Dual Conductivity Contact

AMMP Incorporated

Presented to SPI-3 Subcommittee
On: March 16, 1998
By: Hank Herrmann

Patent Applied for on this Contact

Dual Conductivity Contact Investigation for SPI-2 SCSI Systems

OBJECT: Identify and Quantify the error condition that can be induced on the signal lines when a drive is 'hot-plugged' into an operating SPI-2 SCSI system.

The work is focused on but not limited to, requirements for the SCA-2 connector and the Low Voltage Differential (LVD) family logic.

SCA-2 Server Drive Array System Model with 5 Hot swappable Drives and separate Terminations

The Bus Path: Represents Cables or a Backplane												
Bus Path Conn.	Med_1	Bus Path Conn.	Med_2	Bus Path Conn.	Med_3	Bus Path Conn.	Med_4	Bus Path Conn.	Med_5	Bus Path Conn.	Med_6	Bus Path Conn.
Device Conn.		Device Conn.		Device Conn.		4		Device Conn.		Device Conn.		Device Conn.
Term_1		Device Intercon.		Device Intercon.		\rceil		Device Intercon.		Device Intercon.		Term_2
\uparrow		Drive_1 Circuits		Drive_2 Circuits		Device Conn.		Drive_4 Circuits		Drive_5 Circuits		4
		\uparrow		4		Device Intercon.		4		\uparrow		
						Drive_3						
Terminator		1		Drive \#2				Drive \#4		\|		Terminator
		Drive \#1			Drive	\#3: Hot Plu	gged			Drive \#5		

Definition of the Problem:

When a new drive is hot-plugged into an operating drive array, some receivers may detect errors.

With the previous system (HVD) there are voltage dips on the bus signal lines of several hundred millivolts.

Interpretation:
The uncharged drive input capacitances pull enough energy out of the system (Bus) to cause voltage errors on other drives.

Bus Path (Media) Showing Energy Depletion on a Signal Line

Proposed Solution:

Make a very high resistance connection at the first instant of 'contact' and then drop to the milliohm range as the connector is fully engaged.

This sounds reasonable.
Resistance will limit the energy transfer.

- Before simulation can be trusted to evaluate the solution, the problem must be demonstrated.

Hot Plugged Drive Mating to the Bus

Everything the Standard covered was set to the worst case.

Imbalance is not the cause of the problem.

The Contacting Switch Model ...

- It was confirmed that 'contact'was effectively instantaneous.
- But do both contacts make 'contact' at the same instant?

Not likely.
How far apart can the 'contact'time be?

Time Difference between 'contact' instants

Select Velocity Range:		
Maximum		Minimum
2.0	Ft/sec	0.2
0.0240	mils/usec	0.0024
Contact Point Variation (CPV):		
Minimum		
1.0		Maximum
41.67	usec	5.0

One connection at a time produced the correct results.

- The model is validated.
- The problem is understood.
- Now the solution can be developed.

Dimensional Analysis for Insulated Contact Area

Select Velocity Range:		
Maximum		Minimum
2.0	Ft/sec	0.2
0.0240	mils/usec	0.0024
Contact Point Variation (CPV):		
Minimum		
1.0	mils	Maximum
41.67	usec	5.0
		2083.33

Length of High Resistance (Lres):

Based on 30mv max. DeltaV			
Rsnub.	Minimum		Maximum
Low	6.270	usec	
	$\mathbf{0 . 1 5 0}$	mils	No Limit
Med.	62.70	usec	
	$\mathbf{1 . 5 0 5}$	mils	No Limit
High	627.0	usec	
	$\mathbf{1 5 . 0 4 8}$	mils	No Limit

