
How the Global File System

uses Dlock

Kenneth W. Preslan

Parallel Computer Systems Laboratory

University of Minnesota

http://gfs.lcse.umn.edu

September 16, 1998

1



Outline

1. Short Description of GFS

2. Why Dlocks?

3. Current GFS

� Locking

� Caching

� Crash Recovery

4. New Features

� Dlock Timeouts

� World Wide Names

� Shared Locks

5. Summary

2



What is GFS?

� GFS is a Shared-Disk �lesystem for Fibre

Channel

� GFS is Symmetric (No File Manager)

� Currently implemented on Irix and Linux

� Two parts

1. The Network Storage Pool Driver

2. The File System

� Uses an earlier implementation of Dlock on

Seagate drives

3



Storage Area
Network

Network Storage Pool 

Sub-pool 2

RAID 5Single Disk

Sub-pool 1

Solid State 

Sub-pool 0

Software Striped Disks

Sub-pool 3

RAID 3

Sub-pool 4

GFS Client

DiskMemoryCPU

GFS Client

DiskMemoryCPU

GFS Client

DisksMemoryCPUs

GFS Client

DisksMemoryCPU

4



Pool

� Provides an uniform address space of data

blocks and Dlocks to the FS.

� Takes lock and unlock commands from the

FS and translates them into SCSI Dlock

commands.

� Handles retries if the lock is busy, lock time-

outs, and lock resets

5



The File System

� Very similar to a local �lesystem, but with

locks for consistency

� Each client is in charge of keeping the meta-

data consistent as it writes data

� Handles deadlock avoidance, caching, crash

recovery

6



Why Dlocks?

� SCSI devices are more reliable than most

hosts

� Locks can be distributed across many disks

without the complexity of DLMs

� Dlocks are faster in the �rmware of a drive

than on a general purpose computer

� Dlocks aren't connected to any particular

part of the medium. A Dlock on one device

can be used to lock data blocks on another

device. What each lock represents it totally

up to the initiators using it.

7



Current GFS

� Uses a early version of the Dlock Spec { no

shared locks, lock timeout, or World Wide

Names

� Implemented on Irix and Linux

� GNU GPL source on http://gfs.lcse.umn.edu

8



Locking

� Dlocks are used to perform mutual exclu-

sion when metadata is updated.

� One Lock for the Superblock, Root Inode,

and Rename Lock

� One Lock for each Resource Group (bitmaps)

� Each Inode hashes to a Dlock { Many to

one mapping

� Dlocks are only held for short read-modify-

write operations.

9



Caching

� Dlocks provide a means of validating client-

held caches of data

� Two types of Unlock actions

1. Unlock { Regular unlock

2. Unlock Increment { Increment the lock's

Version Number

� Operations that change metadata on disk

use Unlock Increment

� Read-only operations use Unlock

10



Caching

� Each Lock action returns the version num-

ber for that lock.

� Clients compare the version number returned

from a lock action with the version number

from when they last held the lock.

� If the two version numbers match, the cache

is valid.

11



Caching { Example
Machine A Machine B

Action Valid
Lock

Action Valid
0 U,0
1 Lock Shared No S,0
2 No Modify S,0
3 Unlock U,0
4 S,0 Lock Shared No
5 S,0 No Modify
6 U,0 Unlock
7 E,0 Lock Exclusive Yes
8 E,0 Modify
9 U,1 Unlock Incr
10 Lock Shared No S,1
11 Modify S,1
12 Unlock Incr U,2
13 S,2 Lock Shared No
14 S,2 No Modify
15 U,2 Unlock
16 Lock Exclusive Yes E,2
17 No Modify E,2
18 Unlock U,2

12



Crash Recovery

� We want to be able to detect when a client

holding a lock crashes

� Currently, GFS does this by repeatedly polling

the lock

� If the version number doesn't change for a

set amount of time, it is assumed that a

client has crashed.

� The lock is then reset and the FS can in-

voke a recovery routine.

13



Areas of improvement for GFS

� The current GFS implementation works,

but there are areas for improvements

� GFS currently doesn't do any write caching.

� Some locks (like the root inode lock) are

read a lot, but not written.

� Online recovery is hard

14



Dlocks are held longer

� Instead of a Dlock being acquired and re-

leased each operation, it is held for a long

period of time.

� While the lock is held, write-caching is pos-

sible.

� Write-caching makes a journal-ed or log-
structured �le system e�cient.

� The e�ect of the latency involved in get-
ting a Dlock is lessened.

� But, this breaks our recovery scheme. A

Dlock isn't constantly being locked an un-

locked, how do we know when it is held by

a failed initiator?

� But, if some other client has a lock and is

holding it for a long time, how do we get
it?

15



Dlock Timeouts

� Dlocks time out (and become unlocked) if

they are left idle for too long

� All that is required to recover from a failed

client is to keep retrying the lock until it

succeeds.

� When a lock action succeeds, a 
ag is passed

back letting the client know whether or not

the lock was expired.

� A touch lock command exists that lets a

client reset the timeout on one of its locks.

� A client failure on a infrequently used Dlock

is automatically detected

16



World Wide Names

� When a lock command fails, a list of World

Wide Names is returned to the client.

� Each WWN belongs to a client that is cur-

rently holding the lock

� Allows a client who wants a lock to ask

other clients to release it.

� Allows arbitrary crash detection algorithms.

17



Reader/Writer Locks

� Locks are acquired in one of two modes:

Shared or Exclusive.

� A shared lock can be held by multiple clients

that all want to read { but not write data.

� An exclusive lock is held by a client that

wants to write.

� Locks that are read a lot, but seldom changed

(like the root directory) can be held as

shared locks to reduce congestion

18



Summary

� GFS has been implemented using a early

Dlock Speci�cation

� GFS shows that it is possible to implement

a shared-disk �lesystem without having to

rely on a centralized �le manager.

� Future version will e�ciently scale from a

multiple machine cluster down to a single

client.

� Dlocks provide a robust, distributed lock-

ing mechanism.

19


