�ected
Target Reset
Initiator Logout ** Locks held by that initiator remain held.

Table 11: Dlock Power Cycles, Resets, and Mode Selects: * Parallel SCSI only, ** Fibre
Channel only

3.5 WWNs and GFS

The new Global File System architecture will take advantage of the fact that Dlock com-
mands return World Wide Names. Clients will hold Dlocks for long periods of time (using
Touch Lock to prevent timeout). While the client holds the Dlock, it can do write caching of
the data protected by that Dlock. This lets GFS relax its synchronous nature and improve
write performance.

When a second client needs to use the lock, it attempts to acquire the lock, but fails. In
the return data from the failed lock action, the WWN of the Dlock holder is returned. The
second client can then make a request to the �rst one, asking it to release the Dlock. The
�rst client then writes back its cached data and releases the lock.

Later versions of GFS can be even more aggressive and use this out-of-band communica-
tion to do things like Third{Party Transfer. The client holding a Dlock doesn't even have
to write back its cache to allow other clients access to the same data. If the second client
is requesting something that is not in the �rst client's cache, the �rst client can just give
permission to the second client permission to read the data from disk. If the data requested
is small enough and in the �rst client's cache, the �rst client could even forward the data
directly to the second client.

3.6 Dlock Persistence

Dlocks are intended to be light weight locks that provide a quick response time. Having a
hold on a Dlock that persist across the power cycle of a device would be nice, but it's not
necessary. Lock states do not need to be stored in non-volatile memory. Speci�c conditions
and how they should be handled are shown in Table 11.

If an initiator is logged out of a device because there are too many other devices, it should
not lose its Dlocks. When the initiator next logs in to the device it should be able to perform
all the actions it could if it didn't log out. This doesn't a�ect the timeout, however. If the
timer on a Dlock expires when the initiator that holds it isn't logged in, the Dlock is put in

15

the expired state, just as it would if the initiator was logged in.

4 Implementation Details

There are a number of details to the Dlock concept that can improve its e�ciency without
changing the interface. Some of these are:

4.1 Out-of-Queue Dlocks

One of the things that hurts the performance of GFS is the fact that Dlock operations can
be stuck behind large data transfers in a drive's command queue. The client has to wait for
unrelated disk operations to happen before it can continue.

The Dlock command has low processor overhead. There are no disks accesses involved.
There are no large calculations involved. The Dlock SCSI commands could be implemented
outside of the command queue. Dlock commands could be acted on as they are pulled o�
the wire. This may slightly increase the devices's �rmware complexity, but it would be a big
win performance{wise.

4.2 Event{driven Timeouts

A Dlock device can detect Dlock timeouts in one of two ways:

1. A thread in the Dlock device could wake up periodically and check to see if any of the
locks have expired. The thread would scan linearly though all the locks checking the
time stamps and marking the expired locks as unlocked and expired. If there were a
large number of Dlocks on a device, this could take a fair amount of process time for
each scan. Scans would have to be frequent, so a lot of time would be wasted.

2. Make timeout checking event driven. Only check the time stamps on a lock when you
get a request for that lock. This distributes the workload so that it doesn't happen all
at once. It also means that the device doesn't have to waste time checking locks that
aren't being used. This is a much better approach.

4.3 Active Dlocks

Holding the full state of every Dlock in memory could be too costly. In the most straight{
forward encoding method, each Dlock needs to hold: 1 Activity bit, 2 bits for the Expired
�eld, 2 bits for the State �eld, 32 bits for the version number, 1 Exclusive Pending bit, a
counter of the number of initiators holding the shared lock, and 64 bits per World Wide
Name of the initiators holding the shared lock. With this much data per Dlock, not too
many of them will �t in a reasonable amount of space.

This problem can be solved by noting that only a few of these �elds need to the retained
when a lock is unlocked. Only the Activity bit, Exclusive Pending bit, Expired �eld and
Version Number need to be retained. That's only 36 bits. If there is a limit of about 100
active Dlocks at any one time, only that many full sets of Dlock data need to be stored. The
memory saving could be signi�cant.

16

4.4 World Wide Names

Storing a list of WWNs for each Dlock can use up too much memory, even if the above
Active Dlock optimization is used. Just storing an o�set into a device wide list of WWNs is
enough to reconstruct the WWN list for the Return Data Block. This saves memory. Care
must be taken, though, so that the list is still valid if a initiator gets logged o� of the device
because there are too many logged in.

5 Future Work { Multiple Actions Per Command

In the current Dlock Speci�cation, all deadlock detection and avoidance must be done by the
initiators. If a client needs to hold two Dlocks, it must get them one at a time. If another
client wants the same two Dlocks, but gets them in the opposite order, deadlock can result.

GFS handles this problem by implementing a complicated system of back-o�s and retries.
If a client is holding one Dlock and wants another, it tries to get the new lock for a certain
amount of time. If it doesn't get the lock in this time, it assumes a deadlock condition
exists. It releases the �rst lock, sleeps for a random amount of time, and then retries the
whole operation. This system solves the deadlock problem, but it is not fun to implement
and it is not time optimal.

A better solution would be to this problem would be to implement a Dlock command
that allowed multiple actions. In the above situation, an initiator would issue a command
that contained two lock actions. The command would be atomic so that: 1) Either both
actions would succeed and the initiator would now hold both locks, or 2) both actions would
fail and the client would hold neither of the locks. This eliminates the deadlock problem.

The Multiple Action idea could be expanded to allow many unrelated Dlock actions to
be issued in one atomic Dlock command. This could be a very powerful tool. There are
problems with implementing this scheme, though.

Packing multiple actions into one command requires more space than is currently avail-
able in a 12 byte CDB. The current possible work-arounds are:

1. Implement one Command with both a data-in and a data-out phase. This is possible
in Fibre Channel, but frowned upon in Parallel SCSI. Using parallel SCSI as a testbed
is a very nice thing, so we would prefer not to implement this option.

2. Implement two separate commands, one with a data-in phase and one with a data-out
phase. This approach would cause synchronization problems. How would a device
match the \Issue Action" command with the \Request Result" command? Also, this
technique forces the initiator to issue two commands per lock request. Dlock is intended
to be a light-weight command and this doubles the overhead of the lock/unlock process.

In the future, a third option would allow the advantages of multiple actions per command,
but at the current time it is more trouble that it is worth.

17

6 Acknowledgments

Many people have contributed code and ideas to The Dlock Speci�cation over the years.
The people we can remember at the moment are:

� From the University of Minnesota
Jonathan E. Brassow, Grant M. Erickson, Benjamin I. Gribstad, Erling Nygaard,
Matthew T. O'Keefe, Kenneth W. Preslan, Thomas M. Ruwart, Christopher J. Sabol,
Aaron Sawdey, Steven R. Soltis, David C. Teigland

� From Seagate Technology, Inc.
Dave Anderson, Jim Coomes, Gerry Houlder, Nate Larson, Michael H. Miller, Troy
Wheeler

� From NASA Ames Research Center
Alan Poston, John Lekashman

� From Ciprico, Inc.
Edward A. Soltis

18

